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Abstract

This paper is concerned with tests and confidence intervals for partially-identified

parameters that are defined by moment inequalities and equalities. In the literature,

different test statistics, critical value methods, and implementation methods (i.e., asymp-

totic distribution versus the bootstrap) have been proposed. In this paper, we compare

a wide variety of these methods. We provide a recommended test statistic, moment

selection critical value method, and implementation method. In addition, we provide

a data-dependent procedure for choosing the key moment selection tuning parameter κ

and a data-dependent size-correction factor η.

Keywords: Asymptotic size, asymptotic power, confidence set, exact size, generalized
moment selection, moment inequalities, partial identification, refined moment selection,

test.
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1 Introduction

This paper considers inference in moment inequality/equality models with parame-

ters that need not be identified. Many models of this type have been considered recently

in the literature. For example, such models arise from the necessary conditions for Nash

equilibria, see Ciliberto and Tamer (2003), Andrews, Berry, and Jia (2004), Pakes,

Porter, Ho, and Ishii (2004), and Bajari, Benkard, and Levin (2008). They also arise

from the sufficient conditions for Nash equilibria, see Ciliberto and Tamer (2003) and

Beresteanu, Molchanov, and Molinari (2008). In addition, moment inequality/equality

models arise from data censoring, such as when a continuous variable is only observed

to lie in an interval, see Manski and Tamer (2002), and in some macroeconomic models,

see Moon and Schorfheide (2006).

In this paper we consider inference for the true parameter, as in Imbens and Manski

(2004), rather than for the identified set. We believe that the former is of greater interest

in most circumstances. This paper andmany others in the literature construct confidence

sets (CS’s) by inverting Anderson-Rubin-type test statistics, following Chernozhukov,

Hong, and Tamer (2007) (CHT). Several different test statistics have been proposed in

the literature. Subsampling critical values have been employed by CHT, Andrews and

Guggenberger (AG), and Romano and Shaikh (2005, 2008). Andrews and Soares (2007)

(AS) use generalized moment selection (GMS) critical values. The critical value methods

employed by Bugni (2007a,b), Canay (2007), and Fan and Park (2007) fall within the

GMS class of critical values.

GMS and subsampling-based tests and CS’s are the only methods in the literature

that apply to arbitrary moment functions and have been shown to have correct asymp-

totic size in a uniform sense, see AS, Andrews and Guggenberger (2008) (AG), and

Romano and Shaikh (2008). AS shows that GMS tests dominate subsampling tests

in terms of asymptotic power. Bugni (2007a,b) shows that a particular GMS test has

smaller errors in null rejection probabilities asymptotically than a corresponding (recen-

tered) subsampling test. These power and size results imply that GMS critical values

are preferred to subsampling critical values.

GMS tests and CS’s depend on the specification of a test statistic function S, a critical

value function ϕ, and a tuning parameter κ. Given the advantageous properties of GMS

tests and CS’s, it is desirable to compare different test statistic functions S and different

critical value functions ϕ in terms of size and power and to find the combination that
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performs best and can be recommended for general use. In addition, it is very useful to

determine (i) a data-dependent tuning parameter κ for the GMS critical value (because

κ is a key parameter and the asymptotically optimal choice of κ depends on unknowns)

and (ii) a data-dependent size-correction factor η (because asymptotic size-correction

is necessary when one chooses the tuning parameter κ to maximize average asymptotic

power). We call a GMS procedure that satisfies conditions (i) and (ii) a refined moment

selection (RMS) procedure.

The present paper accomplishes the goal of determining a recommended RMS pro-

cedure. We find that the Gaussian quasi-likelihood ratio (QLR) test statistic combined

with the “t-test moment selection” critical value performs very well in terms of average

asymptotic power. We show that with i.i.d. observations the bootstrap implementation

of this test out-performs the asymptotic-distribution implementation based on finite-

sample size and power. We develop data-dependent methods of selecting κ and η and

show that they yield very good asymptotic and finite-sample size and power. We pro-

vide a table that makes them easy to implement in practice. The results of the paper

apply to i.i.d. and time series observations and to moment functions that are based on

preliminary estimators of point-identified parameters.

To achieve the goals listed above, we consider asymptotics in which κ equals a finite

constant plus op(1), rather than asymptotics in which κ → ∞ as n → ∞. This differs
from the asymptotics considered in other papers in this literature.

There are four reasons for using finite-κ asymptotics. First, they provide better

approximations because κ is finite, not infinite, in any given application. Second, for

any given (S,ϕ), they allow one to compute a best κ value in terms of average asymptotic

power, which in turn allows one to compare different (S,ϕ) functions (each evaluated

at its own best κ value) in terms of average asymptotic power. One cannot determine

a best κ value in terms of average asymptotic power when κ→∞ because asymptotic

power is always higher if κ is smaller, asymptotic size does not depend on κ, and finite-

sample size is worse if κ smaller. Third, for the recommended (S,ϕ) functions, the

finite-κ asymptotic formula for the best κ value lets one determine a data-dependent

κ value that is approximately optimal in terms of average asymptotic power. Fourth,

finite-κ asymptotics permit one to compute size-correction factors that depend on κ,

which is a primary determinant of a test’s finite-sample size. In contrast, if κ → ∞
the asymptotic properties of tests under the null hypothesis do not depend on κ. Even

the higher-order errors in null rejection probabilities do not depend on κ, see Bugni
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(2007a,b). In consequence, with κ → ∞ asymptotics, size-correction based on κ is not

possible.

Using finite-κ asymptotics, we compare different choices of (S,ϕ) when each is eval-

uated at the infeasible asymptotically-optimal choice of κ according to an average power

criterion. In particular, we consider (i) the modified method of moments (MMM) sta-

tistic S1, which has been used in Pakes, Porter, Ishii, and Ho (2004), Romano and

Shaikh (2005, 2008), AS, Bugni (2007a,b), CHT, Fan and Park (2007), and AG; (ii)

the QLR statistic S2, which has been considered in AG, AS, and Rosen (2008); and

(iii) the Max and SumMax statistics S3, which have been considered in AG and AS and

by Azeem Shaikh.1 We consider the ϕ(1) critical value function, which yields “t-test

moment selection” critical values and has been considered in Soares (2005), AS, CHT,

and Bugni (2007a,b); the ϕ(3) critical value function, which has been considered in AS

and Canay (2007); the ϕ(4) critical value function, which has been considered in Fan and

Park (2007); and the ϕ(5) critical value function, which yields modified moment selection

criterion (MMSC) critical values and has been considered in Soares (2005) and AS.

The recommended (S,ϕ) functions are the QLR statistic and the t-test critical value

functions (S2,ϕ(1)). This combination is found to have very good average asymptotic

power. The (S2,ϕ(5)) and (S2,ϕ(4)) functions also have very good average asymptotic

power, but they have computational drawbacks, especially the (S2,ϕ(5)) functions when

the number of moment inequalities, p, is large. The ϕ(1) critical value function, on the

other hand, is very attractive from a computational perspective.

The comparisons of the (S,ϕ) functions described above are based on infeasible val-

ues of κ. For our recommended choice (S2,ϕ(1)), we develop a feasible data-dependent

method for choosing κ, denoted κ. The data-dependent method is based on an approx-

imation to the function that maps the correlation matrix of the moment functions into

an optimal value of κ. We show numerically that this approximation works extremely

well in terms of average asymptotic power.

Finally, we compute a data-dependent size-correction factor η for the recommended

test based on (S2,ϕ(1)) and κ, and provide a table for easy determination of κ and η.

The RMS test based on (S2,ϕ(1)), κ, and η is our recommended RMS procedure.

It can be implemented in finite samples using an “asymptotic normal” version of the

moment selection critical value or a bootstrap version. Neither has superior asymptotic

properties (because the tests are not asymptotically pivotal). Finite-sample simulations

1Personal communication.
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with i.i.d. observations show that the bootstrap performs better in terms of size and

power, especially for moment functions with skewed distributions. Furthermore, the

power of the bootstrap-based test is very close to its asymptotic power across the range

of cases considered. Hence, we recommend the bootstrap implementation.

We note that the finite-sample simulations carried out here are unusually general in

their applicability. The finite-sample properties of GMS and RMS tests are shown to

depend on the moment functions, m(·, θ), and the observations, Wi, only through the

distribution of m(Wi, θ0), where θ0 is the null parameter value. Hence, by considering a

range of such distributions, one can cover any moment inequality model–the particular

form of the moment functions does not need to be specified. From the asymptotic results,

we know that the primary effect of the distribution is through its correlation matrix.

Not surprisingly, secondary effects are found to be due to skewness and kurtosis of the

distributions. Skewness effects are found to be more substantial than kurtosis effects

for the “asymptotic normal” version of the test. The bootstrap version of the test has

relatively little sensitivity to skewness or kurtosis.

The paper also compares the recommended RMS procedure to tests based on “plug-

in asymptotic” (PA) critical values and to “pure” generalized empirical likelihood (GEL)

tests in terms of average asymptotic power. PA critical values have been used widely

in the statistical literature on multivariate one-sided tests, e.g., see Silvapulle and Sen

(2005). PA critical values use a quantile from the least favorable null distribution given a

consistent estimator of the correlation matrix of the moment functions. Pure GEL tests

rely on a constant critical value that is least favorable with respect to both the null mean

vectors and the correlation matrix of the moment functions. Pure GEL tests are shown

in Otsu (2006) and Canay (2007) to have some optimal large-deviation asymptotic power

properties. However, in our view, the large-deviation asymptotic optimality criterion is

not appropriate when comparing tests with substantially different asymptotic properties

under non-large deviations.

Our results show that the recommended RMS test dominates PA and pure GEL tests

in terms of average asymptotic power and the power advantages are quite substantial in

most cases, especially when the number of moment inequalities, p, is large. For example,

when p = 10, the recommended RMS test is between three and six times more powerful

than a pure GEL test (for alternatives where the asymptotic power envelope is .85).2

2GEL test statistics can be combined with the recommended RMS critical value. Such tests have
the same asymptotic properties as the recommended RMS test. However, GEL test statistics are much
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Related literature concerning inference for partially-identified parameters, not refer-

enced above, includes Woutersen (2006), Bontemps, Magnac, and Maurin (2007), Moon

and Schorfheide (2007), Stoye (2007), Beresteanu and Molinari (2008), Galichon and

Henry (2008), Guggenberger, Hahn, and Kim (2008), and Andrews and Han (2009).

The remainder of this paper is organized as follows. Section 2 introduces the model

and describes the preferred RMS confidence set and test. Section 3 defines the test

statistics that are considered. Section 4 introduces RMS critical values. Section 5

provides asymptotic size and power results, discusses average asymptotic power, and

introduces the asymptotic power envelope. Section 6 provides (i) numerical results

comparing the average asymptotic power of tests based on different (S,ϕ) functions,

(ii) a description of, and motivation for, how the recommended data-dependent tuning

parameter κ and size-correction factor η are determined, and (iii) numerical results

assessing the size and power properties of the recommended RMS test. Section 7 gives

the finite-sample results. Appendix A provides proofs of the asymptotic results of the

paper. Appendix B provides supplemental numerical results to those reported in Section

6. Appendix C contains details concerning the numerical results reported in Section 6.

We use the following notation. Let R+ = {x ∈ R : x ≥ 0}, R++ = {x ∈ R : x > 0},
R+,∞ = R+ ∪ {+∞}, R[+∞] = R∪ {+∞}, R[±∞] = R∪ {±∞}, Kp = K × ...×K (with

p copies) for any set K, ∞p = (+∞, ...,+∞)� (with p copies). All limits are as n→∞
unless specified otherwise. Let “pd” abbreviate “positive definite,” cl(Ψ) denote the

closure of a set Ψ, and 0v denote a v-vector of zeros.

2 Model and Recommended Confidence Set

2.1 Moment Inequality Model

The moment inequality/equality model is as follows. The true value θ0 (∈ Θ ⊂ Rd)
is assumed to satisfy the moment conditions:

EF0mj(Wi, θ0) ≥ 0 for j = 1, ..., p and
EF0mj(Wi, θ0) = 0 for j = p+ 1, ..., p+ v, (2.1)

more time consuming to compute than the QLR statistic. This is a distinct disadvantage because
computation of the RMS critical value requires thousands of test statistic evaluations and construction
of CS’s requires many critical value calculations.
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where {mj(·, θ) : j = 1, ..., k} are known real-valued moment functions, k = p + v, and
{Wi : i ≥ 1} are i.i.d. or stationary random vectors with joint distribution F0. Either

p or v may be zero. The observed sample is {Wi : i ≤ n}. The true value θ0 is not

necessarily identified.

We are interested in tests and confidence sets (CS’s) for the true value θ0.

Generic values of the parameters are denoted (θ, F ). For the case of i.i.d. observa-

tions, the parameter space F for (θ, F ) is the set of all (θ, F ) that satisfy:

(i) θ ∈ Θ, (ii) EFmj(Wi, θ) ≥ 0 for j = 1, ..., p, (iii) EFmj(Wi, θ) = 0

for j = p + 1, ..., k, (iv) {Wi : i ≥ 1} are i.i.d. under F,
(v) σ2F,j(θ) = V arF (mj(Wi, θ)) > 0, (vi) CorrF (m(Wi, θ)) ∈ Ψ, and

(vii) EF |mj(Wi, θ)/σF,j(θ)|2+δ ≤M for j = 1, ..., k, (2.2)

where V arF (·) andCorrF (·) denote variance and correlation matrices, respectively, when
F is the true distribution, Ψ is the parameter space for k×k correlation matrices specified
at the end of Section 3, and M <∞ and δ > 0 are constants.

The asymptotic results apply to the case of dependent observations. For expositional

convenience, we specifyF for dependent observations in Appendix A. The asymptotic re-
sults also apply when the moment functions in (2.1) depend on a parameter τ , i.e., when

they are of the form {mj(Wi, θ, τ) : j ≤ k}, and a preliminary consistent and asymptot-
ically normal estimator τn(θ0) of τ exists (where θ0 is the true value of θ). The existence

of such an estimator requires that τ is identified given θ0. In this case, the sample mo-

ment functions take the form mn,j(θ) = mn,j(θ, τn(θ)) (= n−1 n
i=1mj(Wi, θ, τn(θ))).

The asymptotic variance of n1/2mn,j(θ) typically is affected by the estimation of τ and

is defined accordingly. Nevertheless, all of the asymptotic results given below hold in

this case using the definition of F given in (8.4) and (8.5) of Appendix A with the

definitions of mj(Wi, θ) and mn,j(θ) changed suitably, as described there.

2.2 Recommended Confidence Set

We consider a confidence set obtained by inverting a test. The test is based on a

test statistic Tn(θ0) for testing H0 : θ = θ0. The nominal level 1− α CS for θ is

CSn = {θ ∈ Θ : Tn(θ) ≤ cn(θ)}, (2.3)
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where cn(θ) is a data-dependent critical value.3 In other words, the confidence set

includes all parameter values θ for which one does not reject the null hypothesis that θ

is the true value.

We now describe the recommended test statistic and critical value. The justifications

for these recommendations are given in the sections of the paper that follow. The

recommended test statistic is a quasi-likelihood ratio (QLR) statistic, TQLR,n(θ), that

is a function of the sample moment conditions, n1/2mn(θ), and an estimator, Σn(θ), of

their asymptotic variance:

TQLR,n(θ) = S2(n
1/2mn(θ),Σn(θ))

= inf
t=(t1,0v):t1∈Rp+,∞

(n1/2mn(θ)− t)�Σ−1n (θ)(n1/2mn(θ)− t), where

mn(θ) = (mn,1(θ), ...,mn,k(θ))
� and

mn,j(θ) = n
−1

n

i=1

mj(Wi, θ) for j = 1, ..., k.4 (2.4)

When the observations are i.i.d. and no parameter τ appears, we take

Σn(θ) = n
−1

n

i=1

(m(Wi, θ)−mn(θ))(m(Wi, θ)−mn(θ))
�, where

m(Wi, θ) = (m1(Wi, θ), ...,mk(Wi, θ))
�. (2.5)

With temporally dependent observations or when a preliminary estimator of a parameter

τ appears, a different definition of Σn(θ) often is required. For example, with dependent

observations, a heteroskedasticity and autocorrelation consistent (HAC) estimator may

be required.

The correlation matrix Ωn(θ) that corresponds to Σn(θ) is defined by

Ωn(θ) = D
−1/2
n (θ)Σn(θ)D

−1/2
n (θ), where Dn(θ) = Diag(Σn(θ)), (2.6)

where Diag(Σ) denotes the diagonal matrix based on the matrix Σ.

The test statistic TQLR,n(θ) is computed using a quadratic programming algorithm.

Such algorithms are built into GAUSS and Matlab. They are very fast even when p is

large, although they are not as fast as computing a statistic that has a simple closed-

3When θ is in the interior of the identified set, it may be the case that Tn(θ) = 0 and cn(θ) = 0. In
consequence, it is important that the inequality in the definition of CSn is ≤, not < .
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form expression. For example, to compute the QLR test statistic 100,000 times takes

2.6, 2.9, 4.7, 10.7, 22.5, and 69.8 seconds when p = 2, 4, 10, 20, 30, and 50, respectively,

using GAUSS on a PC with a 3.4 GHz processor.

The origin of the QLR statistic is as follows. Suppose one replaces n1/2mn(θ) and

Σn(θ) in (2.4) by a data vectorX ∈ Rk and a known k×k variance matrixΣ, respectively.
Then, the QLR statistic is the likelihood ratio statistic for the model with X ∼ N(μ,Σ),
μ = (μ�1,μ

�
2)
� ∈ Rp × Rv = Rk, the null hypothesis H∗

0 : μ1 ≥ 0p & μ2 = 0v and the

alternative hypothesisH∗
1 : μ1 0p &/or μ2 9= 0v. The QLR statistic has been considered

in many papers on tests of inequality constraints, e.g., see Kudo (1963) and Silvapulle

and Sen (2005, Sec. 3.8). In the moment inequality literature, it has been considered

by AG, AS, and Rosen (2008).

The recommended RMS critical value is

cn(θ) = cn(θ,κ) + η, (2.7)

where cn(θ,κ) is the 1−α quantile of a bootstrap (or “asymptotic normal”) distribution

of a moment selection form of TQLR,n(θ) and η is a data-dependent size-correction factor.

For i.i.d. data, we recommend using a nonparametric bootstrap version of cn(θ,κ). For

dependent data, either a block bootstrap or an asymptotic normal version can be applied.

(To date, we have not determined which is preferable.)

We now describe the bootstrap version of cn(θ,κ). Let {W ∗
i,r : i ≤ n} for r = 1, ..., R

denote R bootstrap samples of size n (i.i.d. across samples), such as nonparametric

i.i.d. bootstrap samples in an i.i.d. scenario or block bootstrap samples in a time series

scenario, where R is large. The k-vectors of re-centered and re-scaled bootstrap sample

moments and bootstrap k × k correlation matrices for r = 1, ..., R are defined by

M∗
n,r(θ) = D∗n(θ)

−1/2
n1/2 m∗n,r(θ)−mn(θ) and

Ω∗n,r(θ) = D
∗
n,r(θ)

−1/2Σ∗n,r(θ)D
∗
n,r(θ)

−1/2 for r = 1, ..., R, where

m∗n,r(θ) = n
−1

n

i=1

m(W ∗
i,r, θ), D

∗
n,r(θ) = Diag(Σ

∗
n,r(θ)), (2.8)

and Σ∗n,r(θ) is defined as Σn(θ) is defined (e.g., as in (2.5) in the i.i.d. case) with

{W ∗
i,r : i ≤ n} in place of {Wi : i ≤ n} throughout.5
5Note that when a preliminary consistent estimator of a parameter τ appears, the bootstrap moment
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The idea behind the RMS critical value is to compute the critical value using only

those moment inequalities that have a noticeable effect on the asymptotic null distri-

bution of the test statistic. Note that moment inequalities that have large positive

population means have little or no effect on the asymptotic null distribution. The pre-

ferred RMS procedure employs element-by-element t-tests of the null hypothesis that

the mean of mn,j(θ) is zero versus the alternative that it is positive for j = 1, ..., p. The

j-th moment inequality is selected if

n1/2mn,j(θ)

σn,j(θ)
≤ κ, (2.9)

where σ2n,j(θ) is the (j, j) element of Σn(θ) for j = 1, ..., p and κ is a data-dependent tun-

ing parameter (defined in (2.12) below) that plays the role of a critical value in selecting

the moment inequalities. Let p denote the number of selected moment inequalities.

For r = 1, ..., R, let M∗
n,r(θ,κ) denote the (p + v)-sub-vector of M

∗
n,r(θ) that in-

cludes the p selected moment inequalities plus the v moment equalities. Analogously,

let Ω∗n,r(θ,κ) denote the (p + v) × (p + v)-sub-matrix of Ω∗n,r(θ) that consists of the p
selected moment inequalities and the v moment equalities. The bootstrap critical value

cn(θ,κ) is the 1− α sample quantile of

{S2(M∗
n,r(θ,κ),Ω

∗
n,r(θ,κ)) : r = 1, ..., R}, (2.10)

where S2(·, ·) is defined as in (2.4) but with p replaced by p.
An “asymptotic normal” version of the critical value is obtained by replacing the

bootstrap quantities M∗
n,r(θ,κ) and Ω∗n,r(θ,κ) in (2.10) by Ω

1/2
n (θ,κ)Z∗r and Ωn(θ,κ),

respectively, where Z∗r ∼ i.i.d. N(0p+v, Ip+v) for r = 1, ..., R (and {Z∗r : r = 1, ..., R} are
independent of {Wi : i ≤ n} conditional on p).
The tuning parameter κ in (2.9) and the size-correction factor η in (2.7) depend on the

estimator Ωn(θ) of the asymptotic correlation matrix Ω(θ) of n1/2mn(θ). In particular,

they depend on Ωn(θ) through a [−1, 1]-valued function δ(Ωn(θ)) that is a measure of

the amount of dependence in the correlation matrix Ωn(θ). We define

δ(Ω) = smallest off-diagonal element in the upper p× p block of Ω, (2.11)

conditions need to be based on a bootstrap estimator of this preliminary estimator. In such cases, the
asymptotic normal version of the critical value may be much quicker to compute.
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where Ω is a k × k correlation matrix. As defined, δ(Ω) is a particular measure of the
amount of negative correlation in Ω. Motivation for this choice of function δ(Ω) is given

in Section 6.3.1 below.

The moment selection tuning parameter κ and the size-correction factor η are defined

by

κ = κ(δn(θ)) and η = η1(δn(θ)) + η2(p), where

δn(θ) = δ(Ωn(θ)). (2.12)

Table I provides values of κ(δ), η1(δ), and η2(p) for δ ∈ [−1, 1] and p ∈ {2, 3, ..., 50}
for use with tests with level α = .05 and CS’s with level 1 − α = .95. Table B-VIII

of Appendix B provides simulated values of the mean and standard deviation of the

asymptotic distribution of cn(θ,κ). These results, combined with the values of η1(δ) and

η2(p) in Table I, show that the size-correction factor η = η1(δn(θ)) + η2(p) typically is

small compared to cn(θ,κ), but not negligible.

In sum, the preferred RMS critical value, cn(θ), and CS are computed using the

following steps. One computes (i) Ωn(θ) defined in (2.6), (ii) δn(θ) = smallest off-

diagonal element in the upper p × p block of Ωn(θ), (iii) κ = κ(δn(θ)) using Table I,

(iv) η = η1(δn(θ)) + η2(p) using Table I, (v) the vector of selected moments using (2.9)

with κ = κ(δn(θ)), (vi) the selected bootstrap sample moments and correlation matrices

{(M∗
n,r(θ,κ),Ω

∗
n,r(θ,κ)) : r = 1, ..., R}, defined in (2.8) with the non-selected moment

inequalities omitted, (vii) cn(θ,κ), which is the .95 sample quantile of {S2(M∗
n,r(θ,κ),

Ω∗n,r(θ,κ)) : r = 1, ..., R} with κ = κ(δn(θ)) (for a test of level .05 and a CS of level

.95) and (viii) cn(θ) = cn(θ,κ) + η. The preferred RMS confidence set is computed by

determining all the values θ for which the null hypothesis that θ is the true value is not

rejected. For the asymptotic normal version of the recommended RMS critical value,

in step (vi) one computes the selected sub-vector and sub-matrix of Ω1/2n (θ,κ)Z∗r and

Ωn(θ,κ), defined in the paragraph following (2.10), and in step (vii) one computes the .95

sample quantile with these quantities in place of M∗
n,r(θ,κ) and Ω∗n,r(θ,κ), respectively.

To compute the recommended bootstrap RMS test using 10,000 simulation repeti-

tions takes 1.3, 1.7, 3.2, 8.4, 17.2, and 52.0 seconds when p = 2, 4, 10, 20, 30, and

50, respectively, and n = 250 using GAUSS on a PC with a 3.4 GHz processor. For

the “asymptotic normal” version, the times are .25, .31, .71, 2.4, 6.1, and 21.8 seconds,
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respectively.6

Table I. Moment Selection Tuning Parameters κ(δ) and Size-Correction Factors η1(δ)

and η2(p) for α = .05

δ κ(δ) η1(δ) δ κ(δ) η1(δ) δ κ(δ) η1(δ)

[−1,−.975) 2.9 .000 [−.30,−.25) 1.9 .113 [.45, .50) 0.8 .072

[−.975,−.95) 2.9 .001 [−.25,−.20) 1.9 .151 [.50, .55) 0.8 .043

[−.95,−.90) 2.9 .002 [−.20,−.15) 1.9 .144 [.55, .60) 0.6 .067

[−.90,−.85) 2.9 .013 [−.15,−.10) 1.9 .122 [.60, .65) 0.6 .041

[−.85,−.80) 2.8 .043 [−.10,−.05) 1.8 .112 [.65, .70) 0.4 .021

[−.80,−.75) 2.7 .076 [−.05, .00) 1.7 .094 [.70, .75) 0.4 .023

[−.75,−.70) 2.7 .077 [.00, .05) 1.5 .131 [.75, .80) 0.001 .030

[−.70,−.65) 2.7 .075 [.05, .10) 1.5 .103 [.80, .85) 0.001 .011

[−.65,−.60) 2.6 .086 [.10, .15) 1.4 .108 [.85, .90) 0.001 .002

[−.60,−.55) 2.4 .139 [.15, .20) 1.3 .093 [.90, .95) 0.001 .000

[−.55,−.50) 2.4 .113 [.20, .25) 1.3 .102 [.95, .975) 0.001 .000

[−.50,−.45) 2.4 .106 [.25, .30) 1.2 .099 [.975, .99) 0.001 .000

[−.45,−.40) 2.4 .094 [.30, .35) 1.1 .089 [.99, 1.0] 0.001 .000

[−.40,−.35) 2.2 .131 [.35, .40) 0.8 .113

[−.35,−.30) 2.1 .131 [.40, .45) 0.8 .091

p 2 3 4 5 6 7 8 9 10

η2(p) .00 .05 .09 .14 .18 .23 .27 .31 .35

p ∈ [11, 50]: η2(p) = .04743 (p− 2)− .00040 (p− 2)2

6When constructing a CS, if the computation time is burdensome (because one needs to carry
out many tests with different values of θ as the null value), then a useful approach is to map out
the general features of the CS using the asymptotic normal version of the MMM/t-Test/κ=2.35 test,
defined below, which is very fast to compute, see Appendix B, and then switch to the bootstrap version
of the recommended RMS test to find the boundaries of the CS more precisely.
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3 Test Statistics

We now start the justification for the recommended RMS test. In this section, we

define the test statistics Tn(θ) that we consider. The statistic Tn(θ) is of the form

Tn(θ) = S(n
1/2mn(θ),Σn(θ)), (3.1)

where S is a real function on (Rp[+∞]×Rv)×Vk×k and Vk×k is the space of k×k variance
matrices. (The set Rp[+∞] ×Rv contains k-vectors whose first p elements are either real
or +∞ and whose last v elements are real.)

We now give the leading examples of the test statistic function S. The first is the

modified method of moments (MMM) test function S1 defined by

S1(m,Σ) =

p

j=1

[mj/σj]
2
− +

p+v

j=p+1

(mj/σj)
2, where

[x]− =
x if x < 0

0 if x ≥ 0, m = (m1, ...,mk)
�, (3.2)

and σ2j is the jth diagonal element of Σ. The Introduction lists papers in the literature

that consider this test statistic and the other test statistics below.7

The second function S is the QLR test function S2 that is defined in (2.4).

Note that under the null and local alternative hypotheses, GEL test statistics behave

asymptotically (to the first order) the same as the statistic Tn(θ) based on S2 (see

Sections 8.1 and 10.3 of AG and Section 10.1 of AS). Although GEL statistics are not of

the form given in (3.1), the results of the present paper, viz., Theorems 1 and 2 below,

hold for such statistics under the assumptions given in AG.

The third function is a test function, S3, that directs power against alternatives with

p1 (< p) moment inequalities violated. The test function S3 is defined by

S3(m,Σ) =

p1

j=1

[m(j)/σ(j)]
2
− +

p+v

j=p+1

(mj/σj)
2, (3.3)

where [m(j)/σ(j)]
2
− denotes the jth largest value among {[m�/σ�]

2
− : � = 1, ..., p} and

7Several papers in the literature use a variant of S1 that is not invariant to rescaling of the moment
functions (i.e., with σj = 1 for all j), which is not desirable in terms of the power of the resulting test.
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p1 < p is some specified integer.8,9

The asymptotic results given in Section 5 below hold for all functions S that satisfy

the following assumption.

Assumption S. (a) S(m,Σ) = S(Dm,DΣD) for all m ∈ Rk, Σ ∈ Rk×k, and pd
diagonal D ∈ Rk×k.
(b) S(m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ.

(c) S(m,Ω) is continuous at all m ∈ Rp[+∞] ×Rv and Ω ∈ Ψ.10

(d) S(m,Ω) > 0 if and only if mj < 0 for some j = 1, ..., p or mj 9= 0 for some

j = p+ 1, ..., k, where m = (m1, ...,mk)
� and Ω ∈ Ψ.

(e) For all � ∈ Rp[+∞]×Rv, all Ω ∈ Ψ, and Z ∼ N(0k,Ω), the df of S(Z+ �,Ω) at x is

(i) continuous for x > 0 and (ii) unless v = 0 and � =∞p, strictly increasing for x > 0.

In Assumption S, the set Ψ is as in condition (vi) of (2.2) when the observations are i.i.d.

and no preliminary estimator of a parameter τ appears. Otherwise, Ψ is the parameter

space for the correlation matrix of the asymptotic distribution of n1/2mn(θ) under (θ, F ),

denoted AsyCorrF (n1/2mn(θ)).
11

The functions S1, S2, and S3 satisfy Assumption S.12

4 Refined Moment Selection

This section is concerned with critical values for use with the test statistics introduced

in Section 3. We proceed in four steps. First, we explain the idea behind moment

selection critical values and discuss a tuning parameter κ that determines the extent

of the moment selection. Second, we introduce a function ϕ that helps one to select

“relevant” moment inequalities. Third, we define the RMS critical value. Lastly, we

8When constructing a CS, a natural choice for p1 is the dimension d of θ, see Section 5.3 below.
9With the functions S1 and S3, the parameter space Ψ for the correlation matrices in Assumption

S and in condition (vi) of (2.2) can be any non-empty subset of the set Ψ1 of all k × k correlation
matrices. With the function S2, the asymptotic results below require that the correlation matrices in
Ψ have determinants bounded away from zero because Σ−1 appears in the definition of S2. It may be
possible to extend the results to allow Ψ to equal Ψ1 by replacing Σ−1 by the Moore-Penrose inverse
Σ+ in the definition of S2.
10Let B ⊂ Rw. We say that a real function G on Rp[+∞]×B is continuous at x ∈ Rp[+∞]×B if y → x

for y ∈ Rp[+∞]×B implies that G(y)→ G(x). In Assumption S(c), S(m,Ω) is viewed as a function with
domain Ψ1.
11More specifically, for dependent observations or when a preliminary estimator of a parameter τ

appears, Ψ is as in condition (v) of (8.4) in Appendix A.
12See Lemma 1 of AG for a proof for Assumptions S(a)-S(d) and AS for a proof for Assumption S(e).
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specify a size-correction factor η that delivers correct asymptotic size even when κ does

not diverge to infinity. Because the CS’s defined in (2.3) are obtained by inverting tests,

we discuss both tests and CS’s below.

4.1 Basic Idea and Tuning Parameter κ

The idea behind generalized moment selection and refined moment selection is to

use the data to determine whether a given moment inequality is satisfied and is far from

being an equality. If so, one takes the critical value to be smaller than it would be if all

moment inequalities were binding–both under the null and under the alternative.

Under a suitable sequence of null distributions {Fn : n ≥ 1}, the asymptotic null
distribution of Tn(θ) is the distribution of

S(Ω
1/2
0 Z∗ + (h1, 0v),Ω0), where Z∗ ∼ N(0k, Ik), (4.1)

h1 ∈ Rp+,∞, Ω0 is a k × k correlation matrix, and both h1 and Ω0 typically depend

on the true value of θ. The correlation matrix Ω0 can be consistently estimated. But

the “1/n1/2-local asymptotic mean parameter h1 cannot be (uniformly) consistently

estimated.13

A moment selection critical value is the 1−α quantile of a data-dependent version of

the asymptotic null distribution, S(Ω1/20 Z∗+(h1, 0v),Ω0), that replacesΩ0 by a consistent

estimator and replaces h1 with a p-vector in R
p
+,∞ whose value depends on a measure of

the slackness of the moment inequalities. The measure of slackness is

ξn(θ) = κ−1n1/2D−1/2n (θ)mn(θ) ∈ Rk, (4.2)

where κ is a tuning parameter. For a GMS critical value, {κ = κn : n ≥ 1} is a
sequence of constants that diverges to infinity as n → ∞, such as κn = (lnn)1/2 or

κn = (2 ln lnn)
1/2. In contrast, for an RMS critical value, κ does not go to infinity as

n→∞ and is data-dependent.

13The asymptotic distribution of the test statistic Tn(θ) is a discontinuous function of the expected
values of the moment inequality functions. This is not a feature of its finite sample distribution. For this
reason, sequences of distributions {Fn : n ≥ 1} in which these expected values may drift to zero–rather
than a fixed distribution F–need to be considered. See Andrews and Guggenberger (2008) for details.
The local parameter h1 cannot be estimated consistently because doing so requires an estimator of

the mean h1/n1/2 that is consistent at rate op(n−1/2), which is not possible.
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Data-dependence of κ is obtained by taking κ to depend on Ωn(θ):

κ = κ(Ωn(θ)), (4.3)

where κ(·) is a function from Ψ to R++. A suitable choice of function κ(·) improves
the power properties of the RMS procedure because the asymptotic power of the test

depends on the probability limit of κ through Ω(θ).

We assume that κ(Ω) satisfies:

Assumption κ. (a) κ(Ω) is continuous at all Ω ∈ Ψ. (b) κ(Ω) > 0 for all Ω ∈ Ψ.14

4.2 Moment Selection Function ϕ

Next, we discuss the moment selection function ϕ that determines how non-binding

moment inequalities are detected. Let ξn,j(θ), h1,j, and [Ω
1/2
0 Z∗]j denote the jth elements

of ξn(θ), h1, and Ω
1/2
0 Z∗, respectively, for j = 1, ..., p. When ξn,j(θ) is zero or close to

zero, this indicates that h1,j is zero or fairly close to zero and the desired replacement

of h1,j in S(Ω
1/2
0 Z∗ + (h1, 0v),Ω0) is 0. On the other hand, when ξn,j(θ) is large, this

indicates h1,j is large and the desired replacement of h1,j in S(Ω
1/2
0 Z∗ + (h1, 0v),Ω0) is

∞ or some large value.

We replace h1,j in S(Ω
1/2
0 Z∗ + (h1, 0v),Ω0) by ϕj(ξn(θ),Ωn(θ)) for j = 1, ..., p, where

ϕj : (R
p
[+∞] ×Rv[±∞])×Ψ→ R[±∞] is a function that is chosen to deliver the properties

described above. The leading choices for the function ϕj are

ϕ
(1)
j (ξ,Ω) =

0 if ξj ≤ 1
∞ if ξj > 1,

ϕ
(2)
j (ξ,Ω) = ψ(ξj),

ϕ
(3)
j (ξ,Ω) = [ξj]+, and ϕ

(4)
j (ξ,Ω) =

0 if ξj ≤ 1
κ(Ω)ξj if ξj > 1

(4.4)

for j = 1, ..., p, where ψ is defined below and κ(Ω) in ϕ
(4)
j is the same tuning parameter

14For simplicity, the recommended function κ(Ω) = κ(δ(Ω)) given in Section 2.2 is constant on inter-
vals of δ(Ω) values and has jumps from one interval to the next. Hence, it does not satisfy Assumption
κ. However, the function κ(δ) in Table I can be replaced by a continuous linearly-interpolated function
whose value at the left-hand point in each interval of δ equals the value given in Table I. Such a function
satisfies Assumption κ. Numerical calculations show that the grid of δ values in Table I is sufficiently
fine that the finite-sample and asymptotic properties of the recommended RMS test are not sensitive
to whether the κ(δ) function is linearly interpolated or not.
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function that appears in (4.3). Let ϕ(r)(ξ,Ω) = (ϕ
(r)
1 (ξ,Ω), ...,ϕ

(r)
p (ξ,Ω), 0, ..., 0)� ∈

Rp[±∞] × {0}v for r = 1, ..., 4. CHT, AS, and Bugni (2007a,b) consider the function ϕ(1);

AS considers ϕ(2); AS and Canay (2007) consider ϕ(3); and Fan and Park (2007) consider

ϕ(4).15

The function ϕ(1) generates a “moment selection t-test” procedure, which is the

recommended ϕ function. Note that ξn,j(θ0) ≤ 1 is equivalent to the condition in (2.9).
The function ϕ(2) in (4.4) depends on a non-decreasing function ψ(x) that satisfies

ψ(x) = 0 if x ≤ aL, ψ(x) ∈ [0,∞] if aL < x < aU , and ψ(x) = ∞ if x > aU , for some

0 < aL ≤ aU ≤ ∞. A key condition is that aL > 0. The function ϕ(2) is a continuous

version of ϕ(1) when ψ is taken to be continuous on R (where continuity at aU means

that limx→aU ψ(x) =∞).
The functions ϕ(3) and ϕ(4) exhibit less steep rates of increase than ϕ(1) as functions

of ξj for j = 1, ..., p.

For the asymptotic results given below, the only condition needed on the ϕj functions

is that they are continuous on a set that has probability one under a certain distribution:

Assumption ϕ. For all j = 1, ..., p, all β ∈ Rp[+∞]×Rv, and all Ω ∈ Ψ, ϕj(ξ,Ω) is contin-

uous at (ξ,Ω) for all ξ in a set Ξ(β,Ω) ⊂ (Rp[+∞]×Rv)×Ψ for which P (κ−1(Ω)[Ω1/2Z∗+

β ∈ Ξ(β,Ω)) = 1, where Z∗ ∼ N(0k, Ik).
The functions ϕj in (4.4) all satisfy Assumption ϕ.

The functions ϕ(r) for r = 1, ..., 4 all exhibit “element by element” determination

of which moments to “select” because ϕ
(r)
j (ξ,Ω) only depends on (ξ,Ω) through ξj.

This has significant computational advantages because ϕ
(r)
j (ξn(θ),Ωn(θ)) is very easy

to compute. On the other hand, when Ωn(θ) is non-diagonal, the whole vector ξn(θ)

contains information about the magnitude of the mean of mn(θ). The function ϕ(5)

that is introduced in AS and defined below exploits this information. It is related to

the information criterion-based moment selection criteria (MSC) considered in Andrews

(1999) for a different moment selection problem. We refer to ϕ(5) as the modified MSC

(MMSC) ϕ function. It is computationally more expensive than the functions ϕ(1)-ϕ(4)

considered above.

Define c = (c1, ..., ck)
� to be a selection k-vector of 0�s and 1�s. If cj = 1, the jth

15The function used by Fan and Park (2007) is not exactly equal to ϕ(4)j . Let σn,j(θ) denote the (j, j)

element of Σn(θ). The function Fan and Park (2007) use is ϕ
(4)
j (ξ,Ω) with “if ξj ≤ 1” replaced by “if

σn,j(θ)ξj ≤ 1, ” and likewise for > in place of < . This yields a non-scale-invariant ϕj function, which

is not desirable, so we define ϕ(4)j as is.
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moment condition is selected; if cj = 0, it is not selected. The moment equality functions

are always selected, so cj = 1 for j = p+1, ..., k. Let |c| = k
j=1 cj. For ξ ∈ Rp[+∞]×Rv[±∞],

define c · ξ = (c1ξ1, ..., ckξk)� ∈ Rp[+∞] ×Rv[±∞], where cjξj = 0 if cj = 0 and ξj =∞. Let
C denote the parameter space for the selection vectors, e.g., C = {0, 1}p×{1}v. Let ζ(·)
be a strictly increasing real function on R+. Given (ξ,Ω) ∈ (Rp[+∞] × Rv[±∞]) × Ψ, the

selection vector c(ξ,Ω) ∈ C that is chosen is the vector in C that minimizes the MMSC
defined by

S(−c · ξ,Ω)− ζ(|c|). (4.5)

The minus sign that appears in the first argument of the S function ensures that a large

positive value of ξj yields a large value of S(−c · ξ,Ω) when cj = 1, as desired. Since
ζ(·) is increasing, −ζ(|c|) is a bonus term that rewards inclusion of more moments. For
j = 1, ..., p, define

ϕ
(5)
j (ξ,Ω) =

0 if cj(ξ,Ω) = 1

∞ if cj(ξ,Ω) = 0.
(4.6)

The MMSC is analogous to the Bayesian information criterion (BIC) and the Hannan-

Quinn information criterion (HQIC) when ζ(x) = x, κn = (log n)
1/2 for BIC, and κn =

(Q ln lnn)1/2 for some Q ≥ 2 for HQIC, see AS. Some calculations show that when Ωn(θ)
is diagonal, S = S1 or S2, and ζ(x) = x, the function ϕ(5) reduces to ϕ(1).

4.3 RMS Critical Value cn(θ)

The (asymptotic normal) RMS critical value is equal to the 1 − α quantile of

S Ω1/2Z∗ + β,Ω evaluated at β = ϕ(ξn(θ),Ωn(θ)) and Ω = Ωn(θ) plus a size-correction

factor η. More specifically, given a choice of function

ϕ(ξ,Ω) = (ϕ1(ξ,Ω), ...,ϕp(ξ,Ω), 0, ..., 0)
� ∈ Rp[+∞] × {0}v, (4.7)

the replacement for the k-vector (h1, 0v) in S(Ω
1/2
0 Z∗ +(h1, 0v), Ω0) is given by

ϕ(ξn(θ),Ωn(θ)). (4.8)

For Z∗ ∼ N(0k, Ik) (independent of {Wi : i ≥ 1}) and β ∈ Rk[+∞], let qS(β,Ω) denote
the 1− α quantile of

S Ω1/2Z∗ + β,Ω . (4.9)
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One can compute qS(β,Ω) by simulating R i.i.d. random variables {Z∗r : r = 1, ..., R}
with Z∗r ∼ N(0k, Ik) and taking qS(β,Ω) to be the 1−α sample quantile of {S(Ω1/2Z∗r +
β,Ω) : r = 1, ..., R}, where R is large.
The nominal 1− α (asymptotic normal) RMS critical value is

cn(θ) = qS ϕ ξn(θ),Ωn(θ) ,Ωn(θ) + η(Ωn(θ)), (4.10)

where η = η(Ωn(θ)) is a size-correction factor that is specified in Section 4.4 below.

The bootstrap RMS critical value is obtained by replacing qS(ϕ(ξn(θ),Ωn(θ)),Ωn(θ))

in (4.10) by q∗S(ϕ(ξn(θ),Ωn(θ))), where q
∗
S(β) is the 1 − α quantile of S(M∗

n,r(θ) +

β,Ω∗n,r(θ)) for β ∈ Rk[+∞] and M∗
n,r(θ) and Ω∗n,r(θ) are defined in (2.8). The quantity

q∗S(ϕ(ξn(θ),Ωn(θ))) can be computed by taking the 1−α sample quantile of {S(M∗
n,r(θ)+

ϕ(ξn(θ),Ωn(θ)),Ω
∗
n,r(θ)) : r = 1, ..., R}.

For our preferred RMS critical value discussed in Section 2.2, the asymptotic normal

critical value is of the form in (4.10) with S = S2, ϕ = ϕ(1), and η(Ω) = η1(δ(Ω))+η2(p).

The bootstrap critical value uses q∗S2 (·) in place of qS2(·,Ωn(θ)).

4.4 Size-Correction Factor η

We now discuss the size-correction factor η = η(Ωn(θ)). Such a factor is necessary to

deliver correct asymptotic size under asymptotics in which κ does not diverge to infinity.

This factor can viewed as giving an asymptotic size refinement to a GMS critical value.

As noted above, we show in the proofs (see Appendix A) that under a suitable

sequence of true parameters and distributions {(θn, Fn) : n ≥ 1}, Tn(θn)→d S(Ω
1/2Z∗+

(h1, 0v),Ω) for some (h1,Ω) ∈ Rp+,∞ × Ψ. Furthermore, we show that under such a

sequence the asymptotic coverage probability of an RMS CS based on a data-dependent

tuning parameter κ = κ(Ωn(θ)) and a fixed size-correction constant η is

CP (h1,Ω, η) = P S Ω1/2Z∗ + (h1, 0v),Ω ≤ (4.11)

qS ϕ κ−1(Ω)[Ω1/2Z∗ + (h1, 0v)],Ω ,Ω + η ,

where Z∗ ∼ N(0k, Ik). (Correspondingly, the null rejection probability of an RMS test
with fixed η for testing H0 : θ = θ0 is 1− CP (h1,Ω, η).)
We let ∆ ⊂ Rp+,∞× cl(Ψ) denote the set of all (h1,Ω) values that can arise given the
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model specification F .16 Our primary focus is on the standard case in which

∆ = Rp+,∞ × cl(Ψ). (4.12)

This arises when there are no restrictions on the moment functions beyond the inequal-

ity/equality restrictions and h1 and Ω are variation free. Our asymptotic results cover

the general case in which ∆ may be restricted, as well as the standard case in (4.12).

To determine the asymptotic size of an RMS test or CS, it suffices to have η =

η(Ωn(θ)) satisfy:

Assumption η1. η(Ω) is continuous at all Ω ∈ Ψ.17

However, for an RMS CS to have asymptotic size greater than or equal to 1−α, η(·)
must be chosen to satisfy the first condition that follows. If it also satisfies the second,

stronger, condition, then its asymptotic size equals 1 − α. Let CP (h1,Ω, η(Ω)−) =
limx↓0CP (h1,Ω, η(Ω)− x).
Assumption η2. inf(h1,Ω)∈∆CP (h1,Ω, η(Ω)−) ≥ 1− α.

Assumption η3. (a) inf(h1,Ω)∈∆CP (h1,Ω, η(Ω)) = 1− α.

(b) inf(h1,Ω)∈∆CP (h1,Ω, η(Ω)−) = inf(h1,Ω)∈∆CP (h1,Ω, η(Ω)).
Assumption η3(b) is a continuity condition that is not restrictive. The left-hand side

(lhs) quantity inside the probability in (4.11) has a df that is continuous and strictly

increasing for positive values. The corresponding right-hand side (rhs) quantity is posi-

tive. These two quantities are quite different nonlinear functions of the same underlying

normal random vector. Hence, they are equal with probability zero, which implies that

Assumption η3(b) holds.

The function η(Ω) depends on S,ϕ, and the tuning parameter function κ(Ω). For no-

tational simplicity, we suppress this dependence. Functions η(·) that satisfy Assumptions
η2 and/or η3 are not uniquely defined. The smallest function that satisfies Assumption

η3(a), denoted η∗(Ω), exists and is defined as follows. For each Ω ∈ Ψ, define η∗(Ω) to

be the smallest value η for which

inf
h1:(h1,Ω)∈∆

CP (h1,Ω, η) = 1− α.18 (4.13)

16A more precise/detailed definition of ∆ is given in Appendix A.
17An analogous comment to that in footnote 14 also applies to the recommended function η(·) given

in Section 2.2 and Assumption η1.
18A smallest value exists because CP (h1,Ω, η) is right continuous in η.
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When ∆ satisfies (4.12), the infimum is over h1 ∈ Rp+,∞. For purposes of minimizing the
probability of false coverage of the CS (or equivalently, maximizing the power of the tests

upon which the CS is based), it is desirable to take η(Ω) as close to η∗(Ω) as possible

subject to η(Ω) ≥ η∗(Ω). For computational tractability and storability, however, it is

convenient to use a function η(·) that is simpler than η∗(Ω), e.g., a function that depends
on Ω only through a scalar function of Ω, as with the recommended RMS critical value

described in Section 2.2.19

4.5 Plug-in Asymptotic Critical Values

We now discuss CS’s based on a plug-in asymptotic (PA) critical value. The least-

favorable asymptotic null distributions of the statistic Tn(θ) are those for which the

moment inequalities hold as equalities. These distributions depend on the correlation

matrix Ω of the moment functions. PA critical values are determined by the least-

favorable asymptotic null distribution for given Ω evaluated at a consistent estimator of

Ω. Such critical values have been considered in the literature on multivariate one-sided

tests, see Silvapulle and Sen (2005) for references. CHT, AG, and AS consider them

in the context of the moment inequality literature. Rosen (2008) considers variations

of PA critical values that make adjustments in the case where it is known that if one

moment inequality holds as an equality then another cannot.20

The PA critical value is

qS(0k,Ωn(θ)). (4.14)

The PA critical value can be viewed as a special case of an RMS critical value with

ϕj(ξ,Ω) = 0 for all j = 1, ..., k and η(Ωn(θ)) = 0. This implies that the asymptotic

results stated below for RMS CS’s and tests also apply to PA CS’s and tests.

19Note that even if η(Ω) 9= η∗(Ω), Assumption η3(a) still can hold.
20This method delivers corrrect asymptotic size in a uniform sense only if when one moment inequality

holds as an equality then the other is strictly bounded away from zero.
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5 Asymptotic Results

5.1 Asymptotic Size

The exact and asymptotic confidence sizes of an RMS CS are

ExCSn = inf
(θ,F )∈F

PF (Tn(θ) ≤ cn(θ)) and AsyCS = lim inf
n→∞

ExCSn, (5.1)

respectively. The definition of AsyCS takes the “ inf ” before the “ lim .” This builds

uniformity over (θ, F ) into the definition of AsyCS. Uniformity is required for the as-

ymptotic size to give a good approximation to the finite-sample size of a CS.

Theorems 1 and 2 below apply to i.i.d. observations, in which case F is defined in

(2.2). They also apply to stationary temporally-dependent observations and to cases in

which the moment functions depend on a preliminary consistent estimator of a parameter

τ , in which cases for brevity F is defined in (8.4) and (8.5) in Appendix A.

Theorem 1 Suppose Assumptions S, κ, ϕ, and η1 hold and 0 < α < 1. Then, the

nominal level 1− α RMS CS based on S, ϕ, κ = κ(Ωn(θ)), and η = η(Ωn(θ)) satisfies

(a) AsyCS ∈ [inf(h1,Ω)∈∆CP (h1,Ω, η(Ω)−), inf(h1,Ω)∈∆CP (h1,Ω, η(Ω))],
(b) AsyCS ≥ 1− α provided Assumption η2 holds, and

(c) AsyCS = 1− α provided Assumption η3 holds.

Comments. 1. Theorem 1(b) shows that an RMS CS based on a size-correction factor
η = η(Ωn(θ)) that satisfies Assumption η2 is asymptotically valid in a uniform sense

under asymptotics that do not require κ → ∞ as n → ∞. In contrast, the GMS CS
introduced in AS requires κ→∞ as n→∞.
2. Theorem 1 holds even if there are restrictions such that one moment inequality

cannot hold as an equality if another moment inequality does. Rosen (2008) discusses

models in which restrictions of this sort arise.

3. Theorem 1 applies to moment conditions based on weak instruments (because

the tests considered are of an Anderson-Rubin form.)

4. Define the asymptotic size of an RMS test of H0 : θ = θ0 by

AsySz(θ0) = lim sup
n→∞

sup
(θ,F )∈F :θ=θ0

PF (Tn(θ0) > cn(θ0)). (5.2)

The proof of Theorem 1 shows that under the assumptions in Theorem 1, (a)AsySz(θ0) ∈
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[1− inf(h1,Ω)∈∆0 CP (h1,Ω, η(Ω)), 1− inf(h1,Ω)∈∆0 CP (h1,Ω, η(Ω)−)], where ∆0 is defined

as ∆ is defined in (4.12) or in a more general case ∆ is defined as in (8.2) of Appendix

A but with the sequence {θwn : n ≥ 1} replaced by the constant θ0, (b) AsySz(θ0) ≤ α

provided Assumption η2 holds, and (c) AsySz(θ0) = α provided Assumption η3 holds,

where ∆ in Assumptions η2 and η3 is replaced by ∆0. The primary case of interest is

when ∆0 = R
p
+,∞ × cl(Ψ), which occurs when there are no restrictions on the moment

functions beyond the inequality/equality restrictions and h1 and Ω are variation free.

5. The proofs of Theorem 1 and all other results in the paper are provided in

Appendix A.

5.2 Asymptotic Power

In this section, we compute the asymptotic power of RMS tests against 1/n1/2-local

alternatives. These results have immediate consequences for the length or volume of

a CS based on these tests because the power of a test for a point that is not the true

value is the probability that the CS does not include that point. (See Pratt (1961) for

an equation that links CS volume and probabilities of false coverage.) We use these

results to define tuning parameters κ = κ(Ω) and size-correction factors η = η(Ω) that

maximize average power for a selected set of alternative parameter values. We also use

the results to compare different choices of test function S and moment selection function

ϕ in terms of average asymptotic power.

For given θ0, we consider tests of

H0 : EFmj(Wi, θ0) ≥ 0 for j = 1, ..., p and
EFmj(Wi, θ0) = 0 for j = p+ 1, ..., k, (5.3)

where F denotes the true distribution of the data. (More precisely, by this we mean H0:

the true (θ, F ) ∈ F satisfies θ = θ0.) The alternative is H1 : H0 does not hold.

Let

σ2F,j(θ) = AsyV arF (n
1/2mn,j(θ)) for j = 1, ..., p,

D(θ, F ) = Diag{σ2F,1(θ), ...,σ2F,k(θ)}, and
Ω(θ, F ) = AsyCorrF (n

1/2mn(θ)). (5.4)

Note that this definition of σ2F,j(θ) reduces to that given in (2.2) when the observations
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are i.i.d.

We now introduce the 1/n1/2-local alternatives. The first two assumptions are the

same as in AS. The third assumption is a high-level assumption that allows for de-

pendent observations and sample moment functions that may depend on a preliminary

estimator τn(θ). It is shown to hold automatically with i.i.d. observations when there is

no preliminary estimator of a parameter τ .

Assumption LA1. The true parameters {(θn, Fn) ∈ F : n ≥ 1} satisfy:
(a) θn = θ0 − λn−1/2(1 + o(1)) for some λ ∈ Rd and Fn → F0 for some (θ0, F0) ∈ F,
(b) n1/2EFnmj(Wi, θn)/σFn,j(θn)→ h1,j for some h1,j ∈ R+,∞ for j = 1, ..., p, and
(c) supn≥1EFn|mj(Wi, θ0)/σFn,j(θ0)|2+δ <∞ for j = 1, ..., k for some δ > 0.

Assumption LA2. The k×d matrix Π(θ, F ) = (∂/∂θ�)[D−1/2(θ, F )EFm(Wi, θ)] exists

and is continuous in (θ, F ) for all (θ, F ) in a neighborhood of (θ0, F0).21

Assumption LA3. The true parameters {(θn, Fn) ∈ F : n ≥ 1} satisfy:
(a) A0n = (A

0
n,1, ..., A

0
n,k)

� →d Z ∼ N(0k,Ω0) as n→∞, where A0n,j = n1/2(mn,j(θ0)−
EFnmj(Wi, θ0))/σFn,j(θ0),

(b) σn,j(θ0)/σFn,j(θ0)→p 1 as n→∞ for j = 1, ..., k, and

(c) D−1/2n (θ0)Σn(θ0)D
−1/2
n (θ0)→p Ω0 as n→∞.

When the observations are i.i.d. for each (θ,Ω) ∈ F , Assumption LA3 holds auto-
matically as shown in the following Lemma.

Assumption LA3∗. (a) For each n ≥ 1, the observations {Wi : i ≤ n} are i.i.d.
under (θn, Fn) ∈ F , (b) Σn(θ) is defined by (2.5), and (c) no preliminary estimator of a
parameter τ appears in the sample moment functions.

Lemma 1 Assumptions LA1 and LA3∗ imply Assumption LA3.

The asymptotic distribution of Tn(θ0) under local alternatives depends on the limit

of the normalized moment inequality functions when evaluated at the null value θ0.

Under Assumptions LA1 and LA2, it can be shown that

lim
n→∞

n1/2D−1/2(θ0, Fn)EFnm(Wi, θ0) = μ = (h1, 0v) +Π0λ ∈ Rk, where
h1 = (h1,1, ..., h1,p)

� and Π0 = Π(θ0, F0). (5.5)

21When a preliminary estimator of a parameter τ appears in the sample moment functions, then in
Assumptions LA1 and LA2 and (5.5) below, mj(Wi, θ) and m(Wi, θ) are defined to be mj(Wi, θ, τ0)
and m(Wi, θ, τ0), respectively, where τ0 denotes the true value of the parameter τ under the true
distribution F.
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By definition, if h1,j =∞, then h1,j+x =∞ for any x ∈ R. Let Π0,j denote the jth row of
Π0 written as a column d-vector for j = 1, ..., k.Note that (h1, 0v)+Π0λ ∈ Rp[+∞]×Rv. Let
μ = (μ1, ...,μk)

�. The true distribution Fn is in the alternative, not the null (for n large)

when μj = h1,j +Π�0,jλ < 0 for some j = 1, ..., p or Π
�
0,jλ 9= 0 for some j = p+ 1, ..., k.

For constants κ > 0 and η ≥ 0, define

AsyPow(μ,Ω, S,ϕ,κ, η)

= P S(Ω1/2Z∗ + μ,Ω) > qS ϕ(κ−1[Ω1/2Z∗ + μ],Ω),Ω + η and

AsyPow−(μ,Ω0, S,ϕ,κ, η) = lim
x↓0
AsyPow(μ,Ω0, S,ϕ,κ, η − x), (5.6)

where Z∗ ∼ N(0k, Ik), μ ∈ Rk, Ω ∈ Ψ, κ ∈ R++, the functions S, ϕ, and qS are as defined
in Section 3, (4.4) or (4.6), and (4.9), respectively.22 Typically, AsyPow(μ,Ω, S,ϕ,κ, η) =

AsyPow−(μ,Ω, S,ϕ,κ, η) because the lhs quantity in the probability in (5.6) is a non-

linear function of a normal random vector that has a continuous and strictly increasing

df (unless v = 0 and μ =∞p, which cannot hold under the alternative hypothesis) and

the rhs quantity in the probability in (5.6) is a quite different nonlinear function of the

same normal random vector.

For a sequence of constants {ζn : n ≥ 1}, let ζn → [ζ1,∞, ζ2,∞] denote that ζ1,∞ ≤
lim infn→∞ ζn ≤ lim supn→∞ ζn ≤ ζ2,∞.

Theorem 2 Under Assumptions S, κ, ϕ, η1, and LA1-LA3, the RMS test based on
S,ϕ,κ = κ(Ωn(θ)), and η = η(Ωn(θ)) satisfies

PFn(Tn(θ0) > cn(θ0))

→ [AsyPow(μ,Ω0, S,ϕ,κ(Ω0), η(Ω0)), AsyPow
−(μ,Ω0, S,ϕ,κ(Ω0), η(Ω0))],

where μ = (h1, 0v) +Π0λ.

Comments. 1. Theorem 2 provides the 1/n1/2-local alternative power function of RMS
and PA tests. Typically, AsyPow(μ,Ω0, S,ϕ,κ(Ω0), η(Ω0)) = AsyPow−(μ,Ω0, S,ϕ,

κ(Ω0), η(Ω0)) and the asymptotic local power function is unique for any given (μ,Ω0).

2. The results of Theorem 2 hold under the null and alternative hypotheses.

22For some functions ϕ, such as ϕ(1) and ϕ(4), κ = 0 is permissible because limκ↓0 ϕ(κ−1[Ω1/2Z+μ],Ω)
is well-defined. For example, for ϕ(1) and x ∈ R, limκ↓0 ϕ(κ−1x,Ω) = 0 if x ≤ 0 and limκ↓0 ϕ(κ−1x,Ω) =
∞ if x > 0.
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3. For moment conditions based on weak instruments, the results of Theorem 2 still
hold. But, with weak instruments, RMS and PA tests have power less than or equal to

α against 1/n1/2-local alternatives because Π�0,jλ = 0 for all j = 1, ..., k.

5.3 Average Power

RMS tests depend on S, ϕ, κ(Ω), and η(Ω). We compare the power of RMS tests

by comparing their average asymptotic power for a chosen set Mk(Ω) of alternative

parameter vectors μ ∈ Rk for Ω ∈ Ψ.23 Let |Mk(Ω)| denote the number of elements
in Mk(Ω). The average asymptotic power of the RMS test based on (S,ϕ,κ, η) for

constants κ > 0 and η ≥ 0 is

|Mk(Ω)|−1
μ∈Mk(Ω)

AsyPow(μ,Ω, S,ϕ,κ, η). (5.7)

We are interested in comparing the (S,ϕ) functions defined in (2.4), (3.2), (3.3),

(4.4), and (4.6) in terms ofMk(Ω)-average asymptotic power. To do so requires choices

of functions (κ(·), η(·)) for each (S,ϕ). We use the tuning and size-correction functions
κ∗(Ω) and η∗(Ω) that are optimal in terms ofMk(Ω)-average asymptotic power. They

are defined as follows. Given Ω and κ > 0, let η∗(Ω,κ) be defined as in (4.13) with

∆ = Rp+,∞ × cl(Ω) and tuning parameter κ > 0. The optimal tuning parameter κ∗(Ω)
maximizes (5.7) with η replaced by η∗(Ω,κ) over κ > 0. The optimal size-correction

factor then is η∗(Ω) = η∗(Ω,κ∗(Ω)) and the test based on (κ∗(Ω), η∗(Ω)) has asymptotic

size α. (Obviously, κ∗(·) and η∗(·) depend on (S,ϕ).)
Given η∗(Ω) and κ∗(Ω), we compare (S,ϕ) functions by comparing their values of

|Mk(Ω)|−1
μ∈Mk(Ω)

AsyPow(μ,Ω, S,ϕ,κ∗(Ω), η∗(Ω)), (5.8)

which depend on Ω.

We are interested in constructing tests that yield CS’s that are as small as possible.

The boundary of a CS, like the boundary of the identified set, is determined at any

given point by the moment inequalities that are binding at that point. The number of

binding moment inequalities at a point depends on the dimension, d, of the parameter

23As indicated, we allow this set to depend on Ω. The reason is that the power of any test and
the asymptotic power envelope depend on Ω. Hence, it is natural to vary the magnitude of ||μ|| for
μ ∈Mk(Ω) as Ω varies.
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θ. Typically, the boundary of a confidence set is determined by d (or fewer) moment

inequalities. That is, at most d moment inequalities are binding and at least p− d are
slack, see Figure 1. In consequence, we specify the sets Mk(Ω) considered below to

be ones for which most vectors μ have half or more elements positive (since positive

elements correspond to non-binding inequalities), which is suitable for the typical case

in which p ≥ 2d.

Figure 1. Confidence Set for a Parameter θ ∈ Rd for d = 2 Based on p = 4 Moment
Inequalities
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5.4 Asymptotic Power Envelope

To assess the power performance of RMS tests in an absolute sense, it is of interest

to compare their asymptotic power to the asymptotic power envelope. For details on

the determination and computation of the latter, see Appendix C.

We note that the asymptotic power envelope is a “uni-directional” envelope. One

does not expect a test that is designed to perform well for multi-directional alternatives

to be on, or close to, the uni-directional envelope. This is analogous to the fact that the

power of a standard F -test for a p-dimensional restriction with an unrestricted alterna-

tive hypothesis in a normal linear regression model is not close to the uni-dimensional

power envelope. For example, for p = 2, 4, 10, when the asymptotic power envelope

is .75, .80, .85, respectively, the F test has power .65, .60, .49, respectively.24 Clearly,

24These asymptotic power results are obtained by some simple calculations based on the distribution
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the larger is p the greater is the difference between the power of a test designed for

p-directional alternatives and the uni-directional power envelope.

6 Numerical Results

6.1 Introduction

In the numerical work, we focus on results for p = 2, 4, and 10 and v = 0, which

represent small, medium, and large numbers of moment inequalities respectively. Results

for p = 2 are of special interest because the correlation matrix Ω is very simple in this

case. It just depends on a scalar ρ ∈ [−1, 1]. Hence, it is easy to see how the magnitude
of ρ affects key quantities, such as asymptotic null rejection probabilities of tests, size-

corrected asymptotic power of tests, and the asymptotic power envelope.

For each value of p, we consider three representative correlation matrices Ω: ΩNeg,

ΩZero, and ΩPos. The matrix ΩZero equals Ip for p = 2, 4, and 10. The matrices ΩNeg and

ΩPos are Toeplitz matrices with correlations on the diagonals given by the following: For

p = 2: ρ = −.9 for ΩNeg and ρ = .5 for ΩPos. For p = 4: ρ = (−.9, .7,−.5) for ΩNeg and
ρ = (.9, .7, .5) for ΩPos. For p = 10: ρ = (−.9, .8,−.7, .6,−.5, .4,−.3, .2,−.1) for ΩNeg
and ρ = (.9, .8, .7, .6, .5, ..., .5) for ΩPos.

For p = 2, the set of μ vectorsM2(Ω) for which average asymptotic power is com-

puted includes seven elements:

M2(Ω) = {(−μ1, 0), (−μ2, 1), (−μ3, 2), (−μ4, 3),
(−μ5, 4), (−μ6, 7), (−μ7,−μ7)}, (6.1)

where μj depends on Ω and is such that the power envelope is .75 at each element of

M2(Ω). Consistent with the discussion in Section 5.3, most elements ofM2(Ω) have less

than p negative elements. The positive elements of the μ vectors are chosen to cover a

reasonable range of the parameter space. The simulations used to compute the values

μj for Ω = ΩNeg,ΩZero,ΩPos are based on 40,000 simulation repetitions to determine

the critical value of the simple-versus-simple LR tests that yield the power envelope and

40,000 repetitions to determine the power of these tests. (The same is true for the cases

function of the noncentral χ2 distribution with p = 1, 2, 4, 10 degrees of freedom, where the noncentral
χ2 distribution with p = 1 degrees of freedom is used for the power envelope calculations.
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where p = 4, 10 discussed below.) For brevity, the values of μj in (6.1) are given in

Appendix C.

For p = 4,M4(Ω) includes 24 elements:

M4(Ω)

= {(−μ1,−μ1, 1, 1), (−μ2,−μ2, 2, 2), (−μ3,−μ3, 3, 3), (−μ4,−μ4, 4, 4), (−μ5,−μ5, 7, 7),
(−μ6,−μ6, 1, 7), (−μ7,−μ7, 2, 7), (−μ8,−μ8, 3, 7), (−μ9,−μ9, 4, 7),
(−μ10, 1, 1, 1), (−μ11, 2, 2, 2), (−μ12, 3, 3, 3), (−μ13, 4, 4, 4), (−μ14, 7, 7, 7),
(−μ15, 1, 1, 7), (−μ16, 2, 2, 7), (−μ17, 3, 3, 7), (−μ18, 4, 4, 7), (−μ19,−μ19, 0, 0),
(−μ20, 0, 0, 0), (−μ21, 25, 25, 25), (−μ22,−μ22, 25, 25), (−μ23,−μ23,−μ23, 25),
(−μ24,−μ24,−μ24,−μ24)}, (6.2)

where μj depends on Ω and is such that the power envelope is .80 at each element of

M4(Ω).

For p = 10,M10(Ω) includes 40 vectors. For brevity, they are specified in Appendix

C. They include 10 vectors with 2 negative components and with the other components

taking a variety of positive values, 10 vectors with 4 negative components, 10 vectors

with 1 negative component, and 10 vectors with 1-10 negative components and with the

other elements positive and large.

In addition to the main results based on (i) the correlation matrices ΩNeg, ΩZero,

and ΩPos, we also provide results based on (ii) a grid of 19 different Ω matrices, each

with a different “amounts” of correlation, and (iii) 500 Ω matrices for p = 2, 4 and 250

for p = 10 obtained by simulation. Details concerning these Ω matrices are given in

Appendix C.

6.2 Comparison of (S,ϕ) Functions

In this section, we compare tests based on different (S,ϕ) functions. We consider

the following combinations: (S,ϕ) = (MMM, PA), (MMM, t-Test), (Max, PA), (Max,

t-Test), (SumMax, PA), (SumMax, t-Test), (QLR, PA), (QLR, t-Test), (QLR, ϕ(3)),

(QLR, ϕ(4)), and (QLR, MMSC).25 We also consider “pure” GEL tests, which combine

25The statistics MMM, QLR, Max, and SumMax are based on the functions S1, S2, S3 with p1 = 1,
and S3 with p1 = 2, respectively. The t-Test and MMSC critical values corresponds to the functions
ϕ(1) and ϕ(5), respectively.
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GEL statistics with a critical value that is the same for all Ω. GEL statistics behave the

same as the QLR statistic asymptotically.26

For each RMS test, we report the average asymptotic power for the κ value that max-

imizes average asymptotic power, denoted κ=Best. We do this because we are interested

in determining first which test has the highest power when κ is chosen optimally. Then

we determine a suitable data-dependent choice of κ.

In this section we report results for the three matrices (ΩNeg,ΩZero,ΩPos). In Ap-

pendix B we report additional results based on 19 Ω matrices that cover a grid of δ(Ω)

values from −.99 to .99. The qualitative results reported here are found to apply as well
to the broader range of 19 Ω matrices.

The best κ values for the RMS tests are determined numerically using grid search,

see Appendix C for details. The best κ values are specified in Table B-I in Appendix B.

The table shows that for all tests and p = 2, 4, 10, the best κ values are decreasing from

ΩNeg to ΩZero to ΩPos. For the QLR/t-Test test, the best κ values for (ΩNeg,ΩZero,ΩPos)

are (2.50, 1.75, .00) for p = 10, (2.75, 1.50, .25) for p = 4, and (2.75, 1.50, .75) for p = 2.

The best κ values for the other tests that use the t-Test and ϕ(4) critical values are

roughly similar. The best κ values for the tests that use the ϕ(3) and MMSC critical

values are noticeably larger, at least for ΩNeg.

Table II provides asymptotic average power results for p = 2, 4, 10 and Ω = ΩNeg,

ΩZero,ΩPos. The asymptotic power results are size-corrected.27 Except where stated

otherwise, the size-correction factors are calculated using 40, 000 simulation repetitions

and the power results are obtained using 40, 000 repetitions, which yields a simulation

standard error of .0011.

Now we discuss the asymptotic power results given in Table II. Table II shows that

the MMM/PA test has very low asymptotic power compared to the QLR/t-Test/κBest

test (which is shown in boldface) especially for p = 4, 10. Similarly, the Max/PA and

SumMax/PA tests have low power. The QLR/PA test has better power than the other

PA tests, but it is still very low compared to the QLR/t-Test/κBest test.

The “pure GEL” test has very poor power properties. For example, for p = 10, its

26The level .05 pure GEL asymptotic critical values are determined numerically by calculating the
constant for which the maximum null rejection probability of the QLR statistic over all mean vectors
in the null hypothesis and over all positive definite correlation matrices Ω is .05. The critical values
are found to be 5.07, 7.94, and 16.2 for p = 2, 4, and 10, respectively. These critical values yield null
rejection rates of .05 when Ω contains elements that are close to −1.0.
27Size-correction here is done for the fixed known value of Ω. It is not based on the least-favorable Ω

matrix because the results are asymptotic and Ω can be estimated consistently.
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power is between 1/3 and 1/6 that of the QLR/t-Test/κBest test (and of the feasible

QLR/t-Test/κAuto test, which is the recommended test of Section 2.2).

Table II shows that the MMM/t-Test/κBest test has equal average asymptotic power

to the QLR/t-Test/κBest test for ΩZero and only slightly lower power for ΩPos. But, it

has substantially lower power for ΩNeg. For example, for p = 10, the comparison is

.19 versus .59. The Max/t-Test/κBest test has noticeably lower average power than the

QLR/t-Test/κBest test for ΩNeg and ΩZero and essentially equal power for ΩPos. It is

strongly dominated in terms of average power. Results for individual μ vectors show that

the Max/t-Test/κBest and QLR/t-Test/κBest tests have similar average power over μ

vectors that have only one negative element, but the Max/t-Test/κBest has substantially

lower average power over μ vectors that have more than one negative element. For

example, for p = 4 and ΩNeg, the Max/t-Test/κBest and QLR/t-Test/κBest tests have

average asymptotic powers of .62 and .63, respectively, for μ vectors that have one

element negative, but .13 and .61 for μ vectors with two or more negative elements. The

SumMax/t-Test/κBest test also is strongly dominated by the QLR/t-Test/κBest test in

terms of average asymptotic power. The power differences between these two tests are

especially large for ΩNeg. For example, for p = 10 and ΩNeg, their powers are .14 and

.59, respectively.

Next we compare tests that use the QLR test statistic but different critical values–

due to the use of different moment selection functions ϕ. The QLR/ϕ(3)/κBest test has

noticeably lower average asymptotic power than the QLR/t-Test/κBest test for ΩNeg,

somewhat lower power for ΩZero, and equal power for ΩPos. The differences increase with

p.

The QLR/ϕ(4)/κBest test has the same average asymptotic power as the QLR/t-

Test/ κBest test in all cases considered. This is because the ϕ(4) and ϕ(1) functions are

similar. The QLR/MMSC/κBest test has the same average asymptotic power as the

QLR/t-Test/κBest test for p = 2, for p = 4 with ΩZero and ΩPos, and for p = 10 with

ΩZero. For p = 4 and ΩNeg, its power is higher by .03 and for p = 10 and ΩNeg, its power

is higher by .06, but for p = 10 and ΩPos, its power is lower by .04. Hence, these two

tests have similar power but, if anything, that of the QLR/MMSC/κBest test is slightly

superior. Nevertheless, this test is not the recommended test for reasons given below.

We experimented with several smooth versions of the ϕ(1) critical value function, viz.

functions of the form ϕ(2), in conjunction with the QLR statistic. We were not able to
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Table II. Asymptotic Power Comparisons (Size-Corrected): MMM, Max, SumMax,

& QLR Statistics, & PA, t-Test, ϕ(3), ϕ(4), & MMSC Critical Values with κ=Best1

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. κ ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM PA - .04 .36 .36 .20 .52 .46 .48 .62 .59

MMM t-Test Best .19 .67 .79 .32 .69 .77 .51 .69 .71

Max PA - .18 .44 .72 .30 .55 .71 .48 .63 .66

Max t-Test Best .25 .59 .82 .35 .66 .79 .51 .69 .72

SumMax PA - .10 .43 .64 .20 .54 .60 .48 .62 .59

SumMax t-Test Best .14 .55 .71 .24 .64 .65 .51 .69 .71

GEL Const. - .19 .18 .12 .44 .42 .39 .52 .54 .54

QLR PA - .28 .36 .70 .44 .52 .71 .58 .62 .65

QLR t-Test Best .59 .67 .82 .62 .69 .78 .65 .69 .72
QLR t-Test Auto .58 .67 .82 .62 .69 .78 .65 .69 .72

QLR ϕ(3) Best .49† .62∗ .83† .54∗ .67∗ .78∗ .60∗ .67∗ .72∗

QLR ϕ(4) Best .59† .67∗ .82† .62∗ .69∗ .78∗ .65∗ .69∗ .72∗

QLR MMSC Best .65 .67 .78 .65 .69 .78 .65 .69 .72

Power Envelope - .85 .85 .85 .80 .80 .80 .75 .75 .75

1κ=Best denotes the κ value that maximizes average asymptotic power.
∗Results are based on (5000, 5000) size-correction and power repetitions.
†Results are based on (2000, 2000) size-correction and power repetitions.

find any that improved upon the average asymptotic power of the QLR/t-Test/κBest

test. Some were inferior. All such tests have substantial disadvantages relative to the

QLR/t-test in terms of the computational ease of determining suitable data-dependent

κ and η values, as explained below.
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In conclusion, we find that the best (S,ϕ) choices in terms of average asymptotic

power (based on κ=Best) are, in order: QLR/MMSC, QLR/t-Test, and QLR/ϕ(4).

Each of these tests out-performs the PA tests and “pure GEL” tests by a wide margin

in terms of asymptotic power. Although the QLR/MMSC test is slightly better than the

QLR/t-Test in terms of average asymptotic power, it has the following drawbacks: (i)

its computation time is very high when p is large, such as p = 10, and is prohibitive for

p ≥ 15, because the QLR test statistic must be computed for all possible combinations
of selected moment vectors, (ii) the best κ value varies widely with Ω and p, which makes

it quite difficult to specify a data-dependent κ value that performs well, and (iii) the

power differences between the QLR/MMSC and QLR/t-Test tests are relatively small

and the latter test does not suffer from the aforementioned drawbacks.

Similarly, the QLR/ϕ(2) and QLR/ϕ(4) tests have a substantial drawback relative to

the QLR/MMSC and QLR/t-Test tests. The latter two tests are pure moment selection

tests and have the feature that a moment condition is either included or not included

when computing the critical value. In consequence, for any given p and Ω combination,

only a finite number of different critical values are possible–each one corresponding to

a different combination of selected moments. This allows one to simulate these critical

values initially once and then simulate the size or power of the test using these critical

values in each size/power simulation repetition. If R repetitions are used for both critical

values and size/power, then 2R simulations are required for these tests. On the other

hand, the QLR/ϕ(2) and QLR/ϕ(4) tests are not pure moment selection tests. One has

to simulate the critical value separately for each repetition in a size or power calculation,

which requires R2 simulation repetitions.

When developing a data-dependent method of selecting κ and computing asymptotic

size-correction values η, one needs to simulate asymptotic size and power for a very large

number of cases and, hence, computational speed is very important. To obtain accurate

results (especially accurate size results), a large number of simulation repetitions is

desirable. This is possible with pure moment selection tests, but not with the QLR/ϕ(2)

and QLR/ϕ(4) tests.

Based primarily on the power results discussed above and secondarily on the com-

putational factors, we take the QLR/t-Test to be the recommended test and we develop

data-dependent κ and η for this test in Section 6.3.

We conclude this section by discussing the asymptotic power envelope and the as-

ymptotic size of the RMS tests in Table II. The last row of Table II gives values of the
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asymptotic power envelope. The table shows that the QLR/t-Test/κBest test is quite

close to the power envelope when Ω = ΩPos. This is remarkable because the testing

problem is one in which the alternative hypothesis is multi-directional. In general, with

multi-directional alternatives, one does not expect a test that is designed to have power

in all directions of interest to be close to the power envelope (which is determined by

a uni-directional test). For Ω = ΩNeg,ΩZero, the difference between the power of the

QLR/t-Test/κBest test and the power envelope is fairly substantial, especially for ΩNeg,

and the amount is increasing in p. Note that for all Ω matrices, the power differences

are noticeably smaller than the differences between asymptotic power of the F test and

the asymptotic power envelope (for its testing problem) reported in Section 5.4 above.

Asymptotic size results for the RMS tests in Table II are given in Table B-II in

Appendix B. The size results are for the case where κ=Best and η = 0. The size results

show that the QLR/t-Test and QLR/MMSC tests with κ=Best have size close to the

nominal level .05. For example, the QLR/t-Test/κ=Best test has size between .051 and

.057 for all values of p and Ω considered. Thus, if one uses the optimal value of κ in

terms of power, then the amount of asymptotic size-correction that is needed is small for

these two tests. On the other hand, the sizes of the SumMax/t-Test and QLR/ϕ(3) tests

are quite poor when κ=Best for ΩNeg and ΩPos. For example, for p = 10 and Ω = ΩNeg,

these tests have size .17 and .10, respectively.

6.3 Approximately Optimal κ(Ω) and η(Ω) Functions

6.3.1 Definitions of κ(Ω) and η(Ω)

In this section, we describe how the recommended κ(Ω) and η(Ω) functions defined

in Section 2.2 are determined. These functions are for use with the QLR/t-Test test.

First, for p = 2 and given ρ ∈ (−1, 1), where ρ denotes the correlation that appears in
Ω, we compute numerically the values of κ that maximizes the average asymptotic (size-

corrected) power of the nominal .05 QLR/t-Test test over a fine grid of 31 κ values.28 We

do this for each ρ in a fine grid of 43 values. Because the power results are size-corrected,

a by-product of determining the best κ value for each ρ value is the size-correction value

28The grid of 31 κ values is {0, .2, .4, .6, .8, 1.0, 1.1, 1.2, ...,2.9, 3.0, 3.2, ..., 3.8, 4.0}. The grid of 43 δ
values is {.99, .975, .95, .90, .85, ..., -.90, -.95, -.975, -.99}. The results are based on 40,000 critical value
repetitions and 40,000 size and power repetitions. Size-corrrection is done for the given value of ρ, not
uniformly over ρ ∈ [−1, 1], because ρ can be consistently estimated and hence is known asymptotically
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η that yields asymptotically correct size for each ρ.29

Second, by a combination of intuition and the analysis of numerical results, we postu-

late that for p ≥ 3 the optimal function κ∗(Ω) defined in Section 5.3 is well approximated
by a function that depends on Ω only through the [−1, 1]-valued function δ(Ω) defined

in (2.11).

The explanation for this is as follows: (i) Given Ω, the value κ∗(Ω) that yields

maximum average asymptotic power is such that the size-correction value η∗(Ω) is not

very large. (This is established numerically for a variety of p and Ω.) The reason is that

the larger is η∗(Ω), the closer is the test to the PA test and the lower is the power of

the test for μ vectors that have less than p elements negative. (ii) The size-correction

value η∗(Ω) is small if the rejection probability at the least-favorable null vector μ is

close to α when using the size-correction factor η(Ω) = 0. (This is self-evident.) (iii) We

postulate that null vectors μ that have two elements equal to zero and the rest equal to

infinity are nearly least-favorable null vectors. If true, then the size of the QLR/t-Test

test depends on the two-dimensional sub-matrices of Ω that are the correlation matrices

that correspond to the cases where only two moment conditions appear. (iv) The size

of a test for given κ and p = 2 is decreasing in the correlation ρ. In consequence, the

least-favorable two-dimensional sub-matrix of Ω is the one with the smallest correlation.

Hence, the value of κ that makes the size of the test equal to α for a small value of η is

(approximately) a function of Ω through δ(Ω) defined in (2.11). Note that this is just a

heuristic explanation. It is not intended to be a proof.

Next, because δ(Ω) corresponds to a particular 2 by 2 submatrix of Ω with correlation

δ (= δ(Ω)), we take κ(Ω) to be the value that maximizes average asymptotic power when

p = 2 and ρ = δ, as specified in Table I and described in the second paragraph of this

section.30 We take η(Ω) to be the value determined by p = 2 and δ, i.e., η1(δ) in (2.12)

29The asymptotic size of the QLR/tTest for given κ is found numerically to be decreasing in ρ
for ρ ∈ [−1, 1]. Hence, for ρ ∈ [a1, a2), we take η to be the size-correction value that yields correct
asymptotic size for ρ = a1.
30For ρ ∈ [−.8, 1.0], we use the κ values that maximize average asymptotic power for p = 2 as the

automatic κ values. For ρ ∈ [−1.0,−.8), however, we use somewhat larger κ values than the ones that
maximize average power. The reason is as follows. Numerical results show that the best κ values (in
terms of power) for ρ ∈ [−1.0,−.85] (and p = 2) are somewhat smaller than for ρ = −.80. Thus, there
is a small deviation from the feature that the best κ value is monotone decreasing in ρ.When using the
κ values for p = 2 with p = 4, 10, numerical results show that imposing monotonicity of κ in ρ yields
better results for p = 4 in the sense that a smaller value η2(p) is needed for size-correction (which leads
to higher power over the entire range of δ values). For this reason, we define κ(δ) in Table I to take
values for δ ∈ [−1.0,−.80) that are slightly larger than the power maximizing values. The resultant
loss in power for p = 2 is small, being around .01 for δ ∈ [−1.0,−.80).
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and Table I, but allow for an adjustment that depends on p, viz., η2(p), that is defined

to guarantee that the test has correct asymptotic significance level (up to numerical

error).31 In particular, η1(δ) ∈ R is defined to be such that

inf
h1∈R2+,∞

CP (h1,Ωδ, η1(δ)) = 1− α, (6.3)

where Ωδ is the 2 by 2 correlation matrix with correlation δ (and κ(Ω) that appears in

the definition of CP (h1,Ω, η) in (4.11) is as just defined). The numerical calculation

of η1(δ) is described above in the second paragraph of this section. Next, η2(p) ∈ R is
defined to be such that

inf
h1∈Rp+,∞,Ω∈Ψ

CP (h1,Ω, η1(δ(Ω)) + η2(p)) = 1− α, (6.4)

where κ(Ω) and η1(δ(Ω)) are defined as described above. The numerical calculation of

η2(p) is described in Appendix C.

6.3.2 Automatic κ Power Assessment

We now examine numerically how well the proposed method does in approximating

the best κ, viz., κ∗(Ω). We provide three groups of results and consider p = 2, 4, 10 for

each group. The first group consists of the three Ω matrices considered in Table II.

The second group consists of a fixed set of 19 Ω matrices chosen such that δ(Ω) takes

values on a grid in [−.99, .99], see Appendix C for details. The third group considers
500 randomly generated Ω matrices for p = 2, 4 and 250 randomly generated Ω matrices

for p = 10, see Appendix C for details. The asymptotic power results are size-corrected,

are based on (40000, 40000) size-correction and power simulation repetitions for p = 2, 4

and (3000, 3000) simulations for p = 10. Average power is computed for μ vectors that

consist of linear combinations of the μ vectors defined above in (6.1)-(6.2) of Section 6

and Appendix C, see Appendix C for details. In all three groups, we assess the proposed

method of selecting κ, referred to as the κAuto method, by comparing the average

asymptotic power of the κAuto test with the corresponding κBest test, whose κ value

is determined numerically to maximize average asymptotic power.

31One could define η(Ω) to depend separately on δ(Ω) and p, say η(Ω) = η(δ(Ω), p) for some function
η. This would yield a much more complicated function η(Ω) than the function η(Ω) = η1(δ(Ω))+ η2(p)
that we use. Numerical results indicate that more complicated functions η are not needed. The simple
function that we use works quite well.
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The rows of Table III for the QLR/t-Test/κBest and QLR/t-Test/κAuto tests show

that the κAuto method works very well. It has the same average asymptotic power as

the QLR/t-Test/κBest test for all p and Ω values except one and in this one case the

difference is just .01.

The results for the 19 Ω matrices are given in Table III. These results also show that

the κAuto method works very well. There is very little difference between the average

asymptotic power of the QLR/t-Test/κAuto and QLR/t-Test/κBest tests. Only in a

few scenarios is a difference of .01 or more detected.

Table III. Asymptotic Power Differences Between QLR/t-Test/κAuto and QLR/t-

Test/κBest Tests for Nominal Level .05 Size-Corrected Tests

δ -.99 -.975 -.95 -.9 -.8 -.7 -.6 -.5 -.4 -.2

p=2 .022 .016 .009 .003 .000 .000 .000 .000 .000 .000

p=4 .007 .004 .003 .003 .002 .003 .000 .003 .003 .000

p=10 .003 .006 .006 .008 .004 .009 .001 .005 .002 .002

δ .0 .2 .4 .6 .8 .9 .95 .975 .99

p=2 .000 .000 .000 .000 .000 .000 .000 .000 .000

p=4 .001 .001 .000 .000 .000 .000 .000 .000 .000

p=10 .003 .004 .002 .003 .000 .000 .000 .000 .000

The results for the randomly generated Ω matrices are similarly good for the κAuto

method. For p = 2, across the 500 Ωmatrices, the average power differences have average

equal to .0023, standard deviation equal to .0059, and range equal to [.000, .026]. For

p = 4, across the 500 Ω matrices, the average power difference is .0018, the standard

deviation is .0022, and the range is [.000, .012]. For p = 10, across the 250 Ω matrices,

the average power differences have average equal to .0148, standard deviation equal to

.0060, and range equal to [.000, .036].

In conclusion, the κAuto method performs very well in terms of selecting κ values

that maximize the average asymptotic power.
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7 Finite Sample Results

The recommended RMS test, QLR/t-Test/κAuto, can be implemented in finite sam-

ples via the “asymptotic normal” and the bootstrap versions of the t-Test/κAuto critical

value. In this section we determine which of these two methods performs better in finite

samples. We also assess how well these tests perform in finite samples in an absolute

sense. In short, we find that the bootstrap version (denoted Boot) performs better than

the asymptotic normal version (denoted Norm) in terms of the closeness of its null rejec-

tion probabilities to its nominal level and in terms of its power. The Boot test is found

to perform quite well in that its null rejection probabilities are close to its nominal level

and the difference between its finite-sample and asymptotic power is relatively small.

We provide results for sample size n = 100. We consider the same correlation

matrices ΩNeg, ΩZero, and ΩPos as above and the same numbers of moment inequal-

ities p = 2, 4, and 10. We take the mean zero variance Ip random vector Z† =

V ar−1/2(m(Wi, θ))(m(Wi, θ) − Em(Wi, θ)) to be i.i.d. across elements and consider

six distributions for the elements: standard normal (i.e., N(0, 1)), t5, t3, t2, uniform,

and chi-squared with three degrees of freedom χ23. All of these distributions are centered

and scaled to have mean zero and variance one except the t2, whose variance is infinite.

The t distributions have thick tails, the uniform has thin tails, and the χ23 is skewed.

(The t3 and t2 distributions may not be of much practical interest because their tails are

extremely thick, but they are included as extreme cases.) We use (5000, 5000) critical

value and rejection probability repetitions.

We note that the finite-sample testing problem for any moment inequality model fits

into the framework above for some correlation matrix Ω and some distribution of Z†.

Hence, the finite-sample results given here provide a level of generality that usually is

lacking with finite-sample simulation results.

Table IV provides the finite-sample maximum null rejection probabilities (MNRPs)

of the nominal .05 Norm and Boot versions of the recommended RMS test based on the

QLR statistic. The MNRP is the maximum rejection probability over mean vectors μ

in the null hypothesis for a given correlation matrix Ω and a given distribution of Z†.

Table V provides MNRP-corrected finite-sample average power for the same two tests.

The average power results are for the same mean vectors μ in the alternative hypothesis

as considered above for asymptotic power.

Table IV shows that for the normal, t5, uniform, and χ23 distributions, the Boot test
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Table IV. Finite-Sample Maximum Null Rejection Probabilities (MNRPs) of the

Nominal .05 QLR/t-Test/κAuto Test Based on Normal and Bootstrap-Based Critical

Values

p = 10 p = 4 p = 2

Test Dist n ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

Norm N(0,1) 100 .071 .066 .045 .058 .058 .045 .044 .049 .052

Boot N(0,1) 100 .044 .048 .043 .058 .055 .047 .050 .046 .051

Norm t5 100 .073 .069 .046 .053 .050 .047 .048 .050 .049

Boot t5 100 .050 .051 .050 .052 .051 .051 .053 .053 .052

Norm t3 100 .071 .069 .047 .057 .052 .051 .048 .055 .054

Boot t3 100 .052 .056 .053 .064 .060 .063 .066 .063 .065

Norm t2 100 .056 .057 .037 .045 .044 .042 .040 .041 .043

Boot t2 100 .056 .055 .058 .072 .067 .072 .073 .066 .072

Norm Uniform 100 .075 .069 .045 .055 .049 .045 .048 .049 .046

Boot Uniform 100 .046 .048 .041 .047 .047 .045 .047 .046 .044

Norm χ23 100 .143 .146 .067 .091 .096 .065 .074 .083 .078

Boot χ23 100 .052 .054 .045 .054 .055 .046 .053 .052 .053

performs very well with MNRPs in the range of [.041, .058]. For the t3 and t2 distrib-

utions, its MNRPs are in the ranges of [.052, .066] and [.055, .077], respectively, which

is quite good considering how thick the tails are of these distributions. (Note that the

asymptotic results given above do not hold for the t2 distribution because its variance

is infinite.)

In contrast, the Norm test over-rejects somewhat in some cases even for the normal

distribution for which its MNRPs are in the range of [.044, .071]. For the thick- and

thin-tailed distributions (t5, t3,t2, and uniform), the MNRPs of the Norm test are in the

range [.037, .075], which is similar to those for the normal distribution. However, with

the skewed distribution, χ23, the Norm test over-rejects the null hypothesis substantially,
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especially with the ΩNeg and ΩZero matrices. Its MNRPs are in the range [.067, .147]

for the χ23 distribution. It should not be too surprising that skewed distributions cause

the most problems for the Norm test because the first term in the Edgeworth expansion

of a sample average is a skewness term and the statistics considered here are simple

functions of sample averages.

The results show that the bootstrap is able to detect skewness of the underlying

distributions and hence the Boot test does not over-reject in the presence of skewness.

Note that this occurs even though the statistics considered are not asymptotically pivotal

(which implies that the bootstrap does not provide higher-order asymptotic improve-

ments over standard asymptotic approximations).

We conclude that the Boot version of the recommended test noticeably out-performs

the Norm version in terms of its properties under the null hypothesis.

Table V shows that the Boot test has superior finite-sample average power compared

to the Norm test for the N(0, 1), t5, uniform, and χ23 distributions, especially for p = 10

with ΩNeg and ΩZero. The differences are largest with the uniform and χ23 distributions.

The superior performance of the Boot test occurs in the cases in which the Norm test

over-rejects under the null hypothesis. The reason is that over-rejection leads to an

increase in the critical value for the Norm test given that the power results are MNRP-

corrected. With the t3 and t2 distributions, the Norm test has slightly higher power

than the Boot test, but this result is mitigated by (i) the fact that both distributions

are quite extreme in terms of tail thickness and (ii) the power of both tests for the t2
distribution is very low.

For comparative purposes, Table V also provides finite-sample results for the QLR

/PA test. These results indicate that the asymptotic dominance of moment selection-

based critical values over PA-based critical values also is apparent in finite samples.

Recall that GEL statistics have the same asymptotic distribution as the QLR statis-

tic. Hence, the recommended RMS test, QLR/t-Test/κAuto, also can be implemented

in finite samples by combining GEL statistics with Norm and Boot versions of the t-

Test/κAuto critical value. We do not report any results for such tests here for several

reasons. First, with normally-distributed moment functions, the difference between the

finite-sample and asymptotic properties of the tests is due solely to the estimation of

the variance matrix. Hence, the only way in which the GEL statistic can out-perform

the QLR statistic is by providing a better estimator of the variance matrix. How-

ever, we find that the results for the QLR-based Boot test vary very little between the
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Table V. Finite-Sample (“Size-Corrected”) Power of the Nominal .05 QLR/PA and

QLR/t-Test/κAuto Tests Based on Normal and Bootstrap-Based Critical Values

p = 10 p = 4 p = 2

Test Dist n ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

QLR/PA N(0,1) 100 .31 .39 .69 .45 .53 .69 .57 .63 .66

κAuto/Norm .51 .61 .81 .58 .66 .77 .65 .69 .71

κAuto/Boot .56 .67 .82 .59 .67 .77 .65 .71 .72

Power Envel. .85 .85 .84 .79 .78 .77 .75 .74 .74

QLR/PA t5 100 .32 .40 .69 .45 .53 .69 .57 .62 .65

κAuto/Norm .50 .61 .80 .61 .69 .77 .64 .68 .71

κAuto/Boot .54 .65 .78 .60 .68 .76 .64 .68 .71

QLR/PA t3 100 .42 .50 .77 .54 .61 .76 .64 .68 .70

κAuto/Norm .61 .72 .85 .67 .75 .81 .71 .73 .75

κAuto/Boot .60 .71 .81 .63 .71 .77 .66 .69 .72

QLR/PA t2 100 .05 .07 .19 .08 .12 .20 .15 .18 .19

κAuto/Norm .09 .14 .26 .14 .20 .25 .19 .22 .23

κAuto/Boot .06 .13 .23 .09 .18 .23 .16 .21 .23

QLR/PA Uniform 100 .30 .39 .70 .45 .51 .68 .55 .61 .64

κAuto/Norm .49 .60 .73 .59 .68 .78 .62 .67 .71

κAuto/Boot .55 .67 .82 .60 .69 .78 .63 .69 .73

QLR/PA χ23 100 .40 .48 .66 .49 .56 .69 .59 .63 .65

κAuto/Norm .38 .44 .70 .50 .55 .70 .58 .58 .61

κAuto/Boot .49 .56 .71 .54 .60 .71 .58 .60 .64

case of known and unknown variance matrix. In consequence, there is little room for

GEL-based tests to provide improvements in terms of MNRP or average power. Second,

GEL-based tests have an enormous disadvantage in terms of computation compared to

QLR-based tests. To compute a confidence set using an RMS procedure one needs to
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compute the test statistic hundreds of thousands of times. For example, to determine

whether a single point is in the confidence set one needs to simulate the critical value

once which requires, say, 10,000 statistic evaluations. For the QLR statistic it is fast

to do so because the QLR statistic is the solution to a quadratic programming problem

which is very well behaved. On the other hand, GEL statistics require the solution to

a general nonlinear optimization problem which is much slower. Third, Canay (2007)

provides some finite-sample simulation results for GEL statistics and does not find any

power advantages for them.
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8 APPENDIX A

This is a theoretical Appendix that includes proofs. The first section gives a more

precise/detailed definition of ∆ than appears in Section 4.4 of the paper. The second

section of this Appendix gives an alternative parametrization of the moment inequal-

ity/equality model to that given in Section 2 of the paper. This parametrization is

conducive to the calculation of the asymptotic properties of CS’s and tests. It was first

used in AG. This section also specifies the parameter space for the case of dependent

observations and for the case where a preliminary estimator of a parameter τ appears.

The third section provides proofs of the results stated in the paper.

8.1 Definition of ∆

The set ∆, which appears in Section 4.4 of the paper, is defined as follows. Let

the normalized mean vector and asymptotic correlation matrix of the sample moment

functions be denoted by

γ1(θ, F ) = Diag
−1/2 AsyV arF n1/2mn(θ) EFm(Wi, θ) ≥ 0p and

Ω(θ, F ) = AsyCorrF n1/2mn(θ) , (8.1)

where AsyV arF (n1/2mn(θ)) and AsyCorrF (n1/2mn(θ)) denote the variance and corre-

lation matrices, respectively, of the asymptotic distribution of n1/2mn(θ) when the true

parameter is θ and the true distribution is F.32 Then, ∆ is defined by

∆ = {(h1,Ω) ∈ Rp+,∞ × cl(Ψ) : ∃ a subsequence {wn} of {n} and
a sequence {(θwn, Fwn) ∈ F : n ≥ 1} with γ1(θwn , Fwn) ≥ 0p and
Ω(θwn, Fwn) ∈ Ψ for which w1/2n γ1(θwn, Fwn)→ h1, Ω(θwn , Fwn)→ Ω,

and θwn → θ∗ for some θ∗ in cl(Θ)}. (8.2)

32For dependent observations and when a preliminary estimator of a paramter τ appears, the
parameter space F of (θ, F ) is defined in Section 8.2 such that both AsyV arF (n1/2mn(θ)) and
AsyCorrF (n

1/2mn(θ)) exist. These limits equal V arF (m(Wi, θ))) and CorrF (m(Wi, θ))), respectively,
in the case of i.i.d. observations with no preliminary estimator of a parameter τ .
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8.2 Alternative Parametrization

In this section we specify a one-to-one mapping between the parameters (θ, F ) with

parameter space F and a new parameter γ = (γ1, γ2, γ3) with corresponding parameter
space Γ. The latter parametrization is amenable to establishing the asymptotic unifor-

mity results of Theorem 1.

For the case where the sample moment functions depend on a preliminary estimator

τn(θ) of an identified parameter vector τ with true parameter τ 0, we define mj(Wi, θ) =

mj(Wi, θ, τ 0), m(Wi, θ) = (m1(Wi, θ, τ 0), ...,mk(Wi, θ, τ 0))
�, mn,j(θ) = n−1 n

i=1

mj(Wi, θ, τn(θ)), and mn(θ) = (mn,1(θ), ...,mn,k(θ))
�. (Hence, in this case, mn(θ) 9=

n−1 n
i=1m(Wi, θ).)

We define γ1 = (γ1,1, ..., γ1,p)
� ∈ Rp+ by writing the moment inequalities in (2.1) as

moment equalities:

σ−1F,j(θ)EFmj(Wi, θ)− γ1,j = 0 for j = 1, ..., p, (8.3)

where σ2F,j(θ) is the variance of the asymptotic distribution of n
1/2mn,j(θ) under (θ, F ),

see (8.1) and (5.4). As in (5.4), Ω = Ω(θ, F ) = AsyCorrF (n
1/2mn(θ)) denotes the cor-

relation matrix of the asymptotic distribution of n1/2mn(θ) under (θ, F ). When no pre-

liminary estimator of a parameter τ appears, σ2F,j(θ) = limn→∞ V arF (n
1/2mn,j(θ)) and

Ω(θ, F ) = limn→∞CorrF (n1/2mn(θ)), where V arF (n
1/2mn,j(θ)) and

CorrF (n
1/2mn(θ)) denote the finite-sample variance of n1/2mn,j(θ) and correlation ma-

trix of n1/2mn(θ) under (θ, F ), respectively. Let γ2 = (γ2,1, γ2,2) = (θ, vech∗(Ω(θ, F ))) ∈
Rq, where vech∗(Ω) denotes the vector of elements of Ω that lie below the main diagonal,

q = d+ k(k − 1)/2, and γ3 = F.

For i.i.d. observations and no preliminary estimator of a parameter τ , the parameter

space for γ is defined by Γ = {γ = (γ1, γ2, γ3) : for some (θ, F ) ∈ F , where F is defined
in (2.2), γ1 satisfies (8.3), γ2 = (θ, vech∗(Ω(θ, F ))), and γ3 = F}.
For dependent observations and for sample moment functions that depend on a

preliminary estimator τn(θ), we specify the parameter space Γ for the moment inequality

model using a set of high-level conditions. To verify the high-level conditions using

primitive conditions one has to specify an estimator Σn(θ) of the asymptotic variance

matrix Σ(θ) of n1/2mn(θ). For brevity, we do not do so here. Since there is a one-to-one

mapping from γ to (θ, F ), Γ also defines the parameter space F of (θ, F ). Let Ψ be a

specified set of k × k correlation matrices. The parameter space Γ is defined to include
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parameters γ = (γ1, γ2, γ3) = (γ1, (θ, γ2,2), F ) that satisfy:

(i) θ ∈ Θ,

(ii) σ−1F,j(θ)EFmj(Wi, θ)− γ1,j = 0 for j = 1, ..., p,

(iii) EFmj(Wi, θ) = 0 for j = p+ 1, ..., k,

(iv) σ2F,j(θ) = AsyV arF n1/2mn,j(θ) exists and lies in (0,∞) for j = 1, ..., k,
(v) AsyCorrF n1/2mn(θ) exists and equals Ωγ2,2 ∈ Ψ, and

(vi) {Wi : i ≥ 1} are stationary under F, (8.4)

where γ1 = (γ1,1, ..., γ1,p)
� and Ωγ2,2 is the k × k correlation matrix determined by

γ2,2.
33 Furthermore, Γ must be restricted by enough additional conditions such that

under any sequence {γn,h = (γn,h,1, (θn,h, vech∗ (Ωn,h)), Fn,h) : n ≥ 1} of parameters
in Γ that satisfies n1/2γn,h,1 → h1 and (θn,h, vech∗(Ωn,h)) → h2 = (h2,1, h2,2) for some

h = (h1, h2) ∈ Rp+,∞ ×Rq[±∞], we have

(vii) An = (An,1, ..., An,k)� →d Zh2,2 ∼ N(0k,Ωh2,2) as n→∞, where
An,j = n

1/2 mn,j(θn,h)−EFn,hmj(Wi, θn,h) /σFn,h,j(θn,h),

(viii) σn,j(θn,h)/σFn,h,j(θn,h)→p 1 as n→∞ for j = 1, ..., k,

(ix) D−1/2n (θn,h)Σn(θn,h)D
−1/2
n (θn,h)→p Ωh2,2 as n→∞, and (8.5)

(x) conditions (vii)-(ix) hold for all subsequences {wn} in place of {n},

where Ωh2,2 is the k × k correlation matrix for which vech∗(Ωh2,2) = h2,2, σ
2
n,j(θ) =

[Σn(θ)]jj for 1 ≤ j ≤ k and Dn(θ) = Diag{σ2n,1(θ), ...,σ2n,k(θ)} (= Diag(Σn(θ))).34,35
For example, for i.i.d. observations, conditions (i)-(vi) of (2.2) imply conditions (i)-

(vi) of (8.4). Furthermore, conditions (i)-(vi) of (2.2) plus the definition of Σn(θ) in

(2.5) and the additional condition (vii) of (2.2) imply conditions (vii)-(x) of (8.5). For

33In AG, a strong mixing condition is imposed in condition (vi) of (8.4). This condition is used to
verify Assumption E0 in that paper and is not needed with RMS critical values.
34When a preliminary estimator τn(θ) appears, An,j can be written equivalently as

n1/2 n−1 n
i=1mj(Wi, θn,h, τn(θn,h)) −EFn,hmj(Wi, θn,h, τ0) /σFn,h,j(θn,h), which typically is as-

ymptotically normal with an asymptotic variance matrix Ωh2,2 that reflects the fact that τ0 has been
estimated. When a preliminary estimator τn(θ) appears, Σn(θ) needs to be defined to take account
of the fact that τ0 has been estimated. When no preliminary estimator τn(θ) appears, An,j can be
written equivalently as n1/2(mn,j(θn,h)−EFn,hmn,j(θn,h))/σFn,h,j(θn,h).
35Condition (x) of (8.5) requires that conditions (vii)-(ix) must hold under any sequence of parameters

{γwn,h : n ≥ 1} that satisfies the conditions preceding (8.5) with n replaced by wn.
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a proof, see Lemma 2 of AG.

For dependent observations or when a preliminary estimator of a parameter τ ap-

pears, one needs to specify a particular variance estimator Σn(θ) before one can specify

primitive “additional conditions” beyond conditions (i)-(vi) in (8.4) that ensure that Γ

is such that any sequences {γwn,h : n ≥ 1} in Γ satisfy (8.5). For brevity, we do not do

so here.

We now specify the set ∆, defined in (8.2), in the parametrization introduced above.

Define

H = {h ∈ Rp[±∞] ×Rq[±∞] : ∃ a subsequence {wn} of {n} and a sequence
{γwn,h ∈ Γ : n ≥ 1} for which w1/2n γwn,h,1 → h1 and γwn,h,2 → h2}. (8.6)

Then, ∆ can be written equivalently as

∆ = {(h1,Ωh2,2) ∈ Rp+,∞ × cl(Ψ) : h = (h1, h2,1, h2,2) ∈ H
for some h2,1 ∈ cl(Θ), where h2,2 = vech∗(Ωh2,2)}. (8.7)

In words, ∆ is the set of “slackness” parameters h1 and correlation matrices Ω that

correspond to some limit point h in H.

8.3 Proofs

The proof of Theorem 1 uses the following Lemmas. Let

CPn(γ) = Pγ(Tn(θ) ≤ cn(θ)). (8.8)

As above, for a sequence of constants {ζn : n ≥ 1}, ζn → [ζ1,∞, ζ2,∞] denotes that

ζ1,∞ ≤ lim infn→∞ ζn ≤ lim supn→∞ ζn ≤ ζ2,∞.

Lemma 2 Suppose Assumptions S, ϕ, κ, and η1 hold. Let {γn,h = (γn,h,1, γn,h,2, γn,h,3) :
n ≥ 1} be a sequence of points in Γ that satisfies (i) n1/2γn,h,1 → h1 for some h1 ∈ Rp+,∞
and (ii) γn,h,2 → h2 for some h2 = (h2,1, h2,2) ∈ Rq[±∞]. Let h = (h1, h2) and let Ωh2,2 be
the correlation matrix that corresponds to h2,2. Then,

(a) CPn(γn,h)→ [CP (h1,Ωh2,2, η(Ωh2,2)−), CP (h1,Ωh2,2, η(Ωh2,2))] and
(b) for any subsequence {wn : n ≥ 1} of {n}, the result of part (a) holds with wn in

place of n provided conditions (i) and (ii) above hold with wn in place of n.
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Lemma 3 Suppose Assumptions S(b)-(e) hold. Then, qS(β,Ω) is continuous on (R
p
[+∞]

×Rv)×Ψ.

Proof of Theorem 1. First, we prove part (a). Let {γ∗n = (γ∗n,1, γ∗n,2, γ∗n,3) ∈ Γ : n ≥ 1}
be a sequence such that lim infn→∞CPn(γ∗n) = lim infn→∞ infγ∈ΓCPn(γ) (= AsyCS).

Such a sequence always exists. Let {un : n ≥ 1} be a subsequence of {n} such that
limn→∞CPun(γ

∗
un) exists and equals lim infn→∞CPn(γ

∗
n) = AsyCS. Such a subsequence

always exists.

Let γ∗n,1,j denote the jth component of γ
∗
n,1 for j = 1, ..., p. Either (1) lim supn→∞

u
1/2
n γ∗un,1,j < ∞ or (2) lim supn→∞ u

1/2
n γ∗un,1,j = ∞. If (1) holds, then for some subse-

quence {wn} of {un},

w1/2n γ∗wn,1,j → h∗1,j for some h
∗
1,j ∈ R+. (8.9)

If (2) holds, then for some subsequence {wn} of {un},

w1/2n γ∗wn,1,j → h∗1,j, where h
∗
1,j =∞. (8.10)

In addition, for some subsequence {wn} of {un},

γ∗wn,2 → h∗2 for some h
∗
2 ∈ cl(Γ2). (8.11)

By taking successive subsequences over the p components of γ∗un,1 and γ∗un,2, we find that

there exists a subsequence {wn} of {un} such that for each j = 1, ..., p either (8.9) or
(8.10) applies and (8.11) holds. In consequence, (i) w1/2n γwn,h,1 → h∗1 for some h

∗
1 ∈ Rp+,∞,

(ii) γwn,h,2 → h∗2 for some h
∗
2 ∈ Rq[±∞], (iii) h∗ = (h∗1, h∗2) ∈ H (for H defined in (8.6)),

and (iv) limn→∞CPwn(γ
∗
wn) = AsyCS. Hence, by Lemma 2(b),

AsyCS = lim
n→∞

CPwn(γ
∗
wn) ≥ CP (h∗1,Ωh∗2,2, η(Ωh∗2,2)−)
≥ inf

(h1,Ω)∈∆
CP (h1,Ω, η(Ω)−), (8.12)

where the second inequality holds because (h∗1,Ωh∗2,2) ∈ ∆ by the definition of ∆ in (8.7).

Next, by the definition of ∆ in (8.7), for each (h1,Ωh2,2) ∈ ∆, there exists a subse-

quence {tn : n ≥ 1} of {n} and a sequence of points {γtn,h = (γtn,h,1, γtn,h,2, γtn,h,3) ∈ Γ :
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n ≥ 1} such that conditions (i) and (ii) of Lemma 2 hold with tn in place of n. Hence,

AsyCS = lim inf
n→∞

inf
(θ,F )∈F

PF (Tn(θ) ≤ cn(θ))
≤ lim inf

n→∞
CPtn(γtn,h)

≤ CP (h1,Ωh2,2, η(Ωh2,2)), (8.13)

where the second inequality holds by Lemma 2(b). Since (8.13) holds for all (h1,Ωh2,2) ∈
∆, we have

AsyCS ≤ inf
(h1,Ω)∈∆

CP (h1,Ω, η(Ω)). (8.14)

Combining (8.12) and (8.14) establishes part (a) of the Theorem.

Part (b) of the Theorem follows from part (a) and Assumption η2. Part (c) of the

Theorem follows from part (a) and Assumption η3.

Proof of Lemma 2. For notational simplicity, let Ω0 denote Ωh2,2 . To establish part
(a), we show below that

Tn(θn,h)

cn(θn,h)
→d

S (Z + (h1, 0v),Ω0)

qS (ϕ (κ
−1(Ω0)[Z + (h1, 0v)],Ω0) ,Ω0) + η(Ω0)

as n→∞
(8.15)

under {γn,h : n ≥ 1}, where Z ∼ N(0k,Ω0). Hence, by the definition of convergence in
distribution, for every continuity point x of the asymptotic distribution of Tn(θn,h) −
cn(θn,h), we have

Pγn,h(Tn(θn,h) ≤ cn(θn,h) + x)
→ P S (Z + (h1, 0v),Ω0) ≤ qS ϕ κ−1(Ω0)[Z + (h1, 0v)],Ω0 ,Ω0 + η(Ω0) + x

= CP (h1,Ω0, η(Ω0) + x). (8.16)

There exist continuity points x > 0 and x < 0 arbitrarily close to zero. Hence, we have

lim sup
n→∞

Pγn,h(Tn(θn,h) ≤ cn(θn,h))
≤ lim

x↓0
lim sup
n→∞

Pγn,h(Tn(θn,h) ≤ cn(θn,h) + x)
= lim

x↓0
CP (h1,Ω0, η(Ω0) + x)

= CP (h1,Ω0, η(Ω0)), (8.17)
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where the first equality holds by (8.16) and the second equality holds because CP (h1,Ω0,

η(Ω0) + x) is a df and hence is right-continuous. Analogously,

lim inf
n→∞

Pγn,h(Tn(θn,h) ≤ cn(θn,h)) ≥ limx↓0 CP (h1,Ω0, η(Ω0)− x)
= CP (h1,Ω0, η(Ω0)−), (8.18)

where the equality holds by definition. Equations (8.17) and (8.18) combine to establish

part (a).

Next, we prove (8.15). Using Assumption S(a), we have

Tn(θ) = S D−1/2n (θ)n1/2mn(θ), D
−1/2
n (θ)Σn(θ)D

−1/2
n (θ) . (8.19)

For i.i.d. or dependent observations with or without preliminary estimators of iden-

tified parameters, (8.5) holds (using the fact that γ ∈ Γ if and only if (θ, F ) ∈ F
and using Lemma 2 of AG to show that (8.5) holds for i.i.d. observations). By (8.5),

the jth element of D−1/2n (θn,h)n
1/2mn(θn,h) equals (1 + op(1))(An,j + n1/2γn,h,1,j), where

γn,h,1 = (γn,h,1,1, ..., γn,h,1,p)
� and by definition γn,h,1,j = 0 for j = p+1, ..., k. If h1,j =∞

and j ≤ p, where h1 = (h1,1, ..., h1,p)�, then An,j+n1/2γn,h,1,j →p ∞ under {γn,h : n ≥ 1}
by condition (vii) of (8.5) and the definition of {γn,h : n ≥ 1}. Hence, if any element
of h1 equals ∞, D−1/2n (θn,h)n

1/2mn(θn,h) does not converge in distribution (to a proper

finite random vector) and the continuous mapping theorem cannot be applied to obtain

the asymptotic distribution of the right-hand side of (8.19) or the right-hand side of

(4.10).

To circumvent these problems, we consider k-vector-valued functions of D−1/2n (θn,h)

×n1/2mn(θn,h) and ξn(θn,h) that converge in distribution whether or not some elements

of h1 equal ∞. Then, we write the right-hand sides of (8.19) and (4.10) as continuous
functions of these k-vectors and apply the continuous mapping theorem. Let G(·) be a
strictly increasing continuous df on R, such as the standard normal df.

For j ≤ k, we have

Gκ,n,j = G(ξn,j(θn,h)) = G κ−1(Ωn(θn,h))σ
−1
n,j(θn,h)n

1/2mn,j(θn,h) (8.20)

= G κ−1(Ωn(θn,h))σ
−1
n,j(θn,h)σFn,h,j(θn,h) An,j + n

1/2γn,h,1,j ,

where An,j is defined in (8.5) and by definition γn,h,1,j = 0 for j = p+ 1, ..., k.
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Let Z = (Z1, ..., Zk)� ∼ N(0k,Ω0). Define h1,j = 0 for j = p + 1, ..., k. If j ≤ p and
h1,j <∞ or if j = p+ 1, ..., k, then

Gκ,n,j →d G κ−1(Ω0)[Zj + h1,j] (8.21)

using (8.20), conditions (vii) and (viii) of (8.5) (which yield An,j + n1/2γn,h,1,j →d Zj +

h1,j), Assumption κ and condition (ix) of (8.5) (which yield κ−1(Ωn(θn,h))→p κ
−1(Ω0)),

and the continuous mapping theorem.

If j ≤ p and h1,j =∞, then
Gκ,n,j →p 1 (8.22)

using (8.20), An,j = Op(1), κ−1(Ωn(θn,h)) →p κ−1(Ω0) > 0, and G(x) → 1 as x → ∞.
The results in (8.21)-(8.22) hold jointly and combine to give

Gκ,n = (Gκ,n,1, ..., Gκ,n,k)
� →d Gκ,∞, where

Gκ,∞ = (G(κ−1(Ω0)[Z1 + h1,1]), ..., G(κ−1(Ω0)[Zk + h1,k]))� (8.23)

and G(Zh2,2,j + h1,j) denotes G(∞) = 1 when h1,j =∞.
Let G−1 denote the inverse of G. For x = (x1, ..., xk)� ∈ Rp[+∞] × Rv, let G(k)(x) =

(G(x1), ..., G(xk))
� ∈ (0, 1]p × (0, 1)v. For z = (z1, ..., zk)� ∈ (0, 1]p × (0, 1)v, let G−1(k)(z) =

(G−1(z1), ..., G−1(zk))� ∈ Rp[+∞] ×Rv. Define qS(z,Ω) as

qS,ϕ(z,Ω) = qS ϕ(G−1(k)(z),Ω),Ω (8.24)

for z ∈ (0, 1]p × (0, 1)v and Ω ∈ Ψ.

Assumption ϕ and Lemma 3 imply that qS,ϕ(z,Ω) is continuous at (z,Ω) for all

z ∈ Z((h1, 0v),Ω0) and Ω = Ω0, where

Z((h1, 0v),Ω0) = z ∈ (0, 1]p × (0, 1)v : G−1(k)(z) ∈ Ξ((h1, 0v),Ω) and

P (Gκ,∞ ∈ Z((h1, 0v),Ω0)) = P κ−1(Ω0)[Z + (h1, 0v)] ∈ Ξ((h1, 0v),Ω0)

= 1, (8.25)

where Ξ(β,Ω) is defined in Assumption ϕ.
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We now have

cn(θn,h) = qS ϕ(ξn(θn,h),Ωn(θn,h)),Ωn(θn,h) + η(Ωn(θn,h))

= qS ϕ(G−1(k)(Gκ,n),Ωn(θn,h)),Ωn(θn,h) + η(Ωn(θn,h))

= qS,ϕ Gκ,n,Ωn(θn,h) + η(Ωn(θn,h))

→d qS,ϕ (Gκ,∞,Ω0) + η(Ω0)

= qS ϕ(G−1(k)(Gκ,∞),Ω0),Ω0 + η(Ω0)

= qS ϕ(κ−1(Ω0)[Z + (h1, 0v)],Ω0),Ω0 + η(Ω0), (8.26)

where the first equality holds by the definition of cn(θn,h), the second equality holds by

the definitions of Gκ,n and G−1(k)(·), the third and fourth equalities hold by the definition
of qS,ϕ(·, ·), the convergence holds by (8.23), condition (ix) of (8.5), Assumption η1, and

the continuous mapping theorem using (8.25), the last equality holds by the definitions

of Gκ,∞ and G−1(k)(·) and the definition that if h1,j =∞, then the corresponding element
of Z + (h1, 0v) equals ∞.
We now use an analogous argument to that in (8.20)-(8.26) to show that

Tn(θn,h)→d S(Z + (h1, 0v),Ω0). (8.27)

The argument only differs from that given above in that (i) κ(·) is replaced by 1
throughout, (ii) the function qS(ϕ(m,Ω),Ω) is replaced by S(m,Ω), (iii) the function

qS,ϕ(z,Ω) = qS(ϕ(G
−1
(k)(z),Ω),Ω) is replaced by S(z,Ω) = S(G−1(k)(z),Ω), and (iv) the

continuity argument in the paragraph containing (8.25) is replaced by the assertion that

S(z,Ω) is continuous at all (z,Ω) ∈ ((0, 1]p × (0, 1)v)×Ψ by Assumption S(c).

The convergence in (8.26) and (8.27) is joint because the two results can be obtained

by a single application of the continuous mapping theorem. Hence, the verification of

(8.15) is complete and part (a) is proved.

Next, we prove part (b). By the same argument as above but using condition (x)

of (8.5) in place of conditions (vii)-(ix), the results of (8.26) and 8.27 hold with {wn}
in place of {n} for any subsequence {wn}. Hence, (8.15) and (8.16) hold with the same
changes, which implies that part (b) holds.

Proof of Lemma 3. Given (β0,Ω0) ∈ (Rp[+∞] ×Rv)×Ψ, we consider three cases: (i)

qS(β0,Ω0) > 0, (ii) qS(β0,Ω0) = 0 and either v > 0 or both v = 0 and β0 9= ∞p, and
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(iii) qS(β0,Ω0) = 0, v = 0, and β0 =∞p.

In case (i), given ε > 0, we want to show that if (β,Ω) is sufficiently close to (β0,Ω0),

then |qS(β,Ω) − qS(β0,Ω0)| < ε. Let Z∗ ∼ N(0k, Ik). By Assumption S(e), the df of

S(Ω
1/2
0 Z∗ + β0,Ω0) is strictly increasing at x = qS(β0,Ω0) > 0. Hence, for some εU > 0,

P S(Ω
1/2
0 Z∗ + β0,Ω0) ≤ qS(β0,Ω0) + ε = 1− α+ εU . (8.28)

The df of S(Ω1/2Z∗+β,Ω) at x > 0 is continuous in (β,Ω) at (β0,Ω0) by the bounded

convergence theorem because

(a) S(Ω1/2Z∗ + β,Ω)→ S(Ω
1/2
0 Z∗ + β0,Ω0) a.s.,

(b) 1 S(Ω1/2Z∗ + β,Ω) ≤ x → 1 S(Ω
1/2
0 Z∗ + β0,Ω0) ≤ x a.s.

except if S(Ω1/20 Z∗ + β0,Ω0) = x,

(c) P S(Ω
1/2
0 Z∗ + β0,Ω0) = x = 0, and

(d) the indicator function is bounded, (8.29)

where (a) holds by Assumption S(c), (b) holds by (a), and (c) holds because the df of

S(Ω
1/2
0 Z∗ + β0,Ω0) is continuous at all x > 0 by Assumption S(e).

In consequence, for all (β,Ω) sufficiently close to (β0,Ω0), we have

P S(Ω1/2Z∗ + β,Ω) ≤ qS(β0,Ω0) + ε

− P S(Ω
1/2
0 Z∗ + β0,Ω0) ≤ qS(β0,Ω0) + ε < εU/2. (8.30)

Equations (8.28) and (8.30) imply that

P S(Ω1/2Z∗ + β,Ω) ≤ qS(β0,Ω0) + ε ≥ 1− α+ εU/2. (8.31)

The definition of a quantile and (8.31) imply that

qS(β,Ω) ≤ qS(β0,Ω0) + ε. (8.32)

By a completely analogous argument, for (β,Ω) sufficiently close to (β0,Ω0), qS(β,Ω)

≥ qS(β0,Ω0)− ε. Hence, |qS(β,Ω) − qS(β0,Ω0)| < ε and the proof is complete for case

(i).
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In case (ii), P (S(Ω1/20 Z∗ + β0,Ω0) ≤ 0) ≥ 1 − α because qS(β0,Ω0) = 0. Also, in

case (ii), S(Ω1/20 Z∗ + β0,Ω0) has a strictly increasing df for x > 0 by Assumption S(e)

(because v = 0 and β0 =∞p does not hold in case (ii)). These results imply that given

ε > 0, there exists ε1 > 0 such that

P (S(Ω
1/2
0 Z∗ + β0,Ω0) ≤ ε) = 1− α+ ε1. (8.33)

Because the df of S(Ω1/2Z∗ + β,Ω) at ε > 0 is continuous in (β,Ω) by (8.29), for all

(β,Ω) sufficiently close to (β0,Ω0), we have

P S(Ω1/2Z∗ + β,Ω) ≤ ε − P S(Ω
1/2
0 Z∗ + β0,Ω0) ≤ ε < ε1/2. (8.34)

Equations (8.33) and (8.34) imply

P S(Ω1/2Z∗ + β,Ω) ≤ ε ≥ 1− α. (8.35)

This and the definition of a quantile imply that qS(β,Ω) ≤ ε. Since qS(β,Ω) ≥ 0 for all
(β,Ω) by Assumption S(b), the proof for case (ii) is complete.

In case (iii), S(Ω1/20 Z∗+β0,Ω0) = S(∞p,Ω0) = 0 a.s. by Assumptions S(b) and S(d).

This and the continuity in (β,Ω) at (β0,Ω0) of the df of S(Ω
1/2Z∗ + β,Ω) at x > 0,

which holds by (8.29), give: for all x > 0,

lim
(β,Ω)→(β0,Ω0)

P S(Ω1/2Z∗ + β,Ω) ≤ x = P S(Ω
1/2
0 Z∗ + β0,Ω0) ≤ x = 1. (8.36)

Equation (8.36) implies that given any x > 0 for all (β,Ω) sufficiently close to (β0,Ω0),

the df of S(Ω1/2Z∗ + β,Ω) at x > 0 is greater than 1− α and hence qS(β,Ω) ≤ x. Since
qS(β,Ω) ≥ 0 for all (β,Ω) and x > 0 is arbitrary, the proof for case (iii) is complete.

Proof of Lemma 1. Assumption LA3(a) holds by the Liapounov triangular array CLT
for row-wise i.i.d. random variables with mean zero and variance one using Assumptions

LA1(a), LA1(c), and LA3∗ and the Cramér-Wold device. Assumptions LA3(b) and

LA3(c) hold by standard arguments using a weak law of large numbers for row-wise

i.i.d. random variables with variance one using Assumptions LA1(a), LA1(c), and LA3∗.

Note that Assumption LA3 does not follow from (8.5) because in Assumption LA3 the

functions are evaluated at θ0, which is not the true value (unless λ = 0).
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Proof of Theorem 2. The proof follows a similar line of argument to that of Lemma
2(a). We start by showing that under the given assumptions (8.15) holds with (h1, 0v)

replaced by (h1, 0v) +Π0λ. By element-by-element mean-value expansions about θ = θn

and Assumptions LA1 and LA2, we obtain

D−1/2(θ0, Fn)EFnm(Wi, θ0) = D−1/2(θn, Fn)EFnm(Wi, θn)

+Π(θ∗n, Fn)(θ0 − θn),

n1/2D−1/2(θ0, Fn)EFnm(Wi, θ0) → (h1, 0v) +Π0λ, (8.37)

where D(θ, F ) = Diag{σ2F,1(θ), ...,σ2F,k(θ)}, θ∗n may differ across rows of Π(θ∗n, Fn), θ∗n
lies between θ0 and θn, θ

∗
n → θ0, and Π(θ∗n, Fn)→ Π0.

For the same reason as described above following (8.19), to obtain the asymptotic

distribution of Tn(θ0) we use the same type of argument as in the proof of Lemma

2(a). Let G(·) be a strictly increasing continuous df on R, such as the standard normal
df. Using (8.37), Assumption LA3, and κ−1(Ωn(θ0)) →p κ−1(Ω(θ0)) (which holds by

Assumptions κ and LA3), for j = 1, ..., k, we have

G0κ,n,j = G κ−1(Ωn(θ0))σ
−1
n,j(θ0)n

1/2mn,j(θ0)

= G κ−1(Ωn(θ0))σ
−1
n,j(θ0)σFn,j(θ0) A

0
n,j + n

1/2σ−1Fn,j(θ0)EFnmj(Wi, θ0) ,

G0κ,n,j →p 1 if j ≤ p and h1,j =∞, (8.38)

G0κ,n,j →d G κ−1(Ω(θ0))[Zj + h1,j +Π�0,jλ] if j ≤ p and h1,j <∞,
G0κ,n,j →d G κ−1(Ω(θ0))[Zj +Π�0,jλ] if j = p+ 1, ..., k,

G0κ,n = (G0κ,n,1, ..., G
0
κ,n,k)→d G

0
κ,∞ =

(G(κ−1(Ω(θ0))[Z1 + h1,1 +Π�0,1λ]), ..., G(κ
−1(Ω(θ0))[Zk +Π�0,kλ]))

�,

where Z = (Z1, ..., Zk)� and Zj + h1,j + Π�0,jλ = ∞ by definition if h1,j = ∞. Now, the
same argument as in (8.24)-(8.26) of the proof of Lemma 2(a) gives

cn(θ0)→d qS ϕ(κ−1(Ω0)[Z + (h1, 0v) +Π0λ],Ω0),Ω0 + η(Ω0). (8.39)

The only difference in the proof is that Z((h1, 0v),Ω0) and Ξ((h1, 0v),Ω) are replaced

by Z((h1, 0v) +Π0λ,Ω0) and Ξ((h1, 0v) +Π0λ,Ω), respectively.
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Next, by the same argument as in (8.27) in the proof of Lemma 2(a), we obtain

Tn(θ0)→d S([Z + (h1, 0v) +Π0λ],Ω0). (8.40)

Furthermore, the convergence in (8.39) and (8.40) is joint, which establishes that (8.15)

holds with (h1, 0) replaced by (h1, 0v) + Π0λ. Finally, given the latter result, the re-

sult of the Theorem holds by the same argument as in (8.16)-(8.18) in the proof of

Lemma 2(a) with (h1, 0v) replaced by (h1, 0v) +Π0λ and CP (h1,Ω0, η(Ω0)) replaced by

AsyPow(μ,Ω0, S,ϕ,κ(Ω0), η(Ω0)).
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9 APPENDIX B

This Appendix gives supplemental numerical results to those given in the text of the

paper. Section 9.1 provides a table of the κ values that maximize average asymptotic

power for various tests. These are the κ values that yield the asymptotic power reported

in Table II of Section 6.2 of the paper. Section 9.1 also provides a table that is analogous

to Table II but reports asymptotic sizes rather than asymptotic power.

Section 9.2 provides results that supplement those of Section 6.2 of the paper by

comparing (S,ϕ) functions for a larger number of Ω matrices. These are results based

on the best κ values in terms of average asymptotic power.

Section 9.4 provides additional asymptotic size and power results for some GMS and

RMS tests that are not considered explicitly in the paper.

Section 9.5 provides comparative computation times for tests based on the QLR and

MMM test statistics and the “asymptotic normal” and bootstrap versions of the t-test

(i.e., ϕ(1)) moment selection critical values.

9.1 κ Values That Maximize Average Asymptotic Power

The κ values that maximize average asymptotic power, i.e., the best κ values, which

are used in the construction of Table II, are given in Table B-I.

Table B-II gives the asymptotic sizes of the RMS tests that appear in Table II and

are based on the κ=Best tuning parameter and no size-correction factor, i.e., η = 0. The

results show that the κ value that maximizes average asymptotic power also has quite

good asymptotic size properties even with η = 0, with the exception of the SumMax/t-

Test and QLR/ϕ(3) tests.
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Table B-I. κ Values That Maximize (Size-Corrected) Asymptotic Power: MMM,

Max, SumMax, & QLR Statistics; t-Test, ϕ(3), ϕ(4), & MMSC Critical Values1

Crit. p = 10 p = 4 p = 2

Stat. Val. ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM t-Test 2.75 1.75 .25 2.50 1.50 .10 2.50 1.50 .50

Max t-Test 2.50 1.25 .00 2.50 1.50 .50 2.50 1.50 .75

SumMax t-Test 1.87 1.25 .25 2.25 1.50 .10 2.50 1.50 .50

QLR t-Test 2.50 1.75 .00 2.75 1.50 .25 2.75 1.50 .75

QLR ϕ(3) 12.5† 3.00 1.25† 9.5∗ 2.25∗ 1.00∗ 8.00∗ 2.50∗ .75∗

QLR ϕ(4) 2.75† 1.75 .50† 2.75∗ 1.25∗ .10∗ 2.75∗ 1.87∗ .50∗

QLR MMSC 5.0 1.75 .10 7.5 1.50 .10 2.75 1.50 .75

1 Results are based on (40000, 40000) size-correction and rejection probability repe-

titions for p = 2, 4 and (5000, 5000) repetitions for p = 10, unless noted otherwise.
∗Results are based on (5000, 5000) repetitions.
†Results are based on (2000, 2000) repetitions.
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Table B-II. Asymptotic Size Comparisons: Max, SumMax, & QLR Statistics; t-Test,

ϕ(3), & ϕ(4) Critical Values with κ=Best1 & η = 0

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. κ ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM t-Test Best .051 .055 .052 .053 .055 .052 .051 .053 .054

Max t-Test Best .051 .056 .053 .051 .054 .050 .051 .053 .051

SumMax t-Test Best .172 .153 .158 .109 .092 .123 .051 .053 .054

QLR ϕ(3) Best .100† .074∗ .052† .101∗ .065∗ .051∗ .073∗ .059∗ .054∗

QLR ϕ(4) Best .054† .054∗ .052† .052∗ .058∗ .051∗ .051∗ .052∗ .053∗

QLR t-Test Best .057 .055 .054 .051 .055 .051 .051 .052 .052

QLR MMSC Best .056 .055 .053 .055 .055 .052 .052 .052 .052

1κ=Best denotes the κ value that maximizes average asymptotic power. Except

where stated otherwise, the results are based on (40000, 40000) critical value and rejec-

tion probability repetitions.
∗Results are based on (5000, 5000) critical value and rejection probability repetitions.
†Results are based on (2000, 2000) critical value and rejection probability repetitions.
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9.2 Comparison of (S,ϕ) Functions: 19 Ω Matrices

Here we compare the MMM/t-Test/κBest, QLR/t-Test/κBest, QLR/t-Test/κAuto,

& QLR/MMSC/κBest tests. This section is quite similar to Section 6.2 of the paper

except that 19 Ω matrices are considered here, rather than 3, and fewer tests are consid-

ered. The 19 Ω matrices are the same as those considered in Table III in Section 6.3.2

and defined in Appendix C.

The qualitative results reported in Section 6.2 are found here to apply as well to the

broader range of Ω matrices that are considered.

TABLE B-III. Asymptotic Power Comparisons (Size-Corrected) for 19 Ω Matrices:

MMM & QLR Statistics; t-Test & MMSC Critical Values with κ=Best & κAuto1

(a) p = 10

Stat. Crit. Val. κ δ(Ω): -.99 -.975 -.95 -.9 -.8 -.7 -.6 -.5 -.4 -.2

MMM t-Test κBest .19 .19 .19 .19 .21 .24 .29 .35 .43 .57

QLR t-Test κBest .96 .94 .80 .58 .48 .48 .49 .51 .54 .61

QLR t-Test κAuto .96 .94 .79 .58 .48 .47 .49 .51 .54 .61

QLR MMSC κBest .96∗ .96∗ .83∗ .65∗ .52∗ .50∗ .52∗ .54∗ .56∗ .61∗

Power Envelope - .98 .98 .94 .85 .74 .73 .74 .75 .77 .81

δ(Ω): 0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM t-Test κBest .67 .36 .50 .85 .82 .80 .80 .79 .79

QLR t-Test κBest .67 .37 .51 .85 .83 .82 .82 .81 .81

QLR t-Test κAuto .67 .37 .51 .85 .83 .82 .82 .81 .81

QLR MMSC κBest .66∗ .36∗ .50∗ .84∗ .83∗ .82∗ .81∗ .80∗ .81∗

Power Envelope - .85 .47 .59 .88 .85 .83 .82 .81 .81

1κ=Best denotes the κ value that maximizes average asymptotic power. Except

where stated otherwise, the results are based on (40000, 40000) critical value and rejec-

tion probability repetitions.
∗Results are based on (2000, 2000) critical value and rejection probability repetitions

when determining the best κ value. Results reported in the table that use the best κ

value are based on (5000, 5000) critical value and rejection probability repetitions.
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TABLE B-III (Cont.)

(b) p = 4

Stat. Crit. Val. κ δ(Ω): -.99 -.975 -.95 -.9 -.8 -.7 -.6 -.5 -.4 -.2

MMM t-Test κBest .31 .31 .31 .32 .34 .37 .42 .47 .52 .62

QLR t-Test κBest .93 .89 .76 .62 .52 .52 .53 .56 .58 .63

QLR t-Test κAuto .92 .88 .76 .62 .52 .52 .53 .55 .58 .63

QLR MMSC κBest .94 .90 .78 .65 .56 .55 .56 .57 .59 .64

Power Envelope - .95 .94 .87 .80 .70 .69 .70 .72 .73 .77

δ(Ω): 0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM t-Test κBest .68 .45 .59 .80 .79 .78 .78 .77 .77

QLR t-Test κBest .68 .46 .59 .80 .80 .80 .79 .78 .78

QLR t-Test κAuto .68 .45 .59 .80 .80 .79 .79 .78 .78

QLR MMSC κBest .68 .46 .59 .80 .80 .79 .79 .78 .78

Power Envelope - .80 .53 .65 .83 .80 .79 .79 .78 .78

(c) p = 2

Stat. Crit. Val. κ δ(Ω): -.99 -.975 -.95 -.9 -.8 -.7 -.6 -.5 -.4 -.2

MMM t-Test κBest .52 .52 .51 .51 .52 .54 .57 .59 .61 .65

QLR t-Test κBest .86 .83 .76 .65 .60 .59 .60 .61 .62 .65

QLR t-Test κAuto .84 .81 .75 .64 .60 .59 .60 .61 .62 .65

QLR MMSC κBest .86 .83 .76 .65 .60 .59 .60 .61 .62 .65

Power Envelope - .88 .86 .83 .75 .70 .69 .69 .70 .70 72

δ(Ω): 0.0 .2 .4 .6 .8 .9 .95 .975 .99

MMM t-Test κBest .69 .58 .65 .71 .72 .73 .73 .73 .73

QLR t-Test κBest .69 .58 .66 .72 .73 .73 .73 .73 .73

QLR t-Test κAuto .69 .58 .66 .72 .73 .73 .73 .73 .73

QLR MMSC κBest .69 .58 .66 .72 .73 .73 .73 .73 .73

Power Envelope - .75 .63 .70 .74 .74 .73 .73 .73 .73
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9.3 Comparison of RMS and GMS Procedures

In this section, we provide asymptotic size and power comparisons (based on fixed

κ asymptotics) of several GMS tests and the recommended RMS test, which is the

QLR/t-Test/κAuto test.

We consider GMS tests based on (S,ϕ) = (MMM, t-Test), (QLR, t-Test), and (QLR,

MMSC). The GMS tests depend on a tuning parameter κ (= κn) that does not depend

on Ω. We consider the values κ=2.35 and κ=1.87. The former corresponds to the

BIC choice κn = (lnn)1/2 for n = 250 and the latter corresponds to the LIL choice

κn = (2 ln lnn)1/2 for n = 300. Note that the BIC choice yields κn ∈ [2.15, 2.63] for
n ∈ [100, 1000] and the LIL choice yields κn ∈ [1.75, 1.97] for n ∈ [100, 1000].
Tables B-IV and B-V provide the asymptotic size and power results, respectively,

for p = 2, 4, 10 and Ω = ΩNeg,ΩZero,ΩPos. The critical values are obtained using 40, 000

simulation repetitions and both the size and power results are obtained using 40, 000

repetitions, which yields a simulation standard error of .0011. The power results are

size-corrected.

Table B-IV shows that the GMS tests with κ=1.87 have asymptotic size that is

close to .050 for ΩPos, is slightly above .050 for ΩZero, and is noticeably above .050

for ΩNeg. For example, for ΩNeg, the QLR/t-Test/κ=1.87 test has size .074, .080, and

.078 for p = 2, 4, and 10, respectively. The amount of over-rejection is higher for the

QLR/MMSC test than for the QLR/t-Test and MMM/t-Test tests.

The GMS tests with κ=2.35 have asymptotic size that is closer to .050 than when

κ=1.87. There is still some over-rejection with ΩNeg, especially for the QLR/MMSC/

κ=2.35 test. But it is noticeably smaller. For example, forΩNeg, the QLR/t-Test/κ=2.35

test has size .055, .059, and .059 for p = 2, 4, and 10, respectively.

The recommended RMS test has asymptotic size that is close to its nominal level

.050. It is within three simulation standard errors of the nominal level for all cases

considered. For ΩNeg, it has size .046, .048, and .050 for p = 2, 4, and 10, respectively.

Based on Table B-IV, we conclude that some GMS tests have moderate to large

problems of over-rejection asymptotically (under fixed κ) asymptotics for some Ω ma-

trices. However, some GMS tests with κ=2.35 perform quite well and over-reject by a

relatively small amount. The recommended RMS test performs well. It shows no sign

of over-rejection and its asymptotic size is close to its nominal level.

Next, we discuss the asymptotic power results given in Table B-V. Table B-V shows

that the GMS tests given by MMM/t-Test with κ=2.35 and κ=1.87 have quite low
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Table B-IV. Asymptotic Size Comparisons for Nominal .05 Tests: MMM & QLR

Statistics; t-Test & MMSC Critical Values with κ=2.35, κ=1.87, & κAuto

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. κ ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM t-Test 2.35 .059 .051 .051 .053 .050 .050 .052 .050 .051

MMM t-Test 1.87 .070 .054 .050 .068 .053 .050 .063 .052 .050

QLR t-Test 2.35 .059 .051 .051 .059 .050 .049 .055 .050 .050

QLR t-Test 1.87 .078 .054 .050 .080 .053 .050 .074 .052 .050

QLR MMSC 2.35 .106 .051 .051 .093 .050 .049 .056 .050 .050

QLR MMSC 1.87 .123 .054 .050 .115 .053 .050 .074 .052 .050

QLR t-Test Auto .046 .049 .041 .048 .051 .047 .050 .050 .050

power compared to the recommended RMS test (i.e., QLR/t-Test/κAuto) for ΩNeg and

noticeably lower power for ΩPos. For ΩNeg, the powers of the MMM/t-Test tests are

decreasing in p rather quickly.

The GMS tests QLR/t-Test/κ=1.87 and QLR/MMSC/κ=1.87 have power that is

the same as that of the RMS test for ΩZero. For ΩPos, these two GMS tests have power

that is only slightly lower than that of the RMS test. On the other hand, for ΩNeg, the

power of these two GMS tests is noticeably less than that of the RMS test, especially

for p = 2, 4. As discussed above, a drawback of these GMS tests is that they over-reject

the null hypothesis with ΩNeg.

The QLR/t-Test/κ=2.35 and QLR/MMSC/κ=2.35 tests have similar asymptotic

power but the former has higher power for ΩPos, especially for p = 10. In fact, the QLR/t-

Test/κ=2.35 is the best GMS test in terms of overall power. Its power is uniformly

dominated by that of the recommended RMS test, but the differences in power are not

large.

We conclude that (i) the best GMS test in terms of asymptotic size and power is

the QLR/t-Test/κ=2.35, (ii) the recommended RMS test out-performs this GMS test in

terms of asymptotic size and power in all cases considered, but the differences between
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the two are not large, and (iii) the recommended RMS test out-performs the other GMS

tests considered by a noticeable margin in terms of asymptotic size and/or power.

Table B-V. Asymptotic Power Comparisons (Size-Corrected) for Nominal .05 Tests:

MMM & QLR Statistics; PA, t-Test, & MMSC Critical Values with κ=2.35, κ=1.87, &

κAuto

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. κ ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM t-Test 2.35 .19 .65 .68 .31 .68 .68 .51 .69 .68

MMM t-Test 1.87 .16 .67 .72 .28 .69 .71 .48 .69 .69

QLR t-Test 2.35 .58 .65 .79 .61 .68 .76 .65 .69 .70

QLR t-Test 1.87 .55 .67 .81 .56 .69 .77 .60 .69 .71

QLR MMSC 2.35 .58 .65 .75 .60 .68 .75 .64 .69 .70

QLR MMSC 1.87 .56 .67 .78 .55 .69 .77 .60 .69 .71

QLR t-Test Auto .58 .67 .82 .62 .69 .78 .65 .69 .72

Power Envelope - .85 .85 .85 .80 .80 .80 .75 .75 .75
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9.4 Additional Asymptotic Size & Power Results

Table B-VI reports asymptotic size results for some tests that are not considered in

the text of the paper or Section 9.3 above. Table B-VII does likewise for asymptotic

power.

Table B-VI. Asymptotic Size Comparisons of Nominal .05 Tests: MMM, Max, Sum-

Max, & QLR Statistics; PA, t-Test, ϕ(3), ϕ(4), & MMSC Critical Values with κ=Best,

κ=2.35, & κ=1.87; & η = 01

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. κ ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM PA - .050 .050 .050 .050 .050 .050 .050 .050 .050

QLR PA - .050 .050 .050 .050 .050 .050 .050 .050 .050

GEL Const. - .021 .010 .000 .050 .025 .006 .047 .032 .026

MMM t-Test Best .051 .055 .052 .053 .055 .052 .051 .053 .054

MMM t-Test 2.35 .059 .051 .051 .053 .050 .050 .052 .050 .051

MMM t-Test 1.87 .070 .054 .050 .068 .053 .050 .063 .052 .050

Max PA - .050 .050 .050 .050 .050 .050 .050 .050 .050

Max t-Test Best .051 .056 .053 .051 .054 .050 .051 .053 .051

Max t-Test 2.35 .054 .051 .051 .051 .050 .050 .052 .050 .050

Max t-Test 1.87 .063 .052 .050 .064 .052 .050 .063 .051 .050

SumMax t-Test Best .172 .153 .158 .109 .092 .123 .051 .053 .054

SumMax t-Test 2.35 .164 .149 .147 .103 .087 .118 .052 .062 .077

SumMax t-Test 1.87 .172 .162 .153 .111 .090 .120 .063 .052 .050
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Table B-VI. (Cont.)

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. κ ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

QLR ϕ(3) Best .100† .074∗ .052† .101∗ .065∗ .051∗ .073∗ .059∗ .054∗

QLR ϕ(3) 2.35 .225† .070† 046.† .160∗ .061∗ .042∗ .095∗ .054∗ .046∗

QLR ϕ(3) 1.87 .280† .085∗ .051† .184∗ .069∗ .051∗ .113∗ .062∗ .052∗

QLR ϕ(4) Best .054† .054∗ .052† .052∗ .058∗ .051∗ .051∗ .052∗ .053∗

QLR ϕ(4) 2.35 .057† .045† .046† .055∗ .045∗ .041∗ .047∗ .047∗ .045∗

QLR ϕ(4) 1.87 .079† .053∗ .050† .080∗ .052∗ .051∗ .076∗ .052∗ .050∗

QLR t-Test Best .057 .055 .054 .051 .055 .051 .051 .052 .052

QLR t-Test 2.35 .059 .051 .051 .059 .050 .049 .055 .050 .050

QLR t-Test 1.87 .078 .054 .050 .080 .053 .050 .074 .052 .050

QLR t-Test Auto .046 .049 .041 .048 .051 .047 .050 .050 .050

QLR MMSC Best .056 .055 .053 .055 .055 .052 .052 .052 .052

QLR MMSC 2.35 .106 .051 .051 .093 .050 .049 .056 .050 .050

QLR MMSC 1.87 .123 .054 .050 .115 .053 .050 .074 .052 .050

1κ=Best denotes the κ value that maximizes average asymptotic power. Unless

stated otherwise, results are based on (40000, 40000) critical value and rejection proba-

bility repetitions.
∗Results are based on (5000, 5000) critical value and rejection probability repetitions.
†Results are based on (2000, 2000) critical value and rejection probability repetitions.
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Table B-VII. Asymptotic Power Comparisons (Size-Corrected) of Nominal .05 Tests:

MMM, Max, SumMax, & QLR Statistics; t-Test, ϕ(3), ϕ(4), & MMSC Critical Values

with κ=Best, κ=2.35, κ=1.87, & κAuto1

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. κ ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM PA - .04 .36 .36 .20 .52 .46 .48 .62 .59

QLR PA - .28 .36 .70 .44 .52 .71 .58 .62 .65

GEL Const. - .19 .18 .12 .44 .42 .39 .52 .54 .54

MMM t-Test Best .19 .67 .79 .32 .69 .77 .51 .69 .71

MMM t-Test 2.35 .19 .65 .68 .31 .68 .68 .51 .69 .68

MMM t-Test 1.87 .16 .67 .72 .28 .69 .71 .48 .69 .69

Max PA - .18 .44 .72 .30 .55 .71 .48 .63 .66

Max t-Test Best .25 .59 .82 .35 .66 .79 .51 .69 .72

Max t-Test 2.35 .25 .57 .79 .35 .65 .76 .51 .68 .71

Max t-Test 1.87 .24 .59 .81 .34 .66 .77 .48 .69 .71

SumMax t-Test Best .14 .55 .71 .24 .64 .65 .51 .69 .71

SumMax t-Test 2.35 .14 .55 .69 .24 .62 .64 .51 .67 .63

SumMax t-Test 1.87 .14 .55 .70 .24 .64 .64 .48 .69 .69
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Table B-VII. (Cont.)

Crit. Tuning p = 10 p = 4 p = 2

Stat. Val. Par. κ ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

QLR ϕ(3) Best .49† .62∗ .83† .54∗ .67∗ .78∗ .60∗ .67∗ .72∗

QLR ϕ(3) 2.35 .38† .64† .83† .50∗ .67∗ .78∗ .58∗ .68∗ .72∗

QLR ϕ(3) 1.87 .40† .61∗ .82† .50∗ .66∗ .78∗ .57∗ .67∗ .72∗

QLR ϕ(4) Best .59† .67∗ .82† .62∗ .69∗ .78∗ .65∗ .69∗ .72∗

QLR ϕ(4) 2.35 .57† .63† .79† .60∗ .66∗ .75∗ .64∗ .67∗ .69∗

QLR ϕ(4) 1.87 .57† .67∗ .81† .55∗ .69∗ .77∗ .59∗ .69∗ .71∗

QLR t-Test Best .59 .67 .82 .62 .69 .78 .65 .69 .72

QLR t-Test 2.35 .58 .65 .79 .61 .68 .76 .65 .69 .70

QLR t-Test 1.87 .58 .67 .81 .56 .69 .77 .60 .69 .71

QLR t-Test Auto .58 .67 .82 .62 .69 .78 .65 .69 .72

QLR MMSC Best .65 .67 .78 .65 .69 .78 .65 .69 .72

QLR MMSC 2.35 .58 .65 .75 .60 .68 .75 .64 .69 .70

QLR MMSC 1.87 .56 .67 .82 .55 .69 .77 .60 .69 .71

Power Envelope - .85 .85 .85 .80 .80 .80 .75 .75 .75

1κ=Best denotes the κ value that is best in terms of average asymptotic power.

Unless stated otherwise, results are based on (40000, 40000) critical value and rejection

probability repetitions.
∗Results are based on (5000, 5000) critical value and rejection probability repetitions.
†Results are based on (2000, 2000) critical value and rejection probability repetitions.
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9.5 Comparative Computation Times

As reported in the paper, to compute the recommended bootstrap RMS test, i.e.,

QLR/t-Test/κAuto/Boot, using 10,000 critical value simulation repetitions takes 1.3,

1.7, 3.2, 8.4, 17.2, and 52.0 seconds when p = 2, 4, 10, 20, 30, and 50, respectively, and

n = 250 using a PC with a 3.4 GHz processor. For the asymptotic normal version of the

recommended bootstrap RMS test, i.e., QLR/t-Test/κAuto/Norm, the times are .25,

.31, .71, 2.4, 6.1, and 21.8 seconds, respectively.

In contrast, to compute the bootstrap version of the MMM/t-Test/κ=2.35 test using

10,000 critical value simulation repetitions takes .86, .98, 2.0, 5.9, 11.6, and 28.4 seconds

when p = 2, 4, 10, 20, 30, and 50, respectively, and n = 250. For the asymptotic normal

version of the MMM/t-Test/κ=2.35 test, the times are .008, .010, .029, .060, .090, and

.18 seconds, respectively. Note that the computation times are not affected by whether

κ is taken to be κAuto or κ=2.35. The difference between the results in the previous

paragraph and this paragraph is due to the different statistics used: QLR and MMM.

The results indicate that the bootstrap version of the MMM-based test is between

1.4 and 1.8 times faster than the corresponding bootstrap version of the QLR-based test.

On the other hand, the asymptotic normal version of the MMM-based test is very much

faster (from 20 to 85 times) than asymptotic normal version of the QLR-based test.

(This is because the generation of the bootstrap samples dominates the computation

time for the bootstrap version of the MMM-based test.)

When constructing a CS, if the computation time is burdensome (because one needs

to carry out many tests with different values of θ as the null value), then the results

above suggest that a useful approach is to map out the general features of the CS using

the asymptotic normal version of the MMM/t-Test/κ=2.35 test, which is very fast to

compute, and then switch to the bootstrap version of the QLR/t-Test/κAuto test to

find the boundaries of the CS more precisely.

9.6 Magnitude of RMS Critical Values

Table B-VIII provides information on the magnitude of the preferred RMS critical

value when the size-correction factor η is not included. (Recall that the RMS critical

value equals cn(θ,κ) + η.) Specifically, the Table provides simulated values of the mean

and standard deviation of the asymptotic distribution of the data-dependent quantile

cn(θ,κ) = qS2(ϕ
(1)(ξn(θ),Ωn(θ)),Ωn(θ)) in various scenarios. The mean values in Table
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B-VIII can be compared with the values of the components η1(δ) and η2(p) (given in

Table I of the paper) of the size-correction factor η (= η1(δn(θ)) + η2(p)) to see how

large the quantile cn(θ,κ) is (on average) compared to the size-correction factor η.

The asymptotic distribution of cn(θ,κ) depends on h1 and Ω. Table B-VIII considers

the same three correlation matrices ΩNeg, ΩZero, and ΩPos as considered elsewhere in

the paper, see Section 6 of the paper for their definitions. Table B-VIII considers h1
vectors that consist of 0�s and ∞�s. (Other h1 vectors are of interest, but for brevity

we do not consider them here.) When an element of h1 equals ∞, the corresponding
moment inequality is far from binding and the moment selection procedure detects this

with probability one asymptotically and does not include this moment when computing

cn(θ,κ).When an element of h1 equals 0, the corresponding moment inequality is binding

and the moment selection procedure includes this moment with high probability but not

with probability one, even asymptotically. (It is for this reason that cn(θ,κ) is random

asymptotically.) In consequence, the asymptotic distribution depends on h1 through the

“# of Zeros in h1” and through the sub-matrix of Ω that corresponds to the “Zeros in

h1.” The matrices ΩNeg, ΩZero, and ΩPos are defined such that for any value of p the

sub-matrix of Ω of dimension equal to the “# of Zeros in h1” is the same (provided

p ≥“# of Zeros in h1”). In consequence, the results of Table B-VIII hold for any value

of p. For example, if p = 20, Ω = ΩNeg, and the “# of Zeros in h1” is 5, one obtains the

same mean and standard deviation of the asymptotic distribution of cn(θ,κ) as when

p = 15, Ω = ΩNeg, and the “# of Zeros in h1” is 5.

The results of Table B-VIII, combined with the magnitudes of the size-correction

factors given in Table I, show that the size-correction factor η = η1(δn(θ)) + η2(p)

typically is small compared to cn(θ,κ), but not negligible. For example, for p = 10,

Ω = ΩZero = I10, and h1 = (0, 0, 0, 0, 0,∞,∞,∞,∞,∞)� (which corresponds to five
moment inequalities being binding and five being very far from binding), the mean and

standard deviation of the asymptotic distribution of cn(θ,κ) are 8.7 and .13, respectively,

whereas the size-correction factor is .48.
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Table B-VIII. Mean and Standard Deviation of the Asymptotic Distribution of the

Data-Dependent RMS Critical Values Excluding the Size-Correction Factor η1

ΩNeg ΩZero ΩPos

# of Mean SD Mean SD Mean. SD

Zero’s in h1 cn(θ,κ) cn(θ,κ) cn(θ,κ) cn(θ,κ) cn(θ,κ) cn(θ,κ)

1 2.7 .00 2.7 .00 2.7 .00

2 5.0 .13 4.1 .53 3.5 .55

3 6.2 .11 5.2 .52 4.1 .68

4 7.5 .11 6.2 .54 4.5 .76

5 8.7 .13 7.2 .57 5.0 .82

6 9.8 .14 8.1 .59 5.3 .86

7 10.9 .16 8.9 .57 5.6 .89

8 11.9 .16 9.7 .63 5.9 .90

9 12.9 .17 10.6 .66 6.1 .92

10 13.8 .17 11.4 .68 6.3 .94

15 19.4 .24 15.0 .70 7.2 .98

20 24.5 .25 18.4 .78 7.9 1.0

25 29.9 .31 21.6 .85 8.4 1.0

30 35.2 .32 24.8 .93 8.8 1.0

35 40.5 .35 27.9 .99 9.1 1.0

40 45.8 .38 31.0 1.0 9.4 1.0

45 51.2 .42 34.0 1.1 9.7 1.0

50 56.4 .42 36.9 1.1 10.0 1.0

1 Results are based on 40,000 simulation repetitions.
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10 APPENDIX C

This Appendix contains the following: (i) the definition of the μ vectors used in Sec-

tion 6 of the paper, (ii) a description of some details concerning the power assessment

given in Section 6.3.2 of the recommended RMS test, (iii) a discussion of the deter-

mination and computation of the asymptotic power envelope, (iv) a discussion of the

computation of the κ values that maximize average asymptotic power that are reported

in Table II of the paper, and (v) a description of the numerical computation of η2(p),

which is part of the recommended size-correction function η(·).

10.1 μ Vectors

For p = 2, the μ vectors considered are

M2(I2) = {(−2.309, 0), (−2.309, 1), (−2.309, 2), (−2.309, 3),
(−2.309, 4), (−2.309, 7), (−1.6263,−1.6263)},

M2(ΩNeg) = {(−1.001, 0), (−1.804, 1), (−2.303, 2), (−2.309, 3),
(−2.309, 4), (−2.309, 7), (−0.5165,−0.5165)}, (10.1)

M2(ΩPos) =Mk(Ip) except the last vector is (−2.0040,−2.0040).

The power envelope at each of these μ vectors is .750.

For p = 4, the μ vectors in M4(I4) are defined by (6.2) and the following: μj =

1.7388 for j = 1, ..., 9, 19, 22; μj = −2.4705 for j = 10, ..., 18, 20, 21; μ23 = 1.4242; and
μ24 = 1.2350.

For p = 4, the μ vectors inM4(ΩNeg) are defined by (6.2) and the following: μ1 =

−0.5505, μj = −0.5526 for j = 2, ..., 5, μ6 = −0.5505, μj = −0.5526 for j = 7, 8, 9, μ10 =
−1.8814, μ11 = −2.4283, μj = −2.4705 for j = 12, 13, 14, 17, 18, 21, μ15 = −1.8814,
μ16 = −2.4283, μ19 = −0.3176, μ20 = −0.8624, μ22 = −0.5526, μ23 = −0.2607, μ24 =
−0.1756.
For p = 4, the μ vectors inM4(ΩPos) are defined by (6.2) and the following: μj =

2.4047 for j = 1, ..., 9, 19, 22; μj = −2.4705 for j = 10, ..., 18, 20, 21; μ23 = 2.2628; and
μ24 = −2.1293.
For p = 4, the power envelope at each of the μ vectors is .800.
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For p = k = 10,M10(Ω) includes 40 vectors:

M10(Ω)

= {(−μ1,−μ1, 1, ..., 1), (−μ2,−μ2, 2, ..., 2), (−μ3,−μ3, 3, ..., 3), (−μ4,−μ4, 4, ..., 4),
(−μ5,−μ5, 7, ..., 7), (−μ6,−μ6, 1, 1, 1, 7, ..., 7), (−μ7,−μ7, 2, 2, 2, 7, ..., 7),
(−μ8,−μ8, 3, 3, 3, 7, ..., 7), (−μ9,−μ9, 4, 4, 4, 7, ..., 7), (−μ10,−μ10,−μ10,−μ10, 1, ..., 1),
(−μ11,−μ11,−μ11,−μ11, 2, ..., 2), (−μ12,−μ12,−μ12,−μ12, 3, ..., 3),
(−μ13,−μ13,−μ13,−μ13, 4, ..., 4), (−μ14,−μ14,−μ14,−μ14, 7, ..., 7),
(−μ15,−μ15,−μ15,−μ15, 1, 1, 1, 7, 7, 7), (−μ16,−μ16,−μ16,−μ16, 2, 2, 2, 7, 7, 7),
(−μ17,−μ17,−μ17,−μ17, 3, 3, 3, 7, 7, 7), (−μ18,−μ18,−μ18,−μ18, 4, 4, 4, 7, 7, 7),
(−μ19, 1, ..., 1), (−μ20, 2, ..., 2), (−μ21, 3, ..., 3), (−μ22, 4, ..., 4), (−μ23, 7, ..., 7),
(−μ24, 1, 1, 1, 7, ..., 7), (−μ25, 2, 2, 2, 7, ..., 7), (−μ26, 3, 3, 3, 7, ..., 7), (−μ27, 4, 4, 4, 7, ..., 7),
(−μ28,−μ28, 0, ..., 0), (−μ29,−μ29,−μ29,−μ29, 0, ..., 0), (−μ30, 0, ..., 0),
(−μ31, 25, ..., 25), (−μ32,−μ32, 25, ..., 25), (−μ33,−μ33,−μ33, 25, ..., 25),
(−μ34,−μ34,−μ34,−μ34, 25, ..., 25), (−μ35,−μ35,−μ35,−μ35,−μ35, 25, ..., 25),
(−μ36, ...,−μ36, 25, 25, 25, 25), (−μ37, ...,−μ37, 25, 25, 25), (−μ38, ...,−μ38, 25, 25),
(−μ39, ...,−μ39, 25), (−μ40, ...,−μ40)}. (10.2)

For p = 10, the μ vectors in M10(I10) are defined by (10.2) and the following:

μj = 1.8927 for j = 1, ..., 9, 28, 32 μj = 1.3360 for j = 10, ..., 18, 29, 34, μj = 2.6817

for j = 19, ..., 27, 30, 31, μ33 = 1.5463, μ35 = 1.1963, μ36 = 1.0893, μ37 = 1.0099,

μ38 = 0.9465, μ39 = 0.8882, and μ40 = 0.8440.

For p = 10, the μ vectors in M10(ΩNeg) are defined by (10.2) and the following:

μj = 0.6016 for j = 1, ..., 9, μj = 0.3475 for j = 10, ..., 18, μ19 = 1.9847, μ20 = 2.5835,

μj = 2.6817 for j = 21, 22, 23, 26, 27, 31, μ24 = 1.9847, μ25 = 2.5835, μ28 = 0.5341,

μ29 = 0.3322, μ30 = 1.1551, μ32 = 0.6016, μ33 = 0.4195, μ34 = 0.3475, μ35 = 0.2985,

μ36 = 0.2674, μ37 = 0.2430, μ38 = 0.2254, μ39 = 0.2106, and μ40 = 0.1993.

For p = 10, the μ vectors in M10(ΩPos) are defined by (10.2) and the following:

μj = 2.6227 for j = 1, ..., 9, μj = 2.4676 for j = 10, ..., 18, μj = 2.6817 for j = 19, ..., 27,

μ29 = 2.6227, μ30 = 2.6817, μ31 = 2.6817, μ32 = 2.6227, μ33 = 2.5401, μ34 = 2.4676,

μ35 = 2.4005, μ36 = 2.3140, μ37 = 2.2846, μ38 = 2.2565, μ39 = 2.2343, and μ40 = 2.2066.

For p = 10, the power envelope at each of the μ vectors is .850.
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10.2 Automatic κ Power Assessment Details

The 19 matrices Ω that are considered in Table III in Section 6.3.2 are Toeplitz matri-

ces with elements on the diagonals given by the (p− 1)-vectors ρ defined as follows. For
p = 2, ρ takes the values for δ specified in Table III. For p = 4, 10, if δ ≥ 0, ρ = (δ, ..., δ).
For p = 4, if δ = −.99, ρ = (−.99, .97,−.95); if δ = −.975, ρ = (−.975, .94,−.90); if
δ = −.95, ρ = (−.95, .9,−.8); and if −.9 ≤ δ < 0, ρ = (δ/(−.9)) × (−.9, .7,−.5). For
p = 10, if δ = −.99, ρ = (−.99, .97,−.95, .93,−.91, .89,−.87, .85,−.83); if δ = −.975, ρ =
(−.975, .94,−.90, .86,−.82, .78,−.76, .74,−.72); if δ = −.95, ρ = (−.95, .9,−.8, .7,−.6, .5,
−.4, .3,−.2); and if −.9 ≤ δ < 0, ρ = (δ/(−.9))× (−.9, .8,−.7, .6,−.5, .4,−.3, .2,−.1).
The randomly generated Ω matrices discussed in Section 6.3.2 have the following

distributions. For p = 2, 4, the 500 Ω matrices are i.i.d. with Ω = Diag−1/2(BB�)BB�

×Diag−1/2(BB�), where B is a p by p matrix with independent N(ςp, 1) elements, ςp = 0
for p = 2 and ςp = .65 for p = 4. The mean ςp for p = 4 is chosen so that there is a

more balanced distribution of δ(Ω) values than is obtained if one takes ζp = 0. For

p = 10, the 250 Ω matrices are i.i.d. Toeplitz matrices (because this makes computation

of size-correction values very much faster) that are the correlation matrices for moving-

average (MA) processes of order p− 1 whose MA parameters are randomly generated.
Specifically, Ω is the correlation matrix of an MA process Y = (Y1, ..., Yp), where Yi =

p−1
j=0 ajεi−j and {εi : i ≤ p} are i.i.d. with mean zero and variance one. The 250 Ω

matrices are obtained by taking {aj : j = 0, ..., p − 1} to be i.i.d. with a mixture of
uniform distributions. With probability .7, aj has a uniform distribution with mean zero

and variance one, and with probability .3, aj has a uniform distribution with mean one

and variance one. This distribution for aj is chosen to yield a fairly balanced distribution

of δ(Ω) values across the 250 Ω matrices. We obtain 175 negative values of δ(Ω), 75

positive values, and a range of [-.90, .20].

The set of alternative hypothesis mean vectors μ, denotedMp(Ω), used in Section

6.3.2 contains linear combinations of μ vectors inMp(ΩNeg),Mp(ΩZero), andMp(ΩPos).

Specifically, for a given matrixΩ,Mp(Ω) is defined by: (i)Mp(Ω) =Mp(ΩNeg) if δ(Ω) ∈
[−1.0,−.90], (ii) if δ(Ω) ∈ [−.9, 0],Mp(Ω) = {μ : μ = (1+ δ/.9)μZero,j −(δ/.9)μNeg,j for
j = 1, ..., Jp}, where μZero,j denotes the jth element ofMp(ΩZero) and analogously for

Mp(ΩNeg) andMp(ΩPos) and Jp denotes the numbers of elements inMp(ΩZero), (iii) if

δ(Ω) ∈ [0, .5],Mp(Ω) = {μ : μ = (1 − δ/.5)μZero,j + (δ/.5)μPos,j for j = 1, ..., Jp}, and
(iv) if δ(Ω) ∈ [0.5, 1.0],Mp(Ω) =Mp(ΩPos).
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10.3 Asymptotic Power Envelope

We obtain an upper bound on the asymptotic power envelope by considering the

simple-versus-simple likelihood ratio (SSLR) test for the desired alternative distribution

and some selected null distribution, with the critical value chosen so that the test has the

desired asymptotic null rejection rate α at the specified null distribution. This method

of obtaining an upper bound on a power envelope also has been exploited in different

contexts by Müller and Watson (2007) and Andrews, Moreira, and Stock (2008). If the

specified null distribution is such that the SSLR test has maximum rejection probability

equal to α over all null distributions, then the specified null distribution is least favorable

and the SSLR test actually provides the asymptotic power envelope at the alternative

distribution considered.

We assume that one observes (n1/2mn(θ0),Σ) and H0 is defined as in (5.3). The

simple alternative is H1 : F = Fn, where Fn is a n1/2-local alternative with asymptotic

mean vector μAlt. Asymptotically, the distribution of n
1/2mn(θ0) under the alternative is

N(μAlt,Σ). We take the specified asymptotic null distribution to be N(μNull,Σ), where

μNull is defined to minimize (μ − μAlt)
�Σ−1(μ− μAlt) over μ ∈ Rp[+∞]. In the numerical

results reported below, we find that this choice of null distribution is least favorable.

Thus, the upper bound on the asymptotic power envelope, up to numerical accuracy

(based on 40,000 simulation repetitions), is the asymptotic power envelope.

10.4 Computation of κ Values That Maximize Average

Asymptotic Power

Here we discuss the computation of the κ values that maximize average asymp-

totic power. These best κ values are used in the asymptotic power comparisons given

in Table II. For all of the RMS tests in Table II, the best κ values are determined

by grid search to an accuracy of .25. On a subset of cases this is found to be suffi-

ciently small that the average asymptotic power is within than .01 of the maximum

based on a finer grid. The grids of κ values used for the t-Test critical values and each

test statistic considered are: for ΩNeg : {3.25, 3.0, 2.75, 2.5, 1.87, 1.0, .25}; for Ω = Ip :

{2.75, 2.5, 2.25, 2.0, 1.87, 1.75, 1.5, 1.25, 1.0, .25}, and for VPos : {2.75, 1.87, 1.25, 1.0, .75,
.50, .25, .10, .00}. For all of the test statistics considered, the average power values are
well-behaved as a function of κ, there is no difficulty in finding the best κ value, and

the best κ value is within the interior of the range considered. To ensure the lat-
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ter, for the QLR/MMSC test, the following κ values also are included in the grids

{3.5, 3.75, 4.0, 4.25, 5.0, 6.0, 7.0, 7.25, 7.5, 7.75, 8.0, 10.0}. For the QLR/ϕ(3) test, the grid
is extended to 16 for ΩNeg and to 3.5 for ΩZero.

10.5 Numerical Computation of η2(p)

The size-correction factor η2(p) is determined as follows. Let p and Ω be given. For

given (h1,Ω), we compute the .95 sample quantile of

S2 Ω1/2Zr + (h1, 0v),Ω − qS2 ϕ(1) κ−1(Ω)[Ω1/2Zr + (h1, 0v)],Ω ,Ω

+η1(δ(Ω)) : r = 1, ..., R} , (10.3)

where Zr ∼ i.i.d. N(0k, Ik) for r = 1, ..., R, where R = 40, 000. Call the sample quantile
ηh1,Ω. Up to simulation error, ηh1,Ω is the smallest value that satisfies

CP (h1,Ω, η1(δ(Ω)) + ηh1,Ω) = 1− α. (10.4)

The same simulated random variables {Zr : r = 1, ..., R} are used for all (h1,Ω) consid-
ered. The critical value qS2 ϕ(1) κ−1(Ω)[Ω1/2Zr + (h1, 0v)],Ω ,Ω in (10.3) is obtained

by simulation for each r. (The number of simulation repetitions employed is R here too

and the same random numbers are used for each r).

Let H1 denote the set of all p vectors whose elements are 0�s and ∞�s. By consid-

ering a variety of subcases, we find that size is attained for μ ∈ H1. That is, it suffices

to restrict attention to maximization of ηh1,Ω over H1, rather than over R
p
+,∞. In addi-

tion, we approximate the maximization of ηh1,Ω over the parameter space Ψ for Ω to a

maximization of a finite set Ψ∗ ⊂ Ψ. Given this, η2(p) ∈ R is defined to be

sup
h1∈H1,Ω∈Ψ∗

ηh1,Ω. (10.5)

For p ≤ 10, the set Ψ∗ is a set of correlation matrices that includes: (i) 43 Toeplitz
matrices Ω that are such that δ(Ω) takes values in a grid between−.99 and .99, 36 and (ii)
500 randomly generated matrices Ω that are generated by Ω = Corr(V ), where V = BB�

36For any given value of δ = δ(Ω), these 43 matrices are defined just as the 19 Toeplitz matrices are
defined in Section 10.2. The δ(Ω) values considered are the 43 values specified by the endpoints for δ
in Table I, but including −.99 and excluding −1.0 and 1.0.
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and B is a p × p matrix with i.i.d. N(0, 1) elements.37 As the number of randomly

generated matrices Ω goes to infinity, the maximum of ηh1,Ω over Ψ
∗ approaches the

maximum over ηh1,Ω over Ψ. Since the same underlying random variables {Zr : r =
1, ..., R} are used for each (h1,Ω) considered, an empirical process CLT guarantees that
as R and the number of random matrices Ω considered go to infinity the calculated

critical values converge to the desired value η2(p) that satisfies

inf
h1∈H1,Ω∈Ψ

CP (h1,Ω, η1(δ(Ω)) + η2(p)) = 1− α. (10.6)

For p ∈ {15, 20, 25, ..., 50}, the set Ψ∗ is a set of correlation matrices that includes (i)
43 Toeplitz matrices Ω that are such that δ(Ω) takes values in a grid between −.99 and
.99 as above, and (ii) 250 randomly generated Toeplitz matrices Ω. (Toeplitz matrices are

considered because this makes computation of the size-correction values feasible). The

randomly generated Toeplitz matrices are the correlation matrices of moving-average

(MA) processes of random order q and random MA parameters. We take q = p+ [χ21],

where χ21 is a chi-squared random variable with one degree of freedom and [·] denotes
the integer part. Given q, Ω is the p× p correlation matrix of a stationary MA process
Y = (Y1, ..., Yp)

�, where Yi =
q
j=0 ajεi−j and {εi : i = ...,−1, 0, ...} are i.i.d. with

mean zero and variance one. The MA parameters {aj : j = 0, ..., p − 1} are i.i.d. with
a mixture of uniform distributions. With probability .7, aj has a uniform distribution

with mean zero and variance one, and with probability .3, aj has a uniform distribution

with mean one and variance one. This distribution for aj is chosen to yield a balanced

distribution of δ(Ω) values across the 250 Ω matrices.38

To reduce the effects of simulation error and to generate η2(p) values for p =

37For Toeplitz matrices, the null rejection probabilities of all of the tests considered in this paper
are invariant to permutations of the elements of the null mean vector μ. Hence, with Toeplitz matrices
one does not need to consider all 2p null mean vectors containing 03s and ∞3s. It suffices to consider
only p vectors, viz., (0,∞, ...,∞), (0, 0,∞, ...,∞), ..., (0, ..., 0). For non-Toeplitz matrices, this invariance
property does not hold. The 500 randomly generated Ω matrices typically are non-Toeplitz. For such
matrices and p ≤ 7, we consider all 2p − 1 μ vectors of 03s and ∞3s (excluding the (∞, ...,∞) vector).
For such matrices and 8 ≤ p ≤ 10, it is not feasible to consider all 2p−1 μ vectors. Instead we randomly
select 2p−1 μ vectors out of the universe of 2p−1 μ vectors. We select two distinct vectors with exactly
1 zero and p− 1 infinities, two distinct vectors with exactly 2 zeros and p− 2 infinities, etc.. Of course,
there is only one vector with p zeros, which is the reason why only 2p − 1 vectors are considered, not
2p.
38We also compute values of η2(p) for p = {2, 3, ..., 10} using 250 randomly generated Toeplitz

matrices Ω in place of the 500 randomly generated matrices Ω described in the paragraph above (10.6)
(which are not necessarily Toeplitz). The former are not noticeably different from the latter.
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11, ..., 14, 16, ..., 19, etc., we smooth the simulated η2(p) values across p by fitting a

regression model to the computed values for p = 2, 3, ..., 10, 15, 20, ..., 50. We take the

η2(p) values to be the predicted values from this regression. We consider regression

models with linear, quadratic, and cubic terms with and without the restriction that

η2(p) = 0 for p = 2 (which just amounts to using an intercept or not in a shifted version

of the regression function). The results from the different models quite similar. The

values in Table I of the paper are based on the quadratic model with the restriction that

η2(p) = 0 for p = 2. It has an R
2 of .992.
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