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Abstract
The monetary and fiscal control of a simple economy without outside ran-

domness is studied here from the micro-economic basis of a strategic market
game. The government’s bureaucracy is treated as a public good that provides
services at a cost. A conventional public good is also considered.

1 Introduction

In this and two companion essays, macro-economic problems of the monetary and
fiscal control of an economy are viewed building up from the microeconomic basis
of a strategic market game. In previous works (cf. [4], [5], [6], [7]) we considered
a highly simplified economy with either a representative agent or a continuum of
small, strategically independent agents. We continue this approach here, with a
more explicit consideration of government and the role of bureaucracy in policing the
economy.
There is a vast macroeconomic literature on monetary and fiscal policy. Our

contribution is complementary with much of this literature, in the sense that we
present in explicit detail closed strategic models for the microeconomic processes
of the economy. Our purpose is to illustrate at a high level of simplification some
fundamental features of government control of taxation, bureaucratic enforcement
of default conditions, and public debt creation. These are treated with emphasis
on information conditions, on the equations of motion, on the logical necessity for
default rules and their enforcement, and on the minimal requirements for the various
institutions in the economy.
The simple, low-dimensional models treated here, like many such low-dimensional

models studied in the literature (cf. Lucas [10], [11], Lucas and Stokey [12], [13]
among others), are toy-like when compared with the large macro-economic models
utilized by practitioners (cf. Fair [3]). These simple models may provide some in-
sight into qualitative properties of an economy and raise questions about the logical
completeness of the large models. However, they are not substitutes.
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This essay is devoted to non-stochastic models, prior to considering the more
difficult stochastic versions. An important feature of non-stochastic models with
simultaneous moves by small homogeneous agents is that the symmetric equilibria
coincide with the equilibria of representative agent models.
One of our motivations for treating the non-stochastic models is that, although

the solutions are relatively simple, careful process modelling of the laws of motion
for the agents requires laying out virtually all of the details required to study the
stochastic models. Another reason to study these relatively simple models is that
they often admit closed-form solutions, which is rarely the case for stochastic models
with independent agents.

Outline. We shall consider five basic models. In each of the models there is a contin-
uum of producer-consumer agents who seek to maximize their total discounted utility
from consumption over a countably infinite sequence of time-periods. In Models 1 and
2 the government taxes the agents, and uses the revenue to support a bureaucracy
that provides government services. In Models 3,4, and 5 a conventional public good
is supported. In the first three models a central bank sets an interest rate and stands
ready to make loans or accept deposits. In the fourth model, one-period bonds are
introduced. Model 5 considers consols or perpetuities.
For each of the models we construct a type-symmetric stationary equilibrium.

Some of the details of the proofs are in the Appendix.

2 Model 1: An economy with taxation to support
a government bureaucracy

All of the models we consider will involve a government and a continuum I = [0, 1]
of producer/consumer agents. In each model there will also be a single private,
perishable good, which serves both as a consumption and a production commodity.
The first model involves in addition another continuum J = [0, δ] of government

bureaucrats. The size δ > 0 of the bureaucracy is exogenously given. (The question
of the optimal size of the bureaucracy has been considered elsewhere by Shubik and
Smith [17].) The government taxes the producer/consumers in order to support the
bureaucrats. The productivity of the bureaucracy is implicit in the model and can
be interpreted as supplying the basic running of the government and the enforcement
of the laws. For simplicity we assume that the bureaucrats obtain a tax-free income.
This saves on some accounting but yields substantially the same problem. We turn
now to a detailed description of the model.

At the beginning of every time period n = 1, 2, . . ., every producer/consumer
agent α ∈ I holds cash mα

n ≥ 0 and a quantity qαn ≥ 0 of goods. Every bureaucrat
γ ∈ J holds cash mγ

n ≥ 0 but no goods. (The bureaucrats neither hold nor produce
the private good.) Every agent α sells his goods in a market, so that the total amount
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of goods sold in period n is

Qn =

Z
I

qαn dα . (1)

In every period n, every agent α ∈ I bids cash bαn in the market in order to obtain
goods for consumption and as input for production in the next period; likewise, every
bureaucrat γ ∈ J bids cash bγn for goods. The total amount of cash bid is therefore

Bn = BA
n +BΓ

n =

Z
I

bαn dα+

Z
J

bγn dγ ; (2)

thus the price of the good is formed endogenously, by supply and demand, as

pn =
Bn

Qn
. (3)

Then each agent α ∈ I receives in cash the revenue pnqαn from the sale of his goods.
However, this income is taxed at a rate θ ∈ (0, 1) set by the government, so that α’s
net income is θ̄pnq

α
n , where θ̄ := 1− θ .

Prior to bidding in the private goods market, each agent α ∈ I can borrow from,
or deposit into, a central bank, which sets the rate of interest ρ > 0. The bank
predicts the price pn to be bpn and allows agent α to borrow up to (θ̄ bpnqαn)/(1 + ρ) ,
the amount that α is expected to be able to repay with interest. Thus, α is able to
bid any amount

bαn ∈
∙
0, mα

n +
θ̄ bpnqαn
1 + ρ

¸
. (4)

In a rational expectations equilibrium, we shall have bpn = pn .
The agent receives his bid’s worth bαn/pn in goods, then selects a portion kαn ∈

[0, bαn/pn] to be put into production. He consumes the remaining goods x
α
n = (b

α
n/pn)−

kαn , and receives u(x
α
n) in utility, where u : [0,∞) → [0,∞) is a concave, increasing,

differentiable utility function, such that u(0) = 0.
Each agent α ∈ I seeks to maximize the total discounted utility

∞X
n=1

βn−1u(xαn)

from consumption of the perishable good, where β ∈ (0, 1) is the discount factor.
Agent α begins period n+ 1 with cash

mα
n+1 = (1 + ρ)(mα

n − bαn) + θ̄pnq
α
n . (5)

The producer/consumer agents have a common production function f : [0,∞)→
[0,∞) which is also assumed to be concave, increasing, and continuously differen-
tiable, with f(0) = 0. We further assume that

f 0(0) = +∞ , lim
k→∞

f 0(k) = 0 . (6)
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The input kαn of agent α results in the output f(k
α
n). Agent α begins period n + 1

with goods
qαn+1 = f(kαn) + y. (7)

The quantity y ≥ 0 of goods can be viewed as an additional endowment. (It is
included here, with an eye toward generalizing to a random variable Y in future
work.)

The situation for a bureaucrat γ ∈ J is similar, except that the bureaucrats
do not hold goods, do not produce them, and pay no income tax. The bureaucrats
receive as income the tax revenues collected from the producer/consumer agents.
The total revenue collected in period n is θBn = θpnQn , and this amount is divided
equally among the bureaucrats. Since the total size of the bureaucracy is δ, each of
them receives the cash amount θpnQn/δ at the end of the period. Prior to bidding in
period n, the bureaucrat γ is allowed to borrow from the bank an amount based on
his expected income and can thus bid any amount

bγn ∈
∙
0, mγ

n +
θ bpnQn

δ(1 + ρ)

¸
. (8)

As already mentioned above, the bank’s predicted price bpn will agree with the actual
price pn in rational expectations equilibrium. The bureaucrat γ then receives an
amount xγn = bγn/pn of goods, consumes it all, and thereby gets u(x

γ
n) in utility. Each

bureaucrat γ seeks to maximize the total discounted utility

∞X
n=1

βn−1u(xγn).

(Our analysis would be unchanged if the bureaucrats had a different utility function
from that of the producer-consumer agents.) The bureaucrat γ begins period n + 1
with cash

mγ
n+1 = (1 + ρ)(mγ

n − bγn) +
θpnQn

δ
. (9)

We are now ready to construct an equilibrium for this model. However, we pause
first for a brief aside on solution concepts.

2.1 An aside on solution concepts

For each of our models, we shall construct a type-symmetric Nash equilibrium. That
is, we shall find initial conditions and strategies for the agents such that all agents
of a given type use the same strategy and every agent is playing optimally, given
that all other agents follow the prescribed strategies. These equilibria will be almost
subgame perfect, in the sense that their restriction to any subgame that occurs along
the equilibrium path will again be a Nash equilibrium. However, the strategies need
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not correspond to a Nash equilibrium at subgames which are off the equilibrium path.
Thus, our equilibria need not be fully subgame perfect as defined by Selten [15].
For these equilibria, the phenomenon called “time inconsistency” bymacro-economists

(cf. [9], [2]) does not arise. From the viewpoint of formal game theory, this notion
raises problems in the definition of the extensive form of a game and on whether
non-binding language statements are formally modelled as moves in the game. Many
years ago Schelling [14] launched a well-directed critique against formal game the-
ory; but apart from several intuitively attractive observations on the problems of
pre-commitment and threat, he offered no formal solution.
Given certain reasonable contexts, such as individual behavior in mass markets

with or without the presence of a large (atomic) agent as a controller or government,
the subgame perfect equilibrium solution can be regarded as attractive and is reflected
in the mathematical formulation of parallel dynamic programs and rational expecta-
tions. The phrase “rational expectations” itself appears to be nothing more than the
consistency of expectations required at any noncooperative equilibrium point 1.

2.2 An equilibrium for Model 1

To construct a type-symmetric equilibrium, we suppose that all producer/consumer
agents α ∈ I begin play with the same amounts of cash mα = mA > 0 and goods
qα = qA > 0, respectively; and that every bureaucrat γ ∈ J begins play with cash
mγ = mΓ > 0 at hand. Let

M :=

Z
I

mα dα+

Z
J

mγ dγ = mA + δ ·mΓ

be the total cash holdings of both types, and let

Q :=

Z
I

qα dα = qA

be the total amount of goods available.
Next, let us assume that every agent α ∈ I bids the same amount of cash

bα = bA = aA ·M

for goods, and that every bureaucrat γ ∈ J bids

bγ = bΓ = aΓ ·M
1We have not even mentioned the difficulties posed by lack of common knowledge and incomplete

knowledge concerning the rules of the game. These extra factors suggest the dangers of taking
rational expectations too seriously. We work with it primarily because the model of an optimizing
individual with limited intelligence, computational ability, and memory is far harder than homo
oeconomicus.
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for suitable positive constants aA and aΓ. The total bid is then

B =

Z
I

bα dα+

Z
J

bγ dγ = bA + δbΓ = (aA + δaΓ)M = aM ,

where
a := aA + δaΓ .

The price of goods is formed as

p =
B

Q
=

aM

Q
.

We assume also that each agent α ∈ I inputs the same quantity k for production,
and that

Q = qA = f(k) + y .

Thus the quantity of goods will again be Q in the next period.
By the laws of motion (5) and (9), in the next period agents and bureaucrats will

have cash holdings

emA = (1 + ρ)(mA − bA) + θ̄pQ = (1 + ρ)(mA − bA) + θ̄B (10)

and emΓ = (1 + ρ)(mΓ − bΓ) +
θpQ

δ
= (1 + ρ)(mΓ − bΓ) +

θB

δ
, (11)

respectively. The total amount of cash in the next period will be

fM = emA + δ emΓ = (1 + ρ)(M −B) +B = (1 + ρ)(M − aM) + aM = τM , (12)

where
τ := 1 + ρ− ρa (13)

is the rate of inflation (or deflation). If the agents and bureaucrats continue to bid
the same proportions of their money, then the price in the next period will be

ep = afM
Q

=
aτM

Q
= τp . (14)

Thus, prices will inflate at the same rate as the money supply.

Theorem 1: Suppose that every producer/consumer agent α ∈ I begins play with
cash mα = θ̄M and goods qα = f(k1) + y, where M > 0 and the input level k1
satisfies 2

f 0(k1) = (1 + ρ)/(βθ̄) ;

2The existence of such a k1 follows from (6). Indeed, our only use of (6) is to guarantee the
existence of k1.
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and that every bureaucrat γ ∈ J begins with cash mγ = θM/δ .
Then there is an equilibrium for Model 1, in which every agent α ∈ I inputs k1

for production in every period, and all agents α ∈ I and bureaucrats γ ∈ J bid the
constant proportion a of their cash-at-hand in every period, where

a =
(1 + ρ)(1− β)

ρ
. (15)

The proof of Theorem 1 is in the Appendix.
In the equilibrium of Theorem 1, we have aA = aθ̄ and aB = aθ/δ, with a given

by (15). Thus, by (13) and (15), money and prices inflate at the same rate

τ = (1 + ρ)− ρ · (1 + ρ)(1− β)

ρ
= β(1 + ρ) , (16)

in agreement with the classical Fisher equation. Also, the quantity of goods produced
stays fixed at

Q =

Z
I

qα dα = f(k1) + y. (17)

The government influences inflation and production through its choice of the tax
rate θ and the interest rate ρ. Clearly, there is no inflation if the central bank sets

1 + ρ =
1

β
.

However, production is an increasing function of the input level

k1 =
¡
f 0
¢−1µ 1 + ρ

β(1− θ)

¶
.

Since f 0 is a decreasing function, we see that lower interest rates increase production.
The same is true of lower tax rates. However, a lower tax rate also results in less
money to support the bureaucracy and the government services it provides. This
trade-off between private and public production will be made explicit in Model 3
below.
A simple example is illustrative.

Example 1: Consider the stationary equilibrium of Theorem 1 in the special case
when the production function of the agents is f(k) = 2

√
k, and y = 0. Then

f 0(k1) =
1√
k1
=

1 + ρ

β(1− θ)

so that

k1 =

µ
β(1− θ)

1 + ρ

¶2
and Q = f(k1) =

2β(1− θ)

1 + ρ
.
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In a period when the money supply is M , the consumer/producer agents bid bA =
aθ̄M , the bureaucrats bid bΓ = aθM/δ, and the price of the good is formed as
p = aM/Q . Thus, in every period, the agents and bureaucrats consume, respectively,

xA =
bA
p
− k1 = θ̄Q− k1 =

β(1− θ)2

1 + ρ

µ
2− β

1 + ρ

¶
and

xΓ =
bΓ
p
=
2βθ(1− θ)

δ(1 + ρ)
.

Their total discounted utilities are thus

u(xA)

1− β
and

u(xΓ)

1− β
,

respectively. It is easy to check that xA increases as the tax rate θ and the interest
rate ρ decrease. On the other hand, xB increases as ρ decreases, but has a maximum
in θ at θ = 1/2.

3 Model 2: Unlimited lending with penalties for
default

In Model 1 individuals were permitted to borrow up to a level limited by their ex-
pected income for the period. Instead of using this “secured lending” rule, we now
consider an economy in which unsecured lending is allowed. But with unsecured
lending there is a need for default penalties to guard against failure to repay, and the
penalties require enforcement. (For this model one can view the contribution of the
bureaucracy as being the enforcement of the laws, rules and instruments promoting
efficient and honest trade [17].)
In most respects Model 2 is the same as Model 1. There is a continuum I = [0, 1] of

producer-consumer agents and a continuum J = [0, δ] of bureaucrats. The producer-
consumers hold cash and goods, and are taxed to pay the bureaucrats who hold cash
but no goods. The critical difference from Model 1 is that the bank no longer imposes
any bound on lending to either agents or bureaucrats.
At the start of any period when loans are due, we assume in Model 2 that the

bank can collect any liquid assets held by a debtor and enforce a penalty in units
of negative utility, proportional to any debt that remains. The debt is then erased,
and the individual is permitted to borrow again. When the penalty for default is
sufficiently severe, the agents and bureaucrats will not wish to incur large debts and
will themselves limit their borrowing.
To make these assumptions precise, consider first a producer/consumer agent

α ∈ I who begins a period with cash mα ≥ 0 and goods qα ≥ 0. The agent is
permitted to bid any amount bα ≥ 0 for goods and input kα ∈ [0, bα/p] for production.
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The agent then consumes xα = (bα/p) − kα and receives u(xα) in utility. Here p is
the price formed in the market as in Model 1.
Agent α begins the next period at (emα, eqα), where

emα = (1 + ρ)(mα − bα) + θ̄pqα and eqα = f(kα) + y . (18)

If emα ≥ 0, play continues as before. However, if emα < 0, the agent is in default and
is punished in utility by the amount

ζ · emαep , (19)

where ζ is a positive parameter and ep is the price of the good in the period when the
punishment takes place.
The situation of a bureaucrat γ ∈ J with cash mγ ≥ 0 is analogous. The bu-

reaucrat can bid any amount bγ ≥ 0 for goods, consume xγ = bγ/p, receive u(xγ) in
utility, and begin the next period in cash-position

emγ = (1 + ρ)(mγ − bγ) +
θpQ

δ
.

If emγ < 0, the bureaucrat is punished in the amount ζ (emγ/ep) , and then plays from
zero-cash position.
If the punishment parameter ζ is sufficiently large, then there is an equilibrium in

which no bankruptcy occurs. Indeed, the equilibrium is the same as that of Model 1.

Theorem 2: If ζ ≥ u0(0), then the equilibrium of Theorem 1 is also an equilibrium
for Model 2.

The proof of Theorem 2 is in the Appendix.
If the default penalty is sufficiently small, the equilibrium of Theorem 1 for Model

1 need not be an equilibrium for Model 2.

Example 2: Let u(x) = x and ζ = 1/2. A producer/consumer α who bids b >
mα + (θ̄pqα)/(1 + ρ) will have marginal utility

1

p

∙
u0
µ
b

p
− kα

¶
− ζ

¸
=
1

p

∙
1− 1

2

¸
> 0 ,

corresponding to the difference between the additional marginal utility from consump-
tion and the disutility from the default penalty. Thus agent α will prefer to go bankrupt
rather than follow the strategy of Theorem 1.

The penalty as defined in (19) is adjusted for inflation. In reality, it may take
decades to correct for inflation in many laws involving the worth of property. Thus,
the crime of stealing $20 in 1880 should be reclassified as a tort in 2000, but may
remain on the books as a crime.
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Consider a variation of Model 2, call it Model 20, in which the penalty for default
is not indexed for inflation. Thus, if a player begins a period with a negative cash
position em, the player is punished by the amount ζ · em regardless of the price level.
In all other respects, Model 20 is the same as Model 2.
In the presence of inflation the effective penalty increases over time and, as in

Model 2, the equilibrium for Model 1 is also an equilibrium for Model 20.

Theorem 3: Assume β(1+ρ) ≥ 1 , and let p1 be the price for goods at the first stage
in the equilibrium of Theorem 1. If ζ ≥ u0(0)/p1 , then the equilibrium of Theorem 1
for Model 2, is also an equilibrium for Model 20.

The proof is similar to that for Theorem 2 as given in the Appendix.
Note that a type-symmetric equilibrium with active bankruptcy cannot occur

for the deterministic economy of Model 20. If it were advantageous to default, agents
would increase their bids to the point at which the advantage would disappear. Active
bankruptcy can occur for a model with exogenous uncertainty (cf. Geanakoplos et
al. [4]).

4 Model 3: An economy with a generic public
good

In Models 1 and 2, the producer/consumer agents were taxed in order to support a
bureaucracy that provided government services such as law enforcement. In Model
3 the agents are taxed in order to provide a physical public good, such as highways,
that may depreciate. It is more conventional in economic theory to consider models
with physical public goods. Nevertheless, the services of government bureaucracy are
perhaps no less important than physical public goods such as infrastructure.
As was the case for Models 1 and 2, the model of this section, Model 3, will posit

again a continuum of producer/consumer agents α ∈ I who hold cash mα
n ≥ 0 and

perishable goods qαn ≥ 0 at the start of each period n.
However, we shall assume here that the government now provides a quantity

Gn ≥ 0 of a generic public good in every period n. For simplicity, Model 3 will not
include the bureaucrats. Instead, we shall assume that the government spends all its
tax revenues on the production and maintenance of the public good.
Now for the details: As in Model 1, each agent α makes a cash bid

bαn ∈
∙
0, mα

n +
θ̄bpnqαn
1 + ρ

¸
.

in period n for the private good. As before, bpn will denote the bank’s estimate of
the price pn of the private good and, in rational expectations equilibrium, bpn = pn.
Although default is possible out of equilibrium, we shall not model it explicitly.
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In period n each agent α sells his goods qαn in a market at price pn and pays the
amount θpnqαn in taxes. The government spends its total tax revenues

BG
n =

Z
I

θpnq
α
n dα = θpn

Z
I

qαn dα = θpnQn

in the private goods market. Thus, the price pn for this private good is formed as

pn =
Bn +BG

n

Qn
, where Bn :=

Z
I

bαn dα

is the total bid by the agents. Each agent α purchases the quantity bαn/pn of private
goods, and puts kαn ∈ [0, bαn/pn] into production for such goods. Agent α’s cash mα

n+1

and goods qαn+1 in the next period are thus given by (5) and (7), as in Model 1.
The government, on the other hand, acquires the quantity

kGn =
BG
n

pn

of the private good, all of which is used for the production or maintenance of the
public good.
Suppose Gn ≥ 0 is the quantity of the public good available at the beginning of

period n, and that η ∈ (0, 1] is the depreciation rate. Then the amount of the public
good in the next period is

Gn+1 = (1− η)Gn + F (kGn ), (20)

where F (·) is the government’s production function for the public good.
The utility of an agent α in period n is

u(xαn, Gn),

a concave increasing function of the agent’s private consumption

xαn =
bαn
pn
− kαn

and the public goodGn provided by the government. For fixed values ofG, we assume
that u(·, ·) is concave and differentiable, and increasing in each of its variables when
the other is held fixed in [0,∞) . As before, each agent α seeks to maximize the total
discounted utility

∞X
n=1

βn−1u(xαn, Gn)

from consumption of the private good.
The government is regarded as a controller, and moves first in the game. Its

actions are specified by its selection of its control variables, the interest rate ρ and
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the tax rate θ. The tax rate determines the income level of the government, and
thereby also its production of the public good. Furthermore, the objectives of the
government are assumed known to the agents. For example, the government may
wish to supply some level of the public good, subject to some condition on inflation.

Remark: An alternative model would have the government finance the public good
with the earnings of the central bank. (The bank has a positive return when the agents
borrow and pay back with interest. This occurs in equilibrium if β(1 + ρ) > 1.) The
government could use its bank earnings instead of, or in addition to, its income from
taxes. We will not explore these alternative models in this paper.

4.1 An equilibrium for Model 3

We shall construct a type-symmetric equilibrium, in which money and prices may
inflate, but consumption and production remain constant.
Suppose that all agents begin with the same amount of cash mα =M and goods

qα = Q = f(k) + y. Assume each agent makes the same bid bα = b = aM for
the private good, and inputs the same amount kα = k for its production. Since the
government bids its total income, namely θpQ, the price of the private good is given
by

p =

R
I
bα dα+ θpQ

Q
=

aM

Q
+ θp

and hence
p = (aM)/(θ̄Q) .

The amount of private good consumed by each agent in the period is

xα =
bα

p
− kα =

aM

p
− k = θ̄Q− k. (21)

The government inputs

kG =
θpQ

p
= θQ

for production of the public good, thus producing the quantity F (θQ). Assume that,
in each period n. the government holds the quantity Gn of the public good equal to
a constant G. Then by (20) we have G = (1− η)G+ F (θQ) , and thus

G =
1

η
F (θQ) (22)

is the amount of the public good provided by the government in every period. By
(21) and (22) the utility received by each agent in every period is

u(xα, G) = u

µ
θ̄Q− k ,

1

η
F (θQ)

¶
. (23)
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Theorem 4: Suppose that every agent α ∈ I begins with cash mα = M > 0 and
goods qα = Q = f(k1) + y , where k1 satisfies

f 0(k1) = (1 + ρ)/(βθ̄) .

Assume also that the government initially provides the quantity G = F (θQ)/η of the
public good.
Then there is an equilibrium for Model 3, in which all agents bid the proportion

a =
(1 + ρ)(1− β)

ρ
(24)

of their cash for the private good, and input k1 for its production in every period. In
this equilibrium, the government inputs kG = θQ for production of the public good in
every period, thereby holding a constant quantity of the public good Gn = G for all
n.

The proof is in the Appendix.
In the equilibrium of Theorem 4, money and prices inflate at the rate τ = β(1+ρ)

as they did in the equilibrium of Theorem 1. To see this, suppose that all the agents
begin at mα = M and qα = Q and play the strategy of the theorem. Then at the
next stage, each agent has cash

fM = emα = (1 + ρ)(mα − amα) + θ̄pqα

= (1 + ρ)(M − aM) + θ̄ · aM
θ̄Q

·Q = τM .

The price at the next stage is

ep = afM
θ̄Q

= τ
aM

θ̄Q
= τp.

4.2 A control problem for the government

A benevolent government will try to maximize the welfare of the agents through its
choice of the values of its control variables, the interest rate ρ, and the tax rate θ.
Observe that, in the equilibrium of Theorem 4, the total discounted utility of every
agent is, by (21) and (22),

∞X
n=1

βn−1u(xαn, Gn) =
1

1− β
· u
µ
θ̄Q− k1,

1

η
F (θQ)

¶
,

where

k1 =
¡
f 0
¢−1µ 1 + ρ

(1− θ)ρ

¶
and Q = f(k1) + y .
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Thus the utility of an agent can be written as a function ϕ(θ, ρ) of the government’s
control variables θ and ρ.
We illustrate the government’s optimization with a simple example.

Example 3: Suppose f(k) = 2
√
k, F (k) = k, β = 1/2, y = 0, η = 1, u(x,G) =

log(xG) . Then

f 0(k1) =
1√
k1
=
1 + ρ

βθ̄
=
2(1 + ρ)

1− θ
,

so the equilibrium values are

k1 =
(1− θ)2

4(1 + ρ)2
, Q = f(k1) =

1− θ

1 + ρ
,

and

G = F (kG) = kG = θQ =
θ(1− θ)

1 + ρ
.

The utility to maximize is ϕ(θ, ρ), where

(1− β) · ϕ(θ, ρ) = u
¡
θ̄Q− k1, θQ

¢
= u

µ
(1− θ)2

1 + ρ
− (1− θ)2

4(1 + ρ)2
,
θ(1− θ)

1 + ρ

¶
.

Since u(x,G) = log(xG), trivial algebra shows that

ϕ(θ, ρ) = 3 log(1− θ) + log θ + log(3 + 4ρ)− 3 log(1 + ρ) + C,

where C does not depend on θ or ρ , thus

∂ϕ

∂θ
(θ, ρ) =

−3
1− θ

+
1

θ
= 0

if θ = 1/4. This is the optimal tax rate. It is also easy to see that

∂ϕ

∂ρ
(θ, ρ) < 0

holds for all ρ > 0, so that small positive values of ρ are better for the agents than
large ones. 3

This example is fairly typical, in that there is an optimal tax rate which is an
interior point of (0,1). This is intuitively obvious, since a tax rate ρ = 0 results
in no production of the public good, and a rate ρ = 1 means that the agents have
no incentive to produce the private good. The example is typical also insofar the
agents’ utility is decreasing in the interest rate. However, this is misleading because
the bank might (and usually does) have multiple goals. In particular, it may wish to
maximize the welfare of the agents subject to a constraint on the rate of inflation. In

3There are problems when ρ = 0, Theorem 4 does not apply.

14



the equilibrium of our deterministic model it is possible to reduce inflation to zero
by setting 1 + ρ = 1/β. When there is exogenous uncertainty, this need not be the
case (cf. [7]). Even without uncertainty, though, this is not always true if some part
of the population, such as pensioners, is living off its capital; for a discussion of such
issues, see [6].

5 Model 4: Financing with national debt, via one-
period bonds

In Models 1, 2 and 3 above, a public good or a bureaucracy was financed via an
income tax. In Models 4 and 5 we shall consider financing the government through
the introduction of a public debt. To do so it is necessary to introduce the instrument
of a government bond.
In Model 4, the subject of this section, we consider the simplest possible case,

that of a bond that has only a one-period duration. To make the situation even
simpler, we shall assume that there is no income tax in the model. The government
sets an interest rate ρ > 0 for its one-period bonds, and sells them at face value. We
can assume, with little loss of generality, that there is no bank available to accept
deposits. If deposits paid a higher (respectively, a lower) rate of interest than bonds,
then everyone (respectively, no one) would use the bank rather than buy bonds.
We shall assume for this model that

β(1 + ρ) > 1 ,

so agents will have an incentive to buy bonds. (Notice that when β(1 + ρ) < 1 in
Model 3, the quantity of (24) is greater than 1. This means that, in the equilibrium
of Theorem 4, agents borrow from the bank and make no deposits. The income tax
nevertheless allows the government to provide the public good.)
As in Model 3, the government provides here again a quantity Gn ≥ 0 of a generic

public good in each period n. As in all the previous models, there is a continuum
I = [0, 1] of producer/consumer agents, and each agent α ∈ I holds cash mα

n ≥ 0 and
goods qαn ≥ 0 at the start of each period n. The goods are sold in a market, and each
agent α bids bαn ∈ [0,mα

n] to purchase an amount of goods b
α
n/pn. Here pn is the price

of private goods formed in period n, as explained below. (There is no default in this
model, since the agents’ bids are limited to their cash holdings.)
Any excess cash mα

n − bαn is used to purchase bonds which mature at the end of
the period. Thus, agent α begins the next period with cash

mα
n+1 = (1 + ρ)(mα

n − bαn) + pnq
α
n . (25)

As in previous models, each agent α selects a quantity of goods kαn ∈ [0, bαn/pn] to
input for production, consumes

xαn =
bαn
pn
− kαn , (26)
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and begins the next period with goods

qαn+1 = f(kαn) + y . (27)

The government bids in the private goods market all its income obtained from the
sale of bonds, namely

BG
n :=

Z
I

(mα
n − bαn) dα =Mn −Bn , (28)

where Bn =
R
I
bαn dα is the total bid of the agents and Mn =

R
I
mα

n dα their total
cash holdings. The price of the private good in period n is thus

pn =
Bn +BG

n

Qn
=

Mn

Qn
, (29)

where Qn =
R
I
qαn dα is the total amount of private goods sold in the market.

The amount of private goods purchased by the government, namely kGn = BG
n /pn,

is used as input to produce the quantity F (kGn ) of the public good. If Gn is the
quantity of the public good available at the beginning of period n and η ∈ (0, 1] is
the rate of depreciation, then

Gn+1 = (1− η)Gn + F (kGn ) . (30)

As in Model 3, each agent α seeks to maximize

∞X
n=1

βn−1u(xαn, Gn), (31)

where the utility function u(·, ·) is concave and differentiable, and increasing in each
of its variables when the other is held fixed in [0,∞) .

5.1 An equilibrium for Model 4

To construct a type-symmetric equilibrium, assume that every agent α ∈ I begins
with cash mα = M > 0 and goods qα = Q = f(k) + y; bids bα = b = aM for
goods; and inputs kα = k for production. In the equilibrium constructed below, the
proportion a will satisfy 0 < a < 1; we set ā := 1− a .
After bidding, each agent spends the remaining cash M − aM = āM to purchase

bonds. The government thus receives an income of āM , spends all of it in the private
goods market, and then inputs all of the private goods to produce the public good.
The price of the private good is

p =
aM + āM

Q
=

M

Q
(32)
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and
kG =

āM

p
= āQ

is the government’s input for production of the public good. As in Model 3, we assume
that the government holds the quantity of the public good Gn equal to a constant G
so that G = (1− η)G+ F (āQ) or, equivalently,

G =
1

η
F (āQ).

Each agent α purchases the quantity

b

p
=

aM

p
= aQ

of the private good, consumes the difference x = aQ−k , and receives utility u(aQ−
k, F (āQ)/η) in the period.

Theorem 5: With β(1 + ρ) > 1 , suppose that every agent α ∈ I begins with cash
mα =M > 0 and goods qα = Q = f(k2) + y , where

f 0(k2) = (1 + ρ)/β ,

and that the government initially provides the quantity G = F (āQ)/η of the public
good. Here ā = 1− a and

a := (1− β) +
1

1 + ρ
∈ (0, 1) . (33)

Then there is an equilibrium for Model 4, in which all agents bid the proportion
a as in (33) of their cash, and input k2 for production in every period. In this
equilibrium the government inputs kG = āQ for production of the public good in every
period, thereby holding a constant quantity Gn = G = F (āQ)/η of the public good,
for all n.

The proof is in the Appendix.
In the equilibrium of Theorem 5, money and prices inflate at the rate τ = β(1 +

ρ) > 1. (Recall that the rate of inflation was the same for the previous models in
which ρ was the interest rate set by the central bank for deposits and loans.) To see
this, suppose that all agents begin with cashM and goods Q, and follow the strategy
of Theorem 5. Then, at the next stage, every agent will have cashfM = (1 + ρ)(M − aM) + pQ = (1 + ρ)(M − aM) +M

= [2 + ρ− (1 + ρ)a]M = τM,

where the last equality is by (33). The price at the next stage will be

ep = afM
Q

= τ · aM
Q

= τp.
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5.2 Another control problem for the government

The only control variable of the government in Model 4 is the interest rate ρ paid on
the one-period bonds. To find an optimal value for ρ, we consider the total discounted
utility of an agent α in the equilibrium of Theorem 5:

∞X
n=1

βn−1u(xαn, Gn) =
1

1− β
· u
µ
aQ− k2,

1

η
F (āQ)

¶
.

Since k2 = (f
0)−1(1+ρ

β
) and Q = f(k2) , this utility is a function ϕ(ρ) of ρ.

To illustrate the optimization we take another look at Example 3 recast in the
context of Model 4.

Example 4: As in Example 3, let f(k) = 2
√
k, F (k) = k, β = 1/2, y = 0, η = 1,

and u(x,G) = log(xG). Setting

f 0(k2) =
1√
k2
=
1 + ρ

β
= 2(1 + ρ)

with 1 + ρ > (1/β) = 2 , we see that

k2 =
1

4(1 + ρ)2

and thus
Q = f(k2) =

1

1 + ρ
.

Also, by (30) and (33), we have

G = F (kG) = kG = āQ =
ā

1 + ρ
=

1

1 + ρ
·
µ
1

2
− 1

1 + ρ

¶
,

and

x = aQ− k2 =
1

1 + ρ
·
µ
1

2
+

1

1 + ρ

¶
− 1

4(1 + ρ)2
=

1

2(1 + ρ)
+
3

4
· 1

(1 + ρ)2
.

Since ϕ(ρ) = log(xG) = log(x) + log(G) , an elementary calculation shows that ϕ(ρ)
achieves its maximum at ρ = 1.85.

Unlike Model 3, here the agents’ utility is not a monotonically decreasing function
of the interest rate ρ. Indeed, ϕ(ρ) typically has an interior maximum as in the
example. While the agents’ consumption of the private good is decreasing in ρ, this
is not true of the public good since the government finances its production with
income based on ρ.
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5.3 A remark on government debt

In Model 4 the government is explicitly financing the public good by selling bonds,
thereby creating public debt that grows geometrically. Indeed, if we measure govern-
ment debt by the number of bonds outstanding, then, in the equilibrium of Theorem
5, the debt in period n is āMn = āτn−1M1. Thus debt increases at the rate of
inflation, and, if we correct for inflation, debt remains constant.
There is debt implicit in the earlier models when there is inflation; that is, when

β(1+ρ) > 1. This is because agents are making deposits in the bank and the deposits
earn interest. The amount of interest paid increases geometrically at the rate of
inflation τ .

6 Model 5: Financing with national debt, via per-
petuities or consols

For our final model, we assume that the government finances a public good through
its sale of perpetuities or consols. These are bonds sold at face value, which pay
interest at a rate ρ > 0 in every period in the future. (An interesting discussion of
the use of consols in England was given by Keynes [8].) In a complex economy there is
a time-structure of interest rates, stretching forward over many years, and the shape
of the yield curve is watched closely by those setting policy. The flexibility of the
economy is enhanced by this complex multidimensional control system. As a first
step towards treating the multi-period control possibilities, the perpetuity picks up
long-term financing but does not pick up the flexibility obtained with the full array
of maturities of all lengths.
Model 5 differs from Model 4 in that the consols held by an agent do not mature

at the end of each period, but are held by the agent indefinitely. In a stochastic
model we would expect that some agents would find it advantageous to sell consols to
others in a private market. However, in a type-symmetric deterministic equilibrium,
either all the agents would wish to sell or they would all wish to buy. Thus in the
equilibrium constructed below there is no private market for the consols.
As in Model 4, we assume that β(1 + ρ) > 1 so that agents will have an incentive

to buy bonds. Each agent α ∈ I holds cash mα
n ≥ 0, goods qαn ≥ 0, and a quantity

cαn ≥ 0 of consols at the beginning of each period n. Also, as in the previous model,
the goods are sold in a market and each agent α bids bαn ∈ [0,mα

n] to purchase goods
bαn/pn. We assume that each agent α spends the remaining cash mα

n− bαn to purchase
an equal quantity of consols; thus, agent α begins the next period with consols

cαn+1 = cαn +mα
n − bαn . (34)

Agent α’s cash in the next period comes from the interest on the consols together
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with the profits from the sale of goods:

mα
n+1 = ρcαn+1 + pnq

α
n . (35)

As in all our models, each agent α chooses an amount of goods kαn ∈ [0, bαn/pn]
as input for production, consumes the difference xαn = (b

α
n/pn)− kαn , and begins the

next period with goods
qαn+1 = f(kαn) + y.

The total bid Bn of the agents, and the government’s bid BG
n , are defined exactly as

in Model 4; consequently, the price pn is given by (29). Likewise, the quantity of the
public good Gn provided by the government in period n is given by (30), and each
agent α seeks to maximize total discounted utility as in (31).

6.1 An equilibrium for Model 5

As in Model 4, we suppose that every agent α ∈ I begins play with cashmα =M > 0
and goods qα = Q = f(k) + y; bids bα = B = aM ; and inputs kα = k for production.
For Model 5 we further assume that every agent starts with the same quantity cα =
c = γM of consols in his portfolio. Here a and γ are positive constants. The price p
of the private good is given by (32).
At the next stage of play, every agent will have cash

fM = ρ(M − aM + c) + pQ =
¡
ρ(1− a+ w) + 1

¢
·M

and consols ec = c+M − aM = (w + 1− a)M .

In equilibrium we expect the Fisher equation fM = β(1+ρ)M to hold, and also thatec = wfM . If this is so, then we have
ρ(1− a+ w) + 1 = β(1 + ρ) and w + 1− a = wβ(1 + ρ).

Solving for w and a, we obtain

w =
1

ρ
·
µ
1− 1

τ

¶
and a = 1− 1

ρτ
·
¡
τ − 1

¢2
. (36)

Here τ = β(1 + ρ) is the inflation rate; recall that τ > 1 by our assumption, thus
w > 0 and a < 1 .

Theorem 6: With τ = β(1 + ρ) > 1 , let w and a be given by (36) and assume
that a > 0. Suppose that every agent α ∈ I begins with cash mα = M > 0, consols
cα = wM , and goods qα = f(k2) + y where

f 0(k2) = (1 + ρ)/β .
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Then there is an equilibrium for Model 5, in which all agents bid the proportion a
of their cash and input k2 for production in every period. In this equilibrium the
government provides the quantity G = F (āQ)/η of the public good in every period,
where ā = 1− a .

The proof is in the Appendix.

6.2 The public debt

In the equilibrium of Theorem 6, we can measure government debt by the quantity
of consols outstanding. If cn is the quantity in period n, then cn = wMn = wτn−1M1.
Thus, as in Model 4, the debt increases at the rate of inflation.

6.3 Non-inflationary finance

If conservation of the amount of money in the economy is desired, then some device is
required which removes the money injected by the growth of national debt payments.
In essence, the initial increase is ρc. This can be offset by a tax rate θ such that
θpq = ρc. The introduction of taxes will, however, result in a change in the optimal
strategy of the agents.

7 Further remarks

7.1 The Fisher equation

In all of our models the classical Fisher equation τ = β(1 + ρ) was seen to hold in
equilibrium. (Indeed, the equation was key to our proofs.) We do not expect the
equation to hold for stochastic models. Consider, for example, representative agent
models in which the endowment y is replaced by a random variable Y , the same for
all agents. The rate of inflation τ will then be a random variable and we conjecture
that the Fisher equation will be replaced, just as it was in [7], by a “harmonic Fisher
equation” of the form

E

µ
1

τ

¶
=

1

β(1 + ρ)
.

7.2 A comment on equilibrium and equations of motion

For models without uncertainty, it is often easier to analyze the equilibrium state
without paying close attention to the details of the laws of motion required for fully
specified dynamic programs. This is not so when exogenous uncertainty and disequi-
librium positions need to be considered.
When a full dynamic model is specified, the distinction between establishing and

maintaining a public good must be made. Here we are not examining the financing of
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the construction of such a public good, but are concerned with financing by national
debt, taxation, or other means for maintenance.

7.3 Inflation or national debt or taxes?

Politics, or at least political economy, not economics, is the dominant force in selecting
among the array of government control weapons, in order to achieve the goals that the
political process selects. This can be seen when we consider yet another alternative
means of financing, the use of the printing press and inflation. The government
could finance economic activity by actually paying for goods and services in newly
printed bills. The constraints on this scheme lie with the psychology and the political
economy of acceptance, not the economics or the accounting.

7.4 Transaction costs and financing

Although the key stress in the selection of means of financing is often political, inter-
twined with this concern is the question of transaction costs and bureaucratic costs.
They require a level of micro-economic detail not considered here, but often critical
in specific applications.

7.5 A question of Barro

A stimulating article by Barro [1] raised the question “Are government Bonds Net
Wealth?”. The immediate answer from a game-theoretic viewpoint is that of course
they are, in either a fully specified general equilibrium model or in a strategic market
game with no unemployment or transactions costs, if the government is assumed to
be serving the society. The question is how much net wealth they represent. As was
partially indicated by Barro’s article, the increment of wealth depends on the details of
the structure assumed. The introduction of government bonds, and their acceptance
in competitive markets, represent an enlargement of the strategy sets available to
society. The bonds can be interpreted as a new instrument for facilitating finance in
much the same way that a new process for making steel may facilitate its production.
It is well known that, with incomplete markets, it is possible that an enlargement
of the strategy sets can make some individuals worse off 4, thus one cannot give an
unqualified comment without a full specification of the detailed assumptions.
Two different but important questions concern the individual and societal impli-

cations on wealth of the differences between various combinations of national debt,
and taxation funding of the same economic program. In order to answer both of these

4One need go no further than a two-person, one-shot game with a single action for each player
yielding a payoff to each player of 10 (say). By adding one further action for each player the game
can be converted into a prisoner’s dilemma with equilibrium payoffs less than 10.
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questions, models involving both independent individual agents, as well as a repre-
sentative agent, need to be studied. In the absence of exogenous uncertainty, a model
with independent but symmetric agents yields the same results as a representative
agent model. When uncertainty is present, the differences are considerable. We plan
to consider models with exogenous uncertainty in a subsequent paper.

8 Appendix

8.1 The proof of Theorem 1

We need to show that the strategies described in Theorem 1 are feasible and optimal
for each agent and each bureaucrat, when all other agents and bureaucrats follow
these same strategies.

Consider first a producer/consumer α ∈ I with cash m and goods q, when the
price is p. Then α faces a dynamic programming problem in which the optimal return
V α(m, q, p) satisfies the Bellman equation

V α(m, q, p) = sup
0≤b≤m+ θ̄pq

1+ρ

0≤k≤ b
p

∙
u

µ
b

p
− k

¶
+ β V α

¡
(1 + ρ)(m− b) + θ̄pq, f(k) + y, τp

¢¸

Assuming an interior solution, the Euler equations for this problem are:

1

p
u0
µ
b

p
− k

¶
=

β(1 + ρ)ep · u0
Ãebep − ek

!
(37)

and

u0
µ
b

p
− k

¶
=

θ̄β

1 + ρ
f 0(k) · u0

Ãebep − ek
!

, (38)

where ep, eb, and ek are the price, the agent’s bid, and the agent’s input for the next
period. Under the hypothesized strategy for the agent, we have

ebep = aθ̄ emep =
aθ̄τm

τp
=

aθ̄m

p
=

b

p
and ek = k = k1 .

Thus
β(1 + ρ)ep =

β(1 + ρ)

τp
=
1

p
and

b

p
− k =

ebep − ek
so that (37) and (38) are satisfied when k = k1. The appropriate transversality
condition is trivial, because the quantities consumed and input for production are
the same in every period.
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We must also verify that the given solution is interior. That is, we need

0 < b < m+
θ̄pq

1 + ρ
(39)

and

0 < k <
b

p
(40)

when q = f(k1) + y, m = θ̄M, b = aθ̄M and k = k1. Since pq = aM , the inequalities
in (39) follow from the definition of a in (15) and from our assumptions that θ < 1
and β < 1. The first inequality in (40) is trivial; the second follows from a calculation:

b

p
=

θ̄aM
aM
Q

= θ̄Q

= θ̄ (f(k1) + y))

≥ θ̄

Z k1

0

f 0(x)dx

≥ θ̄k1f
0(k1)

= θ̄k1
(1 + ρ)

βθ̄
> k1 .

The proof of optimality for agent α ∈ I is now complete.

Consider now a bureaucrat γ ∈ J with cash m, when the price is p ; he has only
one control variable, the bid for goods. Consequently, the optimal return V γ(m, p)
for γ satisfies the simpler Bellman equation

V γ(m, p) = max
0≤b≤m+ θpQ

δ(1+ρ)

∙
u

µ
b

p

¶
+ β V γ

µ
(1 + ρ)(m− b) +

θpQ

δ
, τp

¶¸
(41)

and the Euler equation

1

p
u0
µ
b

p

¶
=

β(1 + ρ)ep · u0
Ã ebep

!
,

where ebep =
aθM
δep =

aθτM
δ

τp
=

b

p

and, as before, β(1+ρ)/ep = 1/p. Thus, the Euler equation is satisfied. As before it is
easy to check that bids are interior and that the transversality condition is satisfied.
Hence, the given strategy is optimal for γ ∈ J .
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8.2 The proof of Theorem 2

Assume that all agents α ∈ I and bureaucrats γ ∈ J play the strategies described in
the statement of Theorem 1. We must show that the given strategy is optimal for
any single player. Consider a producer/consumer agent α ∈ I who begins a period
with cash m and goods q, and suppose that the price in the period is p. If m ≥ 0 ,
then the Bellman equation for agent α takes the form

V α(m, q, p) = sup
b≥0

0≤k≤ b
p

∙
u

µ
b

p
− k

¶
+ βV α

¡
(m− b)(1 + ρ) + θ̄pq, f(k) + y, τp

¢¸
.

However, if m < 0 so that the agent has defaulted, then the Bellman equation is

V α(m, q, p) = ζ · m
p
+ V α(0, q, p) . (42)

This second form of the Bellman equation reflects our rule that the agent is punished
in proportion to the amount by which he has defaulted, and is then allowed to continue
the game from a position of zero cash.
In the equilibrium of Theorem 1, every agent α ∈ I begins with cash mα ≡ m =

θM and goods qα ≡ q = f(k1) + y. They each bid bα ≡ b = θ̄aM , where a is given
by (15), and input k1 for production.
We must show that their selections remain optimal in our present model. It

suffices to show that it is never desirable for an agent α to choose a bid that exceeds
the quantity

m∗ := m+
θ̄pq

1 + ρ

because, if the agent chooses a bid in the range [0,m∗] , he is, in effect, playing in
Model 1. Let

Ψ(b) := u

µ
b

p
− k

¶
+ β V α

¡
(m− b)(1 + ρ) + θ̄pq, f(k) + y, τp

¢
.

If b > m∗ , then we have em(b) < 0 , whereem(b) = (1 + ρ)(m− b) + θ̄pq

is the agent’s cash position in the next period as in (18). Hence, by (42),

Ψ(b) = u

µ
b

p
− k

¶
+ β

µ
ζ em(b)
τp

+ V α
¡
0, f(k) + y, τp

¢¶
Recall that τ = β(1 + ρ). Hence,

Ψ0(b) =
1

p
u0
µ
b

p
− k

¶
− βζ(1 + ρ)

β(1 + ρ)p

=
1

p

∙
u0
µ
b

p
− k

¶
− ζ

¸
≤ 1

p

¡
u0 (0)− ζ

¢
≤ 0 .
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Thus the optimal bid of a producer-consumer α in Model 1 remains optimal in Model
2.
A similar argument shows that it also optimal for the bureaucrats to play their

equilibrium strategy from Theorem 1.

8.3 Sketch of the proof of Theorem 4

As explained in the paragraph after the statement of Theorem 4, money and prices
inflate at the rate τ = 1 + ρ − ρa = β(1 + ρ) when agents play the given strategy.
We must show that the strategy is optimal for a single agent α ∈ I when all others
follow it. The Bellman equation for such an agent α is

V α(m, q, p) = sup
0≤b≤m+ θ̄pq

1+ρ

0≤k≤ b
p

∙
u

µ
b

p
− k,G

¶
+ βV α

¡
(m− b)(1 + ρ) + θ̄pq, f(k) + y, τp

¢¸
.

(43)
Except for the dependence of the agent’s utility on the public good G, the Euler
equations are the same as in Model 1 (see (37) and (38)):

1

p
u0
µ
b

p
− k,G

¶
=

β(1 + ρ)

p̃
· u0
Ã
b̃

p̃
− k̃, G

!
,

u0
µ
b

p
− k,G

¶
=

θ̄β

1 + ρ
· f 0(k) · u0

Ã
b̃

p̃
− k̃, G

!
.

Here u0(·, ·) denotes differentiation with respect to the first coordinate. As in the proof
of Theorem 1 the Euler equations are satisfied when the given strategy is followed.
Also as in the proof of Theorem 1 it is not difficult to check that the solution is
interior and satisfies a transversality condition.

8.4 The proof of Theorem 5

The Bellman equation for a single agent α ∈ I with cash m and goods q, when the
price is p and others follow the proposed strategy, is

V α(m, q, p) = sup
0≤b≤m
0≤k≤ b

p

∙
u

µ
b

p
− k,G

¶
+ β V α

¡
(m− b)(1 + ρ) + pq, f(k) + y, τp

¢¸
.

The Euler equations are

1

p
u0
µ
b

p
− k,G

¶
=

β(1 + ρ)

τp
u0

Ãebep − k̃, G

!
,

u0
µ
b

p
− k,G

¶
=

βf 0(k)

1 + ρ
u0

Ãebep − ek,G
!
.
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It is straightforward to verify that these equations are satisfied when the agent follows
the proposed strategy, and that the actions are interior. As before, the appropriate
transversality condition also holds.

8.5 The proof of Theorem 6

Consider the situation of an agent α ∈ I with cash m, goods q, and consols c , when
the price of the private good is p and all other agents follow the strategy described in
Theorem 6. We must show that the same strategy is optimal for α when she begins
in the same position as the others.
The Bellman equation for agent α now takes the form

V α(m, q, c, p) =

sup
0≤b≤m
0≤k≤ b

p

h
u
³ b
p
− k,G

´
+ β V α

¡
ρ(m− b+ c) + pq, f(k) + y, c+m− b, τp

¢i
.

Suppose agent α begins in the same position (m, q, c, p) as the other agents so
that q = f(k2)+ y, c = γm, and p = m/q. Suppose also that α, like the other agents,
plays the strategy described in Theorem 6. Then α consumes the quantity

x =
am

p
− k

of the private good in the first period of the game. Let (m̃, q̃, c̃, p̃) be the agent’s
position in the next period. Thus the agent consumes

x̃ =
am̃

p̃
− k̃

in the second period. Since m̃ = τm, k̃ = k = k2, and p̃ = τp, we see that x̃ = x. It
follows that α consumes the same quantity x in every period.
For an interior solution, standard arguments yield the following envelope equa-

tions:
∂V α

∂m
(m, q, c, p) =

1

p
u0
µ
b

p
− k2, G

¶
=
1

p
u0(x,G) , (44)

∂V α

∂q
(m, q, c, p) = βp

∂V α

∂m
(m̃, q̃, c̃, p̃) =

βp

p̃
u0

Ã
b̃

p̃
− k2, G

!
=

1

1 + ρ
u0(x,G) , (45)

∂V α

∂c
(m, q, c, p) = βρ

∂V α

∂m
(m̃, q̃, c̃, p̃) + β

∂V α

∂c
(m̃, q̃, c̃, p̃)

=
βρ

p̃
u0(x,G) + β

∂V α

∂c
(m̃, q̃, c̃, p̃) . (46)

In these equations and below we write u0(x,G) for ∂u
∂x
(x,G).
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The value function V α for the dynamic programming problem of agent α ∈ I has
the homogeneity property:

V α(m̃, q̃, c̃, p̃) = V α(τm, q, τc, τp) = V (m, q, c, p).

Hence,
∂V α

∂c
(m̃, q̃, c̃, p̃) =

1

τ

∂V α

∂c
(m, q, c, p).

Now substitute for the left-hand-side in (46) and, after some algebra, we have

∂V α

∂c
(m, q, c, p) =

1

p
u0(x,G). (47)

We can now differentiate the expression in brackets on the right side of the Bellman
equation, to get the Euler equations. Differentiating with respect to the variable b,
and using (44) and (47), we have

1

p
u0
³ b
p
− k,G

´
= βρ

∂V α

∂m
(m̃, q̃, c̃, p̃) + β

∂V α

∂c
(m̃, q̃, c̃, p̃) =

β(1 + ρ)

τp
u0(x,G). (48)

This holds since, for α’s strategy, τ = β(1 + ρ) and x = (am/p) − k2 = (b/p) − k.
Now differentiate with respect to the variable k and use (45), to get

u0
³ b
p
− k,G

´
= βf 0(k)

∂V α

∂q
(m̃, q̃, c̃, p̃) =

βf 0(k)

1 + ρ
u0(x,G). (49)

This also holds for α’s strategy, since k = k2 = (f
0)−1

¡
(1 + ρ)/β

¢
.

To check that α’s strategy is interior, first notice that 0 < b = am < m since
0 < a < 1. We also require that 0 < k2 < b/p = aQ. The first inequality is clear. For
the second, calculate as follows:

aQ = a(f(k2) + y) ≥ af(k2)

= a

Z k2

0

f 0(t) dt ≥ ak2f
0(k2) = ak2 ·

1 + ρ

β
;

therefore, we have k2 < aQ , if
a(1 + ρ)

β
> 1.

Substitute the expression in (36) for a and use the equality β(1 + ρ) = τ to see that
this inequality is equivalent to

(1 + 3ρ+ ρ2)β2 − (2 + 3ρ+ ρ2)β + 1 < 0 .

The expression on the left factors to give (β−1)((ρ2+3ρ+1)β−1) which is negative,
since β < 1 and (ρ2 + 3ρ+ 1)β > (ρ+ 1)β > 1 .
Finally, the appropriate transversality condition holds because, as in the other

models, consumption and input for production are the same in every period.
The proof of Theorem 6 is now complete.
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