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Abstract

This paper considers a first-order autoregressive model with conditionally het-
eroskedastic innovations. The asymptotic distributions of least squares (LS), infea-
sible generalized least squares (GLS), and feasible GLS estimators and t statistics
are determined. The GLS procedures allow for misspecification of the form of the
conditional heteroskedasticity and, hence, are referred to as quasi-GLS procedures.
The asymptotic results are established for drifting sequences of the autoregressive
parameter and the distribution of the time series of innovations. In particular, we
consider the full range of cases in which the autoregressive parameter ρn satisfies (i)
n(1− ρn)→∞ and (ii) n(1− ρn)→ h1 <∞ as n→∞, where n is the sample size.
Results of this type are needed to establish the uniform asymptotic properties of the
LS and quasi-GLS statistics.

Keywords: Asymptotic distribution, autoregression, conditional heteroskedasticity,
generalized least squares, least squares.
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1 Introduction

This paper establishes the asymptotic distributions of quasi-GLS statistics in
an AR(1) model with intercept and conditional heteroskedasticity. The statistics
considered include infeasible and feasible quasi-GLS estimators, heteroskedasticity-
consistent (HC) standard error estimators, and the t statistics formed from these
estimators. The paper considers the cases where the autoregressive parameter ρn
satisfies (i) n(1− ρn)→∞ and (ii) n(1− ρn)→ h1 <∞ as n→∞. In case (i), the
quasi-GLS t statistic is shown to have a standard normal asymptotic distribution. In
case (ii), its asymptotic distribution is shown to be that of a convex linear combi-
nation of a random variable with a “demeaned near unit-root distribution” and an
independent standard normal random variable. The weights on the two random vari-
ables depend on the correlation between the innovation, say Ui, and the innovation
rescaled by the quasi-conditional variance, say Ui/φ2i . Here φ2i is the (possibly mis-
specified) conditional variance used by the GLS estimator. In the case of LS, we have
φ2i = 1, the correlation between Ui and Ui/φ

2
i is one, and the asymptotic distribution

is a demeaned near unit-root distribution (based on an Ornstein-Uhlenbeck process).
An AR(1) model with conditional heteroskedasticity and ρ = 1, which falls within

case (ii) above, has been considered by Seo (1999) and Guo and Phillips (2001).
The results given here make use of ideas in these two papers. For an AR(1) model
without conditional heteroskedasticity, case (i) is studied by Park (2002), Giraitis and
Phillips (2006), and Phillips and Magdalinos (2007). Case (ii) is the “near integrated”
case that has been studied in AR models without conditional heteroskedasticity by
Bobkowski (1983), Cavanagh (1985), Chan and Wei (1987), Phillips (1987), Elliott
(1999), Elliott and Stock (2001), and Müller and Elliott (2003). The latter three
papers consider the situation that also is considered here in which the initial condition
yields a stationary process.
As noted above, in the present paper, we consider a heteroskedasticity-consistent

(HC) standard error estimator. Such an estimator is needed in order for the quasi-
GLS t statistic to have a standard normal asymptotic distribution in case (i) when
the form of the conditional heteroskedasticity is misspecified.
The paper provides high-level conditions under which infeasible and feasible quasi-

GLS estimators are asymptotically equivalent. The high-level conditions are verified
for cases in which the GLS estimator employs a parametric model, with parameter π,
for the form of the conditional heteroskedasticity. For technical reasons, we take the
estimator of π to be a discretized estimator and we require the parametric form of the
conditional heteroskedasticity to be such that the conditional variance depends upon
a finite number of lagged squared innovations. Neither of these conditions is particu-
larly restrictive because (a) the grid size for the discretized estimator can be defined
such that there is little difference between the discretized and non-discretized versions
of the estimator of π, (b) the parametric model for the conditional heteroskedasticity
may be misspecified, and (c) any parametric model with stationary conditional het-
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eroskedasticity, such as a GARCH(1,1) model, can be approximated arbitrarily well
by a model with a large finite number of lags.
The results of this paper are used in Andrews and Guggenberger (2005) to show

that symmetric two-sided subsampling confidence intervals (based on the quasi-GLS
t statistic described above) have correct asymptotic size in an AR(1) model with
conditional heteroskedasticity. (Here “asymptotic size” is defined to be the limit as
the sample size n goes to infinity of the exact, i.e., finite-sample, size.) This result
requires uniformity in the asymptotics and, hence, relies on asymptotic results in
which the autoregressive parameter and the innovation distribution may depend on n.
In addition, Andrews and Guggenberger (2005) shows that upper and lower one-sided
and symmetric and equal-tailed two-sided hybrid-subsampling confidence intervals
have correct asymptotic size. No other confidence intervals in the literature, including
those in Stock (1991), Andrews (1993), Andrews and Chen (1994), Nankervis and
Savin (1996), Hansen (1999), Chen and Deo (2007), and Mikusheva (2007), have
correct asymptotic size in an AR(1) model with conditional heteroskedasticity.
The remainder of the paper is organized as follows. Section 2 introduces the model

and statistics considered. Section 3 gives the assumptions, normalization constants,
and asymptotic results. Section 4 provides proofs of the results.

2 Model, Estimators, and t Statistic

We use the unobserved components representation of the AR(1) model. The
observed time series {Yi : i = 0, ..., n} is based on a latent no-intercept AR(1) time
series {Y ∗i : i = 0, ..., n}:

Yi = α+ Y ∗i ,

Y ∗i = ρY ∗i−1 + Ui, for i = 1, ..., n, (2.1)

where ρ ∈ [−1 + ε, 1] for some 0 < ε < 2, {Ui : i = ..., 0, 1, ...} are stationary
and ergodic with conditional mean 0 given a σ-field Gi−1 defined below, conditional
variance σ2i = E(U

2
i |Gi−1), and unconditional variance σ2U ∈ (0,∞). The distribution

of Y ∗0 is the distribution that yields strict stationarity for {Y ∗i : i ≤ n} when ρ < 1,
i.e., Y ∗0 =

S∞
j=0 ρ

jU−j, and is arbitrary when ρ = 1.
The model can be rewritten as

Yi = hα+ ρYi−1 + Ui, where hα = α(1− ρ), (2.2)

for i = 1, ..., n.1

We consider a feasible quasi-GLS (FQGLS) estimator of ρ and a t statistic based

on it. The FQGLS estimator depends on estimators {eφ2n,i : i ≤ n} of the conditional
1By writing the model as in (2.1), the case ρ = 1 and hα 9= 0 is automatically ruled out. Doing

so is desirable because when ρ = 1 and hα 9= 0, Yi is dominated by a deterministic trend and the LS
estimator of ρ converges at rate n3/2.
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variances {σ2i : i ≤ n}. The estimators {eφ2n,i : i ≤ n} may be from a parametric
specification of the conditional heteroskedasticity, e.g., a GARCH(1, 1) model, or
from a nonparametric estimator, e.g., one based on q lags of the observations. We
do not assume that the conditional heteroskedasticity estimator is consistent. For
example, we allow for incorrect specification of the parametric model in the former
case and conditional heteroskedasticity that depends on more than q lags in the latter
case. The estimated conditional variances {eφ2n,i : i ≤ n} are defined such that they
approximate a stationary Gi−1-adapted sequence {φ2i : i ≤ n} in the sense that certain
normalized sums have the same asymptotic distribution whether eφ2n,i or φ2i appears
in the sum. This is a typical property of feasible and infeasible GLS estimators.
As an example, the results allow for the case where (i) {eφ2n,i : i ≤ n} are from a

GARCH(1,1) parametric model estimated using LS residuals with GARCH and LS
parameter estimators hπn and (hαn,hρn), respectively, (ii) (hαn,hρn) have probability limit
given by the true values (hα0, ρ0), see (2.2), (iii) hπn has a probability limit given by
the “pseudo-true” value π0, (iv) eφ2n,i = φ2i,1(hαn,hρn, hπn), where φ2i,1(hα, ρ,π) is the i-th
GARCH conditional variance based on a start-up at time 1 and parameters (hα, ρ,π),
and (v) φ2i,−∞(hα, ρ,π) is the GARCH conditional variance based on a start-up at time
−∞ and parameters (hα, ρ,π). In this case, φ2i = φ2i,−∞(hα0, ρ0,π0). Thus, φ2i is justeφ2n,i with the estimation error and start-up truncation eliminated.
Under the null hypothesis that ρ = ρn, the studentized t statistic is

T ∗n(ρn) =
n1/2(eρn − ρn)eσn , (2.3)

where eρn is the LS estimator from the regression of Yi/eφn,i on Yi−1/eφn,i and 1/eφn,i, andeσ2n is the (1, 1) element of the standard heteroskedasticity-robust variance estimator
for the LS estimator in the preceding regression.
To define T ∗n(ρn) more explicitly, let Y, U, X1, and X2 be n-vectors with ith

elements given by Yi/eφn,i, Ui/eφn,i, Yi−1/eφn,i, and 1/eφn,i, respectively. Let ∆ be the
diagonal n × n matrix with ith diagonal element given by the ith element of the
residual vector MXY, where X = [X1 : X2] and MX = In −X(X �X)−1X �. That is,
∆ = Diag(MXY ). Then, by definition,

eρn = (X �
1MX2X1)

−1
X �
1MX2Y, and (2.4)eσ2n = �n−1X �

1MX2X1
�−1 �

n−1X �
1MX2∆

2MX2X1
� �
n−1X �

1MX2X1
�−1

.

By assumption, {(Ui,φ2i ) : i ≥ 1} are stationary and strong mixing. We define Gi
to be some non-decreasing sequence of σ-fields for i ≥ 1 for which (Uj,φ2j+1) ∈ Gi for
all j ≤ i.
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3 Asymptotic Results

3.1 Assumptions

We let F denote the distribution of {(Ui,φ2i ) : i = ..., 0, 1, ...}. Our asymptotic
results below are established under drifting sequences {(ρn, Fn) : n ≥ 1} of autoregres-
sive parameters ρn and distributions Fn. In particular, we provide results for the cases
n(1− ρn)→∞ and n(1− ρn)→ h1 <∞. When Fn depends on n, {(Ui,φ2i ) : i ≤ n}
for n ≥ 1 form a triangular array of random variables and (Ui,φ2i ) = (Un,i,φ

2
n,i). We

now specify assumptions on (Un,i,φ2n,i). The assumptions place restrictions on the
drifting sequence of distributions {Fn : n ≥ 1} that are considered.
The statistics eρn, eσn, and T ∗n(ρn) are invariant to the value of α. Hence, without

loss of generality, from now on we take α = 0 and Yn,i = Y ∗n,i.

Assumption INNOV. (i) For each n ≥ 1, {(Un,i,φ2n,i) : i = ..., 0, 1, ...} are station-
ary and strong mixing with E(Un,i|Gn,i−1) = 0 a.s., E(U2n,i|Gn,i−1) = σ2n,i a.s. where
Gn,i is some non-decreasing sequence of σ-fields for i = ..., 1, 2, ... for n ≥ 1 for which
(Un,j,φ

2
n,j+1) ∈ Gn,i for all j ≤ i, (ii) the strong-mixing numbers {αn(m) : m ≥ 1}

satisfy α(m) = supn≥1 αn(m) = O(m−3ζ/(ζ−3)) as m → ∞ for some ζ > 3, (iv)
supn,i,s,t,u,v,AEFn|

T
a∈A a|ζ <∞, where 0 ≤ i, s, t, u, v <∞, n ≥ 1, and A is any non-

empty subset of {Un,i−s, Un,i−t, U2n,i+1, Un,−u, Un,−v, U2n,1}, (v) φ2n,i ≥ δ > 0 a.s., (vi)
λminE(X

1X1�U2n,1/φ
2
n,1) ≥ δ > 0, where X1 = (Y ∗n,0/φn,1,φ

−1
n,1)

�, and (vii) the follow-
ing limits exist and are positive: h2,1 = limn→∞EU2n,i, h2,2 = limn→∞E(U2n,i/φ

4
n,i),

h2,3 = limn→∞E(U2n,i/φ
2
n,i), h2,4 = limn→∞Eφ−1n,i, h2,5 = limn→∞Eφ−2n,i, and h2,6 =

limn→∞Eφ−4n,i.

Given that φn,i is bounded away from zero by Assumption INNOV(v), Assumption
INNOV(iv) implies that supn,i,s,t,u,v,A∗ EFn |

T
a∈A∗ a|ζ < ∞, where 0 ≤ i, s, t, u, v <

∞, n ≥ 1, and A∗ is a non-empty subset of {Un,i−s, Un,i−t, U2n,i+1/φ4n,i+1, Un,−u, Un,−v,
U2n,1/φ

4
n,1} or a subset of {Un,i−s, Un,i−t,φ−kn,i+1, Un,−u, Un,−v,φ−kn,1} for k = 2, 3, 4. The

uniform bound on these expectations is needed in the proofs of Lemmas 7 and 8
below.
If ρn = 1, the initial condition Y

∗
n,0 is arbitrary. If ρn < 1, then the initial condition

satisfies the following assumption:

Assumption STAT. Y ∗n,0 =
S∞

j=0 ρ
j
nUn,−j.

We determine the asymptotic distributions eρn, eσ2n, and T ∗n(ρn) under sequences
{(ρn, Fn) : n ≥ 1} such that (a) Assumption INNOV holds and if ρn < 1 Assumption
STAT also holds, and

(b) n(1− ρn)→ h1 for (i) h1 =∞ and (ii) 0 ≤ h1 <∞. (3.1)

The asymptotic distributions of eρn and eσ2n are shown to depend on the parameters
h1, h2,1, and h2,2 (where h2,1 and h2,2 are defined in Assumption INNOV(vi)) and the
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parameter h2,7, which is defined by

h2,7 =
h2,3

(h2,1h2,2)1/2
= lim

n→∞
CorrFn(Un,i, Un,i/φ

2
n,i)). (3.2)

The asymptotic distribution of T ∗n(ρn) is shown to depend only on h1 and h2,7.
Define

h2 = (h2,1, ..., h2,7)
� and

h = (h1, h
�
2)
� ∈ H = R+,∞ ×H2, (3.3)

where R+ = {x ∈ R : x ≥ 0}, R+,∞ = R+ ∪ {∞}, and H2 ⊂ (0,∞)6 × (0, 1].
For notational simplicity, we index the asymptotic distributions of eρn, eσ2n, and

T ∗n(ρn) by h below (even though they only depend on a subvector of h).

3.2 Normalization Constants

The normalization constants an and dn used to obtain the asymptotic distributions
of eρn and eσ2n depend on (ρn, Fn) and are denoted an(ρn, Fn) and dn(ρn, Fn). They are
defined as follows. Let {ρn : n ≥ 1} be a sequence for which n(1 − ρn) → ∞ or
n(1− ρn)→ h1 <∞. Define the 2-vectors

X1 = (Y ∗n,0/φn,1,φ
−1
n,1)

� and

Z = (1,−EFn(Y ∗n,0/φ2n,1)/EFn(φ−2n,1))�. (3.4)

Define

an = an(ρn, Fn) = n
1/2dn(ρn, Fn) and (3.5)

dn = dn(ρn, Fn) =

+
EFn(Y

∗2
n,0/φ

2
n,1)−(EFn(Y ∗n,0/φ2n,1))2/EFn(φ−2n,1)

(Z�EFn(X1X1�U2n,1/φ
2
n,1)Z)

1/2 if n(1− ρn)→∞
n1/2 if n(1− ρn)→ h1 <∞.

Note that the normalization constant for the t statistic T ∗n(ρn) is an(ρn, Fn)/dn(ρn, Fn)
= n1/2.
In certain cases, the normalization constants simplify. In the case where n(1 −

ρn)→∞ and ρn → 1, the constants an and dn in (3.5) simplify to

an = n
1/2

EFn(Y
∗2
n,0/φ

2
n,1)

(EFn(Y
∗2
n,0U

2
n,1/φ

4
n,1))

1/2
and dn =

EFn(Y
∗2
n,0/φ

2
n,1)

(EFn(Y
∗2
n,0U

2
n,1/φ

4
n,1))

1/2
(3.6)

up to lower order terms. This holds because by Lemma 6 below

Z �EFn(X
1X1�U2n,1/φ

2
n,1)Z

= EFn(Y
∗2
n,0U

2
n,1/φ

4
n,1)− 2EFn(Y ∗n,0U2n,1/φ4n,1)EFn(Y ∗n,0/φ2n,1)/EFn(φ−2n,1)

+(EFn(Y
∗
n,0/φ

2
n,1))

2EFn(U
2
n,1/φ

4
n,1)/(EFn(φ

−2
n,1))

2

= EFn(Y
∗2
n,0U

2
n,1/φ

4
n,1)(1 +O(1− ρn)) (3.7)
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and

EFn(Y
∗2
n,0/φ

2
n,1)− (EFn(Y ∗n,0/φ2n,1))2/EFn(φ−2n,1) = EFn(Y ∗2n,0/φ2n,1)(1+O(1− ρn)). (3.8)

If, in addition, {Un,i : i = ..., 0, 1, ...} are i.i.d. with mean 0, variance σ2U,n ∈ (0,∞),
and distribution Fn and φ2n,i = 1, then the constants an and dn simplify to

an = n
1/2(1− ρ2n)

−1/2 and dn = (1− ρ2n)
−1/2. (3.9)

This follows because in the present case φ2n,i = 1, EFnY
∗2
n,0 =

S∞
j=0 ρ

2j
n EFnU

2
n,−j =

(1 − ρ2n)
−1σ2U,n, and EFn(Y

∗2
n,0U

2
n,1/φ

2
n,1) = (1 − ρ2n)

−1σ4n,U . The expression for an in
(3.9) is as in Giraitis and Phillips (2006).

3.3 Results for LS and Infeasible QGLS

In this section, we provide results for the (infeasible) QGLS estimator based on

{φ2n,i : i ≤ n} rather than {eφ2n,i : i ≤ n}. Conditions under which feasible and
infeasible QGLS estimators are asymptotically equivalent are given in Section 3.4
below. The LS estimator is covered by the results of this section by taking φ2n,i = 1
for all n, i.
Let W (·) and W2(·) be independent standard Brownian motions on [0, 1]. Let Z1

be a standard normal random variable that is independent of W (·) and W2(·). By
definition,

Ih(r) =
rU
0

exp(−(r − s)h1)dW (s),

I∗h(r) = Ih(r) +
1√
2h1

exp(−h1r)Z1 for h1 > 0 and I∗h(r) =W (r) for h1 = 0,

I∗D,h(r) = I
∗
h(r) −

1U
0

I∗h(s)ds, and

Z2 =

�
1U
0

I∗D,h(r)
2dr

�−1/2 1U
0

I∗D,h(r)dW2(r). (3.10)

As defined, Ih(r) is an Ornstein-Uhlenbeck process. Note that the conditional dis-
tribution of Z2 given W (·) and Z1 is standard normal. Hence, its unconditional
distribution is standard normal and it is independent of W (·) and Z1.
The asymptotic distribution of the infeasible QGLS estimator and t statistic are

given in the following Theorem.

Theorem 1 Suppose (i) Assumption INNOV holds, (ii) Assumption STAT holds
when ρn < 1, (iii) ρn ∈ [−1 + ε, 1] for some 0 < ε < 2, and (iv) ρn = 1− hn,1/n and
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hn,1 → h1 ∈ [0,∞]. Then, the infeasible QGLS estimator eρn and t statistic T ∗n(ρn)
(defined in (2.3) and (2.4) with φn,i in place of eφn,i) satisfy

an(eρn − ρn)→d Vh, dneσn →d Qh, and T ∗n(ρn) =
n1/2(eρn − ρn)eσn →d Jh,

where an, dn, Vh, Qh, and Jh are defined as follows.
(a) For h1 ∈ [0,∞), an = n, dn = n1/2, Vh is the distribution of

h2,7

U 1
0
I∗D,h(r)dW (r)

h
1/2
2,2 h

1/2
2,1

U 1
0
I∗D,h(r)2dr

+ (1− h22,7)1/2
U 1
0
I∗D,h(r)dW2(r)

h
1/2
2,2 h

1/2
2,1

U 1
0
I∗D,h(r)2dr

, (3.11)

Qh is the distribution of

h
−1/2
2,2 h

−1/2
2,1

�
1U
0

I∗D,h(r)
2dr

�−1/2
, (3.12)

and Jh is the distribution of

h2,7

U 1
0
I∗D,h(r)dW (r)�U 1
0
I∗D,h(r)2dr

�1/2 + (1− h22,7)1/2Z2. (3.13)

(b) For h1 = ∞, an and dn are defined as in (3.5), Vh is a N(0, 1) distribution, Qh
is the distribution of the constant one, and Jh is a N(0, 1) distribution.

Comments. 1. Theorem 1 shows that the asymptotic distribution of the QGLS t
statistic is a standard normal distribution when n(1 − ρn) → ∞ and a mixture of
a standard normal distribution and a “demeaned near unit-root distribution” when
n(1 − ρn) → h1 < ∞. In the latter case, the mixture depends on h2,7, which is
the asymptotic correlation between the innovation Un,i and the rescaled innovation
Un,i/φ

2
n,i. When the LS estimator is considered (which corresponds to φ2n,i = 1),

we have h2,7 = 1 and the asymptotic distribution is a “demeaned near unit-root
distribution.”
2. The asymptotic results of Theorem 1 apply to a first-order AR model. They

should extend without essential change to a p-th order autoregressive model in which
ρ equals the “sum of the AR coefficients.” Of course, the proofs will be more complex.
We do not provide them here.
3. Theorem 1 is used in the AR(1) example of Andrews and Guggenberger

(2005) to verify Assumptions BB(i) and (iii) for the (infeasible) QGLS estimator
(with Qh playing the role of Wh in Assumption BB). In turn, the results of Andrews
and Guggenberger (2005) show that whether or not conditional heteroskedasticity is
present: (i) the symmetric two-sided subsampling confidence interval for ρ has cor-
rect asymptotic size (defined to be the limit as n →∞ of exact size) and (ii) upper
and lower one-sided and symmetric and equal-tailed two-sided hybrid-subsampling
confidence intervals for ρ have correct asymptotic size. These results hold even if the
form of the conditional heteroskedasticity is misspecified.
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3.4 Asymptotic Equivalence of Feasible and Infeasible QGLS

Here we provide sufficient conditions for the feasible and infeasible QGLS statis-
tics to be asymptotically equivalent. In particular, we give conditions under which
Theorem 1 holds when eρn is defined using the feasible conditional heteroskedasticity
estimators {eφn,i : i ≤ n}.
We assume that the conditional heteroskedasticity estimators (CHE) {eφ2n,i : i ≤ n}

satisfy the following assumption.

Assumption CHE. (i) For some ε > 0, eφ2n,i ≥ ε a.s. for all i ≤ n, n ≥ 1. (ii)
For random variables {(Un,i,φ2n,i) : i = ..., 0, 1, ...} for n ≥ 1 that satisfy Assumption
INNOV and for Yn,i = α + Y ∗n,i, Y

∗
n,i = ρnY

∗
n,i−1 + Un,i, with α = 0, that satisfies

Assumption STAT when ρn < 1 and n(1 − ρn) → h1 ∈ [0,∞], we have (a) when
h1 ∈ [0,∞), n−1/2

Sn
i=1(n

−1/2Y ∗n,i−1)
jUn,i(eφ−2n,i − φ−2n,i) = op(1) for j = 0, 1, (b) when

h1 ∈ [0,∞), n−1
Sn

i=1 |Un,i|d|eφ−jn,i−φ−jn,i| = op(1) for (d, j) = (0, 1), (1, 2), and (2, 2), (c)
when h1 =∞, n−1/2

Sn
i=1 ((1−ρn)

1/2Y ∗n,i−1)
jUn,i(eφ−2n,i−φ−2n,i) = op(1) for j = 0, 1, and

(d) when h1 =∞, n−1
Sn

i=1 |Un,i|k |eφ−jn,i−φ−jn,i|d = op(1) for (d, j, k) = (1, 2, 0), (2, 2, 0),
and (2, 4, k) for k = 0, 2, 4.

Assumption CHE(i) is not restrictive. For example, if eφn,i is obtained by specifying
a parametric model for the conditional heteroskedasticity, then Assumption CHE(i)
holds provided the specified parametric model (which is user chosen) consists of an
intercept that is bounded away from zero plus a non-negative random component (as
in (3.14) below). Most parametric models in the literature have this form and it is
always possible to use one that does. Typically, Assumptions CHE(ii)(a) and (c) are
more difficult to verify than Assumptions CHE(ii)(b) and (d) because they have the
scale factor n−1/2 rather than n−1.

Theorem 2 Suppose (i) Assumptions CHE and INNOV hold, (ii) Assumption STAT
holds when ρn < 1, (iii) ρn ∈ [−1+ ε, 1] for some 0 < ε < 2, and (iv) ρn = 1−hn,1/n
and hn,1 → h1 ∈ [0,∞]. Then, the feasible QGLS estimator eρn and t statistic T ∗n(ρn)
(defined in (2.3) and (2.4) using eφn,i) satisfy

an(eρn − ρn)→d Vh, dneσn →d Qh, and T ∗n(ρn) =
n1/2(eρn − ρn)eσn →d Jh,

where an, dn, Vh, Qh, and Jh are defined as in Theorem 1 (that is, with an and dn
defined using φn,i, not eφn,i).
Comment. Theorem 2 shows that the infeasible and feasible QGLS statistics have
the same asymptotic distributions under Assumption CHE.

We now provide sufficient conditions for Assumption CHE. Suppose {eφ2n,i : i ≤ n}
are based on a parametric model with conditional heteroskedasticity parameter π
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estimated using residuals. Let hπn be the estimator of π and let (hαn,hρn) be the
estimators of (hα, ρ) used to construct the residuals, where hα is the intercept when the
model is written in regression form, see (2.2). For example, hπn may be an estimator of
π based on residuals in place of the true errors and (hαn,hρn) may be the LS estimators
(whose properties are covered by the asymptotic results given in Theorem 1 by taking
φn,i = 1). In particular, suppose that

eφ2n,i = φ2n,i(hαn,hρn, hπn), where
φ2n,i(hα, ρ,π) = ω +

Li[
j=1

μj(π)eU2n,i−j(hα, ρ),
eUn,i(hα, ρ) = Yn,i − hα− ρYn,i−1, (3.14)

Li = min{i−1, L}, and ω is an element of π. Here L <∞ is a bound on the maximum
number of lags allowed. Any model with stationary conditional heteroskedasticity
(bounded away from the nonstationary region), such as a GARCH(1,1) model, can
be approximated arbitrarily well by taking L sufficiently large. Hence, the restriction
to finite lags is not overly restrictive. The upper bound Li, rather than L, on the
number of lags in the sum in (3.14) takes into account the truncation at 1 that
naturally occurs because one does not observe residuals for i < 1.
The parameter space for π is Π, which is a bounded subset of Rdπ , for some dπ > 0.

Let eπn ∈ Π be an nδ1-consistent estimator of π for some δ1 > 0. For technical reasons,
we base eφ2n,i on an estimator hπn that is a discretized version of eπn that takes values
in a finite set Πn (⊂ Π) for n ≥ 1, where Πn consists of points on a uniform grid
with grid size that goes to zero as n → ∞ and hence the number of elements of Πn
diverges to infinity as n → ∞. The reason for considering a discretized estimator
is that when the grid size goes to zero more slowly than n−δ1, then wp→ 1 the
estimators {hπn : n ≥ 1} take values in a sequence of finite sets {Πn,0 : n ≥ 1} whose
numbers of elements is bounded as n → ∞. The latter property makes it easier to
verify Assumption CHE(ii). The set Πn can be defined such that there is very little
difference between eπn and hπn in a finite sample of size n.
We employ the following sufficient condition for the FQGLS estimator to be as-

ymptotically equivalent to the (infeasible) QGLS estimator.

Assumption CHE2. (i) eφ2n,i satisfies (3.14) with L < ∞ and μj(·) ≥ 0 for all
j = 1, ..., L, (ii) φ2n,i = ωn+

SL
j=1 μj(πn)U

2
n,i−j and πn → π0 for some π0 ∈ Π (and π0

may depend on the sequence), where ωn is an element of πn, (iii) an(hρn−ρn) = Op(1),
n1/2hαn = Op(1), and nδ1(eπn − πn) = op(1) for some δ1 > 0 under any sequence
(Un,i,φ

2
n,i) that satisfies Assumption INNOV and for Yn,i defined as in Assumption

CHE with α = β = 0 satisfying Assumption STAT when ρn < 1, and with ρ = ρn
that satisfies n(1− ρn)→ h1 ∈ [0,∞], where an is defined in (3.5), (iv) hπn minimizes
||π − eπn|| over π ∈ Πn for n ≥ 1, where Πn (⊂ Π) consists of points on a uniform

9



grid with grid size Cn−δ2 for some 0 < δ2 < δ1 and 0 < C < ∞, (v) Π bounds the
intercept ω away from zero, and (vi) μj(π) is continuous on Π for j = 1, ..., L.

The part of Assumption CHE2(iii) concerning hρn holds for the LS estimator by The-
orem 1(a) (by taking φn,i = 1), the part concerning hαn holds for the LS estimator
by similar, but simpler, arguments, and typically the part concerning eπn holds for all
δ1 < 1/2. Assumptions CHE2(iv)-(vi) can always be made to hold by choice of eπn,
Π, and μj(π).

Lemma 1 Assumption CHE2 implies Assumption CHE.

Comment. The use of a discretized estimator hπn and a finite bound L on the number
of lags in Assumption CHE2 are made for technical convenience. Undoubtedly, they
are not necessary for the Lemma to hold (although other conditions may be needed
in their place).
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4 Proofs

This section provides proofs of Theorems 1 and 2 and Lemma 1. Section 4.1.1
states Lemmas 2-9, which are used in the proof of Theorem 1. Section 4.1.2 proves
Theorem 1. Section 4.1.3 proves Lemmas 2-9. Section 4.2 proves Theorem 2. Section
4.3 proves Lemma 1.
To simplify notation, in the remainder of the paper we omit the subscript Fn on

expectations.

4.1 Proof of Theorem 1

4.1.1 Lemmas 2-9

The proof of Theorem 1 uses eight lemmas that we state in this section. The first
four lemmas deal with the case of h1 ∈ [0,∞). The last four deal with the case of
h1 =∞.
In integral expressions below, we often leave out the lower and upper limits zero

and one, the argument r, and dr to simplify notation when there is no danger of
confusion. For example,

U 1
0
Ih(r)

2dr is typically written as
U
I2h. By “⇒ ” we denote

weak convergence as n→∞.
Lemma 2 Suppose Assumptions INNOV and STAT hold, ρn ∈ (−1, 1) and ρn =
1− hn,1/n where hn,1 → h1 ∈ [0,∞) as n→∞. Then,

(2hn,1/n)
1/2Y ∗n,0/λ

1/2
n,1 →d Z1 ∼ N(0, 1).

Define h∗n,1 ≥ 0 by ρn = exp(−h∗n,1/n). As shown in the proof of Lemma 2,
h∗n,1/hn,1 → 1 when h1 ∈ [0,∞). By recursive substitution, we have

Y ∗n,i = hYn,i + exp(−h∗n,1i/n)Y ∗n,0, wherehYn,i = Si
j=1 exp(−h∗n,1(i− j)/n)Un,j. (4.1)

Let BM(Ω) denote a bivariate Brownian motion on [0, 1] with variance matrix Ω.
The next lemma is used to establish the simplified form of the asymptotic distribution
that appears in Theorem 1(a).

Lemma 3 Suppose (h1/22,1W (r),M(r))
� = BM(Ω), where

Ω =

�
h2,1 h2,3
h2,3 h2,2

�
.

Then, M(r) can be written as M(r) = h
1/2
2,2

�
h2,7W (r) + (1− h22,7)1/2W2(r)

�
, where

(W (r),W2(r))
� = BM(I2) and h2,7 = h2,3/(h2,1h2.2)1/2 is the correlation that arises

in the variance matrix Ω.
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The following Lemma states some general results on weak convergence of certain
statistics to stochastic integrals. It is proved using Theorems 4.2 and 4.4 of Hansen
(1992) and Lemma 2 above. Let ⊗ denote the Kronecker product.

Lemma 4 Suppose {vn,i : i ≤ n, n ≥ 1} is a triangular array of row-wise strictly-
stationary strong-mixing random dv-vectors with (i) strong-mixing numbers {αn(m) :
m ≥ 1, n ≥ 1} that satisfy α(m) = supn≥1 αn(m) = O(m−ζτ/(ζ−τ)) as m → ∞
for some ζ > τ > 2, and (ii) supn≥1 ||vn,i||ζ < ∞. Suppose n−1EVnV �n → Ω0 as
n → ∞, where Vn =

Sn
i=1 vn,i, and Ω0 is some dv × dv variance matrix. Let

Xn,i = ρnXn,i−1 + vn,i, where n(1 − ρn) → h1 ∈ [0,∞). If h1 > 0, the first ele-
ment of Xn,i has a stationary initial condition and all of the other elements have
zero initial conditions. If h1 = 0, all of the elements of Xn,i have zero initial con-
ditions, i.e., Xn,0 = 0. Let Λ = limn→∞ n−1

Sn
i=1

Sn
j=i+1Evn,iv

�
n,j. Let Kh(r) =U r

0
exp((r − s)h1)dB(s), where B(·) is a dv-vector BM(Ω0) on [0, 1]. If h1 > 0, let

K∗
h(r) = Kh(r) + e1(2h1)

−1/2 exp(−h1r)Ω1/20,1,1Z1, where Z1 ∼ N(0, 1) is independent
of B(·), e1 = (1, 0, ..., 0)� ∈ Rdv , and Ω0,1,1 denotes the (1, 1) element of Ω0. If h1 = 0,
let K∗

h(r) = Kh(r). Then,
(a) n−1/2Xn,[nr] ⇒ K∗

h(r),
(b) n−1

Sn
i=1Xn,i−1v

�
n,i →d

U
K∗
hdB

� + Λ, and
(c) for τ ≥ 3, n−3/2

Sn
i=1(Xn,i−1 ⊗ Xn,i−1)v�n,i →d

U
(K∗

h ⊗ K∗
h)dB

� +
�
Λ⊗ U K∗

h

�
+
�U
K∗
h ⊗ Λ

�
.

We now use Lemma 4 to establish the following results which are key in the proof
of Theorem 1(a). Let [a] denote the integer part of a.

Lemma 5 Suppose Assumptions INNOV and STAT hold, ρn ∈ (−1, 1], ρn = 1 −
hn,1/n where hn,1 → h1 ∈ (0,∞). Then, the following results (a)-(k) hold jointly,
(a) n−1/2Y ∗n,[nr] ⇒ h

1/2
2,1 I

∗
h(r),

(b) n−1
Sn

i=1 φ
−j
n,i →p limn→∞Eφ

−j
n,i = h2,(j+3) for j = 1, 2, 4,

(c) n−1
Sn

i=1 Un,i/φ
4
n,i →p limn→∞E(Un,i/φ4n,i) = 0,

(d) n−1
Sn

i=1 U
2
n,i/φ

4
n,i →p limn→∞E(U2n,i/φ

4
n,i) = h2,2,

(e) n−1/2
Sn

i=1 Un,i/φ
2
n,i →d M(1) =

U
dM = h

1/2
2,2

U
d[h2,7W (r) + (1− h22,7)1/2W2(r)],

(f) n−3/2
Sn

i=1 Y
∗
n,i−1/φ

2
n,i = n

−3/2Sn
i=1 Y

∗
n,i−1Eφ

−2
n,1 +Op(n

−1/2)→d h2,5h
1/2
2,1

U
I∗h,

(g) n−1
Sn

i=1 Y
∗
n,i−1Un,i/φ

2
n,i →d h

1/2
2,1

U
I∗hdM = h

1/2
2,2 h

1/2
2,1

U
I∗hd[h2,7W (r)+

(1− h22,7)1/2W2(r)],

(h) n−2
Sn

i=1 Y
∗2
n,i−1/φ

2
n,i = n

−2Sn
i=1 Y

∗2
n,i−1Eφ

−2
n,1 +Op(n

−1/2)→d h2,5h2,1
U
I∗2h ,

(i) n−3/2
Sn

i=1 Y
∗
n,i−1U

2
n,i/φ

4
n,i = n

−3/2Sn
i=1 Y

∗
n,i−1E(U

2
n,1/φ

4
n,1) +Op(n

−1/2)

→d h2,2h
1/2
2,1

U
I∗h,

(j) n−2
Sn

i=1 Y
∗2
n,i−1U

2
n,i/φ

4
n,i = n

−2Sn
i=1 Y

∗2
n,i−1E(U

2
n,1/φ

4
n,1) +Op(n

−1/2)
→d h2,2h2,1

U
I∗2h ,
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(k) n−1−�1/2
Sn

i=1 Y
∗�1
n,i−1U

�2
n,i/φ

4
n,i = op(n) for (�1, �2) = (1, 0), (1, 1), (2, 0), (2, 1),

(3, 0), (3, 1), and (4, 0), and
(l) when h1 = 0, parts (a) and (f)-(k) hold with Y ∗n,i−1 replaced by hYn,i−1.
In the proof of Theorem 1(b), we use the following well-known strong-mixing

covariance inequality, see e.g. Doukhan (1994, Thm. 3, p. 9). Let X and Y be
strong-mixing random variables with respect to σ-fields F ji (for integers i ≤ j) such
that X ∈ Fn−∞ and Y ∈ F∞n+m with strong-mixing numbers {α(m) : m ≥ 1}. For
p, q > 0 such that 1− p−1 − q−1 > 0, let ||X||p = (E|X|p)1/p and ||Y ||q = (E|Y |q)1/q.
Then, the following inequality holds

Cov(X,Y ) ≤ 8||X||p||Y ||qα(k)1−p−1−q−1 . (4.2)

The proof of Theorem 1(b) uses the following technical Lemmas. The Lemmas
make repeated use of the mixing inequality (4.2) applied with p = q = ζ > 3, where
ζ appears in Assumption INNOV.

Lemma 6 Suppose n(1 − ρn) → ∞, ρn → 1, and Assumptions INNOV and STAT
hold, then we have

E(Y ∗2n,0U
2
n,1/φ

4
n,1)− (1− ρ2n)

−1(EU2n,1)
2/φ4n,1 = O(1),

E(Y ∗2n,0/φ
2
n,1)− (1− ρ2n)

−1EU2n,1Eφ
−2
n,1 = O(1),

E(Y ∗n,0/φ
2
n,1) = O(1), and

E(Y ∗n,0U
2
n,1/φ

4
n,1) = O(1).

Lemma 7 Suppose n(1 − ρn) → ∞, ρn → 1 and Assumptions INNOV and STAT
hold, then we have

E

#
n[
i=1

[Eζ2n,i −E(ζ2n,i|Gn,i−1)]
$2
→ 0, where ζn,i ≡ n−1/2

Y ∗n,i−1Un,i/φ
2
n,i

(E(Y ∗2n,0U
2
n,1/φ

4
n,1))

1/2
.

Lemma 8 Suppose n(1 − ρn) → ∞, ρn → 1, and Assumptions INNOV and STAT
hold, then we have
(a) n−1(1− ρn)

1/2X �
1X2 = op(1),

(b) E(Y ∗2n,0/φ
2
n,1)

−1n−1X �
1X1 →p 1,

(c) (E(Y ∗2n,0U
2
n,1/φ

4
n,1))

−1n−1
Sn

i=1(Y
∗2
n,i−1U

2
n,i/φ

4
n,i)→p 1,

(d) (X �X)−1X �U = (Op((1− ρn)
1/2n−1/2), Op(n−1/2))�,

(e) (E(Y ∗2n,0U
2
n,1/φ

4
n,1))

−1n−1X �
1∆

2X1 →p 1,

(f) (1− ρn)
1/2n−1(X �

2∆
2X1) = Op(1), and

(g) n−1(X �
2∆

2X2) = Op(1).

Lemma 9 Suppose n(1 − ρn) → ∞, ρn → 1, and Assumptions INNOV and STAT
hold, we have

Sn
i=1E(ζ

2
n,i1(|ζn,i| > δ)|Gn,i−1)→p 0 for any δ > 0.
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4.1.2 Proof of Theorem 1

To simplify notation, in the remainder of the paper we often leave out the subscript
n. For example, instead of ρn,σ

2
U,n, Y

∗
n,i, Un,i,φn,i,

eφn,i, and ζn,i, we write ρ,σ
2
U , Y

∗
i , Ui,

φi, eφi, and ζi.We do not drop n from hn,1 because hn,1 and h1 are different quantities.
As above, we omit the subscript Fn on expectations.
In the proofs of Theorem 1 and Lemmas 2-9 below, X1, X2, U, ∆, and Y are

defined as in the paragraph containing (2.4), but with φi in place of eφn,i.
Proof of Theorem 1. First we prove part (a) of the Theorem when h1 > 0. In this
case, an = n and dn = n1/2. We can write

n(eρn − ρ) =
�
n−2X �

1MX2X1
�−1

n−1X �
1MX2U and

neσ2n = �n−2X �
1MX2X1

�−1 �
n−2X �

1MX2∆
2MX2X1

� �
n−2X �

1MX2X1
�−1

. (4.3)

We consider the terms in (4.3) one at a time. First, we have

n−2X �
1MX2X1

= n−2
n[
i=1

⎛⎝Y ∗i−1/φi −
#

n[
j=1

Y ∗j−1/φ
2
j

$#
n[
j=1

φ−2j

$−1
φ−1i

⎞⎠2

= n−2
n[
i=1

Y ∗2i−1/φ
2
i −

#
n−3/2

n[
j=1

Y ∗j−1/φ
2
j

$2#
n−1

n[
j=1

φ−2j

$−1

→d h2,5h2,1

]
I∗2h −

�
h2,5h

1/2
2,1

]
I∗h

�2
h−12,5 = h2,5h2,1

]
I∗2D,h, (4.4)

where the first two equalities hold by definitions and some algebra, and the conver-
gence holds by Lemma 5(b), (f), and (h) with j = 2 in part (b).
Similarly, we have

n−1X �
1MX2U

= n−1
n[
i=1

⎛⎝Y ∗i−1/φi −
#

n[
j=1

Y ∗j−1/φ
2
j

$#
n[
j=1

φ−2j

$−1
φ−1i

⎞⎠Ui/φi
= n−1

n[
i=1

Y ∗i−1Ui/φ
2
i −

#
n−3/2

n[
j=1

Y ∗j−1/φ
2
j

$#
n−1

n[
j=1

φ−2j

$−1
n−1/2

n[
i=1

Ui/φ
2
i

→d h
1/2
2,1

]
I∗hdM − h1/22,1

]
I∗h

]
dM = h

1/2
2,1

]
I∗D,hdM, (4.5)

where the first two equalities hold by definitions and some algebra, and the conver-
gence holds by Lemma 5(b) and (e)-(g) with j = 2 in part (b).
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To determine the asymptotic distribution of n−2X �
1MX2∆

2MX2X1, we make the
following preliminary calculations. Let eUi/φi denote the ith element ofMXY =MXU.
That is,

eUi/φi = Ui/φi −A�nB−1n �
n−1/2φ−1i
n−1Y ∗i−1/φi

�
, where

An =

�
n−1/2

Sn
j=1 Uj/φ

2
j

n−1
Sn

j=1 Y
∗
j−1Uj/φ

2
j

�
and

Bn =

�
n−1

Sn
j=1 φ

−2
j n−3/2

Sn
j=1 Y

∗
j−1/φ

2
j

n−3/2
Sn

j=1 Y
∗
j−1/φ

2
j n−2

Sn
j=1 Y

∗2
j−1/φ

2
j

�
. (4.6)

Using (4.6), we have

n−2
n[
i=1

Y ∗2i−1 eU2i /φ4i = n−2 n[
i=1

Y ∗2i−1U
2
i /φ

4
i − 2n−1A�nB−1n

�
n−3/2

Sn
i=1 Y

∗2
i−1Ui/φ

4
i

n−2
Sn

i=1 Y
∗3
i−1Ui/φ

4
i

�
+n−1A�nB

−1
n

�
n−2

Sn
i=1 Y

∗2
i−1/φ

4
i n−5/2

Sn
i=1 Y

∗3
i−1/φ

4
i

n−5/2
Sn

i=1 Y
∗3
i−1/φ

4
i n−3

Sn
i=1 Y

∗4
i−1/φ

4
i

�
B−1n An

= n−2
n[
i=1

Y ∗2i−1U
2
i /φ

4
i + op(1), (4.7)

where the second equality holds using Lemma 5(k) with (�1, �2) = (2, 1), (3, 1), (2, 0),
(3, 0), and (4, 0) and to show that An and B−1n are Op(1) we use Lemma 5(b) and
(e)-(h) with j = 2 in part (b).
Similarly to (4.7) but with Y ∗i−1 in place of Y

∗2
i−1, and then with Y

∗2
i−1 deleted, we

have

n−3/2
n[
i=1

Y ∗i−1 eU2i /φ4i = n−3/2 n[
i=1

Y ∗i−1U
2
i /φ

4
i + op(1) and

n−1
n[
i=1

eU2i /φ4i = n−1 n[
i=1

U2i /φ
4
i + op(1) (4.8)

using Lemma 5 as above to show that An and B−1n are Op(1), using Lemma 5(k) with
(�1, �2) = (1, 1), (2, 1), (1, 0), (2, 0), and (3, 0) for the first result, and using Lemma
5(k) with (�1, �2) = (1, 1), (1, 0), and (2, 0), Lemma 5(b) with j = 4, and Lemma 5(c)
for the second result.
We now have

n−2X �
1MX2∆

2MX2X1

= n−2
n[
i=1

�eU2i /φ2i�
⎛⎝Y ∗i−1/φi −

#
n[
j=1

Y ∗j−1/φ
2
j

$#
n[
j=1

φ−2j

$−1
φ−1i

⎞⎠2
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= n−2
n[
i=1

Y ∗2i−1 eU2i /φ4i − 2
#
n−3/2

n[
j=1

Y ∗j−1/φ
2
j

$#
n−1

n[
j=1

φ−2j

$−1
n−3/2

n[
i=1

Y ∗i−1 eU2i /φ4i
+

#
n−3/2

n[
j=1

Y ∗j−1/φ
2
j

$2#
n−1

n[
j=1

φ−2j

$−2
n−1

n[
i=1

eU2i φ−4i
= n−2

n[
i=1

Y ∗2i−1U
2
i /φ

4
i − 2

#
n−3/2

n[
j=1

Y ∗j−1/φ
2
j

$#
n−1

n[
j=1

φ−2j

$−1
n−3/2

n[
i=1

Y ∗i−1U
2
i /φ

4
i

+

#
n−3/2

n[
j=1

Y ∗j−1/φ
2
j

$2#
n−1

n[
j=1

φ−2j

$−2
n−1

n[
i=1

U2i /φ
4
i +Op(n

−1)

→d h2,2h2,1

]
I∗2h − 2h1/22,1

]
I∗h ·

�
h2,2h

1/2
2,1

]
I∗h

�
+

�
h
1/2
2,1

]
I∗h

�2
h2,2

= h2,2h2,1

] �
I∗h −

]
I∗h

�2
= h2,2h2,1

]
I∗2D,h, (4.9)

where the first two equalities follow from definitions and some algebra, the third
equality holds by (4.7), (4.8), and Lemma 5(b), (d), (f), (i), and (j) with j = 2 in
part (b), and the convergence holds by the same parts of Lemma 5.
Putting the results of (4.3), (4.4), (4.5), (4.9), and Lemma 3 together gives

T ∗n(ρn) →d

h
1/2
2,1

U
I∗D,hdM�

h2,2h2,1
U
I∗2D,h

�1/2
=
h
1/2
2,2

U
I∗D,hd

�
h2,7W + (1− h22,7)1/2W2

�
h
1/2
2,2

�U
I∗2D,h

�1/2
= h2,7

�]
I∗2D,h

�−1/2 ]
I∗D,hdW + (1− h22,7)1/2Z2, (4.10)

where the last equality uses the definition of Z2 in (3.10). This completes the proof
of part (a) of the Theorem when h1 > 0.
Next, we consider the case where h1 = 0. In this case, (4.3)-(4.10) hold except that

the convergence results in (4.4), (4.5), and (4.9) only hold with Y ∗i−1 replaced by hYi−1
because Lemma 5(l) only applies to random variables based on a zero initial condition
when h1 = 0. Hence, we need to show that the difference between the second last
line of (4.4) with Y ∗i−1 appearing and with hYi−1 appearing is op(1) and that analogous
results hold for (4.5) and (4.9).
For h1 = 0, by a mean value expansion, we have

max
0≤j≤2n

|1− ρj| = max
0≤j≤2n

|1− exp(−h∗n,1j/n)| = max
0≤j≤2n

|1− (1− h∗n,1j exp(mj)/n)|
≤ 2h∗n,1 max

0≤j≤2n
| exp(mj)| = O(h∗n,1), (4.11)
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for 0 ≤ |mj| ≤ h∗n,1j/n ≤ 2h∗n,1 → 0, where h∗n,1 is defined just above (4.1).
Using the decomposition in (4.1), we have Y ∗i−1 = hYi−1 + ρi−1Y ∗0 . To show the

desired result for (4.4), we write the second last line of (4.4) as

n−2
n[
i=1

⎛⎝Y ∗i−1/φi −
#

n[
j=1

Y ∗j−1/φ
2
j

$#
n[
j=1

φ−2j

$−1
φ−1i

⎞⎠2

= n−2
n[
i=1

⎛⎝hYi−1/φi + ρi−1Y ∗0 /φi −
#

n[
j=1

hYj−1/φ2j + ρj−1Y ∗0 /φ
2
j

$#
n[
j=1

φ−2j

$−1
φ−1i

⎞⎠2

= n−2
n[
i=1

⎛⎝hYi−1/φi −
#

n[
j=1

hYj−1/φ2j
$#

n[
j=1

φ−2j

$−1
φ−1i +Op(h

∗
n,1Y

∗
0 )/φi

⎞⎠2

(4.12)

= n−2
n[
i=1

⎛⎝hYi−1/φi −
#

n[
j=1

hYj−1/φ2j
$#

n[
j=1

φ−2j

$−1
φ−1i

⎞⎠2

+Op(n
−1/2h∗n,1Y

∗
0 ),

where the second equality holds because ρi−1 = 1 + O(h∗n,1) uniformly in i ≤ n by
(4.11), and the third equality holds using Lemma 5. Next, Lemma 2 and h∗n,1/hn,1 → 1

(which is established at the beginning of the proof of Lemma 2) show that n−1/2h∗n,1Y
∗
0

= Op(h
∗1/2
n,1 ) = op(1). This completes the proof of the desired result for (4.4) when

h1 = 0. The proofs for (4.5) and (4.9) are similar. This completes the proof of part
(a) of the Theorem.
It remains to consider the case where h1 = ∞, i.e., part (b) of the Theorem.

The results in part (b) generalize the results in Giraitis and Phillips (2006) in the
following ways: (i) from a no-intercept model to a model with an intercept, (ii) to a
case in which the innovation distribution depends on n, (iii) to allow for conditional
heteroskedasticity in the error distribution, (iv) to cover a quasi-GLS estimator in
place of the LS estimator, and (v) to cover the standard deviation estimator as well
as the GLS/LS estimator itself.
It is enough to consider the two cases ρ→ ρ∗ < 1 and ρ→ 1. First, assume ρ→ 1

and n(1− ρ)→∞. In this case, the sequences an and dn are equal to the expressions
in (3.6) up to lower order terms. We first prove an(eρn − ρ)→d N(0, 1). Note that

an(eρn − ρ) =

�
n−1

X �
1MX2X1

E(Y ∗20 /φ
2
1)

�−1
n−1/2X �

1MX2U

(E(Y ∗20 U
2
1/φ

4
1))

1/2
≡ νnξn, (4.13)

where νn and ξn have been implicitly defined. We now show νn →p 1 and ξn →d

N(0, 1).
To show the latter, define the martingale difference sequence

ζi ≡ n−1/2
Y ∗i−1Ui/φ

2
i

(E(Y ∗20 U
2
1/φ

4
1))

1/2
. (4.14)
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We show that
n−1/2X �

1PX2U

(E(Y ∗20 U
2
1/φ

4
1))

1/2
→p 0 and

n[
i=1

ζi →d N(0, 1). (4.15)

To show the first result, note that n−1/2X �
2U = n−1/2

Sn
i=1 Ui/φ

2
i = Op(1) by a

CLT for a triangular array of martingale difference random variables Ui/φ
2
i for which

E|Ui/φ2i |3 < ∞ and n−1
Sn

i=1(U
2
i /φ

4
i − EU2i /φ4i ) →p 0. The latter convergence in

probability condition holds by Lemma 5(d). Furthermore, (n−1X �
2X2)

−1 = Op(1) by
Lemma 5(d) and Assumption INNOV(vii). Finally, n−1(1 − ρ)1/2X �

1X2 = n−1(1 −
ρ)1/2

Sn
i=1 Y

∗
i−1/φ

2
i = op(1) by Lemma 8(a). The first result in (4.15) then follows

because E(Y ∗20 U
2
1/φ

4
1) = O((1− ρ)−1) by Lemma 6.

To show the latter we adjust the proof of Lemma 1 in Giraitis and Phillips (2006).
It is enough to prove the analogue of equations (11) and (12) in Giraitis and Phillips
(2006), namely the Lindeberg condition

Sn
i=1E(ζ

2
i 1(|ζ i| > δ)|Gi−1) →p 0 for any

δ > 0 and
Sn

i=1E(ζ
2
i |Gi−1) →p 1. Lemma 9 shows the former and Lemma 7 implies

the latter, because by stationarity (within rows) we have
Sn

i=1Eζ
2
i = 1.

By Lemma 8(b) and Lemma 6

n−1X �
1X1

E(Y ∗20 /φ
2
1)
→p 1 and

n−1X �
1PX2X1

E(Y ∗20 /φ
2
1)
→p 0 (4.16)

which imply νn →p 1.

We next show that dneσn →p 1. By (4.16) it is enough to show that

n−1X �
1MX2∆

2MX2X1

E(Y ∗20 U
2
1/φ

4
1)

→p 1. (4.17)

Lemma 8(e)-(g) shows that (E(Y ∗20 U
2
1/φ

4
1))

−1n−1X �
1∆

2X1 →p 1, (1 − ρ)1/2

×n−1(X �
2∆

2X1) = Op(1), and n−1(X �
2∆

2X2) = Op(1). These results combined with
Lemma 6, (n−1X �

2X2)
−1 = Op(1), and n−1(1− ρ)1/2X �

1X2 = op(1) imply (4.17).
In the case ρ → ρ∗ < 1, Theorem 1(b) follows by using appropriate CLTs for

martingale difference sequences and weak laws of large numbers. For example, the
analogue to the expression in parentheses in (4.13) satisfies

n−1X �
1MX2X1

E(Y ∗20 /φ
2
1)− (E(Y ∗0 /φ21))2/E(φ−21 )

→p 1. (4.18)

This follows by a weak law of large numbers for triangular arrays of mean zero, L1+δ

bounded (for some δ > 0), near-epoch dependent random variables. Andrews (1988,
p.464) shows that the latter conditions imply that the array is a uniformly integrable
L1 mixingale for which a WLLN holds, see Andrews (1988, Thm. 2). For example,
to show n−1X �

1X1 − E(Y ∗20 /φ21) →p 0, note that Y ∗2i−1/φ
2
1 − EY ∗20 /φ21 is near-epoch

dependent with respect to the σ-field Gi using the moment conditions in Assumption
INNOV(iv),

S∞
j=0 ρ

∗j = (1− ρ∗)−1 <∞, and ρ→ ρ∗ < 1.
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4.1.3 Proof of Lemmas 2-9

Proof of Lemma 2. We have: ρn = 1 − hn,1/n and hn,1 = O(1) implies that
ρn → 1. Hence, exp(−h∗n,1/n) = ρn → 1 and h∗n,1 = o(n). By a mean-value expansion
of exp(−h∗n,1/n) about 0,

0 = ρn − ρn = exp(−h∗n,1/n)− (1− hn,1/n) = hn,1/n− exp(−h∗∗n,1/n)h∗n,1/n, (4.19)

where h∗∗n,1 = o(n) given that h
∗
n,1 = o(n). Hence, hn,1−(1+o(1))h∗n,1 = 0, h∗n,1 /hn,1 →

1, and it suffices to prove the result with h∗n,1 in place of hn,1.
Let {mn : n ≥ 1} be a sequence such that mnh

∗
n,1/n→∞. By Assumption STAT

(which holds because ρn < 1), we can write (2h∗n,1/n)
1/2Y ∗0 /λ

1/2
n,1 = A1n + A2n for

A1n = (2h
∗
n,1/n)

1/2
Smn

j=0 ρ
j
nU−jλ

1/2
n,1 and A2n = (2h

∗
n,1/n)

1/2
S∞

j=mn+1
ρjnU−jλ

1/2
n,1 . Note

that EA2n = 0 and

var(A2n) = (2h
∗
n,1/n)

S∞
j=mn+1

ρ2jn = (2h
∗
n,1/n)ρ

2(mn+1)
n /(1− ρ2n) (4.20)

= (2h∗n,1/n)ρ
2(mn+1)
n /((2h∗n,1/n)(1 + o(1))) = O(exp(−2(mn + 1)h

∗
n,1/n)) = o(1),

where the third equality holds because ρ2n = exp(−2h∗n,1/n) = 1− (2h∗n,1/n)(1+ o(1))
by a mean value expansion and the last equality holds because mnh

∗
n,1/n → ∞ by

assumption. Therefore, A2n →p 0.
The result now follows from A1n →d Z1 which holds by the CLT in Corollary 3.1

in Hall and Heyde (1980) with their Xn,i being equal to (2h∗n,1/n)
1/2ρinU−i/λ

1/2
n,1 . To

apply their Corollary 3.1 we have to verify their (3.21), a Lindeberg condition, and a
conditional variance condition. For all i=..., 0, 1, ... set F0,i = ∅ and define recursively
Fn+1,i = σ(Fn,i ∪ σ(Un+1,j : j = 0,−1, ...,−i)) for n ≥ 1. Then, (3.21) in Hall and
Heyde (1980) holds automatically. To check the remaining two conditions, note first
that

Smn

i=0E(X
2
n,i|Fn,i−1) =

Smn

i=0EX
2
n,i = 2h

∗
n,1

Smn

i=0 ρ
2i
n /n→ 1 which holds becauseSmn

i=0 ρ
2i
n = (1− ρ

2(mn+1)
n )/(1− ρ2n), ρ

2(mn+1)
n = exp(−2h∗n,1(mn + 1)/n)→ 0, and

n(1− ρ2n) = n(1− ρn)(1 + ρn) = hn,1(1 + ρn)→ 2h. (4.21)

Secondly, for ε > 0,Smn

i=0E(X
2
n,iI(|Xni| > ε)|Fn,i−1)

=
Smn

i=0EX
2
n,iI(|Xn,i| > ε)

≤ (2h∗n,1/n)
Smn

i=0 ρ
2i
nE((U

2
−i/λn,1)I(2h

∗
n,1U

2
−i/(nλn,1) > ε2))

= (2h∗n,1/n)[
Smn

i=0 ρ
2i
n ]E((U

2
0/λn,1)I(2h

∗
n,1U

2
0/λn,1 > nε

2))

= O(1)o(1), (4.22)

where the second equality holds because the U−i have identical distributions. For the
last equality, write Wn = (U

2
0/λn,1). For any ν > 0, WnI((2h

∗
n,1Wn/(nε

2))ν > 1) ≤
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W 1+ν
n (2h∗n,1/(nε

2))ν and the result follows from Assumption INNOV which implies
that (2h∗n,1/(nε

2))ν EW 1+ν
n = O(n−ν).

Proof of Lemma 3. We decomposeM(r) into the sum of two independent Brownian
motions, one of which is W (r). (The decomposition is as in Guo and Phillips (2001)
but with the added complication that φ2i 9= σ2i .) Let

Σ = AΩA� =
�
h2,1 0
0 h2,2h

−2
2,3 − h−12,1

�
, where A =

�
1 0
−h−12,1 h−12,3

�
. (4.23)

Hence, W (r) and W 0
2 (r) are independent Brownian motions, where W

0
2 (r) is defined

by �
h
1/2
2,1W (r)
W 0
2 (r)

�
= A

�
h
1/2
2,1W (r)
M(r)

�
=

#
h
1/2
2,1W (r)

h−12,3M(r)− h−1/22,1 W (r)

$
= BM(Σ).

(4.24)
Let

W2(r) = (h2,2h
−2
2,3 − h−12,1)−1/2W 0

2 (r). (4.25)

As defined, W2 is a standard univariate Brownian motion on [0, 1]. We have

M(r) = h2,3
�
h
−1/2
2,1 W (r) +W 0

2 (r)
�

= h2,3
�
h
−1/2
2,1 W (r) + (h2,2h

−2
2,3 − h−12,1)1/2W2(r)

�
= h2,3(h

1/2
2,2 h

−1
2,3)
�
h2,7W (r) + (1− h22,7)1/2W2(r)

�
= h

1/2
2,2

�
h2,7W (r) + (1− h22,7)1/2W2(r)

�
. (4.26)

This concludes the proof.

Proof of Lemma 4. Parts (a) and (b) of the Lemma follow from Theorem 4.4 of
Hansen (1992) when Xn,i is defined with zero initial conditions and {vn,i : i ≤ n, n ≥
1} is a sequence rather than a triangular array. Part (c) of the Lemma follows from
a combination of Theorems 4.2 and 4.4 of Hansen (1992) under the same conditions
as just stated. (Note that the same argument as in Hansen (1992) can be used when
the random variables form a triangular array as when they form a sequence, given
the conditions of the Lemma.) Hence, parts (a)-(c) of the Lemma hold when h1 = 0.
When h1 > 0, the first element of Xn,i is based on a stationary initial condition.

In this case, (4.1) applies with Y ∗i and Ui denoting the first element of Xn,i and vn,i,
respectively. By the proof of Lemma 2, the result of Lemma 2 holds with Y ∗0 denoting
the first element of Xn,0 and with λn,1 replaced by Ω0,1,1. In consequence, we have

n−1/2Y ∗[nr] = n−1/2hY[nr] + exp(−h∗n,1[nr]/n)(2hn)−1/2(2hn/n)1/2Y ∗0
⇒
] r

0

exp((r − s)h1)dB1(s) + (2h1)−1/2 exp(−h1r)Ω1/20,1,1Z1, (4.27)
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where hY[nr] = hYn,[nr] and h∗n,1 are defined as in the paragraph containing (4.1), B1(s)
denotes the first element of B(s), the first summand converges by Thm. 4.4 of
Hansen (1992), the second summand converges by the result of Lemma 2 and the
convergence of exp(−h∗n,1[nr]/n) to exp(−h1r), which holds uniformly over r ∈ [0, 1],
and the convergence of the two summands holds jointly. The limit random quantities
B1(·) and Z1 are independent due to the strong-mixing assumption. In addition,
the convergence of the first element of Xn,i, given in (4.27), holds jointly with the
convergence of the remaining elements, whose weak limit is that stated in the Lemma
by Thm. 4.4 of Hansen (1992). This concludes the proof of part (a) when h1 > 0.
When h1 > 0, the effect of the stationary initial condition of the first element of

Xn,i on the limit distribution in parts (b) and (c) of the Lemma is established in a
similar way to that given above for part (a).

Proof of Lemma 5. Part (a) holds by applying Lemma 4(a) with h1 > 0, dv = 1,
vn,i = Ui, Ω0 (= Ω0,1,1) = h2,1, K

∗
h(r) = h

1/2
2,1 I

∗
h(r), and τ = 3, using Assumptions

INNOV and STAT.
Parts (b)-(d) hold by a weak law of large numbers for triangular arrays of L1+δ-

bounded strong-mixing random variables for δ > 0, e.g., see Andrews (1988), using
the moment conditions in Assumption INNOV(iv).
The convergence in parts (e) and (g) holds by applying Lemma 4 with h1 > 0,

dv = 2, vn,i = (Ui, Ui/φ
2
i )
�, Ω0 = Ω (where Ω is defined in Lemma 3), Λ = 0 (because

{(Ui, Ui/φ2i ) : i ≤ n} is a martingale difference array) and τ = 3, using Assumptions
INNOV and STAT. In particular, we use supn≥1[E|Ui|ζ + E|Ui/φ2i |ζ ] < ∞ for some
ζ > 3 by Assumption INNOV(iv). Let B(r) = (h1/22,1W (r),M(r))

� = BM(Ω). Then,

the first element of K∗
h(r) can be written as h

1/2
2,1 I

∗
h(r) and the second element of B(r)

equals M(r). The convergence in part (e) holds by the convergence to M(1) of the
second element of Xn,[nr] in Lemma 4(a) with r = 1. The convergence in part (g)
holds by the convergence of the (1, 2) element of n−1

Sn
i=1Xn,i−1v

�
n,i in Lemma 4(b).

The (1, 2) element of
U
K∗
hdB

� equals h1/22,1
U
I∗hdM. The last equalities of parts (e) and

(g) hold by Lemma 3.
The equality in part (f) holds by applying Lemma 4(b) with vn,i = (Ui,φ

−2
i −Eφ−21 )

and τ = 3 because the appropriate element of this vector result gives n−1
Sn

i=1

Y ∗i−1(φ
−2
i − Eφ−21 ) = Op(1). The equality in part (h) holds by applying Lemma 4(c)

with vn,i = (Ui,φ
−2
i −Eφ−21 ) and τ = 3 because the appropriate element of this matrix

result gives n−3/2
Sn

i=1 Y
∗2
i−1(φ

−2
i − Eφ−21 ) = Op(1). This result uses the assumption

that supn≥1Eφ
−2ζ
1 < ∞ for some ζ > 3 in Assumption INNOV(iv). The equality

in parts (i) and (j) holds by applying Lemma 4(b) and (c), respectively, with vn,i =
(Ui, U

2
i /φ

4
i −E(U21/φ41)). This result uses the assumption that supn≥1E|Ui/φ2i |2ζ <∞

for some ζ > 3 in Assumption INNOV(iv).
The convergence in parts (f) and (h)-(j) holds by Assumption INNOV(vii) and

by part (a) of the current Lemma combined with the continuous mapping theorem
using standard arguments (e.g., see the proof of Lemma 1 of Phillips (1987)) which
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gives n−3/2
Sn

i=1 Y
∗
i−1 →d

U
I∗h and n

−2Sn
i=1 Y

∗2
i−1 →d

U
I∗2h .

This concludes the proof of parts (a)-(j).
Part (k) holds because

|n−1−�1/2Sn
i=1 Y

∗�1
i−1U

�2
i /φ

4
i | ≤ sup

i≤n
|n−1/2Y ∗i−1|�1 · n−1

Sn
i=1 |Ui|�2/φ4i = Op(1), (4.28)

where the equality holds by part (a) of the current Lemma combined with the con-
tinuous mapping theorem and the weak law of large numbers (referred to above).
Part (l) holds by the same argument as given above for parts (a)-(k), but without

the extra detail needed to cover the case of a non-zero initial condition.

Proof of Lemma 6. Using Y ∗i =
S∞

j=0 ρ
jUi−j and stationarity (within the rows of

the triangular array),

E(Y ∗20 U
2
1/φ

4
1)

=
∞[
u=0

∞[
v=0

ρu+vEU−uU−vU21/φ
4
1

=
∞[
u=0

ρ2uEU2−uU
2
1/φ

4
1 + 2

∞[
u=0

u−1[
v=0

ρu+vEU−uU−vU21/φ
4
1

= (1− ρ2)−1EU21EU
2
1/φ

4
1 +O(1). (4.29)

The last equality holds by the following argument. First, for u > v, we have
EU−uU−vU21/φ

4
1 = Cov(U−u, U−vU

2
1/φ

4
1) =Cov(U−uU−v, U

2
1/φ

4
1).This, α-mixing, (4.2),

and Assumption INNOV(iv) give

EU−uU−vU21/φ
4
1

= O(1)max{||U−uU−v||ζ||U21/φ41||ζ , ||U−u||ζ ||U−vU21/φ41||ζ} ×
αn

1−2ζ−1(max{(u− v), (1 + v)})
= O((max{(u− v), (1 + v)})−3−ε) (4.30)

for some ε > 0 because α1−2ζ
−1

n (m) = O(m−3ζ(1−2ζ
−1)/(ζ−3)) = O(m−3−ε). Therefore,

∞[
u=0

u−1[
v=0

ρu+vEU−uU−vU21/φ
4
1

= O(1)
∞[
u=0

u−1[
v=0

ρu+vmin{(u− v)−3−ε, (1 + v)−3−ε}

= O(1)
∞[
u=0

u/2[
v=0

(u− v)−3−ε +O(1)
∞[
u=0

u[
v=u/2+1

v−3−ε

= O(1)
∞[
u=0

u−2−ε +O(1)
∞[
u=0

u−2−ε

= O(1). (4.31)
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Second,
∞[
u=0

ρ2uEU2−uU
2
1/φ

4
1 =

∞[
u=0

ρ2u[Cov(U2−u, U
2
1/φ

4
1) +EU

2
−uEU

2
1/φ

4
1]

= O(1)
∞[
u=0

u−3−ε +
∞[
u=0

ρ2uEU21EU
2
1/φ

4
1

= O(1) + (1− ρ2)−1EU21EU
2
1/φ

4
1. (4.32)

The other statements in the Lemma are proven analogously. For example, for the
last statement note that E(Y ∗0 U

2
1/φ

4
1) =

S∞
u=0 ρ

uEU−uU21/φ
4
1 and |EU−uU21/φ41| =

O((u+ 1)−3−ε) give the desired result.

Proof of Lemma 7. Using Y ∗i =
S∞

j=0 ρ
jUi−j and stationarity (within rows), we

have

E

#
n[
i=1

[Eζ2i − E(ζ2i |Gi−1)]
$2
=
E(
Sn

i=1(Y
∗2
i−1σ

2
i /φ

4
i −EY ∗20 U21/φ41))2

n2(E(Y ∗20 U
2
1/φ

4
1))

2

=

Sn
i,j=1Cov(Y

∗2
i−1σ

2
i /φ

4
i , Y

∗2
j−1σ

2
j/φ

4
j)

n2(E(Y ∗20 U
2
1/φ

4
1))

2
=

Sn
i=1(n− i+ 1)Cov(Y ∗2i−1σ2i /φ4i , Y ∗20 σ21/φ

4
1)

n2(E(Y ∗20 U
2
1/φ

4
1))

2

=

Sn
i=1(n− i+ 1)

S∞
s,t=0 ρ

s+t
S∞

u,v=0 ρ
u+vCov(Ui−1−sUi−1−tU2i /φ

4
i , U−uU−vU

2
1/φ

4
1)

n2(E(Y ∗20 U
2
1/φ

4
1))

2
.

(4.33)

The key portion of the proof is to bound the covariance term C(i, s, t, u, v) =
Cov(Ui−1−sUi−1−tU2i /φ

4
i , U−uU−vU

2
1/φ

4
1) using strong mixing. However, it is not enough

to use the strong-mixing inequality (4.2) in the case where i − 1 − s and i − 1 − t
are both strictly positive and to exploit C(i, s, t, u, v) = O((max{i − 1 − s, i − 1 −
t})−3ζ(1−2/ζ)/(ζ−3)) in this case. The trick is to consider disjoint sets A and B such
that A ∪B = {Ui−1−s, Ui−1−t, U2i /φ4i , U−u, U−v, U21/φ41} and to note that

|C(i, s, t, u, v)|
≤ |EUi−1−sUi−1−t(U2i /φ4i )U−uU−vU21/φ41|+ |EUi−1−sUi−1−tU2i /φ4i · EU−uU−vU21/φ41|
≤ |E T

a∈A
aE

T
b∈B
b+ Cov(

T
a∈A

a,
T
b∈B
b)|+ |EUi−1−sUi−1−tU2i /φ4i · EU−uU−vU21/φ41|.

(4.34)

Note that if A ∈ {{Ui−1−s, Ui−1−t, U2i /φ4i}, {U−u, U−v, U21/φ}} then the simpler bound
|C(i, s, t, u, v)| ≤ |Cov(Ta∈A a,

T
b∈B b)| applies. We will pick the partition A∪B such

that E
T
a∈A a · E

T
b∈B b = 0 and then apply the strong-mixing inequality (4.2) to

bound Cov(
T
a∈A a,

T
b∈B b) and also |EUi−1−sUi−1−tU2i /φ4i ·EU−uU−vU21/φ41|. In fact,

E
T
a∈A a ·E

T
b∈B b = 0 holds true for any partition, unless 1 is the largest subindex

in one group A or B.
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First we show that we can assume that all the subindices i−1−s, i−1− t, i, −u,
−v, 1 that appear in the covariance expression (4.33) are different because the sum
of all summands, where at least two of these subindices are equal, is of order o(1). To
see this, consider first the case where there is more than one pair of subindices that
coincides, e.g. when i− 1− s = i− 1− t = −u or when i− 1− t = 1 and −u = −v.
For example, assume i − 1 − s = −u and i − 1 − t = 1 (the other cases are proven
analogously). Then i = −u+ s+ 1 = t+ 2 and the numerator in (4.33) equals

O(1)
n[
i=1

(n−i+1)
∞[
s,t=0

ρs+t
∞[

u,v=0

ρu+v = O(n)
∞[

u,v=0

ρu+v
∞[
s=0

ρsρ−u+s−1 = O(n(1−ρ)−3).

(4.35)
Because E(Y ∗20 U

2
1/φ

4
1) is of order (1 − ρ)−1 by Lemma 6 and n(1 − ρ) → ∞, the

result follows. We can therefore assume there is exactly one pair of subindices that
coincides, for example, i− 1− s = 1. (The other cases are proven analogously.) Then
the numerator in (4.33) is bounded by

2n
∞[
u=0

u−1[
v=0

ρu+v
∞[
t=0

n−2[
s=0

ρs+t|Cov(U1Us+1−tU2s+2/φ4s+2, U−uU−vU21/φ41)|, (4.36)

where the summations are such that all subindices 1, s+ 1− t,−u,−v are different.
There are four cases to consider: (i) 1 < s + 1 − t, (ii) −v < s + 1 − t < 1, (iii)
−u < s + 1 − t < −v, and (iv) s + 1 − t < −u. In case (i), we use (4.34) with
A = {U−u, U−v} and B = {U1, Us+1−t, U2s+2/φ4s+2, U21/φ41}. This leads to

|C(s+ 2, s, t, u, v)|
≤ |Cov(T

a∈A
a,
T
b∈B
b)|+ |EU1Us+1−tU2s+2/φ4s+2| · |EU−uU−vU21/φ41|

≤ (v + 1)−3ζ(1−2ζ−1)/(ζ−3) + (max{v + 1, u− v})−3ζ(1−2ζ−1)/(ζ−3)
≤ (v + 1)−3−ε + (max{v + 1, u− v})−3−ε (4.37)

for some ε > 0, where in the second to last inequality we use Assumption IN-
NOV(iv) and (4.2) and apply an argument analogous to (4.34) to the expectation
EU−uU−vU21/φ

4
1, namely, EU−uU−vU

2
1/φ

4
1 = Cov(U−u, U−vU21/φ

4
1) = Cov(U−uU−v,

U21/φ
4
1). In the last inequality we use the fact that −3ζ(1− 2ζ−1)/(ζ − 3) < −3− ε

for some ε > 0. Picking A = {U−u} and B = {U−v, U1, Us+1−t, U2s+2/φ4s+2, U21/φ41}
the same argument can be used to show that |C(s + 2, s, t, u, v)| ≤ (u − v)−3−ε+
(max{v + 1, u− v})−3−ε. Therefore, |C(s+ 2, s, t, u, v)| ≤ 2(max{v + 1, u− v})−3−ε.
Thus, the summands in (4.36) over case (i) are bounded by

4n
∞[
u=0

u−1[
v=0

ρu+v
∞[
t=0

n−2[
s=t+1

ρs+t(max{v + 1, u− v})−3−ε

≤ O(n)
∞[
u=0

u−1[
v=0

(max{v + 1, u− v})−3−ε
∞[
t=0

n−2[
s=t+1

ρs+t
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≤ O(n(1− ρ)−2)
∞[
u=0

⎛⎝[u/2][
v=0

(u/2)−3−ε +
u−1[

v=[u/2]

(u/2)−3−ε

⎞⎠
= O(n(1− ρ)−2)

∞[
u=0

(u/2)−2−ε

= O(n(1− ρ)−2). (4.38)

Because by Lemma 6 the denominator is of order n2(1−ρ)−2 the result follows. Cases
(ii)—(iv) are handled analogously.
From now on, we can therefore assume that all the subindices i− 1− s, i− 1− t,

i, −u, −v, 1 that appear in the covariance expression in (4.33) are different. From
now on, all summations are subject to this restriction without explicitly stating it.
We now show that the second summand in (4.34), i.e., |EUi−1−sUi−1−tU2i /φ4i×

EU−uU−vU21/φ
4
1|, is negligible when substituted into (4.33). Note thatEU−uU−vU21/φ41

= Cov(U−u, U−vU21/φ
4
1) = Cov(U−v, U−uU

2
1/φ

4
1) whenever u 9= v. Therefore, for some

ε > 0, (4.2) and Assumption INNOV(iv) yield

EU−uU−vU21/φ
4
1 = O(max{|v − u|, 1 + v, 1 + u}−3ζ(1−2ζ

−1)/(ζ−3))

= O(max{|v − u|, 1 + v, 1 + u}−3−ε) (4.39)

if u 9= v and likewise for the term EUi−1−sUi−1−tU2i /φ
4
i . Therefore, in the numerator

of (4.33), the contribution of the second summand of (4.34) is
n[
i=1

(n− i+ 1)
∞[
s,t=0

ρs+t
∞[

u,v=0

ρu+v|EUi−1−sUi−1−tU2i /φ4i ·EU−uU−vU21/φ41|

= O(n2)
∞[
s,t=0

∞[
u,v=0

max{|v − u|, 1 + v, 1 + u}−3−εmax{|s− t|, s+ 1, t+ 1}−3−ε

= O(n2)

# ∞[
u,v=0

max{|v − u|, 1 + v, 1 + u}−3−ε
$2
. (4.40)

By symmetry in u, v, the latter equals

O(n2)

# ∞[
u=0

u−1[
v=0

max{u− v, 1 + u}−3−ε
$2

= O(n2)

⎛⎝ ∞[
u=0

[u/2][
v=0

(u/2)−3−ε +
∞[
u=0

u[
v=[u/2]+1

(u/2)−3−ε

⎞⎠2

= O(n2)
∞[
u=0

(u/2)−2−ε

= O(n2). (4.41)
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Because the denominator n2(E(Y ∗20 U
2
1/φ

4
1))

2 in (4.33) is of order n2(1−ρ)−2 by Lemma
6, we have shown that the summands |EUi−1−sUi−1−tU2i /φ4i ·EU−uU−vU21/φ41| in (4.33)
are negligible.
We are now left to show that the sum of all summands in the last line of (4.33) is

o(1) when all the subindices i−1−s, i−1−t, i,−u,−v, 1 that appear in the covariance
expression (4.33) are different. We can assume u > v and s > t. We can also impose
the bound |C(i, s, t, u, v)| ≤ |ETa∈A aE

T
b∈B b + Cov(

T
a∈A a,

T
b∈B b)| because we

have shown that the contributions of the last summand in (4.34) are negligible. We
only consider partitions A and B where 1 is not the largest subindex in any of the two
sets A or B in which case we have |C(i, s, t, u, v)| ≤ |Cov(Ta∈A a,

T
b∈B b)|. There are

ten different cases to consider regarding the order of i− 1− s and i− 1− t relative
to 1,−u, and −v. In case (1) i− 1− s > 1 (which implies i− 1− t > 1 because we
assume s > t), (2) 1 > i− 1− s > −v (which implies i− 1− s > −u because u > v)
and i− 1− t > 1, (3) −v > i− 1− s > −u and i− 1− t > 1, (4) −u > i− 1− s and
i−1−t > 1, (5) −v < i−1−s < 1 and−v < i−1−t < 1, (6) −u < i−1−s < −v and
−v < i−1− t < 1, (7) −u < i−1−s and −v < i−1− t < 1, (8) −u < i−1−s < −v
and −v < i − 1 − t < −u, (9) −u < i − 1 − s and −u < i − 1 − t < −u, and (10)
−u < i − 1 − s and −u < i − 1 − t < −u. We will only deal with the two cases (1)
and (2), the other cases can be handled analogously.
Case (1). Consider the partitions A and B of {U−u, U−v, U21/φ41, Ui−1−s, Ui−1−t,

U2i /φ
4
i }, where A = {U−u}, A = {U−u, U−v}, and A = {U−u, U−v, U21/φ41, Ui−1−s,

Ui−1−t}. The strong-mixing covariance inequality implies that
|C(i, s, t, u, v)| ≤ |Cov(Ta∈A a,

T
b∈B b)| ≤ (max{u− v, v + 1, t+ 1})−3−ε. (4.42)

Therefore, Sn
i=1(n− i+ 1)

S∞
s>t=0 ρ

s+t
S∞

u>v=0 ρ
u+v|C(i, s, t, u, v)|

n2(E(Y ∗20 U
2
1/φ

4
1))

2

= O(1− ρ)
∞[
t=0

∞[
u>v=0

(max{u− v, v + 1, t+ 1})−3−ε, (4.43)

where we use
S∞

s=0 ρ
s = (1 − ρ)−1, (4.42), and Lemma 6. We now consider three

subcases 1(i) t+ 1 > u− v and t+ 1 > v + 1, 1(ii) u− v > t+ 1 and u− v > v + 1,
1(iii) v+1 > t+1 and v+1 > u− v. In case 1(i), the sum over s, t, u, v in (4.43) can
be bounded by

∞[
t=0

t−1[
v=0

t+1+v[
u=v

(t+ 1)−3−ε ≤
∞[
t=0

t−1[
v=0

(t+ 1)−2−ε =
∞[
t=0

(t+ 1)−1−ε = O(1). (4.44)

In case 1(ii), the sum over s, t, u, v in (4.43) can be bounded by

∞[
u=1

[u/2][
v=0

u−v−1[
t=0

(u− v)−3−ε ≤
∞[
u=1

[u/2][
v=0

(u− v)−2−ε ≤
∞[
u=1

(u/2)−1−ε = O(1). (4.45)
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In case 1(iii), the sum over s, t, u, v in (4.43) can be bounded by
∞[
u=1

u−1[
t=0

u−1[
v=max(t+1,[(u−1)/2])

(v + 1)−3−ε ≤
∞[
u=1

u−1[
t=0

u−1[
v=[(u−1)/2]

(v + 1)−3−ε

≤
∞[
u=1

u−1[
t=0

(u/2)−2−ε = O(1). (4.46)

This proves case (1). We next deal with case (2).
Case (2). Consider the partitions A and B of {U−u, U−v, U21/φ41, Ui−1−s, Ui−1−t,

U2i /φ
4
i }, where A = {U−u, U−v}, A = {U−u, U−v, Ui−1−s}, or A = {U−u, U−v, Ui−1−s,

U21/φ
4
1, Ui−1−t}. The strong-mixing covariance inequality implies that

|C(i, s, t, u, v)| ≤ |Cov(Ta∈A a,
T
b∈B b)| ≤ (max{i− 1− s+ v, 2− i+ s, t+ 1})−3−ε.

(4.47)
We consider several subcases. In case 2(i) suppose that i− 1− s+ v < t+ 1. Then,Sn

i=1(n− i+ 1)
S∞

s>t=0 ρ
s+t
S∞

u>v=0 ρ
u+v|C(i, s, t, u, v)|

n2(E(Y ∗20 U
2
1/φ

4
1))

2

= O

#
n−1(1− ρ)2

∞[
u>v=0

ρu+v
∞[

s>t=0

ρs+t
t+s−v+2[
i=s−v+1

(t+ 1)−3+ε
$
, (4.48)

where the restrictions on the summation over i result from i − 1 − s > −v and
i−1−s+v < t+1. The expression in (4.48) is of order O(n−1S∞

s=0 ρ
s
S∞

t=0(t+1)
−2+ε)

because of Lemma 6 and t+ s− v+2− (s− v+1) = t+1. But the latter expression
is o(1) because n(1− ρ)→∞ and

S∞
t=0(t+ 1)

−2+ε = O(1).
In case 2(ii) suppose that t+ 1 > 2− i+ s. Therefore,Sn

i=1(n− i+ 1)
S∞

s>t=0 ρ
s+t
S∞

u>v=0 ρ
u+v|C(i, s, t, u, v)|

n2(E(Y ∗20 U
2
1/φ

4
1))

2

= O(n−1(1− ρ)−2
∞[

u>v=0

ρu+v
∞[

s>t=0

ρs+t
s+2[

i=s−t+1
(t+ 1)−3+ε), (4.49)

where the restrictions on the summation over i result from t + 1 > 2 − i + s and
1 > i − 1 − s. The expression in (4.49) is of order O(n−1S∞

s=0 ρ
s
S∞

t=0(t + 1)
−2+ε).

The latter expression is o(1) as in case 2(i).
Finally consider the case 2(iii) where i− 1− s+ v > t+ 1 and t+ 1 < 2− i+ s.

Assume first that i − 1 − s + v < 2 − i + s. This implies that i < −v/2 + s + 3/2.
Therefore, Sn

i=1(n− i+ 1)
S∞

s>t=0 ρ
s+t
S∞

u>v=0 ρ
u+v|C(i, s, t, u, v)|

n2(E(Y ∗20 U
2
1/φ

4
1))

2

= O(n−1(1− ρ)2
∞[

s>t=0

ρs+t
∞[

u>v=0

ρu+v
[−v/2+s+3/2][
i=−v+s−1

(2− i+ s)−3+ε). (4.50)
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The expression in (4.50) is of order O(n−1
S∞

u=0 ρ
u
S∞

v=0(v/2)(v/2)
−3+ε). The latter

expression is o(1) as in case 2(i).
The subcase i− 1− s+ v ≥ 2− i+ s of case 2(iii) can be handled using the same

steps. That completes the proof of case (2).

Proof of Lemma 8. To prove (a), by Markov’s inequality it is enough to show that
n−2(1− ρ)E(X �

1X2)
2 = o(1). Note that

E(X �
1X2)

2 =
n[

i,k=1

∞[
j,l=0

ρj+lEUi−1−jφ−2i Uk−1−lφ
−2
k . (4.51)

The contribution of the summands where i = k is
Sn

i=1

S∞
j,l=0 ρ

j+lEUi−1−jφ−4i Ui−1−l
which is of order O(n(1 − ρ)−2) and thus negligible because n(1 − ρ) → ∞. It is
therefore enough to study the sum

Sn
i>k=1

S∞
j,l=0 ρ

j+lEUi−1−jφ−2i Uk−1−lφ
−2
k .We have

to consider several subcases, namely, (1) i−1−j < k−1−l, (2) k−1−l ≤ i−1−j < k,
and (3) k ≤ i− 1− j. In case (1), the sum in (4.51) can be bounded by

∞[
j,l=0

ρj+l
n[
k=1

k+j−l[
i=k+1

max{l + 1, k − l − i+ j}−3−ε (4.52)

noting thatEUi−1−jφ−2i Uk−1−lφ
−2
k = Cov(Ui−1−j, Uk−1−lφ−2i φ−2k ) = Cov(Ui−1−jUk−1−l,

φ−2i φ−2k ) and using (4.2) and Assumption INNOV(iv). The sum in (4.52) can be
bounded by

∞[
j,l=0

ρj+l
n[
k=1

%
k−2l+j−1[
i=k+1

(k − l − i+ j)−3−ε +
k+j−l[

i=k−2l+j
(l + 1)−3−ε

&

≤
∞[
j,l=0

ρj+l
n[
k=1

[l−3−εmax{j − 2l, 0}+ (l + 1)−2−ε]

= O(n(1− ρ)−2 + n(1− ρ)−1), (4.53)

where the last equality holds because

∞[
j,l=0

ρj+l
n[
k=1

l−3−εmax{j− 2l, 0} ≤ n
∞[
l=0

ρll−3−ε
∞[
j=2l

ρj(j− 2l) = O(n)
∞[
j=0

ρjj (4.54)

and
S∞

j=0 ρ
jj = ρ(1 − ρ)−2. This proves case (1). Cases (2) and (3) can be proved

analogously.

Next, we prove part (b) of the Lemma. It is enough to show that

E

�
n−1X �

1X1 −E(Y ∗20 /φ21)
E(Y ∗20 /φ

2
1)

�2
→ 0. (4.55)
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By Lemma 6, this holds if

((1− ρ)2/n2)
n[

i,j=1

Cov(Y ∗2i−1/φ
2
i , Y

∗2
j−1/φ

2
j) = o(1). (4.56)

The latter can be established using the same approach as was used in (4.33) to
establish that (E(Y ∗20 U

2
1/φ

4
1))

−2 n−2
Sn

i,j=1 Cov(Y
∗2
i−1σ

2
i /φ

4
i , Y

∗2
j−1σ

2
j/φ

4
j) = o(1).

We can show part (c) by proceeding as in part (b).
Next, we prove part (d) of the Lemma. Note that

(n−1X �X)−1n−1X �U = det−1(T1, T2)�, where

det = n−1
n[
i=1

(Y ∗2i−1/φ
2
i )n

−1
n[
i=1

φ−2i −
#
n−1

n[
i=1

Y ∗i−1/φ
2
i

$2
, (4.57)

T1 =

#
n−1

n[
i=1

φ−2i

$#
n−1

n[
i=1

Y ∗i−1Ui/φ
2
i

$
−
#
n−1

n[
i=1

Y ∗i−1/φ
2
i

$
n−1

n[
i=1

Ui/φ
2
i , and

T2 = −n−1
n[
i=1

(Y ∗i−1/φ
2
i )

#
n−1

n[
i=1

Y ∗i−1Ui/φ
2
i

$
+ n−1

n[
i=1

(Y ∗2i−1/φ
2
i )n

−1
n[
i=1

Ui/φ
2
i .

Using parts (a) and (b) of the Lemma, (4.15), n−1
Sn

i=1 Ui/φ
2
i = Op(n

−1/2), and
Lemma 6, it follows that det−1 = Op(1 − ρ), T1 = Op((n(1 − ρ))−1/2), and T2 =
Op((1− ρ)−1n−1/2), which proves the claim.
Next we prove part (e). Note that since ∆ = Diag(MXY ) = Diag(MXU) we

have

X �
1∆

2X1 =
n[
i=1

(Y ∗2i−1/φ
2
i ){Ui/φi − (Y ∗i−1/φi,φ−1i )(X �X)−1X �U}2. (4.58)

By part (c), we are left to show that

(E(Y ∗20 U
2
1/φ

4
1))

−1n−1
n[
i=1

(Y ∗2i−1/φ
2
i )(Ui/φi)(Y

∗
i−1/φi,φ

−1
i )(X

�X)−1X �U →p 0 and

(E(Y ∗20 U
2
1/φ

4
1))

−1n−1
n[
i=1

(Y ∗2i−1/φ
2
i )[(Y

∗
i−1/φi,φ

−1
i )(X

�X)−1X �U ]2 →p 0.

(4.59)

Part (d) and Lemma 6 imply that it is sufficient to show that

Op((1− ρ)n−1)
n[
i=1

(Y ∗2i−1Ui/φ
4
i )Op(n

−1/2) = op(1),

29



Op((1− ρ)n−1)
n[
i=1

(Y ∗2i−1/φ
4
i )Op(n

−1) = op(1),

Op((1− ρ)n−1)
n[
i=1

(Y ∗3i−1Ui/φ
4
i )Op((1− ρ)1/2n−1/2) = op(1),

Op((1− ρ)n−1)
n[
i=1

(Y ∗3i−1/φ
4
i )Op((1− ρ)1/2n−1) = op(1), and

Op((1− ρ)n−1)
n[
i=1

(Y ∗4i−1/φ
4
i )Op((1− ρ)n−1) = op(1). (4.60)

The first and second conditions follow by proofs as for parts (c) and (b), respectively.
The other conditions can be proven along the same lines as above. For example, one
can establish that

(1− ρ)3/2n−2
n[
i=1

(Y ∗3i−1/φ
4
i ) = op(1) (4.61)

by using Markov’s inequality and methods as in Lemma 7.
Finally, for the proofs of parts (f) and (g) note that

X �
1∆

2X2 =
n[
i=1

(Y ∗i−1/φ
2
i )[Ui/φi − (Y ∗i−1/φi,φ−1i )(X �X)−1X �U ]2 and

X �
2∆

2X2 =
n[
i=1

φ−2i [Ui/φi − (Y ∗i−1/φi,φ−1i )(X �X)−1X �U ]2. (4.62)

Therefore the desired results are implied by showing that

(1− ρ)1/2n−1
n[
i=1

(Y ∗i−1/φ
2
i )(U

2
i /φ

2
i ) = Op(1),

(1− ρ)1/2n−1
n[
i=1

(Y ∗i−1/φ
2
i )(Ui/φi)(Y

∗
i−1/φi,φ

−1
i )(X

�X)−1X �U = Op(1),

(1− ρ)1/2n−1
n[
i=1

(Y ∗i−1/φ
2
i )[(Y

∗
i−1/φi,φ

−1
i )(X

�X)−1X �U ]2 = Op(1), (4.63)

and

n−1
n[
i=1

φ−2i (U
2
i /φ

2
i ) = Op(1),

n−1
n[
i=1

φ−2i (Ui/φi)(Y
∗
i−1/φi,φ

−1
i )(X

�X)−1X �U = Op(1),

n−1
n[
i=1

φ−2i ((Y
∗
i−1/φi,φ

−1
i )(X

�X)−1X �U)2 = Op(1). (4.64)
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All of the statements in (4.63) and (4.64) follow from earlier parts of the Lemma or
by arguments used in earlier parts of the Lemma. For example, (1 − ρ)1/2n−1

Sn
i=1

(Y ∗i−1U
2
i /φ

4
i ) = Op(1) and (1− ρ)1/2n−1

Sn
i=1(Y

∗
i−1Ui/φ

4
i ) = Op(1) are proven as part

(a) of the Lemma. To show (1 − ρ)n−3/2
Sn

i=1(Y
∗2
i−1Ui/φ

4
i ) = Op(1), one can use a

proof as for part (c).

Proof of Lemma 9. It is enough to show that
Sn

i=1E(ζ
2
i 1(|ζi| > δ)) → 0 for any

δ > 0. We have

n[
i=1

E(ζ2i 1(|ζi| > δ)) ≤ δ−2
n[
i=1

E(ζ4i ) = nδ
−2E(ζ41) = O(n

−1(1− ρ)2)E(Y ∗0 U1/φ
2
1)
4,

(4.65)

by stationarity (within rows) and Lemma 6. Furthermore,

E(Y ∗i−1Ui/φ
2
i )
4 =

∞[
u,v,s,t=0

ρu+v+s+tEU−uU−vU−sU−tU41/φ
8
1. (4.66)

The contributions of all summands for which at least two of the indices u, v, s, t are
the same is o(n(1 − ρ)−2). For example, suppose u = v. Note that

S∞
u,s,t=0 ρ

2u+s+t

EU2−uU−sU−tU
4
1/φ

8
1 = O((1−ρ)−3) which is indeed o(n(1−ρ)−2) because n(1−ρ)→

∞. We can therefore restrict attention in the sum in (4.66) to the case where all
indices are different and by symmetry, we can even restrict summation to the cases
where v = min{u, t, s, v}. Using the strong-mixing inequality as above, we have

E(Y ∗i−1Ui/φ
2
i )
4 ≤ O(

[
u,t,s

ρu+s+t
[
v

(v − 1)−3−ε) = O((1− ρ)−3), (4.67)

which is o(n(1− ρ)−2) as shown above.

4.2 Proof of Theorem 2

Proof of Theorem 2. Suppose h1 <∞. Inspection of the proof of Theorem 1 shows
that is suffices to show that Lemma 5 holds with eφi in place of φi. The difference
between the lhs quantity in Lemma 5(b) with j = 1 and the corresponding quantity
with eφi in place of φi is op(1) by Assumption CHE(ii)(b) with (d, j) = (0, 1). The
same result holds for j = 2 because

|n−1Sn
i=1
eφ−2i − φ−2i |

≤ n−1Sn
i=1
eφ−1i |eφ−1i − φ−1i |+ n−1

Sn
i=1 φ

−1
i |eφ−1i − φ−1i |

≤ 2ε−1/2n−1Sn
i=1 |eφ−1i − φ−1i | = op(1), (4.68)
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where the first inequality holds by the triangle inequality, the second inequality
holds by Assumption CHE(i), and the equality holds by Assumption CHE(ii)(b)
with (d, j) = (0, 1). For j = 4, the same result holds by the same argument as just
given with 4 in place of 2 in the first line and 2 in place of 1 in the second and third
lines.
The differences between the lhs quantities in Lemma 5(c) and (d) and the corre-

sponding quantities with eφi in place of φi are op(1) by the same argument as in (4.68)
(with 4 in place of 2 in the first line and 2 in place of 1 in the second and third lines)
using Assumption CHE(ii)(b) with (d, j) = (1, 2) and (2, 2), respectively.
The differences between the lhs quantities in Lemma 5(e) and (g) and the corre-

sponding quantities with eφi in place of φi are op(1) by Assumption CHE(ii)(a) with
j = 0 and j = 1, respectively.
The difference between the lhs quantity in Lemma 5(f) and the corresponding

quantity with eφi in place of φi is op(1) because
|n−3/2Sn

i=1 Y
∗
i−1(eφ−2i − φ−2i )|

≤ sup
i≤n,n≥1

|n−1/2Y ∗i−1| · n−1
Sn

i=1 |eφ−2i − φ−2i | = op(1), (4.69)

where the equality holds by (4.68) and supi≤n,n≥1 |n−1/2Y ∗i−1| = Op(1), which holds
by Lemma 5(a) and the continuous mapping theorem. Analogous results hold for
Lemma 5(h)-(j) using Assumption CHE(ii)(b) with (d, j) = (2, 2) for parts (i) and
(j).
Next, we show that the lhs quantity in Lemma 5(k) with eφi in place of φi is op(n).

We have

|n−1−�1/2Sn
i=1 Y

∗�1
i−1U

�2
i /
eφ4i |

≤ ε−2 sup
i≤n,n≥1

|n−1/2Y ∗i−1|�1 · n−1
Sn

i=1 |Ui| = Op(1), (4.70)

using Assumption CHE(i), supi≤n,n≥1 |n−1/2Y ∗i−1| = Op(1), and a WLLN for strong-
mixing triangular arrays of L1+δ-bounded random variables, see Andrews (1988),
which relies on Assumption INNOV(iv). The results in Lemma 5(l) hold by the same
arguments as given above.

Next, suppose h1 = ∞. Lemma 6 shows that E(Y ∗20 /φ21) = O((1 − ρ)−1) and
E(Y ∗20 U

2
1/φ

4
1) = O((1−ρ)−1), where O((1−ρ)−1) = O(1) in the case where ρ→ ρ∗ <

1. Inspection of the proof of Theorem 1 then shows that it suffices to show that the
equivalent of (4.15)-(4.17) holds when φi is replaced by eφi. More precisely, by Lemma
6, for (4.16) it is sufficient to show that

(i) n−1(1− ρ)
n[
i=1

(Y ∗i−1)
2(eφ−2i − φ−2i ) = op(1), (4.71)
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(ii) n−1(1−ρ)1/2Sn
i=1 Y

∗
i−1(eφ−2i −φ−2i ) = op(1), and (iii) n−1Sn

i=1(
eφ−2i −φ−2i ) = op(1).

In addition, for (4.15), it is sufficient to show that (iv) n−1/2
Sn

i=1((1− ρ)1/2Y ∗i−1)
jUi

×(eφ−2i − φ−2i ) = op(1) for j = 0, 1. To show (4.17), it is enough to show that in addi-
tion n−1(1− ρ)X �

1∆
2X1 →p 1, n

−1(1− ρ)1/2(X �
2∆

2X1) = Op(1), and n−1(X �
2∆

2X2) =

Op(1) hold (with X1, X2, and ∆ defined with eφi, not φi). Inspecting the proof of
Lemma 8(e)-(g) carefully, it follows that to show the latter three conditions, it is
enough to show that in addition to (i)-(iv), we have (v) n−1(1 − ρ)

Sn
i=1(Y

∗
i−1)

2

U2i (
eφ−4i −φ−4i ) = op(1) and (vi) n

−r1(1−ρ)r2
Sn

i=1(Y
∗
i−1)

r3 U r4i (
eφ−4i −φ−4i ) = op(1) for

(r1, ..., r4) = (3/2, 1, 2, 1), (2, 1, 2, 0), (3/2, 3/2, 3, 1), (2, 3/2, 3, 0), and (2, 3/2, 4, 0).
These conditions come from the proof of Lemma 8 in (4.60).
Conditions (iii) and (iv) are assumed in Assumption CHE(ii)(c) and (d). Imme-

diately below we prove (i) in (4.71) using Assumption CHE(ii)(d) with (d, j, k) =
(2, 2, 0); (ii), (v), and (vi) can be shown using exactly the same approach by apply-
ing Assumption CHE(ii)(d) with (d, j, k) = (1, 2, 0), (2, 4, 0), (2, 4, 2), and (2, 4, 4),
respectively.
We now prove (i) in (4.71). Note that by the Cauchy-Schwarz inequality we have

n−1(1− ρ)
n[
i=1

(Y ∗i−1)
2(eφ−2i − φ−2i )

≤
#
n−1(1− ρ)2

n[
i=1

(Y ∗i−1)
4

$1/2#
n−1

n[
i=1

(eφ−2i − φ−2i )
2

$1/2
(4.72)

and therefore by Assumption CHE(ii)(d) it is enough to show that n−1(1− ρ)2
Sn

i=1

(Y ∗i−1)
4 = Op(1). By Markov’s inequality, we have

P

#
n−1(1− ρ)2

n[
i=1

(Y ∗i−1)
4 > M

$
≤M−2n−2(1− ρ)4

n[
i,j=1

E(Y ∗i−1Y
∗
j−1)

4. (4.73)

Thus, it is enough to show that for

Eijstuvabcd = E(Ui−1−sUi−1−tUi−1−uUi−1−vUj−1−aUj−1−bUj−1−cUj−1−d), (4.74)

we have

n−2(1− ρ)4
n[

i,j=1

∞[
s,t,u,v=0

∞[
a,b,c,d=0

ρa+b+c+d+s+t+u+vEijstuvabcd = O(1). (4.75)

In the case where ρ → ρ∗ < 1, (4.75) holds by Assumption INNOV(iv). Next
consider the case when ρ→ 1. Note that when the largest subindex i−1−s, ..., j−1−d
in (4.75) appears only once in Eijstuvabcd, then the expectation equals zero because Ui
is a martingale difference sequence. As in earlier proofs, one can then show that it is
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enough to consider the case where the largest subindex appears twice and all other
subindices are different from each other. As in earlier proofs, one has to consider
different subcases regarding the order of the subindices. We consider only one case
here, namely the case where i−1−s < i−1−t < ... < j−1−b < j−1−c = j−1−d
and thus c = d. The other cases are handled using an analogous approach. We make
use of the mixing inequality in (4.2) and apply Assumption INNOV(iv). Note that

n−2(1− ρ)4
n[

i,j=1

∞[
s>t>u>v=0

∞[
a>b>c=0

ρa+b+2c+s+t+u+vEijstuvabcc

= O(n−2(1− ρ)4)
n[

i,j=1

∞[
s>t>u>v=0

∞[
a>b>c=0

ρa+b+2c+s+t+u+v(max{s− t, t−u, b− c})−3−ε

= O(n−2(1− ρ)3)
n[

i,j=1

∞[
s>t=0

ρs(s− t)−1−ε/3
∞[

u>v=0

ρs(s− t)−1−ε/3
∞[

b>c=0

ρb(b− c)−1−ε/3

= O(1), (4.76)

where the last equality holds because
S∞

b>c=0 ρ
b(b−c)−1−ε/3 =S∞

c=0 ρ
c
S∞

b=1 ρ
bb−1−ε/3

= O((1− ρ)−1). This completes the proof of (i) in (4.71).

4.3 Proof of Lemma 1

Proof of Lemma 1. Assumption CHE(i) holds by Assumption CHE2(i) and (v).
We verify Assumption CHE(ii)(a) (which applies when h1 <∞) for j = 1. The proof
for j = 0 is similar. We need to show that

n−1/2
n[
i=1

(n−1/2Y ∗i−1)Ui[eφ−2i − φ−2i ] = op(1). (4.77)

To do so, we need to take account of the fact that under Assumption CHE2, eφ2i differs
from φ2i in three ways. First, eφ2i is based on the estimated conditional heteroskedas-
ticity parameter hπn, not the pseudo-true value πn; second, eφ2i is based on residuals,
i.e., it uses (hαn,hρn), not the true values (0, ρn); and third eφ2i is defined using the
truncated-at-time-period-one value Li, not L.
Assumption CHE2(iii) and (iv) implies that ||eπn− πn|| ≤ Cn−δ2 wp→ 1 for some

constant C < ∞. Hence, hπn ∈ Πn,0 = Πn ∩ B(πn, Cn−δ2) wp→ 1 (where B(π, δ)
denotes a ball with center at π and radius δ). The set Πn,0 contains a finite number
of elements and the number is bounded over n ≥ 1. Without loss of generality,
we can assume that Πn,0 contains K < ∞ elements for each n ≥ 1. We order the
elements in each set Πn,0 and call them πn,k for k = 1, ..., K. This yields K sequences
{πn,k : n ≥ 1} for k = 1, ...,K.
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To show (4.77), we use the following argument. Suppose for some random variables
{(Zn,0, Zn(πn,1), ..., Zn(πn,K))� : n ≥ 1} and Z, we have

(Zn,0, Zn(πn,1), ..., Zn(πn,K))
� →d (Z, ..., Z)

� (4.78)

as n→∞. In addition, suppose hπn ∈ {πn,1, ...,πn,K} wp→ 1. Then, by the continuous
mapping theorem,

min
k≤K

Zn(πn,k)− Zn,0 →d

�
min
k≤K

Z

�
− Z = 0,

max
k≤K

Zn(πn,k)− Zn,0 →d

�
max
k≤K

Z

�
− Z = 0,

Zn(hπn)− Zn,0 ∈ [min
k≤K

Zn(πn,k)− Zn,0,max
k≤K

Zn(πn,k)− Zn,0] wp→ 1, and hence,

Zn(hπn)− Zn,0 →d 0. (4.79)

Since convergence in distribution to zero is equivalent to convergence in probability
to zero, this gives Zn(hπn)− Zn,0 →p 0. We apply this argument with

Zn,0 = n
−1/2

n[
i=1

(n−1/2Y ∗i−1)Uiφ
−2
i and

Zn(πn,k) = n
−1/2

n[
i=1

(n−1/2Y ∗i−1)Uiφ
−2
i (hαn,hρn,πn,k) (4.80)

for k = 1, ...,K.
Hence, it suffices to show (4.78), where {πn,k : n ≥ 1} is a fixed sequence such

that πn,k → π0 for k = 1, ..., K. To do so, we show below that

Zn(πn,k)− Zn(πn,k) = op(1), where

Zn(πn,k) = n
−1/2

n[
i=1

(n−1/2Y ∗i−1)Uiφ
−2
i (0, ρn,πn,k) (4.81)

(By definition, Zn(πn,k) is the same as Zn(πn,k) except that it is defined using the true
parameters (0, ρn) rather than the estimated parameters (hαn,hρn).) It is then enough
to show that (4.78) holds with Zn(πn,k) in place of Zn(πn,k).
For the case h1 <∞ considered here, we do the latter by applying Lemma 4 with

vn,i = (Ui, Uiφ
−2
i , Uiφ

−2
i (0, ρn,πn,1), ..., Uiφ

−2
i (0, ρn,πn,K)))

�. (4.82)

Conditions (i) and (ii) of Lemma 4 hold by Assumptions INNOV and CHE2(v) (which

guarantees that eφ−2i and φ−2i (0, ρn,πn,k) are uniformly bounded above). In addition,

35



Λ = 0 because {(vn,i,Gn,i−1) : i = ..., 0, 1, ...;n ≥ 1} is a martingale difference trian-
gular array. Using Assumption CHE2(vi), for all k1, k2, k3, k4 = 0, ...,K, we have

lim
n→∞

n−1EVn,k1V
�
n,k2

= lim
n→∞

n−1EVn,k3V
�
n,k4
, where

Vn,0 =
n[
i=1

Uiφ
−2
i =

n[
i=1

Ui

#
ωn +

L[
j=1

μj(πn)U
2
i−j

$
and

Vn,k =
n[
i=1

Uiφ
−2
i (0, ρn,πn,k) =

n[
i=1

Ui

#
ωn,k +

Li[
j=1

μj(πn,k)U
2
i−j

$
(4.83)

for k = 1, ...,K. In consequence, the matrix Ω0 in Lemma 4 has all elements that
are not in the first row or column equal to each other. For this reason, the elements
in the limit random vector in (4.78) are equal to each other. We conclude that
(4.78) holds when Zn(πn,k) appears in place of Zn(πn,k) by Lemma 4(b). In this case,
Z = h

1/2
2,1

U
I∗hdM, see Lemma 5(g) and its proof. The verification of Assumption

CHE(ii)(a) when j = 0 is the same as that above because one of the elements of
Xi−1 in Lemma 4(b) can be taken to equal 1 and the latter result still holds with the
corresponding element of K∗

h being equal to 1, see Hansen (1992, Thm. 3.1).
It remains to show (4.81) holds in the case h1 < ∞ considered here. We only

deal with the case j = 1. The case j = 0 can be handled analogously. To evaluate
φ−2i (hαn,hρn,πn,k)− φ−2i (0, ρn,πn,k), we use the Taylor expansion

(x+ δ)−1 = x−1 − x−2δ + x−3∗ δ2, (4.84)

where x∗ is between x+δ and x, applied with x+δ = φ2i (hαn,hρn,πn,k), x = φ2i (0, ρn,πn,k),
and

δ = δi = φ2i (hαn,hρn,πn,k)− φ2i (0, ρn,πn,k). (4.85)

Thus, to show Assumption CHE(ii)(a), it suffices to show that

n−1/2
n[
i=1

(n−1/2Y ∗i−1)Ui(φ
−4
i (0, ρn,πn,k)δ − x−3∗ δ2) = op(1). (4.86)

Note that in the Taylor expansion, x−2 and x−3∗ are both bounded above (uniformly
in i) because both x+δ and x are bounded away from zero by Assumption CHE2(v).
Simple algebra gives

δ =
Li[
t=1

μt(πn,k)[−2Ui−thαn − 2Y ∗i−t−1Ui−t(hρn − ρn)

+hα2n + 2Y ∗i−t−1(hρn − ρn)hαn + Y ∗2i−t−1(hρn − ρn)
2]. (4.87)

The effect of truncation by Li rather than L only affects the finite number of sum-
mands with i ≤ L and hence its effect is easily seen to be asymptotically negligible
and hence without loss of generality we can set Li = L for the rest of the proof.
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We first deal with the contributions from φ−4i (0, ρn,πn,k)δ in (4.86). Rather than
considering the sum

SLi
t=1 in (4.87) when showing (4.86), it is enough to show that

for every fixed t = 1, ..., L the resulting expression in (4.86) is op(1). Fix t ∈ {1, ..., L}
and set bi = φ−4i (0, ρ,πn,k). It is enough to show that

n−1/2
n[
i=1

(n−1/2Y ∗i−1)Uibicit = op(1), (4.88)

where cit equals

(i) Ui−thαn, (ii) Y ∗i−t−1Ui−t(hρn − ρ), (iii) hα2n,
(iv) Y ∗i−t−1(hρn − ρ)hαn, or (v) Y ∗2i−t−1(hρn − ρ)2. (4.89)

By Assumption CHE2(iii) and because h1 <∞, we have (1) hαn = Op(n−1/2) and hρn−
ρ = Op(n

−1). Terms of the form (2) n−1
Sn

i=1 Y
∗
i−1UibiUi−t and n

−3/2Sn
i=1 Y

∗
i−1Y

∗
i−t−1

×UiUi−tbi are Op(1) by Lemma 4(b) and (c) applied with vn,i = (Ui, Ui−t, UiUi−tbi)�.
Note here that bi is an element of the σ-field σ(Ui−L, ..., Ui−1) by definition of
φ2i (0, ρ,πn,k) in (3.14) and by Assumption CHE2(i) and (v), (3) supi≤n,n≥1 |n−1/2Y ∗i−1|
= Op(1) by Lemma 5(a), (4) terms of the form n−1

Sn
i=1 |UiU ji−1| for j = 1, 2 are

Op(1) by a WLLN for strong-mixing triangular arrays, see Andrews (1988), and (5)
the bi are Op(1) uniformly in i. The result in (4.88) for cases (i)-(ii) of (4.89) fol-
lows from (2). Cases (iii)-(v) are established by |n−1/2Sn

i=1(n
−1/2Y ∗i−1)Uibicit| ≤

supi≤n,n≥1 |n−1/2Y ∗i−1|n−3/2
Sn

i=1 |Ui| = op(1) using (1) and (3)-(5).
Next, we deal with the contributions from x−3∗ δ2 in (4.86). Because x−3∗ and

μt(πn,k) are both Op(1) uniformly in i, it is enough to show that

n−1/2
n[
i=1

|n−1/2Y ∗i−1Uicij1dij2| = op(1), (4.90)

where cij and dij ∈ {Ui−jhαn, Y ∗i−j−1Ui−j(hρn−ρ), hα2n, Y ∗i−j−1(hρn−ρ)hαn, Y ∗2i−j−1(hρn−ρ)2}
and j1, j2 ∈ {1, ..., Li}. Conditions (1), (3), and (4) then imply (4.90). This completes
the proof of Assumption CHE(ii)(a).
Next, we verify Assumption CHE(ii)(b) (which applies when h1 < ∞). For the

cases of (d, j) = (0, 2), (1, 2), and (2, 2), the proof is similar to that given below
for Assumption CHE(ii)(d) but with an = O(n1/2(1 − ρ)−1/2) replaced by an = n
and using the results above that (i) supi≤n,n≥1 |n−1/2Y ∗i−1| = Op(1) and (ii) terms
of the form n−1

Sn
i=1 |U j1i U j2i−1| for j1 = 1, 2 and j2 = 1, 2 are Op(1), which holds

using Assumption INNOV(iv). (Note that the case of (d, j) = (0, 2) is not needed for
Assumption CHE(ii) but is used in the verification of Assumption CHE(ii)(b) for the
case where (d, j) = (0, 1), which follows.)
We now verify Assumption CHE(ii)(b) for (d, j) = (0, 1). We have

n−1
Sn

i=1 |eφ−1i − φ−1i | = n−1
Sn

i=1 |eφi − φi|/(eφiφi)
≤ ε−1n−1

Sn
i=1 |eφi − φi| ≤ ε−3/2n−1

Sn
i=1 |eφ2i − φ2i |, (4.91)
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where the first inequality holds because eφ2i and φ2i are bounded away from zero by
some ε > 0 by Assumption CHE2(i), (ii), and (v) and the second inequality holds
by the mean-value expansion (x + δ)1/2 = x1/2 + (1/2)x

−1/2
∗ δ, where x∗ lies between

x+ δ and x, applied with x+ δ = eφ2i , x = φ2i , δ =
eφ2i − φ2i , and x

−1/2
∗ = φ−1i,∗ ≤ ε−1/2

using Assumption CHE2(v), where φ2i,∗ lies between eφ2i and φ2i . The rhs of (4.91) is
op(1) by the result above that Assumption CHE(ii)(b) holds for (d, j) = (0, 2).
Next, we verify Assumption CHE(ii)(c) (which applies when h1 = ∞). We only

show the case j = 1, the case j = 0 is handled analogously. We use a very similar
approach to the one in the proof of Assumption CHE(ii)(a). We show that (4.81)
holds when h1 =∞ and that

Zn,0 − Zn(πn,k) = op(1) (4.92)

for every k = 1, ...,K, where

Zn,0 = n
−1/2

n[
i=1

((1− ρ)1/2Y ∗i−1)Uiφ
−2
i ,

Zn(πn,k) = n
−1/2

n[
i=1

((1− ρ)1/2Y ∗i−1)Uiφ
−2
i (hαn,hρn,πn,k), and

Zn(πn,k) = n
−1/2

n[
i=1

((1− ρ)1/2Y ∗i−1)Uiφ
−2
i (0, ρ,πn,k). (4.93)

We first show (4.81). By (4.84),

n−1/2
n[
i=1

((1− ρ)1/2Y ∗i−1)Ui(φ
−2
i (hαn,hρn,πn,k)− φ−2i (0, ρ,πn,k))

= n−1/2
n[
i=1

((1− ρ)1/2Y ∗i−1)Ui(−φ−4i (0, ρ,πn,k)δ + x−3∗ δ2), (4.94)

where δ is defined in (4.87) and x∗ in (4.84). Hence, it suffices to show that the ex-
pression in the second line of (4.94) is op(1). First, we deal with the contributions from
−φ−4i (0, ρ,πn,k)δ in (4.94). Rather than considering the sum

SLi
j=1 in (4.87) when

showing (4.94), it is enough to show that for every fixed j = 1, ..., Li the expression
in the second line of (4.94) is op(1). Fix j ∈ {1, ..., Li}, set bi = φ−4i (0, ρ,πn,k), and
note that μj(πn,k) is bounded by Assumption CHE2(vi). It is enough to show that

n−1/2
n[
i=1

((1− ρ)1/2Y ∗i−1)Uibicij = op(1), (4.95)

where cij equals

(i) Ui−jhαn, (ii) Y ∗i−j−1Ui−j(hρn − ρ), (iii) hα2n,
(iv) Y ∗i−j−1(hρn − ρ)hαn, or (v) Y ∗2i−j−1(hρn − ρ)2. (4.96)
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In case (i) of (4.96), we use Assumption CHE2(iii) which implies hαn = Op(n−1/2).
By Markov’s inequality and Assumption STAT, we have

P (|n−1(1− ρ)1/2
n[
i=1

Y ∗i−1UibiUi−j| > ε)

= O(n−2(1− ρ))
n[

i,k=1

EbibkY
∗
i−1Y

∗
k−1UiUi−jUkUk−j

= O(n−2(1− ρ))
n[

i,k=1

∞[
s,t=0

ρs+tEbibkUi−s−1Uk−t−1UiUi−jUkUk−j. (4.97)

Note that bi is an element of the σ-field σ(Ui−L, ..., Ui−1). The latter holds by definition
of φ2i (0, ρ,πn,k) in (3.14) and by Assumption CHE2(i) and (v). To show that the last
expression in (4.97) is o(1) we have to distinguish several subcases. As in several
proofs above, we can assume that all subindices i − s − 1, k − t − 1, ..., k − j are
different. We only consider the case i− s− 1 < k− t− 1 < i− j < k− j. The other
cases can be dealt with using an analogous approach. By Assumption INNOV(iv)
and the mixing inequality in (4.2), we have

n[
k=1

∞[
s,t=0

n[
i=1

ρs+tEbibkUi−s−1Uk−t−1UiUi−jUkUk−j

= O(1)
n[
k=1

∞[
s,t=0

k−t+s−1[
i=1

ρs+t(k − t− i+ s)−3−ε

= O(1)
n[
k=1

∞[
s,t=0

ρs+t
k−t+s−1[
i=1

i−3−ε

= O(n(1− ρ)−2), (4.98)

where in the third line we do the change of variable i :→ k − t − i + s. This implies
that the expression in (4.97) is o(1) because n(1− ρ)→∞.
In case (ii) of (4.96), using hρn−ρ = Op(n

−1/2(1−ρ)1/2) by Assumption CHE2(iii),
(3.6), and Lemma 6, and using Markov’s inequality as for case (i), it is enough to
show that

n[
i,k=1

∞[
s,t=0

∞[
u,v=0

ρs+t+u+vEbijbkjUi−s−1Ui−j−1−tUiUi−jUk−u−1Uk−j−1−vUkUk−j (4.99)

is o(n2(1−ρ)−2). Again, one has to separately examine several subcases regarding the
order of the subindices i− s− 1, ..., k− j on the random variables Ui.We can assume
that all subindices are different. We only study the case i− s− 1 < i− j − 1− t <
k − u− 1 < k − j − 1− v < i − j. The other cases can be handled analogously. By
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Assumption INNOV(iv), boundedness of bi, and the mixing inequality in (4.2), the
expression in (4.99) is of order

O(1)
n[
k=1

∞[
s,t=0

∞[
u,v=0

n[
i=k−v

ρs+t+u+vmax(s− t− j, i− k + v + 1)−3−ε

= O(1)
∞[

u,v=0

ρu+v
n[
k=1

n[
i=k−v

(i− k + v + 1)−3/2
∞[
s,t=0

ρs+t(s− t− j)−3/2

= O((1− ρ)−3n), (4.100)

where in the first line we use k − 1 − v < i and in the last line we use Sn
i=k−v(i −

k + v + 1)−3/2 =
Sn−k+v+1

i=1 i−3/2 = O(1). The desired result then follows because
n(1− ρ)→∞ implies O((1− ρ)−3n) = o(n2(1− ρ)−2).
Cases (iii)-(v) of (4.96) can be handled analogously.
Next, we show that the contribution from x−3∗ δ2 in (4.94) is op(1). Noting that

x−3∗ and μj(πn,k) are Op(1) uniformly in i by Assumption CHE2(ii), (v), and (vi),
it is enough to show that n−1/2(1− ρ)1/2

Sn
i=1 |Y ∗i−1Uicij1dij2 | = op(1), where cij and

dij ∈ {Ui−jhαn, Y ∗i−j−1Ui−j(hρn − ρ), hα2n, Y ∗i−j−1(hρn − ρ)hαn, Y ∗2i−j−1(hρn − ρ)2} and j1, j2 ∈
{1, ..., Li}. Using hαn = Op(n−1/2) and hρn − ρ = Op(n

−1/2(1− ρ)1/2) the latter follows
easily from Markov’s inequality. For example,

P (n−1/2(1− ρ)1/2
n[
i=1

|Y ∗i−1Ui(Ui−j1hαn)(Ui−j2hαn)| > ε)

= O(n−3(1− ρ))
n[

i,k=1

∞[
s,t=0

ρs+tE|Ui−1−sUiUi−j1Ui−j2Uk−1−tUkUk−j1Uk−j2|

= O(n−3(1− ρ))(1− ρ)−2n2

= o(1) (4.101)

by Assumption INNOV(iv) and n(1− ρ)→∞.
Next we show that (4.92) holds. We have

Zn,0 − Zn(πn,k)

= n−1/2
n[
i=1

((1− ρ)1/2Y ∗i−1)Ui(φ
−2
i − φ−2i (0, ρ,πn,k))

= n−1/2(1− ρ)1/2
n[
i=1

Y ∗i−1Ui(φ
2
i (0, ρ,πn,k)− φ2i )(φ

−2
i φ−2i (0, ρ,πn,k))

= n−1/2(1− ρ)1/2
n[
i=1

Y ∗i−1Ui

#
ωn − ωn,k +

L[
j=1

(μj(πn)− μj(πn,k))U
2
i−j

$
×(φ−2i φ−2i (0, ρ,πn,k)) + op(1), (4.102)
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where ωn is defined in Assumption CHE2(ii). Thus, it is enough to show that

D1 = n
−1/2(1− ρ)1/2

n[
i=1

Y ∗i−1Ui(ωn − ωn,k)(φ
−2
i φ−2i (0, ρ,πn,k)) and

D2j = n
−1/2(1− ρ)1/2

n[
i=1

Y ∗i−1Ui((μj(πn)− μj(πn,k))U
2
i−j)(φ

−2
i φ−2i (0, ρ,πn,k))

(4.103)

are op(1) for j = 1, ..., L.We can proveD2j = op(1) along the same lines asD1 = op(1)
and we therefore only prove D1 = op(1). By Assumption CHE2(ii) and πn,k → π0,
we have ωn − ωn,k → 0. Thus, by Markov’s inequality and Assumption STAT,

P (|D1| > ε)

= o(n−1(1− ρ))
n[

i,v=1

∞[
s,t=0

ρs+tEUi−1−sUiUv−1−tUv

×φ−2i φ−2i (0, ρ,πn,k)φ
−2
v φ−2v (0, ρ,πn,k). (4.104)

The random variable eiv = (φ−2i φ−2i (0, ρ,πn,k))(φ
−2
v φ−2v (0, ρ,πn,k)) is an element of

the σ-field σ(Umin{i,v}−L, ..., Umax{i,v}) by definition of φ
2
i (0, ρ,πn,k) in (3.14) and by

Assumption CHE2(i) and (v). To prove that the rhs in (4.104) is op(1) we have to
study several subcases. We only examine the subcase where all subindices i − 1 −
s, i, v− 1− t, v are different and where i− 1− s < i < v− 1− t < v. The other cases
can be dealt with analogously. By Assumption INNOV(iv), boundedness of eiv, and
the mixing inequality in (4.2), the rhs in (4.104) for the particular subcase is of order

o(n−1(1− ρ))
n[

i,v=1

∞[
s,t=0

ρs+t(s+ 1)−3/2(v − 1− t− i)−3/2

= o(n−1(1− ρ))
∞[
s,t=0

ρs+t(s+ 1)−3/2
n[
v=1

v−2−t[
i=1

(v − 1− t− i)−3/2

= o(n−1(1− ρ))O((1− ρ)−1)O(n)
= o(1), (4.105)

where in the third line a change of variable i → −i − t − 1 + v was used. This
completes the verification of Assumption CHE(ii)(c).
Finally, we show that Assumption CHE(ii)(d) holds. First, note that Assumptions

CHE2(i), (ii), and (v) imply eφ−ji φ−ji = Op(1) uniformly in i. Therefore, writing |eφ−ji −
φ−ji |d as |(φji − eφji )/(eφjiφji )|d we have

n−1
n[
i=1

|Uki (eφ−ji − φ−ji )
d| = Op(1)n−1

n[
i=1

|Uki | · |eφji − φji |d. (4.106)

41



We need to show that the quantity in (4.106) is op(1). Note that by the definition ofeφ2i in (3.14) and φ2i in Assumption CHE2(ii) we have

|eφji − φji |d =
������
#hωn + Li[

v=1

μv(hπn)eU2i−v(hαn,hρn)
$j/2

−
#
ωn +

L[
v=1

μv(πn)U
2
i−v

$j/2������
d

(4.107)
with eU2i−v(hαn,hρn) = (−(hρn−ρ)Y ∗i−v−1−hαn+Ui−v)2. It can be shown that the additional
terms in (4.106), that arise if we replace Li by L in (4.107), are of order op(1). We
first study the case where j = 2. Multiplying out in (4.107), it follows that when

d = 1, eφ2i − φ2i can be bounded by a finite sum of elements in S = {|hωn − ωn|,
|μv(hπn)− μv(πn)|U2i−v, (hρn − ρ)2Y ∗2i−v−1, hα2n, |(hρn − ρ)Y ∗i−v−1hαn|, |(hρn − ρ)Y ∗i−v−1Ui−v|,hαnUi−v : for v = 1, ..., L}. When d = 2, (eφji − φji )

2 can be bounded by a finite sum
of elements given as products of two terms in S. By Assumption CHE2(iii) and
an = O(n

1/2(1− ρ)−1/2), we have hρn − ρ = Op(n
−1/2(1− ρ)1/2), hαn = Op(n−1/2), andhωn − ωn = Op(n

−δ2). To show the quantity in (4.106) is op(1), it is enough to verify
that n−1

Sn
i=1 |Uki si1si2| = op(1) where for d = 1, si1 ∈ S and si2 = 1 and for d = 2,

si1, si2 ∈ S.We only show this for one particular choice of si1, si2, namely, si1 = si2 =
|μv(hπn)− μv(πn)|U2i−v; the other cases can be handled analogously. In that case, we
have |μv(hπn)− μv(πn)|2n−1

Sn
i=1 |Uki U2i−v| = op(1) because |μv(hπn)− μv(πn)|2 = o(1)

by Assumption CHE2(iii), (iv), and (vi), and n−1
Sn

i=1 |Uki U2i−v| = Op(1) by a weak
law of large numbers for triangular arrays of L1+δ-bounded strong-mixing random
variables for δ > 0, see Andrews (1988), using the moment conditions in Assumption
INNOV(iv).
The case j = 4 can be proved analogously.
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