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Abstract

A limit theory is established for autoregressive time series that
smooths the transition between local and moderate deviations from
unity and provides a transitional form that links conventional unit
root distributions and the standard normal. Edgeworth expansions
of the limit theory are given. These expansions show that the limit
theory that holds for values of the autoregressive coe¢ cient that are
closer to stationarity than local (i.e. deviations of the form � = 1+ c

n ;
where n is the sample size and c < 0) holds up to the second order.
Similar expansions around the limiting Cauchy density are provided
for the mildly explosive case.
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JEL classi�cation: C22

1 Introduction

Earlier work by the authors (Phillips and Magdalinos, 2007, hereafter PM;
Giraitis and Phillips, 2006, hereafter GP) provided a limit theory for autore-
gressive time series that allows for moderate deviations from unity in the
autoregressive coe¢ cient. This theory includes autoregressive roots of the
form �n = 1 + c=n�; where the exponent � lies in the interval (0; 1). Such
roots belong to larger neighborhoods of one than conventional local to unity
roots (�n = 1 + c=n), the radial width of the neighborhood measured by the
parameter �. The boundary value as � ! 1 includes the conventional local
to unity case, whereas the boundary value as �! 0 includes the stationary
or explosive AR(1) process, depending on the value of c.
The limit theory developed in PM and GP was successful in establishing

a continuous bridge for the rate of convergence between stationary, unit root
and explosive asymptotics, as well as a continuous transition of the asymp-
totic distribution between moderately integrated time series and stationary
or explosive AR(1) processes. However, the bridge provided in those pa-
pers is incomplete because there is still discontinuity in the form of the limit
distributions between moderately integrated and local to unity processes.
The present paper contributes to this literature by showing how the lo-

cal to unity limit distribution may be smoothly transitioned into a normal
distribution on the stationary side of unity and a Cauchy distribution (corre-
sponding to the invariance principle established in PM) on the explosive side
of unity. By partitioning the sample size n = mK intom blocks containingK
observations, we consider roots representing �local-to-moderate deviations�
from unity of the form (2), which approximate local to unity roots as n!1
and m is kept �xed. This procedure yields the well known local-to unity
limit distribution of Phillips (1987) (see (5) below). The innovation of this
paper consists of deriving a second order expansion of the above local to
unity distribution as m!1. The results reveal that the continuous bridg-
ing between moderately integrated and stationary/explosive AR(1) processes
continues to hold for a second order expansion of the limiting distribution
function. More importantly, the asymptotic expansions of Theorems 1 and 2
provide insight into the transition of the local to unity limiting distribution
to a Gaussian (Cauchy) variate as the autoregressive root approaches the
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boundary with the stationary (explosive) region. Further illustration of this
transition in �nite samples is given by means of Monte Carlo experiments.

2 A Limit Theory for Local-Moderate Devi-
ations from Unity

Consider an autoregressive process with local-to-moderate deviations from
unity root of the form �n = 1 + c

K
; where K passes to in�nity with the

sample size n and �n approaches unity from the stationary or the explosive
side according to the sign of c. It is convenient to think of such a time series
as constituting m blocks of K observations with total sample size n = mK:
Such a process may be written in the form

Xt = �n;mXt�1 + ut; ut � iid
�
0; �2

�
; (1)

�n;m = 1 +
c

K
= 1 +

cm

n
: (2)

The usual local to unity model (Phillips, 1987) applies when m = 1 and the
moderate deviation theory of PM and GP holds when m!1.
Let W be a standard Brownian motion and Jc (t) =

R t
0
ec(t�s)dW (s) be a

corresponding Ornstein-Uhlenbeck process. For each m, letting

~W (t) =
p
mW

�
t

m

�
;

we observe that ~W is also a standard Brownian motion and we denote by
~Jc (t) =

R t
0
ec(t�s)d ~W (s) the associated Ornstein-Uhlenbeck process. For

given m � 1; we may derive a limit theory for the least squares estimate
�̂n;m of �n;m in (1) as n ! 1 using earlier results from standard local to
unity asymptotics. Using the identities (see the Appendix for a proof)Z 1

0

Jcm (s) dW (s) =
1

m

Z m

0

~Jc (s) d ~W (s) (3)Z 1

0

Jcm (s)
2 ds =

1

m2

Z m

0

~Jc (s)
2 ds; (4)

the results in Phillips (1987) imply that, for �xed m and n ! 1, the as-
ymptotic distribution of the least squares estimator takes the form

n
�
�̂n;m � �n;m

�
)
R 1
0
Jcm (s) dW (s)R 1
0
J2cm (s) ds

= m

R m
0
~Jc (s) d ~W (s)R m
0
~Jc (s)

2 ds
. (5)
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Figure 1: Local Limit Densities of
p

m
�2c

Rm
0 JcdVRm
0 J2c ds

for various m

When c < 0; sequential limits with n ! 1 followed by m ! 1 lead to
the normal asymptotic theory given in PM and GP:

np
m

�
�̂n;m � �n;m

�
)

1p
m

R m
0
~Jc (s) d ~W (s)

1
m

R m
0
~Jc (s)

2 ds
for �xed m (6)

=

1p
m

Pm
j=1

R j
j�1

~Jc (s) d ~W (s)

1
m

Pm
j=1

R j
j�1

~Jc (s)
2 ds

)
N
�
0; 1

�2c
�

1
�2c

� N (0;�2c) as m!1 (7)

by a standard martingale CLT (e.g. Pollard, 1984, Theorem VIII.1) on the
numerator and an ergodic theorem on the denominator ( ~Jc is a Gaussian
di¤usion with a stationary version for all c < 0).

Fig. 1 shows the limit distribution (6) for various values of m and c =
�5: The graphs reveal a smooth transition from the local to unity limit
distribution of

p
m= (�2c)

R m
0
~Jcd ~W=

R m
0
~J2c through to the standard normal.
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In summary, the sequential limit theory as (n;m)!1 on the stationary
side is given by

Zn;m =

p
n
�
�̂n;m � �n;m

�q
2
�
1� �n;m

� =
np
m

�
�̂n;m � �n;m

�
p
�2c

) N (0; 1) : (8)

On the explosive side, c > 0, the martingale convergence theorem ensures
that

R1
0
e�csd ~W (s) and ~J�c (1) := limm!1 ~J�c (m) both exist almost surely

and consequently follow a N
�
0; 1

2c

�
distribution. Moreover,

R1
0
e�csd ~W (s)

and ~J�c (1) can be seen to be independent by an elementary property of
the stochastic integrals. Thus, in view of (5), taking sequential limits with
n!1 followed by m!1 yields

1

2c

n

m
ecm

�
�̂n;m � �n;m

�
)n!1

e�cm
R m
0
~Jc (s) d ~W (s)

2ce�2cm
R m
0
~Jc (s)

2 ds
for �xed m

=
~J�c (m)

R m
0
e�csd ~W (s)�R m

0
e�csd ~W (s)

�2 +Op
�
m1=2e�cm

�
)

~J�c (1)
R1
0
e�csd ~W (s)�R1

0
e�csd ~W (s)

�2 as m!1

=
~J�c (1)R1

0
e�csd ~W (s)

=d C

where C denotes a standard Cauchy variate.

3 Edgeworth Expansion on the Stationary Side

Recall that on the stationary side c < 0. The limit (7) may be derived
by direct means as follows. We proceed using the joint moment generating
function (m.g.f.) of�

1p
m

Z m

0

~Jcd ~W;
1

m

Z m

0

~J2c ds

�
=

�p
m

Z 1

0

JcmdW;m

Z 1

0

J2cmds

�
(9)

which, from Phillips (1987, equation (A1)), is

Lm (w; z) =Mcm

�p
mw;mz

�
;
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where Mcm is de�ned in Proposition A1. Setting

�m =
�
c2m2 + 2cm3=2w � 2mz

�1=2
;

the m.g.f. of the random vector in (9) can be written as

Lm (w; z) =

�
ecm+

p
mw

2�m

��
�m � cm�

p
mw

�
e�m +

�
�m + cm+

p
mw

�
e��m

���1=2
= e�

1
2(�m+cm+

p
mw)

�
�m � cm�

p
mw

2�m
+
(�m + cm+

p
mw) e�2�m

2�m

��1=2
= e�

1
2(�m+cm+

p
mw)

�
�m � cm�

p
mw

2�m
+O

�
e�dm

���1=2
= e�

1
2(�m+cm+

p
mw)

�
�m � cm�

p
mw

2�m

��1=2
+O

�
e�dm

�
; (10)

for some d > 0, since �m � �cm and �m + cm +
p
mw ! (w2 + 2z) =2c

as m ! 1 by (22) and (23) in the Appendix. Next we proceed to expand
Lm (w; z) as m!1: Observe that the asymptotic expansions (22) and (23)
for �m and ��1m respectively give

1

2�m

�
�m � cm�

p
mw

�
=
1

2

�
2 +

2w

cm1=2
� 2w

cm1=2
+O

�
m�1�� = 1+O �m�1� ;

and

e�
1
2(�m+cm+

p
mw) = exp

�
�1
2

�
w2 + 2z

2c
� w

3 + 2wz

2c2
m�1=2 +O

�
m�1���

= exp

�
�w

2 + 2z

4c

�
exp

�
w3 + 2wz

4c2
m�1=2 +O

�
m�1��

= exp

�
�w

2 + 2z

4c

��
1 +

w3 + 2wz

4c2
m�1=2 +O

�
m�1�� :

Thus, (10) becomes, as m!1;

Lm (w; z) = exp

�
�w

2 + 2z

4c

��
1 +

w3 + 2wz

4c2
m�1=2 +O

�
m�1�� (11)

with leading term given by

Lm (w; z) = e
� z
2c
� 1
4c
w2
�
1 +O

�
1p
m

��
:
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Therefore, the numerator of (6) has a N
�
0; 1

�2c
�
limit distribution and the

denominator has constant probability limit 1
�2c ; as in (7) above. This estab-

lishes an alternative proof of (8).
The derivation of an Edgeworth expansion requires considering the next

term in the expansion of the joint moment generating function, i.e. including
powers of m�1=2 in (11). We provide an expansion of the distribution of the
statistic

Qm =

p
�2c

�
1p
m

R m
0
~Jcd ~W

�
(�2c)

�
1
m

R m
0
~J2c ds

� =
Am
Bm

;

which is the limit of Zn;m in (8) as n ! 1, for �xed m. Towards this end,
de�ne Dm = Am � xBm and note that

P (Qm < x) = P (Am � xBm < 0) = P (Dm < 0) :

An expansion for the moment generating function of Dm can be obtained
from (11) as follows:

E
�
eDms

�
= E

�
esAm�sxBm

�
= Lm

�
s
p
�2c;�sx (�2c)

�
= e�sx+

1
2
s2

"
1 +

�2s2x (�2c)3=2 + s3 (�2c)3=2

4c2
p
m

+O

�
1

m

�#

= e�sx+
1
2
s2
�
1 +

s3 � 2s2xp
�2c

p
m
+O

�
1

m

��
: (12)

Next, e�sx+
1
2
s2 is the m.g.f. of the N (�x; 1) distribution so that, as in

Satchell (1984), we have

P (Dm < 0) =

Z 0

�1

e�
1
2
(t+x)2

p
2�

dt =

Z x

�1

e�
u2

2

p
2�
du = �(x) ; (13)

the standard normal c.d.f.. Again, as in Satchell (1984), terms such as
spe�sx+

1
2
s2 in the expansion of the m.g.f. (12) correspond to terms of the form

�Hp�1 (x)' (x) in the distributional expansion, where ' (x) is the standard
normal density and Hp (x) is the Hermite polynomial of order p: From this
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correspondence and (13), we �nd that the m.g.f. expansion leads to

P (Qm < x) = � (x) +
1p
m
' (x)

�H2 (x) + 2H1 (x)xp
�2c

+O

�
1

m

�
= �(x) +

1p
m
' (x)

1� x2 + 2x2p
�2c

+O

�
1

m

�
= �(x) +

1p
m
' (x)

1 + x2p
�2c

+O

�
1

m

�
: (14)

Theorem 1. For each c < 0, the distribution of

Qm =

p
�2c

�
1p
m

R m
0
~Jcd ~W

�
(�2c)

�
1
m

R m
0
~J2c ds

�
admits the following Edgeworth expansion:

F (x) = � (x) +
1p
m
' (x)

1 + x2p
�2c

+O

�
1

m

�
:

Remark 1. We may compare (14) with the corresponding expansion for
the stationary (�xed � with j�j < 1) case where

Xt = �Xt�1 + ut; ut � iid
�
0; �2

�
: (15)

In this case, the Edgeworth expansion of the distribution function Fn of the
standardized and centred estimator

p
n (�̂n � �)p
1� �2

was shown in Phillips (1977) to have the form

Fn (x) = � (x) +
�p
1� �2

1 + x2p
n
' (x) +O

�
1

n

�
: (16)

The two results may be related by setting � = 1 + c
K
in (16), leading to

Fn (x) = � (x) +
1 +O (K�1)p

�2c=K
1 + x2p
n
' (x) +O

�
1

n

�
= �(x) +

1p
�2c

1 + x2p
m
' (x) +O

�
1

m
+

1

K3=2m1=2

�
;
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which is the same as (14). Therefore, the moderate deviation limit theory is
uniform to the second order in the sense that the Edgeworth expansions of
the distributions are the same to the �rst correction term.

4 An Expansion on the Explosive Side

In a related way, we may develop an expansion on the explosive side of unity
with c > 0: Again, the m.g.f. is used and can be expanded as in Satchell
(1984). However, the point of expansion in our approach is now the Cauchy
distribution delivered by the invariance principle in PM.
We are interested in expanding the moment generating function of�
2c

ecm

Z m

0

~Jcd ~W;
4c2

e2cm

Z m

0

~J2c ds

�
=

�
2cm

ecm

Z 1

0

JcmdW;
4c2m2

e2cm

Z 1

0

J2c ds

�
(17)

which in view of Proposition A1 takes the following form

	m (u; v) = Mcm

�
2cme�cmu; 4c2m2e�2cmv

�
=

�
1

2�m
ecm+2cme

�cmu �m (u; v)

��1=2
; (18)

where

�m =
�
c2m2 + 4c2m2e�cmu� 8c2m2e�2cmv

�1=2
�m (u; v) =

�
�m � cm� 2cme�cmu

�
e�m +

�
�m + cm+ 2cme

�cmu
�
e��m :

Using the asymptotic expansions (26) and (27) for �m and �
�1
m e

cm+2cme�cmu

respectively, we obtain as m!1,
1

�m
ecm+2cme

�cmu �m (u; v)

= 2
�
1� u2 � 2v

�
� 8cu

�
u2 + 2v

�
me�cm + 8u

�
u2 + 2v

�
e�cm +O

�
m2e�2cm

�
:

Hence, by (18), the m.g.f. of the random vector in (17) admits the following
asymptotic expansion as m!1:

	m (u; v)

=
�
1� u2 � 2v

��1=2�
1� 4u (u

2 + 2v)

1� u2 � 2v (cm� 1) e
�cm +O

�
m2e�2cm

���1=2
=

�
1� u2 � 2v

��1=2�
1 +

2u (u2 + 2v)

1� u2 � 2v (cm� 1) e
�cm +O

�
m2e�2cm

��
:

9



Thus, the approximate m.g.f. of
�
2ce�cm

R m
0
~Jcd ~W; 4c

2e�2cm
R m
0
~J2c ds

�
is

given by

	m (u; v) =
1

(1� u2 � 2v)1=2
+

2u (u2 + 2v)

(1� u2 � 2v)3=2
(cm� 1) e�cm: (19)

Having obtained an asymptotic approximation for 	m (u; v), we employ
a method similar to Satchell (1984) in order to derive an approximation for

the density function of
�
2ce�cm

R m
0
~Jcd ~W

��
4c2e�2cm

R m
0
~J2c ds

��1
. Using a

standard result for the density of ratios of random variables, the density

function of
�
2ce�cm

R m
0
~Jcd ~W

��
4c2e�2cm

R m
0
~J2c ds

��1
is given by

f (r) =
1

2�i

Z i1

�i1

@	m (u; v � ru)
@v

����
v=0

du: (20)

Di¤erentiating the expression

	m (u; v � ru) =
1

(1� u2 � 2v + 2ru)1=2
+
2u (u2 + 2v � 2ru) (cm� 1) e�cm

(1� u2 � 2v + 2ru)3=2

and using the identity

u3 � 2ru2

(1� u2 + 2ru)
5
2

=
�u

(1� u2 + 2ru)
3
2

+
u

(1� u2 + 2ru)
5
2

yields

@	m (u; v � ru)
@v

����
v=0

=
1

(1� u2 + 2ru)
3
2

+ 4 (cm� 1) e�cm u

(1� u2 + 2ru)
3
2

+6 (cm� 1) e�cm u3 � 2ru2

(1� u2 + 2ru)
5
2

=
1

(1� u2 + 2ru)
3
2

� 2 (cm� 1) e�cm u

(1� u2 + 2ru)
3
2

+6 (cm� 1) e�cm u

(1� u2 + 2ru)
5
2

:

Thus, using a closed form expression for the contour integrals

h (j; k) =
1

2i

Z i1

�i1

uj

(1� u2 + 2ru)
2k+1
2

du; 0 � j � k; (21)
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similar to Satchell (1984), (20) becomes

f (r) =
1

�
h (0; 1)� 2 (cm� 1)

�
e�cmh (1; 1) +

6 (cm� 1)
�

e�cmh (1; 2)

=
1

�

1

1 + r2
� 2 (cm� 1)

�
e�cm

r

1 + r2
+
6 (cm� 1)

�
e�cm

2r

3 (r4 + 2r2 + 1)

=
1

� (1 + r2)
+
2r (1� r2)
� (1 + r2)2

(cm� 1) e�cm:

Theorem 2. For each c > 0, the approximate density of�
2ce�cm

Z m

0

~Jcd ~W

��
4c2e�2cm

Z m

0

~J2c ds

��1
is given by

f (r) =
1

� (1 + r2)
+
2r (1� r2)
� (1 + r2)2

(cm� 1) e�cm;

with an approximation error of order O (m2e�2cm) as m!1.

Remark 2. We may compare the approximate density of Theorem 2 with
the approximate density of the normalised and centred least squares estima-
tor in the purely explosive case. Satchell (1984) derives that the approximate
density of

�n (�̂n � �)
�2 � 1

generated by (15) with Gaussian innovations ut, �xed � 2 (�1; 1) andX0 = 0.
Using MAPLE to calculate the contour integrals in (21), we have obtained
the following expression for this density:

fn (r) =
1

� (1 + r2)
� 1

�

�

j�jn
�
2� (�

2 � 1)n
�2

�
r � r3

(1 + r2)2
:

Letting � = 1 + cm=n we obtain j�j�n = e�cm [1 +O (m2=n)] ; giving

�

j�jn
�
2� (�

2 � 1)n
�2

�
= �2 (cm� 1) e�cm

�
1 +O

�
m2

n

��
:

11



Thus, fn (r) agrees with the approximate density derived in Theorem 2 as
long as m2=n ! 0. The latter condition ensures that �nn;m =

�
1 + cm

n

�n
is

approximated by ecm: since m=n! 0,

�nn;m = exp
n
n log

�
1 +

cm

n

�o
= exp

�
n

�
cm

n
+O

�
m2

n2

���
= ecme

O
�
m2

n

�
.

5 Discussion

The paper provides a second order expansion of the local to unity distribution
around the standard normal distribution for the stationary side of unity and
around the Cauchy distribution on the explosive side of unity. Using the
local-to-moderate parametrisation for the autoregressive root �n;m = 1 +
cm
n
, the results are obtained by employing sequential asymptotics. A (�rst

order) limit for the normalised and centred least squares estimator �̂n;m is
obtained in terms of the local to unity distribution as n ! 1. A second
order expansion of the local to unity distribution is obtained as m!1.
From an analytical point of view, this procedure is equivalent to a second

order approximation of the Phillips (1987) local to unity distribution for large
values of the localising coe¢ cient. Setting C = cm, the local-to-moderate
root of (2) becomes the standard local to unit root �n = 1+

C
n
, and a second

order limit theory for

Q1C =
(�2C)1=2

R 1
0
JCdW

�2C
R 1
0
J2Cds

and Q2C =
2Ce�C

R 1
0
JCdW

4C2e�2C
R 1
0
J2Cds

is given by Theorem 1 and Theorem 2 upon substituting C = cm:

FQ1C (x) = � (x) +
1 + x2p
�2C

' (x) +O

�
1

C

�
fQ2C (r) =

1

� (1 + r2)
+
2r (1� r2)
� (1 + r2)2

(C � 1) e�C :

We have used the parametrisation �n;m = 1 +
cm
n
as it provides more insight

into the sample segmentation principle that drives the limit theory and also
because it provides a more natural design of Monte Carlo experiments, as m
is integer valued.
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6 Appendix

Proposition A1. The moment generating function of
�R 1

0
JcmdW;

R 1
0
J2c ds

�
is given by

Mcm (u; v) =

�
1

2�m
ecm+u

�
(�m � cm� u) e�m + (�m + cm+ u) e��m

���1=2
where �m = (c2m2 + 2cmu� 2v)1=2.

Proof of (3) and (4). Recalling that ~W (t) =
p
mW (t=m) is a standard

BM we obtainZ 1

0

Jcm (s) dW (s) =

Z 1

0

Z s

0

ecm(s�r)dW (r) dW (s)

=

Z 1

0

ecms
Z ms

0

e�cudW
� u
m

�
dW (s)

=

Z m

0

ecv
Z v

0

e�cudW
� u
m

�
dW

� v
m

�
=

1

m

Z m

0

Z v

0

ec(v�u)d
�p
mW

� u
m

��
d
�p
mW

� v
m

��
=

1

m

Z m

0

Z v

0

ec(v�u)d ~W (u) d ~W (v)

=
1

m

Z m

0

~Jc (s) d ~W (s) ;

13



where we have used the substitution v = ms. Similarly,Z 1

0

Jcm (s)
2 ds =

Z 1

0

�Z s

0

ecm(s�r)dW (r)

�2
ds

=

Z 1

0

e2cms
�Z ms

0

e�cudW
� u
m

��2
ds

=
1

m

Z 1

0

e2cms
�Z ms

0

e�cud ~W (u)

�2
ds

=
1

m2

Z m

0

e2cv
�Z v

0

e�cud ~W (u)

�2
dv

=
1

m2

Z m

0

�Z v

0

ec(v�u)d ~W (u)

�2
dv

=
1

m2

Z m

0

~Jc (s)
2 ds:

Expansion for �m, ��1m . For each c < 0 we have, as m!1,

�m = �cm� wm1=2 +
w2 + 2z

2c
� w

3 + 2wz

2c2
m�1=2 +O

�
m�1� (22)

��1m =
1

�cm +
w

c2m3=2
+O

�
m�2� : (23)

Proof. Using the Taylor expansion for (1 + x)1=2 we can write

�m = jcjm
�
1 +

2

cm1=2
w � 2z

mc2

�1=2
= �cm

(
1 +

w

cm1=2
� z

mc2
� 1
8

�
2

cm1=2
w � 2z

mc2

�2
+

w3

2c3m3=2
+O

�
1

m2

�)

= �cm
�
1 +

w

cm1=2
� w

2 + 2z

2c2m
+
w3 + 2wz

2c3m3=2
+O

�
1

m2

��
:

The expansion for ��1m is obtained by an identical argument.
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Expansion for �m, ��1m . For each c > 0 we have, as m!1,

�m = cm+ 2cume�cm � 2c
�
u2 + 2v

�
me�2cm

+4cu
�
u2 + 2v

�
me�3cm +O

�
me�4cm

�
(24)

��1m =
1

cm
� 2ue

�cm

cm
+
(6u2 � 4v) e�2cm

cm
+O

�
m�1e�3cm

�
: (25)

Proof. Using the Taylor expansion for (1 + x)1=2 we can write

�m
cm

=
�
1 + 4e�cmu� 8e�2cmv

�1=2
= 1 +

1

2

�
4e�cmu� 8e�2cmv

�
� 1
8

�
4e�cmu� 8e�2cmv

�2
+
1

16

�
4e�cmu� 8e�2cmv

�3
+O

�
e�4cm

�
= 1 + 2e�cmu� 4e�2cmv � 2e�2cmu2 + 8uve�3cm + 4e�3cmu3 +O

�
e�4cm

�
and (24) follows upon multiplication by cm. For (25) expanding the recipro-
cal of (24) we obtain

cm��1m =
�
1�

�
�2ue�cm + 2

�
u2 + 2v

�
e�2cm +O

�
e�3cm

��	�1
= 1� 2ue�cm +

�
6u2 � 4v

�
e�2cm +O

�
e�3cm

�
:

Expansion for �m (u; v). For each c > 0 we have, as m!1,

�m (u; v) = 2c
�
1� u2 � 2v

�
me�cm � 4c2u

�
1 + u2 + 2v

�
m2e�2cm

+4cu
�
1 + u2 + 2v

�
me�2cm +O

�
m3e�3cm

�
: (26)

Proof. By (24) and the Taylor series for the exponential function we obtain

e�m = ecm exp
�
2cume�cm +O

�
me�2cm

�	
= ecm

�
1 + 2cume�cm +O

�
m2e�2cm

��
= ecm + 2cum+O

�
m2e�cm

�
:

Similarly, (25) yields

e��m = e�cm exp
�
�2cume�cm +O

�
me�2cm

�	
= e�cm

�
1� 2cume�cm +O

�
m2e�2cm

��
= e�cm � 2cume�2cm +O

�
m2e�3cm

�
:
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Using the above expansions for e�m and e��m together with (24) we obtain

�m (u; v)

=
�
�2c

�
u2 + 2v

�
me�2cm + 4cu

�
u2 + 2v

�
me�3cm +O

�
me�4cm

��
�
�
ecm + 2cum+O

�
m2e�cm

��
+
�
2cm+ 4cume�cm +O

�
me�2cm

�� �
e�cm � 2cume�2cm +O

�
m2e�3cm

��
= �2c

�
u2 + 2v

�
me�cm + 4cu

�
u2 + 2v

�
me�2cm � 4c2u

�
u2 + 2v

�
m2e�2cm

+2cme�cm + 4cume�2cm � 4c2um2e�2cm +O
�
m3e�3cm

�
= 2c

�
1� u2 � 2v

�
me�cm � 4c2u

�
1 + u2 + 2v

�
m2e�2cm

+4cu
�
1 + u2 + 2v

�
me�2cm +O

�
m3e�3cm

�
:

Expansion for ��1m e
cm+2cme�cmu. For each c > 0 we have, as m!1,

��1m e
cm+2cme�cmu =

1

cm
ecm + 2u� 2u

cm
+
(6u2 � 4v) e�cm

cm
� 4u2e�cm

+2cu2me�cm +O
�
m2e�2cm

�
: (27)

Proof. Writing

ecm+2cme
�cmu = ecm exp

�
2cme�cmu

	
= ecm

�
1 + 2cmue�cm + 2c2u2m2e�2cm +O

�
m3e�3cm

��
= ecm + 2cmu+ 2c2u2m2e�cm +O

�
m3e�2cm

�
;

we can obtain (27) by multiplying the above expression with the expansion
for ��1m in (25).
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