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Abstract

We propose non-nested hypotheses tests for conditional moment restriction models based on

the method of generalized empirical likelihood (GEL). By utilizing the implied GEL probabilities

from a sequence of unconditional moment restrictions that contains equivalent information of the

conditional moment restrictions, we construct Kolmogorov-Smirnov and Cramér-von Mises type

moment encompassing tests. Advantages of our tests over Otsu and Whang’s (2007) tests are: (i)

they are free from smoothing parameters, (ii) they can be applied to weakly dependent data, and (iii)

they allow non-smooth moment functions. We derive the null distributions, validity of a bootstrap

procedure, and local and global power properties of our tests. The simulation results show that our

tests have reasonable size and power performance in finite samples.
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1 Introduction

Since the pioneering works of Cox (1961, 1962), testing for non-nested competitive statistical models has

become a standard technique to evaluate specification of a statistical model against a specific alternative

model, see, e.g., MacKinnon (1983), Gourieroux and Monfort (1994) and Pesaran and Weeks (2001)

for a review of non-nested testing. The purpose of this paper is to develop non-nested hypotheses tests

for conditional moment restriction models which are common in economics.

Singleton (1985), Ghysels and Hall (1990), and Smith (1992) proposed non-nested testing proce-

dures for unconditional moment restriction models. Their procedures are extended by Smith (1997)

and Ramalho and Smith (2002) to the empirical likelihood context.1 However, these procedures are

not suitable to test conditional moment restriction models which imply an infinite number of uncon-

ditional moment restrictions. On the other hand, Otsu and Whang (2007) extended the empirical

likelihood approach of Smith (1997) and Ramalho and Smith (2002) to test non-nested conditional

moment restriction models. In particular, Otsu and Whang (2007) applied the method of conditional

empirical likelihood by Kitamura, Tripathi and Ahn (2004) and Zhang and Gijbels (2003) and con-

structed non-nested test statistics based on the implied conditional probabilities from the conditional

moment restrictions.

In this paper, we extend the results of Otsu and Whang (2007) in the following senses. First, instead

of conditional empirical likelihood, we employ the ordinary unconditional empirical likelihood approach

to test conditional moment restrictions. To do so, we represent conditional moment restrictions by

sequences of unconditional moment restrictions indexed by real numbers. Our unconditional empirical

likelihood approach has an advantage over Otsu and Whang’s (2007) conditional empirical likelihood

approach since the former does not require a choice of smoothing parameters, which can be arbitrary

in practice. Second, our setup allows the observations to be weakly dependent so that our tests can be

applied in time series applications. For example, our tests can be used to test competing asset pricing

models for financial data. To the best of our knowledge, the conditional empirical likelihood approach

may not be readily extended to time series contexts. Third, our setup allows non-smooth moment

functions. This extension is useful, for example, to test non-nested quantile regression models. Fourth,

we allow the implied probabilities to be computed by any member of generalized empirical likelihood

(GEL), which includes empirical likelihood, exponential tilting, and continuously updating GMM as

special cases. Since it is known that each member of GEL shows different finite sample performances,

this extension might be useful to practitioners.2

This paper is organized as follows. Section 2 introduces our basic set-up and test statistics. Section

3 investigates the asymptotic properties of the proposed tests. Sections 3.1 derives the null distributions

of the test statistics. Section 3.2 studies their local power properties. Section 3.3 discusses the global

1See Owen (2001) for a review of empirical likelihood.
2GEL is originally proposed by Smith (1997) and its higher order properties are investigated by Newey and Smith

(2004).
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power properties of our tests. Section 4 describes the block bootstrap procedure to compute the critical

values and gives its asymptotic justification. Section 5 reports simulation results. Section 6 concludes.

We use the following notation. The abbreviations “a.s.” and “w.p.a.1” mean “almost surely” and

“with probability approaching one,” respectively. “
p−→” and “⇒” mean the convergence in probability

and weak convergence, respectively. kAk =
p
trace (AA0) is the Frobenius norm for a scalar, vector,

or matrix. A−, λmin (A), and λmax (A) are a g-inverse, the minimum eigenvalue, and the maximum

eigenvalue of a matrix A, respectively. 1 (A) is the indicator function for an event A. int (A) is the

interior of a set A. a(i) means the i-th component of a vector a.

2 Set-up and Test Statistics

Suppose that we observe weakly dependent data {(Xt, Zt) : t = 1, ...T}, where Xt ∈ X ⊂ Rdx and Zt ∈
Rdz . Let μX,Z , μX , μZ , and μZ|X denote the joint probability law of (Xt, Zt), the marginal law of Xt,

the marginal law of Zt, and the conditional law of Zt given Xt, respectively. Let g : Rdz ×B→ Rdg and

h : Rdz × Γ→ Rdh be vectors of moment functions, where B ⊂ Rdβ and Γ ⊂ Rdγ are parameter spaces.

Consider the two competing hypotheses written by the conditional moment restrictions:

Hg :

Z
g(z, β0)dμZ|X = 0 a.s. μX for some β0 ∈ B, (1)

Hh :

Z
h(z, γ0)dμZ|X = 0 a.s. μX for some γ0 ∈ Γ. (2)

Except for the conditional moment restrictions, these hypotheses do not impose any parametric assump-

tions on the distribution forms of μZ|X and μX . In this sense, these hypotheses are semiparametric.

It is known that the hypotheses Hg and Hh are equivalently written as (see, e.g., Billinglsey (1995,

Theorem 16.10 (iii)))

Hg :

Z
g(z, β0)1(x ≤ u)dμX,Z = 0 for all u ∈ X for some β0 ∈ B, (3)

Hh :

Z
h(z, γ0)1(x ≤ u)dμX,Z = 0 for all u ∈ X for some γ0 ∈ Γ. (4)

In other words, a finite number of conditional moment restrictions on the conditional law μZ|X can be

equivalently represented by an infinite number of unconditional moment restrictions on the joint law

μZ,X . In this paper, we assume that the above hypotheses are non-nested, i.e., if Hg holds true, then

for any γ ∈ Γ there exists some u ∈ X such that
R
h(z, γ)1(x ≤ u)dμX,Z 6= 0. Otsu and Whang (2007)

proposed non-nested test statistics based on the implied conditional probabilities from the conditional

moment restrictions in (1) and (2). On the other hand, this paper focuses on the sequences of the

unconditional moment restrictions indexed by u in (3) and (4) and utilizes the implied unconditional

probabilities to construct non-nested test statistics.

To obtain the implied unconditional probabilities from (3) and (4), we employ the GEL approach.

See Smith (1997) and Newey and Smith (2004) for detailed discussions on GEL. Let gt(u, β) =
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g(Zt, β)1(Xt ≤ u) be the unconditional moment function of (3). At given u and β, the GEL func-

tion for the unconditional moment restriction (3) can be written as

sup
λ∈Λ̂T (β)

TX
t=1

ρ(λ0gt(u, β)),

where ρ : V → R is a criterion function defined on an open interval V containing zero, and Λ̂T (β) =
{λ ∈ Rdg : λ0g(Zt, β) ∈ V, t = 1, . . . , T} is the support of the auxiliary parameter λ. Popular choices for
ρ are ρ(v) = log(1− v) (empirical likelihood by Owen (1988) and Qin and Lawless (1994)), ρ(v) = −ev

(exponential tilting by Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998)), and

ρ(v) = −(1 + v)2/2 (continuous updating GMM by Hansen, Heaton and Yaron (1996)). Suppose we

have an estimator β̂ for β0 such as Dominguez and Lobato’s (2004) estimator. Let ĝt(u) = gt(u, β̂),

λ̂(u) = argmax
λ∈Λ̂T (β̂)

TX
t=1

ρ(λ0ĝt(u)), (5)

and ρj (v) = ∂jρ(v)/∂vj whenever it exists. The GEL-based implied unconditional probabilities from

(3) at u and β̂ are obtained as

pgt (u) =
ρ1(λ̂(u)

0ĝt(u))PT
s=1 ρ1(λ̂(u)

0ĝs(u))
,

for t = 1, . . . , T . In the same manner, we can define γ̂, ht(u, γ), ĥt(u), γ̂(u), and pht (u).

We consider a testing problem for the null hypothesisHg against the non-nested alternative hypoth-

esis Hh. To construct test statistics, we adopt the moment encompassing approach (see, e.g., Ramalho

and Smith (2002)). Our test statistics are based on the following contrast:

MT (u) =
√
T

Ã
1

T

TX
t=1

ĥt(u)−
TX
t=1

pgt (u)ĥt(u)

!
,

for u ∈ X . Note that the first and second terms are sample analogs of the population moment

E[h(Zt, γ)1(Xt ≤ u)] evaluated under the uniform weight (i.e., 1/T ) and the implied probabilities

{pgt (u) : t = 1, . . . , T}. Under the null hypothesis Hg, both analogs are consistent for E[h(Zt, γ)1(Xt ≤
u)] and thus we can expect that the contrast MT (u) will not diverge. On the other hand, if the null

hypothesis Hg does not hold, the second term
PT

t=1 p
g
t (u)ĥt(u) is typically inconsistent for estimating

E[h(Zt, γ)1(Xt ≤ u)] and the contrastMT (u) will diverge in general. Therefore, based on the sequence

of the contrasts {MT (u) : u ∈ X}, we propose the Kolmogorov-Smirnov- and Cramér-von Mises-type
test statistics

MKS = sup
u∈X

kMT (u)k ,

MCM =

Z
kMT (u)k2 dμ̂X ,

where μ̂X is the empirical measure of {Xt : t = 1, . . . , T}. The test statistics for testing the null
hypothesis Hh against the alternative hypothesis Hg can be constructed in the same manner. Note
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that although the non-nested test statistics of Otsu and Whang (2007) require to choose smoothing

parameters to compute the conditional implied probabilities, our test statistics are free from those

smoothing parameters.

3 Asymptotic Properties

3.1 Null Distributions

This subsection derives the asymptotic null distributions of our non-nested test statistics. We introduce

some notation. Denote

Ω(u, β) = E
£
gt(u, β)gt(u, β)

0¤ , Ω(u) = Ω(u, β0),

Ωh (u, β, γ) = E
£
ht (u, γ) gt (u, β)

0¤ , Ωh (u) = Ωh (u, β0, γ∗) ,

D(u, β) = ∂E [gt(u, β)] /∂β
0, D (u) = D (u, β0) .

Let gt (u) = gt (u, β0) and

νT (u, β) =
1√
T

TX
t=1

(gt (u, β)−E[gt (u, β)])−
1√
T

TX
t=1

(gt (u)−E[gt (u)]) (6)

be the empirical process evaluated at gt (u, β)− gt (u). Let γ∗ be the probability limit of γ̂ under Hg.

To obtain the null distributions, we impose the following assumptions.

Assumption 3.1 ρ : V → R is twice continuously differentiable and concave on an open interval V
containing zero, and ρj (0) = −1 for j = 1 and 2.

Assumption 3.2 {(Xt, Zt) : t = 1, 2, . . .} is a strictly stationary β-mixing sequence on X ×Rdz whose

mixing coefficient is of order O
¡
n−b

¢
for some b > r/ (r − 1) with some r > 1, X ⊂ Rdx is compact,

and there exists a constant C > 0 such that Pr{X(i)
t ∈ [a, b]} ≤ C(b − a) for any a ≤ b ∈ X and

i = 1, ..., dx.

Assumption 3.3

(i) B is compact and β0 ∈ int(B).

(ii) νT (u, β) satisfies

sup
β1,β2∈{β1,β2∈B:|β1−β2|<δT },u∈X

kνT (u, β1)− νT (u, β2)k
p−→ 0,

for any sequence δT → 0.

(iii) There exists a neighborhood B0 around β0 such that E[supβ∈B0 kg (Zt, β)kα] <∞ for some α > 4

and supβ∈B0,u∈X |D (u, β)| <∞, D (u, β) is continuous at β = β0 uniformly in u ∈ X , and D (u)
is full column rank for all u ∈ X .
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(iv) infu∈X λmin (Ω (u)) > 0, and Ω (u, β) is continuous at β = β0 uniformly in u ∈ X .

Assumption 3.4

(i) supγ∈Γ∗,u∈X
°°° 1T PT

t=1 ht (u, γ)−E [ht (u, γ)]
°°° p−→ 0 and

supγ∈Γ∗,β∈B,u∈X

°°° 1T PT
t=1 ht (u, γ) gt (u, β)

0 −E
£
ht (u, γ) gt (u, β)

0¤°°° p−→ 0.

(ii) There exists a neighborhood Γ∗ around γ∗ such that E[supγ∈Γ∗ kh(Zt, γ)kα] <∞ for some α > 4.

(iii) Ωh (u) is finite and is full column rank for all u ∈ X .

Assumption 3.5

(i)
√
T (β̂ − β0) = −T−1/2∆0

PT
t=1 ψ(Xt, Zt, β0) + op(1), where ∆0 is a non-stochastic dβ × dβ matrix,

E[ψ(Xt, Zt, β0)] = 0 and E
h
kψ(Xt, Zt, β0)kξ

i
<∞ for some ξ > 2.

(ii) kγ̂ − γ∗k = Op(T
−1/2).

Assumption 3.1 is on the GEL criterion function. Popular criterion functions such as empirical

likelihood, exponential tilting, and continuous updating GMM satisfy this assumption. Assumption

3.2 is on the data {(Xt, Zt) : t = 1, 2, . . .}. Compared to Otsu and Whang (2007) who assume iid data,
we allow dependent data. Thus, for example, our method can be applied to test competing asset

pricing models based on financial time series data. The second condition in this assumption is used to

establish a stochastic equicontinuity and is satisfied when the density of Xt is bounded. If the support

of Xt is finite, this condition is irrelevant and the limit process M (u) in Theorem 3.1 below becomes

a multivariate Normal. Assumption 3.3 contains the conditions for the moment function g (Zt, β).

Assumption 3.3 (i) is standard. Assumption 3.3 (ii) is a stochastic equicontinuity condition on the

empirical process νT (u, β). It is important to note that the moment function g (Zt, β) need not to be

smooth in β. Note that

kg (Zt, β1) 1 (Xt ≤ u)− g (Zt, β2) 1 (Xt ≤ u)k ≤ kg (Zt, β1)− g (Zt, β2)k

for any β1, β2 ∈ B. So, Assumption 3.3 (ii) is satisfied if g is in a P -Donsker class, which includes for
example Lipschitz continuous functions and indicator functions (see, e.g., Andrews (1993, Section 4)

for a detail). Therefore, for example, our setup allows quantile regression models, where g (Zt, β) =

1 (Yt −X 0
tβ ≤ 0) − q and Zt = (Yt,X

0
t)
0 for some q ∈ (0, 1). In contrast, Otsu and Whang (2007)

do not allow non-smooth moment functions. Assumption 3.3 (iii) and (iv) are boundedness and rank

conditions for moments related to g (Zt, β) that are required to apply limit theorems. Assumption 3.4

lists the conditions for the alternative moment function h (Zt, γ). Assumption 3.4 (i) contains uniform

laws of large numbers for ht (u, γ) and ht (u, γ) gt (u, β)
0. See, e.g., Andrews (1987) and Pötscher and

Prucha (1989) for more primitive conditions on this assumption. Our setup also allows non-smoothness
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on ht (u, γ). Assumption 3.5 is on the estimators β̂ and γ̂. This assumption is satisfied by many

T 1/2− consistent parametric and semiparametric estimators in the literature, e.g., maximum likelihood
estimator, generalized method of moment estimators and the estimators of Donald, Imbens and Newey

(2003), Kitamura, Tripathi and Ahn (2004), and Dominguez and Lobato (2004). Although Assumption

3.5 (i) implies the asymptotic normality of β̂, it does not require the estimator β̂ to be asymptotically

efficient.

To derive the asymptotic null distribution, we need some additional notation. Let ψt = ψ(Xt, Zt, β0)

and define a mean zero Gaussian process (G(u)0,Ψ0)0 with the covariance kernel

V (u1, u2) = lim
T→∞

cov

⎛⎝ 1√
T

TX
t=1

Ã
gt (u1)

ψt

!
,
1√
T

TX
t=1

Ã
gt (u2)

ψt

!0⎞⎠ .

Then z (u) = Ω (u)−1 (G (u)−D (u)∆0Ψ) is a mean zero Gaussian process with the covariance kernel

Vz(u1, u2) = Ω(u1)
−1[Idg : −D(u1)∆0]V (u1, u2)

£
Idg : −D(u2)∆0

¤0
Ω(u2)

−1.

Based on the above assumptions and notation, we obtain the null distribution of our test statistics.

Theorem 3.1 (Null distributions) Suppose that Assumptions 3.1-3.5 hold. Then under the null

hypothesis Hg,

MT (u)⇒M (u) ,

with M (u) = Ωh (u)z (u), and

MKS =⇒ sup
u∈X

kM (u)k ,

MCM =⇒
Z
kM (u)k2 dμX .

The limit process kM (u)k2 is a chi-square process as the distribution of kM (u)k2 for a fixed u

is chi-square with degree of freedom dh. The asymptotic distributions of the test statistics MKS and

MCM cannot be tabulated in general as they depend on several unknown components such as the

covariance kernel V (u1, u2). Therefore, we consider a bootstrap procedure to conduct valid inference

in Section 4.

3.2 Local Power

We now evaluate the local power properties of the proposed non-nested test statistics. Consider a

sequence of local alternatives that converge to the null hypothesis at T−1/2 rate, that is,

HgT :

Z
g(z, β0)dμ

T
Z|X = T−1/2π(X), β0 ∈ B (a.s. μX),
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where μTZ|X denote the conditional law of Zt givenXt under the local alternativesHgT , and π : X → Rdg

is a non-zero function satisfying
R
kπ(x)k dμX <∞. Let Π (u) = E [π (Xt) 1 (Xt ≤ u)]. Similar to (3),

the local alternative hypothesis HgT can be equivalently written as

HgT :

Z
g (z, β0) 1 (x ≤ u) dμTX,Z = T−1/2Π (u) , β0 ∈ B for all u ∈ X . (7)

Let

T (u, β) =

Z
g (z, β) 1 (x ≤ u) dμTX,Z

compared to (u, β) =
R
g (z, β) 1 (x ≤ u) dμX,Z , which is the limit law of μ

T
X,Z as T →∞. Let μTZ be

the marginal law of Zt under the local alternatives HgT . This local alternative also demands a change

in the limit of β̂. The relevant change and some strengthening of the previous assumptions are collected

here:

Assumption 3.6

(i)
√
T (β̂ − β0) = −T−1/2∆0

PT
t=1 ψ(Xt, Zt, β0) + op(1), where ∆0 is a non-stochastic dβ × dβ matrix,

T 1/2
R R

ψ(x, z, β0)dμ
T
Z|XdμX → η0 < ∞, supT≥1

ZZ
||ψ(x, z, β0)||ξdμTZ|XdμX < ∞ for some

ξ > 2, and
ZZ

ψ(x, z, β0)ψ(x, z, β0)
0d
³
μTZ|X − μZ|X

´
dμX → 0.

(ii) supT≥1
R
supβ∈B0 kg(z, β)k

α dμTZ < ∞ for some α > 4, and T (u, β) = (u, β) + T−1/2Π (u, β),

where Π (u, β) is continuous at β = β0 uniformly in u ∈ X and Π (u, β0) = Π (u). Furthermore,

Assumption 3.3 (ii) holds under μTZ,X .

(iii) supT≥1
R
supγ∈Γ∗ kh(z, γ)k

α dμTZ <∞, for some α > 4 and

supγ∈Γ∗,u∈X

°°° 1T PT
t=1 ht (u, γ)−

R
ht (u, γ) dμ

T
Z,X

°°° = op (1).

(iv)
ZZ

[g(z, β0)g(z, β0)
01(x ≤ u)] d

³
μTZ|X − μZ|X

´
dμX → 0 uniformly in u ∈ X andZZ

[g(z, β0)h(z, γ)
01(x ≤ u)] d

³
μTZ|X − μZ|X

´
dμX → 0 uniformly in u ∈ X and in γ ∈ Γ∗.

Theorem 3.2 (Local power) Suppose Assumptions 3.1-3.4, and 3.6 hold. Then under the local al-

ternative hypothesis HgT ,

MKS =⇒ sup
u∈X

kM(u) + ζ(u)k ,

MCM =⇒
Z
kM(u) + ζ(u)k2 dμX .

where ζ(u) = Ωh(u) [Π (u)−D(u)∆0η0].

Theorem 2 implies that our tests have non-trivial power against a sequence of T−1/2 local alternatives

and asymptotic local powers of the testsMKS andMCM are given by Pr
©
supu∈X kM(u) + ζ(u)k > cKS

α

ª
and Pr

nR
kM(u) + ζ(u)k2 dμX > cCMα

o
, where cKS

α and cCMα denote the (1−α)-th quantile of the as-

ymptotic null distributions of MKS and MCM given in Theorem 3.1, respectively.
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3.3 Global Power

This subsection investigates the global power properties of the proposed non-nested tests under the

fixed (or non-local) alternative hypothesis Hh. Since our non-nested test statistics are constructed

against a specific alternative hypothesis Hh, the global power analysis is crucial to assess the validity of

the proposed test statistics. Let β∗ be the probability limit of the estimator β̂ under the true measure

satisfying Hh. Since the conditional moment restriction in Hg is misspecified, β̂ does not converge to

β0 in general. Similarly, let λ∗ (u) be the probability limit of λ̂(u) under Hh. Note that λ∗(u) depends

on the choice of the GEL criterion function ρ. We impose the following conditions.

Assumption 3.7

(i) β̂
p→ β∗, γ̂

p→ γ0, and supu∈X
°°°λ̂(u)− λ∗(u)

°°° p→ 0.

(ii) There exist neighborhoods B∗, Γ0, and Λ∗ (u) for u ∈ X around β∗, γ0, and λ∗ (u), respectively,

such that

sup
γ∈Γ0

°°°°° 1T
TX
t=1

ht (u, γ)−E [ht (u, γ)]

°°°°° p−→ 0,

sup
λ∈Λ∗(u),β∈B∗

°°°°° 1T
TX
t=1

ρ1
¡
λ0gt (u, β)

¢
−E

£
ρ1
¡
λ0gt (u, β)

¢¤°°°°° p−→ 0,

sup
λ∈Λ∗(u),β∈B∗,γ∈Γ0

°°°°° 1T
TX
t=1

ρ1
¡
λ0gt (u, β)

¢
ht (u, γ)−E

£
ρ1
¡
λ0gt (u, β)

¢
ht (u, γ)

¤°°°°° p−→ 0,

uniformly in u ∈ X .

(iii) E [ht (u, γ)], E
£
ρ1
¡
λ0gt (u, β)

¢¤
, and E

£
ρ1
¡
λ0gt (u, β)

¢
ht (u, γ)

¤
are continuous at γ0, (λ∗ (u) , β∗),

and (λ∗ (u) , β∗, γ0) uniformly in u ∈ X , respectively.

Assumption 3.7 (i) is on the consistency of β̂, γ̂, and λ̂(u) to β∗, γ0, and λ∗(u), respectively. We do

not need
√
T -consistency of the estimators for the global power analysis. Assumption 3.7 (ii) contains

uniform laws of large numbers for ht (u, γ), ρ1
¡
λ0gt (u, β)

¢
, and ρ1

¡
λ0gt (u, β)

¢
ht (u, γ). Since λ̂(u) does

not converge to zero under the alternative hypothesis Hh, we need to directly control the behaviors

of ρ1
¡
λ0gt (u, β)

¢
with respect to λ (see, Hong, Preston and Shum (2003) and Chen, Hong and Shum

(2007) for similar arguments). Assumption 3.7 (iii) is on the continuity of the probability limits in

Assumption 3.7 (ii). Assumption 3.7 (i) and (ii) are relatively higher level. More primitive assumptions

can be found by applying similar arguments to Lemma B.1 and Hong, Preston and Shum (2003, Lemma

1). The consistency results for the tests based on MKS and MCM are obtained as follows.

Theorem 3.3 (Consistency) Suppose that Assumption 3.7 holds. Then under the alternative hy-

pothesis Hh,

sup
u∈X

°°°°MT (u)√
T
− μ∗(u)

°°°° p→ 0,

9



where

μ∗(u) = −
E [ρ1(λ∗(u)

0gt(u, β∗))ht(u, γ0)]

E[ρ1(λ∗(u)0gt(u, β∗))]
.

Therefore, if there exists u∗ ∈ X such that kμ∗(u∗)k 6= 0, then the non-nested tests based on MKS and

MCM are consistent against Hh.

This theorem says that in order to guarantee the consistency of our non-nested tests, we need to

check whether the noncentrality parameter μ∗(u) has at least one point u∗ in X satisfying kμ∗(u∗)k 6= 0.
Since the noncentrality parameter μ∗ (u) depends on the first-order derivative of the GEL criterion

function ρ1 and moment functions g and h, it is difficult to find a general condition to guarantee the

consistency. Thus, we hereafter consider some specific examples.

First, in order to compare popular members of GEL, such as the continuous updating GMM and

empirical likelihood, we specify the GEL criterion function by the Cressie and Read (1984) divergence

family:

ρ(v) = −(1 + φv)(φ+1)/φ

φ+ 1
,

for some constant φ. This family includes the continuous updating GMM (φ = 1), empirical likelihood

(φ → −1), and exponential tilting (φ → 0) as special cases. From ρ1(v) = −(1 + φv)1/φ, the non-

centrality parameter μ∗(u) is written as

μ∗(u) = −
E
£
(1 + φλ∗(u)0gt(u, β∗))

1/φht(u, γ0)
¤

E[(1 + φλ∗(u)0gt(u, β∗))1/φ]
.

Note that since μ∗(u) depends on λ∗(u), the probability limit of the Lagrange multiplier λ̂(u) underHh,

it is not easy to find an intuitive condition for the consistency. To proceed furthermore, we focus on

the case of the continuous updating GMM, i.e., the case of φ = 1. In this case, the Lagrange multiplier

λ̂(u) defined in (5) has an explicit solution, that is

λ̂(u) = Ω̂(u, β̂)−1
1

T

TX
t=1

gt(u, β̂),

where Ω̂ (u, β) = 1
T

PT
t=1

³
gt(u, β)− 1

T

PT
t=1 gt(u, β)

´³
gt(u, β)− 1

T

PT
t=1 gt(u, β)

´0
. Under certain reg-

ularity conditions the probability limit of λ̂(u) under Hh can be written as

λ∗(u) = Ω∗ (u, β∗)
−1E[gt(u, β∗)],

where Ω∗ (u, β∗) = E [gt(u, β∗)gt(u, β∗)
0]−E[gt(u, β∗)]E[gt(u, β∗)]0. Therefore, in this case, the noncen-

trality parameter μ∗(u) is

μ∗(u) = −
E
h
(1 +E[gt(u, β∗)]

0Ω∗ (u, β∗)
−1 gt(u, β∗))ht(u, γ0)

i
1 +E[gt(u, β∗)]0Ω∗ (u, β∗)

−1E[gt(u, β∗)]

=
under Hh

−
E
hn

E[gt(u, β∗)]
0Ω∗ (u, β∗)

−1 gt(u, β∗)
o
ht(u, γ0)

i
1 +E[gt(u, β∗)]

0Ω∗ (u, β∗)
−1E[gt(u, β∗)]

10



Since the hypotheses Hg and Hh are non-nested, there exists a non-empty set Uh =

{u ∈ X : E[gt(u, β∗)] 6= 0 under Hh}. Then as far as there exists u∗ ∈ Uh and j = 1, . . . , dh such that

Ω∗ (u∗, β∗) is positive definite and

E[gt(u∗, β∗)h
(j)
t (u∗, γ0)] 6= 0,

we can guarantee the consistency of the non-nested tests based on MKS and MCM . Intuitively, the

above condition requires that the alternative moment function ht(u, γ0) must have some correlation or

prediction power with the null moment function gt(u, β∗). This finding is summarized in the following

corollary.

Corollary 3.1 (Continuous updating GMM) If there exists u∗ ∈ X such that

E[gt(u∗, β∗)] 6= 0, Ω∗ (u∗, β∗) is positive definite,

E[gt(u∗, β∗)h
(j)
t (u∗, γ0)] 6= 0 for some j = 1, . . . , dh, (8)

then under Assumption 3.7 with λ∗(u) = Ω∗ (u, β∗)
−1E[gt(u, β∗)], the non-nested tests based on MKS

and MCM using the continuous updating GMM criterion function are consistent against Hh.

Next, to explore the conditions in (8), we consider the non-nested (possibly nonlinear) regression

models:

Hreg
g : Yt = G(Xt, β0) + et, E [et|Xt] = 0 (a.s. μX),

Hreg
h : Yt = H(Xt, γ0) + vt, E [vt|Xt] = 0 (a.s. μX).

Since Hreg
g and Hreg

h are non-nested, the first condition in (8) is satisfied, i.e., for some u∗ ∈ X ,

E[gt(u∗, β∗)] = E [(H(Xt, γ0)−G(Xt, β∗)) 1 (Xt ≤ u∗)] 6= 0. (9)

For the second and third conditions in (8), note that

Ω∗ (u, β∗) = E
h
(Yt −G(Xt, β∗))

2 1 (Xt ≤ u)
i
−E [(Yt −G(Xt, β∗)) 1 (Xt ≤ u)]2

= E
£
E
£
v2t |Xt

¤
1 (Xt ≤ u)

¤
+ V ar ({H(Xt, γ0)−G(Xt, β∗)} 1 (Xt ≤ u)) ,

E[gt(u, β∗)ht(u, γ0)] = E[(Yt −G(Xt, β∗)) (Yt −H(Xt, γ0)) 1 (Xt ≤ u)]

= E
£
E
£
v2t |Xt

¤
1 (Xt ≤ u)

¤
.

Therefore, the second and third conditions in (8) are satisfied under mild assumptions: E
£
v2t |Xt

¤
> 0

(a.s. μX) and

V ar ((H(Xt, γ0)−G(Xt, β∗)) 1 (Xt ≤ u∗)) > 0 for u∗ ∈ X satisfying (9). We summarize this result in

the following corollary.
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Corollary 3.2 (Regression models) If V ar ((H(Xt, γ0)−G(Xt, β∗)) 1 (Xt ≤ u∗)) > 0 for u∗ ∈ X
satisfying

E[(H(Xt, γ0)−G(Xt, β∗)) 1 (Xt ≤ u∗)] 6= 0 and E
£
v2t |Xt

¤
> 0 a.s. μX , then under Assumption 3.7

with λ∗(u) = Ω∗ (u, β∗)
−1E[gt(u, β∗)], the non-nested tests for H

reg
g against Hreg

h based on MKS and

MCM using the continuous updating GMM criterion function are consistent against Hreg
h .

Finally, to obtain further insights on the condition of the consistency, we apply the theory of

information geometry or φ-divergence by Csiszár (1975, 1995). Here we assume that the sample

{(Xt, Zt) : t = 1, . . . , T} is iid. Observe that the noncentrality parameter μ∗(u) is written as

μ∗(u) = −
Z

ht(u, γ0)
ρ1(λ∗(u)

0gt(u, β∗))

E[ρ1(λ∗(u)
0gt(u, β∗))]

dμX,Z

= −
Z

ht(u, γ0)dμ
(u)∗
X,Z ,

where
dμ

(u)∗
X,Z

dμX,Z
= ρ1(λ∗(u)

0gt(u,β∗))
E[ρ1(λ∗(u)

0gt(u,β∗))]
. Let G(u, β) be a set of joint measures for (Xt, Zt) satisfyingE[gt(u, β)] =

0, i.e.,

G(u, β) =
½
μ ∈MX,Z :

Z
gt(u, β)dμ = 0

¾
,

where MX,Z is the set of all joint measures for (Xt, Zt). Based on Csiszár (1995), the probability

measure μ
(u)∗
X,Z can be considered as the best approximation of the true joint measure μX,Z to the

set G(u, β∗) by using some information divergence for probability measures. In theory of information
geometry, this measure μ(u)∗X,Z is called the φ- projection of μX,Z to G(u, β∗). For example, if the GEL
criterion function ρ is concave and the moment function gt(u, β∗) is bounded, then the φ-projection

μ
(u)∗
X,Z always exists and satisfies μ

(u)∗
X,Z ∈ G(u, β∗) for each u ∈ X (see, Csiszár (1995)). Based on the

above notation, the null hypothesis Hg is written as

Hg : μX,Z ∈ G = ∪β∈B ∩u∈X G(u, β).

Similarly, the alternative hypothesis Hh is

Hh : μX,Z ∈ H = ∪γ∈Γ ∩u∈X H(u, γ),

where

H(u, γ) =
½
μ ∈MX,Z :

Z
ht(u, γ)dμ = 0

¾
.

To guarantee μ∗(u) = −
R
ht(u, γ0)dμ

(u)∗
X,Z 6= 0 at some u ∈ X , it is sufficient to check that μ(u)∗X,Z /∈ H

for some u ∈ X . For example, this condition is satisfied when μ
(u)∗
X,Z ∈ G(u, β∗) for all u ∈ X and

G(u, β∗) ∩H is empty for some u ∈ X . The latter condition says that the set G(u, β∗) created by the
null moment function gt(u, β∗) should not intersect with the set of the alternative hypothesis H. We
obtain the following result.

Corollary 3.3 (Information geometry) Suppose that Assumption 3.7 holds with iid data

{(Xt, Zt) : t = 1, . . . , T} and g (Zt, β∗) is bounded. If there exists u∗ ∈ X such that G(u∗, β∗) ∩ H is

empty, then the non-nested tests based on MKS and MCM are consistent against Hh.
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4 Block Bootstrap

To obtain critical values for the non-nested tests based on MKS and MCM , we apply the moving block

bootstrap (MBB) by Künsch (1989), which accommodates general dependent data. Let Wt = (Xt, Zt),

b be a chosen block length, and k be the smallest integer such that bk ≥ T. Then, define blocks

Bt = (Wt,Wt+1, ...,Wt+b−1) for t = 1, ..., T −b+1 and sample k blocks independently with replacement
(denoted as B∗t , t = 1, ..., k). Connect those blocks end-to-end and delete the observations once the

sample size reaches T to get the bootstrap sample {W ∗
t : t = 1, . . . , T} (All the quantities corresponding

to the conditional bootstrap probability measure P ∗ are supplied with an asterisk∗). Once we obtain

a bootstrap sample, we define β̂
∗
, γ̂∗, and the implied probabilities pg

∗

t (u) in the same manner as β̂, γ̂

and pgt (u) . Then, the bootstrap test statistics are constructed based on

M∗
T (u) =

√
T

Ã
1

T

TX
t=1

ĥ∗t (u)−
TX
t=1

pg
∗

t (u) ĥ
∗
t (u)

!
−MT (u) ,

where ĥ∗t (u) = h (Z∗t , γ̂
∗) 1 (X∗

t ≤ u) . ConstructM∗
KS = supu∈X kM∗

T (u)k andM∗
CM =

R
kM∗

T (u)k dbμX .
Now, we repeat this a large number of times and obtain the bootstrap p-values by calculating the pro-

portion of the bootstrap statistics that are larger than the original statistics respectively.

We show that the MBB of MKS (and MCM) is asymptotically valid and has the same local power

as the asymptotic test. This is done by showing that M∗
KS converges weakly to supu∈X kM (u)k in P

under both the null and the local alternatives. See Andrews (1997) for more discussion. The centering

of the bootstrap statistic M∗
T (u) eliminates the bias term ζ (u) asymptotically, which is present in the

local asymptotic limit of the sample statistic MT (u) .

Theorem 4.1 (Validity of bootstrap) Suppose that Assumptions 3.1-3.5 hold. Assume further that

the bootstrap consistently estimates the asymptotic distribution of β̂ and γ̂∗ − γ̂ = Op

¡
T−1/2

¢
. Let the

mixing coefficient in Assumption 3.3 (i) is of order O (n−q) for some q > α/ (α− 2) and the block
length b = O (nε) for some 0 < ε < (α− 2) /2 (α− 1). Then under Hg,

M∗
KS =⇒ ∗ sup

u∈X
kM (u)k in P,

M∗
CM =⇒ ∗

Z
kM (u)k2 dμX in P.

These also hold true under HgT when Assumption 3.5 is replaced by Assumption 3.6.

The result draws on the bootstrap central limit theorem of Radulovíc (1996) for empirical processes

of stationary β-mixing processes for the VC-subgraph classes of functions. {gt (u)}u∈X is a VC-subgraph
class of functions by e.g. Lemma 2.6.18 of Van der Vaart andWellner (1996). We may employ Bühlmann

(1995) as his bracketing condition is satisfied as shown in Lemma B.2. However, his moment and mixing

conditions are more restrictive than Radulovíc’s while the block length condition for the MBB is more

13



general. As the optimal length of blocks is at the order of n1/3, our condition is not restrictive for

α > 4.

It is a corollary of this theorem and Theorem 3.3 that the test based on the MBB is consistent

since M∗
KS is Op (1) under the alternative Hh. The proof is straightforward after replacing β0 with the

pseudo true value β∗ and thus omitted.

5 Monte Carlo Experiments

In this section, we investigate the finite sample performance of the tests MKS and MCM using Monte

Carlo experiments. We consider two simulation designs. In Design I, we consider binary choice models

for independent observations.3 The logit model is the null model and the Gumbel and Burr models are

the non-nested alternative models compared. The Gumbel and Burr models assume asymmetric errors,

while the logit model assumes symmetric errors. These models are defined by the following conditional

probabilities : For t = 1, ..., T ,

Hg : Pr {Yt = 1|Xt} =
exp(Xtβ0)

1 + exp(Xtβ0)
: Logit (10)

Hh : Pr {Yt = 1|Xt} = 1− exp(− exp(Xtγ0)) : Gumbel (11)

Hh : Pr {Yt = 1|Xt} =
µ

exp(Xtγ0)

1 + exp(Xtγ0)

¶τ

, τ > 0 : Burr(τ) (12)

where {Xt} is drawn independently from the standard normal distribution and the true parameters

are given by β0 = γ0 = 1. The Burr model has negative skewness for τ < 1 and positive skewness

for τ > 1 and reduces to the logit model when τ = 1.4 We consider τ ∈ {1/3, 2/3, 3/2, 3}. Note
that the hypotheses (10) and (11) or (12) correspond to the conditional moment restrictions in (1)

- (2) with g(Z, β0) = Y − exp(Xβ0)/(1 + exp(Xβ0)) and h(Z, γ0) = Y − 1 + exp(− exp(Xγ0)) or

h(Z, γ0) = Y − [exp(Xγ0)/(1 + exp(Xγ0))]
τ , where Z = (Y,X)0.

In Design II, we consider non-nested linear quantile regression models for dependent observations:

for t = 1, . . . , T ,

Hg : Yt = β01 + β02X1t + ugt (13)

Hh : Yt = γ01 + γ02X2t + uht, (14)

where X1t = 0.5X2t + e1t, X2t = 0.5X2,t−1 + e2t (X20 = 0), {e1t} and {e2t} are iid N(0, 1), {ugt}
and {uht} are iid log(N(0, 1)) − exp

¡
Φ−1(q)

¢
so that Pr {ugt ≤ 0} = Pr {uht ≤ 0} = q for 0 < q < 1.

The true parameters are given by β0 = (β01, β02)
0 = (1, 1)0 and γ0 = (γ01, γ02)

0 = (1, 1)0. Note

that the hypotheses (13) - (14) correspond to the conditional moment restrictions in (1) - (2) with

3Pesaran and Pesarn (1993), Weeks (1996), and Santos Silva (2001) also consider non-nested tests for binary choice

model. In contrast to our tests, however, their tests are based on (finite-dimensional) unconditional moment restrictions.
4However, in our context, the Burr model is not nested with the logit model since τ is fixed a priori.
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g(Z, β0) = 1 (Y ≤ β01 + β02X1)−q and h(Z, γ0) = 1 (Y ≤ γ01 + γ02X2)−q, where Z = (Y,X1,X2)
0 and

X = (X1,X2)
0.

We estimate the true parameters by maximum likelihood estimators for Design I and by linear

quantile regression estimators of Koenker and Bassett (1978) for Design II. We compare 6 different types

of tests: MKS and MCM with the GEL implied probabilities given by empirical likelihood (φ = −1),
exponential tilting (φ = 0) and continuous updating GMM (φ = 1), i.e., Mel

KS , Mel
CM , Met

KS , Met
CM ,

Mcu
KS, M

cu
CM . In computing the supremum and integral in the test statistics, we took a maximum and

sum over an equally spaced grids of size 20 on the range of empirical distributions. In computing the

test statistics using bootstrap samples, we used the same grid of points as we used in the original test

statistics.5 When the observations are independent (Design I), we set the block length b for bootstrap

to be unity, while when the observations are dependent (Design II), we consider several different values

of b in a wide range of integers to see how sensitively the finite sample performance depends on the

choice of b.

We consider two sample sizes n ∈ {100, 200} and quantile probabilities q ∈ {0.50, 0.75, 0.90}. We
fix the number of Monte Carlo repetitions to be 1, 000 and restrict the number of bootstrap repetitions

to be 100 due to high computation cost.

5.1 Simulation Results

Tables 1-4 present the rejection probabilities for the tests with nominal size of 5%. The simulation

standard error is approximately 0.0069.

Table 1 shows the size performance of the tests for Design I. The tests have reasonable size per-

formance even under the small sample size (n = 100) when the implied probabilities are computed

by empirical likelihood and exponential tilting, but tend to over-reject the null hypothesis when the

implied probabilities are computed by the continuous updating GMM. However, the size distortions

appear to vanish as n increases.

Table 2 gives the rejection probabilities when the alternative model of Design I is true. It is

remarkable that the tests have non-trivial power against all of the alternative models we considered

even with small samples. Also, as we expected, the rejection frequencies increase as we move further

away from the null model, that is as we have more asymmetry in the Burr model.

Tables 3 and 4 report the simulation results for Design II. Table 3 shows that, for all quantiles q

we considered, our tests have reasonable finite sample size performance when the block length b for

the bootstrap procedure is in a suitable range. On the other hand, Table 4 shows that the tests have

non-negligible small sample power but the latter tend to decrease as we have more extreme quantiles,

i.e. as we move from q = 0.5 to q = 0.90, which is not very surprising because at extreme quantiles we

have less observations to distinguish the alternative model from the null model.

5We experimented with a variety of such grids, but found that our simulation results are not sensitive to the choice of

grids.
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To sum up, the overall impression is that our tests work reasonably well in samples above 100.

Among the implied probabilities, the empirical likelihood and exponential tilting work slightly better

under the null hypothesis, while the continuous updating GMM implied probability works better under

the alternative hypothesis. Among the Kolmogorov-Smirnov type and Cramér-von Mises type tests, the

former works slightly better under the null hypothesis and the latter works better under the alternative

hypothesis.

6 Conclusion

In this paper, we use the method of generalized empirical likelihood to propose tests of non-nested

hypotheses of models that are specified solely in terms of conditional moment restrictions. In particular,

we propose moment encompassing tests using the implied probabilities from the conditional moment

restrictions that contain all information from the null model. The tests have advantages over some

of the existing tests in the sense that they do not depend on smoothing parameters and allow weakly

dependent data and that the criterion functions are allowed to be non-smooth. Extensions to strongly

dependent or nonstationarity data, panel data, and the moment functions with infinite dimensional

parameters would be interesting future topics.
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A Proofs

A word on notation. As we use the mean value expansions repeatedly with respect to λ, β, or γ, we

use λ, β, or γ as a generic mean value each case.

A.1 Proof of Theorem 3.1

Recall that MT (u) = −
√
T
PT

t=1

¡
pgt (u)− 1

T

¢
ĥt (u) and note that a mean value expansion of p

g
t (u)

around λ̂ = 0 yields

pgt (u)−
1

T

=
λ̂ (u)0

T

⎛⎜⎝ ĝt (u) ρ2

³
λ (u)0 ĝt (u)

´
1
T

PT
s=1 ρ1

³
λ (u)0 ĝs (u)

´ − ρ1

³
λ (u)0 ĝt (u)

´
1
T

PT
s=1 ĝs (u) ρ2

³
λ (u)0 ĝs (u)

´
³
1
T

PT
s=1 ρ1

³
λ (u)0 ĝs (u)

´´2
⎞⎟⎠ .

Lemma B.2 shows that
√
T λ̂ (u) =⇒ z (u) and thus supu∈X

√
T λ̂ (u) = Op (1). Thus, to obtain the

convergence of MT (u), it remains to show that

max
u

°°°°°°°
1

T

TX
t=1

ĥt (u) ρ1

³
λ (u)0 ĝt (u)

´ 1
T

PT
t=1 ĝt (u) ρ2

³
λ (u)0 ĝt (u)

´
³
1
T

PT
s=1 ρ1

³
λ (u)0 ĝs (u)

´´2
°°°°°°° = op (1) , (A.1)

and that
1
T

PT
t=1 ĥt (u) ĝt (u)

0 ρ2

³
λ (u)0 ĝt (u)

´
1
T

PT
s=1 ρ1

³
λ (u)0 ĝs (u)

´ p→ Ωh (u) , (A.2)

uniformly in u ∈ X . Arguments for (A.1) and (A.2) are similar. First, 1T
PT

s=1 ρ1

³
λ (u)0 ĝs (u)

´
p−→ −1

uniformly in u ∈ X since maxt,u∈X
¯̄̄
λ̂
0
ĝt (u)

¯̄̄
= op (1) due to (A.5). By the same reason

sup
u∈X

°°°°° 1T
TX
t=1

ĝt (u) ρ2

³
λ (u)0 ĝt (u)

´°°°°° = supu∈X

°°°°° 1T
TX
t=1

ĝt (u)

°°°°° ,
which is Op

¡
T−1/2

¢
due to (A.8) . Similarly, supu∈X

°°° 1T PT
t=1 ĥt (u)

°°° = Op (1) by Assumption 3.4 and
1
T

PT
t=1 ĥt (u) ĝt (u)

0 p−→ Ωh (u) by the argument similar to the proof of (A.4), which involves element
by element applications of a mean value expansion and a uniform law of large numbers (e.g. Lemma

2.4 of Newey and McFadden, 1994). This establishes the weak convergence of MT (u), which implies

the null distributions of MKS and MCM . ¥

A.2 Proof of Theorem 3.2

The proof is similar to that of Theorem 3.1. Lemma B.1 holds true under HgT and Assumption 3.6.

Some arguments in Lemma B.2 need to modified. In particular, (u, β̂) in the equation (A.9) now
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becomes T

³
u, β̂

´
. Then, by Assumption 3.6,

1√
T

TX
t=1

T

³
u, β̂

´
=

1√
T

TX
t=1

³
u, β̂

´
+Π

³
u, β̂

´
= D

³
u, β̃

´√
T
³
β̂ − β0

´
+Π

³
u, β̂

´
,

and by the continuity of D and Π and by Assumption 3.6 again, we obtain the desired result following

the steps of the proof of Theorem 3.1 and thus omitted. ¥

A.3 Proof of Theorem 3.3

Observe that for each u ∈ X ,

MT (u)√
T

=
1

T

TX
t=1

ĥt (u)−
TX
t=1

pgt (u) ĥt (u)

=
1

T

TX
t=1

ĥt (u)−
1
T

PT
t=1 ρ1

³
λ̂ (u)0 ĝt (u)

´
ĥt (u)

1
T

PT
s=1 ρ1

³
λ̂ (u)0 ĝs (u)

´ .

From Assumption 3.7 and the continuous mapping theorem, we have

1

T

TX
t=1

ĥt (u)
p→ E [h(Zt, γ0)1(Xt ≤ u)] = 0,

1

T

TX
t=1

ρ1

³
λ̂ (u)0 ĝt (u)

´
ĥt (u)

p→ E
£
ρ1(λ∗ (u)

0 g (Zt, β∗)ht (Zt, γ0) 1 (Xt ≤ u))
¤
,

1

T

TX
s=1

ρ1

³
λ̂ (u)0 ĝs (u)

´
p→ E

£
ρ1(λ∗ (u)

0 g (Zt, β∗) 1 (Xt ≤ u))
¤
,

uniformly in u ∈ X . Therefore, the continuous mapping theorem yields the conclusion. ¥

A.4 Proof of Theorem 4.1

The same reasoning as the proof of Theorem 3.1 applies once we prove Lemma B.3 and B.4. In

particular, a mean value expansion of pg
∗

t (u) around λ̂
∗
= 0 yields

pg
∗

t (u)−
1

T

=
λ̂
∗
(u)0

T

⎛⎜⎝ ĝ∗t (u) ρ2

³
λ (u)0 ĝ∗t (u)

´
1
T

PT
s=1 ρ1

³
λ (u)0 ĝ∗s (u)

´ − ρ1

³
λ (u)0 ĝ∗t (u)

´
1
T

PT
s=1 ĝ

∗
s (u) ρ2

³
λ (u)0 ĝ∗s (u)

´
³
1
T

PT
s=1 ρ1

³
λ (u)0 ĝ∗s (u)

´´2
⎞⎟⎠ .

Therefore, the centering by MT (u) allows the application of Lemma B.4 and the remaining steps are

identical to the proof of Theorem 3.1 and thus omitted. ¥
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B Lemmas

Lemma B.1 Suppose that Assumptions 3.1-3.5 hold. Then under Hg,

sup
u∈X

°°°bλ(u)°°° = Op(T
−1/2).

Proof: By a standard argument (see Owen (1990, proof of Theorem 1)), it suffices to verify that

sup
u∈X

°°°°°T−1
TX
t=1

ĝt(u)

°°°°° = Op(T
−1/2), (A.3)

P

(
inf

(ξ,u)∈S×X
ξ0
Ã
T−1

TX
t=1

ĝt(u)ĝt(u)
0
!
ξ ≥ d0

)
→ 1 for some constant d0 > 0, (A.4)

max
1≤t≤T

sup
u∈X

kĝt(u)k = op(T
1/2), (A.5)

where S = {ξ ∈ Rdg : kξk = 1}.
It is easy to see that (A.3) is a direct consequence of (A.7) and (A.10) in Lemma B.2. The uniform

law of large numbers and the continuity of Ω (u, β) at β = β0 together with the consistency of β̂ yield

that

sup
u∈X

°°°°°T−1
TX
t=1

ĝt(u)ĝt(u)
0 −Ω (u)

°°°°° = op (1) .

This and Assumption 3.3(iv) imply (A.4) since infu |f(u)| ≥ − supu |f(u)− g(u)|+ infu |g(u)| for arbi-
trary functions f and g.

Finally, note for (A.5) that for some ε > 0

max
1≤t≤T

sup
u∈X

kĝt(u)k ≤ max
1≤t≤T

sup
β∈B0

kg(Zt, β)k+ max
1≤t≤T

sup
u∈X

kĝt(u)k 1
³°°°β̂ − β

°°° > ε
´
.

Then, by Assumption 3.5 the last term is op (1) and by 3.3(ii) and the Markov inequality the first term

on the right hand side of the inequality is op(T 1/2). This completes the proof. ¥

Lemma B.2 Suppose that Assumptions 3.1-3.5 hold. Then under Hg,

√
T λ̂ (u)⇒ Ω (u)−1 (G (u)−D (u)∆0Ψ) .

Proof: Consider an empirical process

GT (u) =
1√
T

TX
t=1

[gt (u)−E [gt (u)]]

Also define

ΨT =
k1
T

TX
t=1

ψ (Xt, Zt, β0)−Eψ (Xt, Zt, β0) .
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We show the following two

sup
u∈X

°°°T 1/2bλ(u)−Ω(u)−1 hGT (u)−D(u)∆0T
1/2ΨT

i°°° = op(1), (A.6)

and Ã
GT (·)
T 1/2ΨT

!
⇒
Ã

G(·)
Ψ

!
. (A.7)

We first show (A.6). By expanding the first order condition for (5) at λ = 0, we have

0 =
1√
T

TX
t=1

ĝt(u)−
"
1

T

TX
t=1

ρ2

³
λ
0
ĝt(u)

´
ĝt(u)ĝt(u)

0
#
T 1/2λ̂(u). (A.8)

Recalling the notation (u, β) = E [g (Zt, β) 1 (Xt ≤ u)], and by the fact that (u, β0) = 0 under the

null hypothesis and by the mean value theorem we may write that for β̃ between β0 and β̂

1√
T

TX
t=1

ĝt(u) =
1√
T

TX
t=1

³
u, β̂

´
+

1√
T

TX
t=1

³
ĝt (u)−

³
u, β̂

´´
(A.9)

= D
³
u, β̃

´√
T
³
β̂ − β0

´
+GT (u)

+

Ã
1√
T

TX
t=1

³
ĝt (u)−

³
u, β̂

´´
−GT (u)

!
.

However, it follows from the conditions on g in Assumption 3.3 that D
³
u, β̃

´
→ D (u) uniformly in

u ∈ X and that

sup
u∈X

°°°°° 1√
T

TX
t=1

(ĝt (u)− ĝ (u))−GT (u)

°°°°° = op (1) ,

given that β̂ is consistent. Thus, by Assumption 3.5,

1√
T

TX
t=1

ĝt(u) = GT (u)−D(u)∆0T
1/2ΨT + op(1) uniformly in u ∈ X . (A.10)

Turning to 1
T

PT
t=1 ρ2

³
λ
0
ĝt(u)

´
ĝt(u)ĝt(u)

0, we note that supu∈X
¯̄̄
λ
0
ĝt (u)

¯̄̄
= op (1) by (A.5) and Lemma

B.1. Since ρ2 is continuous and ρ2 (0) = −1, the uniform law of large numbers yields that

1

T

TX
t=1

ρ2

³
λ
0
ĝt(u)

´
ĝt(u)ĝt(u)

0 p−→ Ω (u) ,

uniformly in u ∈ X . This and (A.10) yield (A.6).
We now show (A.7). It is sufficient to show the weak convergence of GT (u). As finite dimen-

sional distribution is straightforward, we establish the stochastic equicontinuity of the empirical process

GT (u). We show that it satisfies the L2-continuity condition in Andrews (1993), which in turn satisfies
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the entropy condition (2.16) in Doukhan et al. (1995). However, the continuity follows because for any

u ∈ X and ε > 0, and for some C > 0 and ὴ s.t. 1/η + 1/ὴ = 1,

E

"
sup

u1∈X :|u1−u|<ε
kgt (u)− gt (u1)k2

#

≤
³
E kg (Zt, β0)k2+η

´1/η
P {|Xt − u1| < ε}1/ὴ

≤ Cε1/ὴ,

by Assumption 3.2 and 3.3. ¥

Lemma B.3 Suppose that the assumptions in Theorem 4.1 hold. Then,

sup
u∈X

°°°bλ∗(u)− λ̂ (u)
°°° = O∗p(T

−1/2) in P

Proof: As in Lemma B.1, it suffices to verify that

sup
u∈X

°°°°°T−1
TX
t=1

ĝ∗t (u)ρ1

³
λ̂
0
ĝ∗t (u)

´°°°°° = O∗p(T
−1/2) in P, (A.11)

P ∗
(

inf
(ξ,u)∈S×X

ξ0
Ã
T−1

TX
t=1

ĝ∗t (u)ĝ
∗
t (u)

0
!
ξ ≥ d0

)
→ 1 in P, for a constant d0 > 0, (A.12)

max
1≤t≤T

sup
u∈X

kĝ∗t (u)k = o∗p(T
1/2) in P, (A.13)

where ĝ∗t (u) = g
³
Z∗t , β̂

∗´
1 {X∗

t ≤ u} and S is defined in Lemma B.1. First, we show (A.13). It holds

because for some ε > 0

max
1≤t≤T

sup
u∈X

kĝt(u)k ≤ max
1≤t≤T

sup
β∈B0

kg(Zt, β)k+ max
1≤t≤T

sup
u∈X

kĝt(u)k 1
n¯̄̄
β̂ − β

¯̄̄
> ε

o
= op

³
T 1/2

´
+ op (1) ,

by Assumption 3.3, the Markov inequality and the assumption that β̂
∗ − β0 = op (1) . To see this, note

that it follows from the Markov inequality that for any ε > 0 and p > 0

P

(
max
1≤t≤T

sup
β∈B0

kg(Z∗t , β)k >
√
Tε

)
≤

E
hPT

t=1 supβ∈B0 kg(Z∗t , β)k
p
i

T p/2εp
.

Assuming bk = T for simplicity, we calculate

E

"
TX
t=1

sup
β∈B0

kg(Z∗t , β)kp
#
=

"
k
b−1X
i=0

1

T − b+ 1

T−b+1X
t=1

E sup
β∈B0

kg (Zt+b, β)kp
#

= TE sup
β∈B0

kg (Zt+b, β)kp ,

which yields that

max
1≤t≤T

sup
β∈B0

kg(Z∗t , β)k = op(T
1/2)
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since E supβ∈B0 kg (Zt+b, β)kp <∞ for some p > 2.

Provided (A.13) and the proof of Lemma B.4, the same steps showing (A.3) and (A.4) in the proof

of Lemma B.1 yield (A.11) and (A.12). ¥

Lemma B.4 Suppose that the assumptions in Theorem 4.1 hold. Then,

√
T
³
λ̂
∗
(u)− λ̂ (u)

´
⇒∗ Ω (u)−1 (G (u)−D (u)∆0Ψ) in P.

Proof: We show that (A.6) and (A.7) in Lemma B.2 hold under both the null and the local

alternative. For (A.6) , expand the first order condition for (5) at λ̂
∗
= λ̂ to obtain

0 = AT +BT

√
T
³
λ̂
∗
(u)− λ̂ (u)

´
,

where

AT =
1√
T

X
ĝ∗t (u)ρ1

³
λ̂ (u)0 ĝ∗t (u)

´
,

and

BT =
1

T

TX
t=1

ρ2

³
λ
∗
(u)0 ĝ∗t (u)

´
ĝ∗t (u)ĝ

∗
t (u)

0.

The analysis of AT and BT are similar as the empirical CLT implies the empirical LLN in probability

and thus we focus on AT . The mean value expansion of AT around λ̂ = 0 yields

1√
T

X
ĝ∗t (u)ρ1

³
λ̂
0
ĝ∗t (u)

´
= − 1√

T

X
ĝ∗t (u) +

1

T

X
ρ2

³
λ
0
ĝ∗t (u)

´
ĝ∗t (u)ĝ

∗
t (u)

0√T λ̂

= − 1√
T

TX
t=1

(ĝ∗t (u)− ĝt (u)) + op (1) ,

uniformly in u ∈ X , where the last equality follows from (A.8) using Theorem 1 of Radulovíc (1996) ,

which together with Lemma B.3 and (A.13) yields

1

T

X
ρ2

³
λ
0
ĝ∗t (u)

´
ĝ∗t (u)ĝ

∗
t (u)

0 p∗−→ Ω (u) in P,

uniformly in u ∈ X .
Let

ν∗T (u, β) =
1√
T

TX
t=1

(g∗t (u, β)−E∗g∗t (u, β))−
1√
T

TX
t=1

(g∗t (u)−E∗g∗t (u))

and recall (6) for νT (u, β) . Since

E∗T−1
TX
t=1

g∗t (u) = b−1
b−1X
i=0

(T − b− 1)−1
T−b−1X
t=1

gt (u)

= T−1
T−b−1X
t=1

gt (u) +Op

µ
b

T − b− 1

¶
,
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we may write

− 1√
T

X
(ĝ∗t (u)− ĝt (u))

= ν∗T

³
u, β̂

∗´
+

1√
T

TX
t=1

(g∗t (u)−E∗g∗t (u))

+νT

³
u, β̂

∗´− νT

³
u, β̂

´
+ g

³
u, β̂

∗´− g
³
u, β̂

´
+ op (1) ,

uniformly in u ∈ X . Due Assumption 3.3, both νT
³
u, β̂

∗´
, and νT

³
u, β̂

´
are op (1) uniformly in u ∈ X

since β̂
∗
and β̂ converge in probability to β0. Similarly,

ν∗T

³
u, β̂

∗´
= op (1) ,

uniformly in u ∈ X by Theorem 1 of Radulovíc (1996). And it follows from the mean value theorem

and continuity of D (u, β) in β that

g
³
u, β̂

∗´− g
³
u, β̂

´
= D

³
u, β̃

∗´³
β̂
∗ − β0

´
−D

³
β̃
´³

β̂ − β0

´
= D (u)

³
β̂
∗ − β̂

´
+ op (1) ,

uniformly in u ∈ X . Putting these together, we get

1√
T

X
ĝ∗t (u)ρ1

³
λ̂
0
ĝ∗t (u)

´
= − 1√

T

X
[g∗t (u)−E∗g∗t (u)]−D (u)

√
T
³
β̂
∗ − β̂

´
.

Finally, it follows from Theorem 1 of Radulovíc (1996) that

1√
T

X
[g∗t (u)−E∗g∗t (u)] =⇒∗ G (u) in P.

Note that these convergences hold under both the null and local alternative. As the bootstrap statistic
√
T
³
β̂
∗ − β̂

´
estimate the asymptotic distribution of

√
T
³
β̂ − β0

´
consistently under the null and the

local alternative, the lemma is proved. ¥
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C Tables

Table 1. Size performance of the tests with nominal size 0.05 (Design I)

Mel
KS Mel

CM Met
KS Met

CM Mcu
KS M cu

CM

Gumbel .069 .059 .070 .059 .092 .122

Burr(13) .056 .058 .058 .059 .092 .127

n = 100 Burr(23) .068 .061 .069 .060 .092 .124

Burr(32) .071 .059 .070 .061 .091 .124

Burr(3) .065 .059 .065 .064 .090 .119

Gumbel .055 .048 .054 .047 .072 .100

Burr(13) .052 .047 .053 .046 .071 .097

n = 200 Burr(23) .055 .047 .056 .049 .072 .101

Burr(32) .055 .048 .055 .047 .071 .102

Burr(3) .053 .049 .051 .044 .071 .104

Table 2. Power performance of the tests with nominal size 0.05 (Design I)

Mel
KS Mel

CM Met
KS Met

CM Mcu
KS Mcu

CM

Gumbel .782 .776 .784 .777 .838 .872

Burr(13) 1.000 1.000 1.000 1.000 1.000 1.000

n = 100 Burr(23) .717 .700 .719 .704 .770 .825

Burr(32) .768 .762 .769 .764 .836 .877

Burr(3) 1.000 1.000 1.000 1.000 1.000 1.000

Gumbel .977 .978 .977 .978 .985 .988

Burr(13) 1.000 1.000 1.000 1.000 1.000 1.000

n = 200 Burr(23) .937 .930 .937 .930 .953 .970

Burr(32) .972 .971 .973 .971 .982 .985

Burr(3) 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3. Size performance of the tests with nominal size 0.05 (Design II)

(A) q = 0.50

Mel
KS Mel

CM Met
KS Met

CM Mcu
KS M cu

CM

b = 40 .011 .007 .012 .007 .010 .008

n = 100 b = 50 .042 .023 .047 .024 .051 .030

b = 60 .053 .036 .061 .039 .067 .043

b = 70 .121 .094 .125 .096 .131 .107

b = 70 .021 .012 .024 .011 .028 .010

n = 200 b = 80 .032 .019 .030 .016 .029 .017

b = 90 .045 .032 .048 .035 .054 .037

b = 100 .087 .061 .097 .067 .104 .077

(B) q = 0.75

Mel
KS Mel

CM Met
KS Met

CM Mcu
KS M cu

CM

b = 40 .007 .003 .010 .002 .008 .003

n = 100 b = 50 .037 .022 .040 .021 .044 .025

b = 60 .051 .028 .054 .032 .060 .037

b = 70 .107 .064 .119 .065 .128 .079

b = 80 .019 .017 .019 .017 .019 .018

n = 200 b = 90 .035 .031 .034 .031 .040 .033

b = 100 .072 .052 .080 .052 .088 .058

b = 110 .084 .066 .092 .064 .096 .071

(C) q = 0.90

Mel
KS Mel

CM Met
KS Met

CM Mcu
KS M cu

CM

b = 40 .004 .002 .007 .002 .008 .002

n = 100 b = 50 .014 .014 .022 .014 .027 .014

b = 60 .026 .015 .037 .016 .037 .021

b = 70 .065 .042 .080 .043 .080 .046

b = 90 .023 .009 .027 .010 .033 .014

n = 200 b = 100 .049 .029 .051 .030 .062 .039

b = 110 .053 .032 .059 .032 .063 .040

b = 120 .067 .038 .072 .038 .080 .039
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Table 4. Power performance of the tests with nominal size 0.05 (Design II)

(A) q = 0.50

Mel
KS Mel

CM Met
KS Met

CM Mcu
KS Mcu

CM

b = 40 .860 .912 .892 .909 .939 .916

n = 100 b = 50 .923 .951 .945 .964 .972 .965

b = 60 .937 .961 .957 .968 .982 .972

b = 70 .962 .980 .978 .980 .988 .986

b = 70 .997 1.000 1.000 1.000 1.000 1.000

n = 200 b = 80 .995 1.000 .998 1.000 1.000 1.000

b = 90 .997 1.000 .999 1.000 1.000 1.000

b = 100 .996 1.000 1.000 1.000 1.000 1.000

(B) q = 0.75

Mel
KS Mel

CM Met
KS Met

CM Mcu
KS M cu

CM

b = 40 .513 .560 .529 .564 .638 .638

n = 100 b = 50 .710 .737 .724 .736 .784 .786

b = 60 .745 .776 .761 .777 .812 .808

b = 70 .819 .843 .830 .846 .878 .872

b = 80 .935 .968 .936 .967 .957 .978

n = 200 b = 90 .957 .977 .963 .980 .972 .989

b = 100 .981 .991 .983 .990 .985 .993

b = 110 .978 .991 .983 .990 .989 .994

(C) q = 0.90

Mel
KS Mel

CM Met
KS Met

CM Mcu
KS M cu

CM

b = 40 .065 .027 .067 .027 .105 .052

n = 100 b = 50 .164 .101 .167 .101 .212 .137

b = 60 .183 .120 .192 .122 .241 .155

b = 70 .318 .226 .328 .228 .368 .256

b = 90 .358 .327 .367 .333 .426 .372

n = 200 b = 100 .463 .457 .473 .460 .539 .514

b = 110 .462 .456 .470 .461 .542 .509

b = 120 .516 .486 .522 .490 .576 .526
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