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Abstract

Nonparametric estimation of a structural cointegrating regression model is stud-
ied. As in the standard linear cointegrating regression model, the regressor and the
dependent variable are jointly dependent and contemporaneously correlated. In
nonparametric estimation problems, joint dependence is known to be a major com-
plication that affects identification, induces bias in conventional kernel estimates,
and frequently leads to ill-posed inverse problems. In functional cointegrating re-
gressions where the regressor is an integrated time series, it is shown here that
inverse and ill-posed inverse problems do not arise. Remarkably, nonparametric ker-
nel estimation of a structural nonparametric cointegrating regression is consistent
and the limit distribution theory is mixed normal, giving simple useable asymp-
totics in practical work. The results provide a convenient basis for inference in
structural nonparametric regression with nonstationary time series. The methods
may be applied to a wide range of empirical models where functional estimation of
cointegrating relations is required.
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1 Introduction

A good deal of recent attention in econometrics has focused on functional estimation in

structural econometric models and the inverse problems to which they frequently give

rise. A leading example is a structural nonlinear regression where the functional form

is the object of primary interest. In such systems, identification and estimation are

typically much more challenging than in linear systems because they involve the inversion

of integral operator equations which may be ill-posed in the sense that the solutions may

not exist, may not be unique and may not be continuous. Some recent contributions to

this field include Newey, Powell and Vella (1999), Newey and Powell (2003), Ai and Chen

(2003), Florens (2003), and Hall and Horowitz (2004). Overviews of the ill-posed inverse

literature are given in Florens (2003) and Carrasco, Florens and Renault (2006). All of

this literature has focused on microeconometric and stationary time series settings.

In linear structural systems problems of inversion from the reduced form are much

simpler and conditions for identification and consistent estimation techniques have been

extensively studied. Under linearity, it is also well known that the presence of nonsta-

tionary regressors can provide a simplification. In particular, for cointegrated systems

involving time series with unit roots, structural relations are actually present in the re-

duced form (and therefore always identified) because of the unit roots in a subset of the

determining equations. In fact, such models can always be written in error correction or

reduced rank regression format where the structural relations are immediately evident.

The present paper shows that nonstationarity leads to major simplifications in the

context of structural nonlinear functional regression. The primary simplification arises

because in nonlinear models with endogenous nonstationary regressors there is no ill-posed

inverse problem. In fact, there is no inverse problem at all in the functional treatment

of such systems. Furthermore, identification does not require the existence of instru-

mental variables that are orthogonal to the equation errors. Finally, and perhaps most

importantly for practical work, consistent estimation may be accomplished using standard

kernel regression techniques, and inference may be conducted in the usual way and is valid

asymptotically under simple regularity conditions. These results for kernel regression in

structural nonlinear models of cointegration open up many new possibilities for empirical

research.

The reason why there is no inverse problem in structural nonlinear nonstationary

systems can be explained heuristically as follows. In a nonparametric structural setting
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it is conventional to impose on the disturbances a zero conditional mean condition given

certain instruments, in order to assist in identifying an infinite dimensional function. Such

conditions lead to an integral equation involving the conditional probability distribution

of the regressors and the structural function integrated over the space of the regressor.

This equation describes the relation between the structure and reduced form and its

solution, if it exists and is unique, delivers the unknown structural function. But when the

endogenous regressor is nonstationary there is no invariant probability distribution of the

regressor, only the local time density of the limiting stochastic process corresponding to

a standardized version of the regressor as it sojourns in the neighborhood of a particular

spatial value. Accordingly, there is no integral equation relating the structure to the

reduced form. In fact, the structural equation itself is locally also a reduced form equation

in the neighborhood of this spatial value. For when an endogenous regressor is in the

locality of a specific value, the systematic part of the structural equation depends on that

specific value and the equation is effectively a reduced form. In fact, the random wandering

nature of stochastically nonstationary time series ensures that the regressor inevitably

departs from any particular locality and thereby assists in tracing out (and identifying)

the structural function. The process is similar to the manner in which instruments may

shift the location in which a structural function is observed and in doing so assist in the

process of identification when the data are stationary.

Linear cointegrating systems reveal a strong form of this property. As mentioned

above, in linear cointegration the inverse problem disappears completely because the

structural relations continue to be present in the reduced form. Indeed, they are the same

as reduced form equations up to simple time shifts, which are of no importance in long run

relations. In nonlinear structural cointegration, the same behavior applies locally in the

vicinity of a particular spatial value, thereby giving local identification of the structural

function and facilitating estimation.

In linear cointegration, the signal strength of a nonstationary regressor ensures that

least squares estimation is consistent, although the estimates are well-known to have

second order bias (Phillips and Durlauf, 1986; Stock, 1987) and are therefore seldom used

in practical work. Much attention has therefore been given in the time series literature

to the development of econometric estimation methods that remove the second order bias

and are asymptotically and semiparametrically efficient.

In nonlinear structural functional estimation, the present paper shows that local kernel
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regression methods are consistent and that under some regularity conditions they are also

asymptotically mixed normally distributed, so that conventional approaches to inference

are possible. These results constitute a major simplification in the functional treatment

of nonlinear cointegrated systems and they directly open up empirical applications with

existing methods.

The paper is organized as follows. Section 2 introduces the model and assumptions.

Section 3 provides the main result on the consistency and limit distribution of the kernel

estimator in a structural model of nonlinear cointegration. Section 4 reports a simulation

experiment exploring the finite sample performance of the kernel estimator. Section 5

concludes and outlines ways in which the present paper may be extended. Proofs and

various subsidiary technical results are given in Sections 6 and 7 as Appendices to the

paper.

2 Model and Assumptions

We consider the following nonlinear structural model of cointegration

yt = f(xt) + ut, t = 1, 2, ..., n, (2.1)

where ut is a zero mean stationary error, xt is a jointly dependent nonstationary regressor,

and f is an unknown function to be estimated with the observed data {yt, xt}nt=1. The

conventional kernel estimate of f(x) in model (2.1) is given by

f̂(x) =

∑n
t=1 ytKh(xt − x)∑n
t=1Kh(xt − x)

, (2.2)

where Kh(s) = 1
h
K(s/h), K(x) is a nonnegative real function, and the bandwidth param-

eter h ≡ hn → 0 as n→∞.

The limit behavior of f̂(x) has been investigated in past work in some special situ-

ations, notably where the error process ut is a martingale difference sequence and there

is no contemporaneous correlation between xt and ut. These are strong conditions, they

are particularly restrictive in relation to the conventional linear cointegrating regression

framework, and they are unlikely to be satisfied in econometric applications. However,

they do facilitate the development of a limit theory by various methods. In particular,

Karlsen, Myklebust and Tjøstheim (2007, KMT) investigated f̂(x) in the situation where

xt is a recurrent Markov chain; and Wang and Phillips (2006, WP) considered an al-

ternative treatment by making use of local time limit theory and, instead of recurrent
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Markov chains, worked with partial sum representations of the type xt =
∑t

j=1 ξj where

ξj is a general linear process. These authors showed that the limit theory for f̂(x) has

links to traditional nonparametric asymptotics for stationary models even though the

rates of convergence are different and typically slower when xt is nonstationary. However,

the strong conditions under which the asymptotic theory of KMT and WP is developed

limits its usefulness in applications. It seems particularly important to relax conditions

of independence, so that the system is a structural model that allows joint dependence

between the regressor and dependent variable in the regression. The goal of the present

paper is to remove this assumption of independence and to develop a limit theory for

structural functional estimation in the context of nonstationary time series.

Throughout the paper we let {εt}t≥1 be a sequence of independent and identically

distributed (iid) continuous random variables with Eε1 = 0, Eε21 = 1 and for which ε1 has

a density d(x). The sequence {εt}t≥1 is assumed to be independent of another iid random

sequence {λt}t≥1. We use the following assumptions in the asymptotic development.

Assumption 1. xt =
∑t

j=1 ηj where ηj =
∑∞

k=0 φkεj−k with φ ≡
∑∞

k=0 φk 6= 0 and∑∞
k=0 k

2|φk| <∞.

Assumption 2. ut = u(εt, εt−1, ..., εt−m0 , λt) satisfies Eut = 0 and Eu4
t <∞ for t ≥ m0,

where u(x0, x1, ..., xm0 , y) is a real measurable function on Rm0+2. We define ut = 0 for

1 ≤ t ≤ m0 − 1.

Assumption 3. K(x) is a nonnegative bounded three times continuous differentiable

function satisfying
∫
K(x)dx <∞ and

∫
|K(i)(x)|dx <∞ for i = 1, 2, 3.

Assumption 4. For given x, there exists a real function f1(s, x) such that, when h suffi-

ciently small, |f(hy+x)−f(x)| ≤ h f1(y, x) for all y ∈ R and
∫∞
−∞K(s) f1(s, x)ds < ∞.

Assumption 1 is standard in a cointegrating regression framework, so that xt is a

partial sum of linear process innovations that satisfy a simple summability condition with

long run moving average coefficient φ 6= 0. Assumption 2 allows the equation error ut

to be serially dependent and cross correlated with xs for |t − s| < m0, thereby inducing

endogeneity in the regressor. In the asymptotic development below, m0 is assumed to be

finite but this could likely be relaxed under some additional conditions and with greater

complexity in the proofs, although that is not done here. It is not necessary for ut to

depend on λt, in which case there is only a single innovation sequence. However, in most

practical cases involving cointegration between two variables, we can expect that there
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will be two innovation sequences.

Assumption 3 places stronger conditions on the kernel function than is usual in kernel

estimation, requiring integrable derivatives to the third order. These conditions are needed

for technical reasons in the proofs and they are clearly satisfied for many commonly used

kernels. Assumptions 4, which was used in WP, is quite weak and can be verified for

various kernels K(x) and regression functions f(x). For instance, if K(x) is a standard

normal kernel or has a compact support, a wide range of regression functions f(x) are

included. Thus, commonly occuring functions like f(x) = |x|α and f(x) = 1/(1 + |x|α)
for some α > 0 satisfy Assumption 4.

3 Main result and outline of the proof

The limit theory for the conventional kernel regression estimate f̂(x) turns out to be very

simple and is given in the following theorem.

THEOREM 3.1. For any h satisfying nh2 →∞ and nh6 → 0,(
h

n∑
t=1

Kh(xt − x)
)1/2

(f̂(x)− f(x)) →D N(0, σ2), (3.1)

where σ2 = E(u2
m0

)
∫∞
−∞K

2(s)ds
/ ∫∞

−∞K(x)dx .

Remarks

(a) The proof of (3.1) is given in the Appendix. To outline the essentials of the argument

here we split the error of estimation f̂(x)− f(x) as

f̂(x)− f(x) =

∑n
t=1 utKh(xt − x)∑n
t=1Kh(xt − x)

+

∑n
t=1

[
f(xt)− f(x)

]
Kh(xt − x)∑n

t=1Kh(xt − x)
.

It is readily seen that(
h

n∑
t=1

Kh(xt − x)
)1/2

(f̂(x)− f(x)) =
n∑
t=1

ut Znt + Θ1n/Θ2n, (3.2)

where Znt = K
(
xt−x
h

)
/Θ2n with Θ2

2n =
∑n

t=1K
(
xt−x
h

)
and

Θ1n =
n∑
t=1

[
f(xt)− f(x)

]
K

(xt − x

h

)
.

6



It has been proved in WP that Θ1n/Θ2n →P 0, which requires that the “signal”

Θ2
2n →∞, in Probab., which in turn requires that nh2 →∞. The stated result will

then follow if we prove

{
(nh2)−1/4

[nt]∑
k=1

ukK[(xk − x)/h] , (nh2)−1/2

n∑
k=1

K[(xk − x)/h]
}

→D

{
c0N L1/2(t, 0), d0 L(1, 0)

}
, (3.3)

on D[0, 1]2, where c20 = φE(u2
m0

)
∫∞
−∞K

2(s)dt, d0 = φ
∫∞
−∞K(s)ds, L(t, 0) is the

local time process at the origin of a Brownian motion {W (t)}t≥0, andN is a standard

normal variate independent of L(t, 0). The local time process L(t, a) is defined by

L(t, a) = lim
ε→0

1

2ε

∫ t

0

I{|W (r)− a| ≤ ε}dr. (3.4)

Indeed, since P (L(1, 0) > 0) = 1, the required result (3.1) follows by (3.3) and

the continuous mapping theorem. It remains to prove (3.3), which is done in the

Appendix. In fact, it is clearly sufficient for the required result to show that the

finite dimensional distributions converge in (3.3).

(b) Result (3.1) shows that f̂(x) is consistent and has an asymptotic distribution that is

mixed normal even in the presence of an endogenous regressor. The mixing variate

in the limit distribution depends on the local time process L(1,0), as follows from

(3.3). In finite samples, the performance of the functional estimation procedure will

depend on how much time the process xt spends around the point x and how well the

bandwidth concentrates attention on this point. As remarked earlier, consistency

depends on h → 0, so that function estimation is localized at a single point x as

n→∞. The conditions nh2 →∞ and nh6 → 0 in the theorem require that h tend

to zero faster than n−1/6 but not as fast as n−1/2.

(c) The bandwidth choice h turns out to be particularly important in structural func-

tional estimation when there is contemporaneous correlation between xt and ut. For

when h is fixed as n → ∞ the estimate f̂(x) can be shown to be asymptotically

biased and when h tends to zero slowly this bias is manifest even in very large

samples. Some illustrative simulations are reported in the next section.
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4 Simulations

This section reports the results of a simulation experiment investigating the finite sam-

ple performance of the kernel regression estimator. The generating mechanism follows

(2.1)and has the form

yt = f (xt) + ut, ∆xt = εt,

ut = (λt + θεt) /
(
1 + θ2

)1/2
,

where (εt, λt) are iid N (0, σ2I2). The following two regression functions were used in the

simulations:

fA (x) =
∞∑
j=1

(−1)j+1 sin (jπx)

j2
, fB (x) = x3.

The first function corresponds (up to a scale factor) to the function used in Hall

and Horowitz (2005) and is truncated at j = 4 for computation. Figs. 1 and 2 graph

these functions (the solid lines) and the mean simulated kernel estimates (broken lines)

over the intervals [0, 1] and [−1, 1] for kernel estimates of fA and fB, respectively. Bias,

variance and mean squared error for the estimates were computed on the grid of values

{x = 0.01k : k = 0, 1, ..., 100} for [0, 1] and {x = −1 + 0.02k; k = 0, 1, ..., 100} for [−1, 1]

based on 10,000 replications. Simulations were performed for θ = 1 (weak endogeneity)

and θ = 100 (strong endogeneity), with σ = 0.1, and for the sample size n = 500. A

Gaussian kernel was used with bandwidths h = n−10/18, n−1/2, n−1/3, n−1/5.

Table 1 shows the performance of the regression estimate f̂ computed over various

bandwidths, h, and endogeneity parameters, θ, for the two models. In both models the

degree of endogeneity (θ) in the regressor has a negligible effect on the properties of

the kernel regression estimate when h is small. It is also clear that estimation bias can

be substantial, particularly for model A with bandwidth h = n−1/5, corresponding to

the conventional rate for stationary series. Bias is substantially reduced for the smaller

bandwidths h = n−1/2, n−1/3 at the cost of some increase in dispersion and is further

reduced when h = n−10/18 although this choice and h = n−1/2 violate the condition

nh2 → ∞ of theorem 3.1. The downward bias in the case of f̂A over the domain [0, 1]

appears to be due to the periodic nature of the function fA and the effects of smoothing

over x values for which the function is negative. The bias in f̂B is similarly towards the

origin over the whole domain [−1, 1] . The performance characteristics seem to be little
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affected by the magnitude of the endogeneity parameter θ. For model A, finite sample

performance in terms of MSE seems to be optimized for h close to n−1/2. For model B,

h = n−1/5 delivers the best MSE performance largely because of the substantial gains

in variance reduction with the larger bandwidth that occur in this case. Thus, bias

reduction through choice of a very small bandwidth may be important in overall finite

sample performance for some regression functions but much less so for other functions.

Of course, if h→ 0 so fast that nh2 6→ ∞ then the “signal”
∑n

t=1K
(
xt−x
h

)
6→ ∞ and the

kernel estimate is not consistent.

Table 1

Model A: fA (x) =
∑4

j=1
(−1)j+1 sin(jπx)

j2

θ h Bias Std MSE

100 n−10/18 0.056 0.234 0.066

n−1/2 0.059 0.229 0.064

n−1/3 0.106 0.208 0.066

n−1/5 0.274 0.193 0.145

1 n−10/18 0.058 0.235 0.067

n−1/2 0.061 0.229 0.065

n−1/3 0.108 0.209 0.067

n−1/5 0.276 0.193 0.145

Model B: fB (x) = x3

θ h Bias Std MSE

100 n−10/18 0.0005 0.801 0.651

n−1/2 0.0003 0.739 0.556

n−1/3 0.0005 0.541 0.305

n−1/5 0.0021 0.387 0.190

1 n−10/18 0.0027 0.802 0.648

n−1/2 0.0027 0.740 0.553

n−1/3 0.0033 0.541 0.302

n−1/5 0.0051 0.395 0.188

Figs. 1 and 2 show results for the Monte Carlo approximations to E
(
f̂A (x)

)
and

E
(
f̂B (x)

)
corresponding to bandwidths h = n−1/2 (broken line), h = n−1/3 (dotted line),

and h = n−1/5 (dashed and dotted line) for θ = 100. Figs 3 and 4 show the Monte Carlo
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approximations to E
(
f̂A (x)

)
and E

(
f̂B (x)

)
together with a 95% pointwise “estimation

band”. As in Hall and Horowitz (2005), these bands connect points f (xj ± δj) where

each δj is chosen so that the interval [f (xj)− δj, f (xj) + δj] contains 95% of the 10,000

simulated values of f̂ (xj) for models A and B, respectively. Apparently, the bands are

quite wide, reflecting the much slower rate of convergence of the kernel estimate f̂ (x)

in the nonstationary case. In particular, since xt spends only
√
n of its time in the

neighborhood of any specific point, the effective sample size for pointwise estimation

purposes is
√

500 ∼ 22. When h = n−1/3, it follows from theorem 3.1 that the convergence

rate is (nh2)
1/4

= n1/12, which is far slower than the rate (nh)1/2 = n2/5 for conventional

kernel regression.

5 Conclusion

The two main results in the present paper have important implications for applications.

First, there is no inverse problem in structural models of nonlinear cointegration of the

form (2.1) where the regressor is an endogenously generated integrated process. This

result reveals a major simplification in structural nonparametric regression in cointegrat-

ing models, avoiding the need for instrumentation and completely eliminating ill-posed

functional equation inversions. Second, functional estimation of (2.1) is straightforward

in practice and may be accomplished by standard kernel methods. These methods yield

consistent estimates that have a mixed normal limit distribution, thereby validating con-

ventional methods of inference in the nonstationary nonparametric setting.

The results open up some new possibilities for functional regression in empirical re-

search with integrated processes. In addition to many possible empirical applications

with the methods, there are some interesting extensions of the ideas presented here to

other useful models involving nonlinear functions of integrated processes. In particular,

additive nonlinear cointegration models and partial linear cointegration models may be

treated in a similar way to (2.1). There are also issues of specification testing, functional

form tests, and cointegration tests, which may now be addressed using the methods of

the paper. We plan to report on some of these extensions in later work.
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6 Proof of Theorem 3.1

As shown in Remark (a), the proof of the theorem essentially amounts to proving (3.3).

To do so, we will make use of various subsidiary results which are proved here and in the

next section.

First, it is convenient to introduce the following definitions and notation. If α
(1)
n ,

α
(2)
n ,..., α

(k)
n (1 ≤ n ≤ ∞) are random elements of D[0, 1], we will understand the condition

(α(1)
n , α(2)

n , ..., α(k)
n ) →D (α(1)

∞ , α(2)
∞ , ..., α(k)

∞ )

to mean that for all α
(1)
∞ , α

(2)
∞ ,..., α

(k)
∞ -continuity sets A1, A2,...,Ak

P
(
α(1)
n ∈ A1, α

(2)
n ∈ A1, ..., α

(k)
n ∈ Ak

)
→ P

(
α(1)
∞ ∈ A1, α

(2)
∞ ∈ A2, ..., α

(k)
∞ ∈ Ak

)
.

[see Billingsley (1968, Theorem 3.1) or Hall (1977)]. D[0, 1]k will be used to denote

D[0, 1]× ...×D[0, 1], the k-times coordinate product space of D[0, 1]. We still use ⇒ to

denote weak convergence on D[0, 1].

In order to prove (3.3), we use the following lemma.

LEMMA 6.1. Suppose that {Ft}t≥0 is an increasing sequence of σ-fields, q(t) is a process

that is Ft-measurable for each t and continuous with probability 1, Eq2(t) <∞ and q(0) =

0. Let ψ(t), t ≥ 0, be a process that is nondecreasing and continuous with probability 1 and

satisfies ψ(0) = 0 and Eψ2(t) <∞. Let ξ be a random variable which is Ft-measurable for

each t ≥ 0. If, for any γj ≥ 0, j = 1, 2, ..., r, and any 0 ≤ s < t ≤ t0 < t1 < ... < tr <∞,

E
(
e−

Pr
j=1 γj [ψ(tj)−ψ(tj−1)]

[
q(t)− q(s)

]
| Fs

)
= 0, a.s.,

E
(
e−

Pr
j=1 γj [ψ(tj)−ψ(tj−1)]

{
[q(t)− q(s)]2 − [ψ(t)− ψ(s)]

}
| Fs

)
= 0, a.s.

then the finite-dimensional distributions of the process (q(t), ξ)t≥0 coincide with those of

the process (W [ψ(t)], ξ)t≥0, where W (s) is a standard Brownian motion with EW 2(s) = s

independent of ψ(t).

Proof. This lemma is an extension of Theorem 3.1 of Borodin and Ibragimov (1995,

page 14) and the proof follows from the same lines as in their work. Indeed, by using the

fact that ξ is Ft-measurable for each t ≥ 0, it follows from the same arguments as in the

proof of Theorem 3.1 of Borodin and Ibragimov (1995) that, for any t0 < t1, ..., tr < ∞,
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αj ∈ R and s ∈ R,

Eei
Pr

j=1 αj [q(tj)−q(tj−1)]+isξ

= E
[
ei

Pr−1
j=1 αj [q(tj)−q(tj−1)]+isξ E

(
eiαr[q(tr)−q(tr−1)] | Ftr−1

)]
= E

[
e−

α2
r
2

[ψ(tr)−ψ(tr−1)] ei
Pr−1

j=1 αj [q(tj)−q(tj−1)]+isξ
]

= ... = Ee−
α2

r
2

Pr
j=1[ψ(tj)−ψ(tj−1)]+isξ,

which yields the stated result. 2

By virtue of Lemma 6.1, we now obtain the proof of (3.3). Technical details of some

subsidiary results that are used in this proof are given in the next section. Set

ξn =
1

d0

√
nh2

n∑
k=1

K[(xk − x)/h], ζn(t) =
1√
n

[nt]∑
k=1

εk, ζ ′n(t) =
1√
nφ

[nt]∑
k=1

ηk,

Sn(t) =
1

c0(nh2)1/4

[nt]∑
k=1

ukK[(xk − x)/h], ψn(t) =
1

d1

√
nh2

[nt]∑
k=1

u2
kK

2[(xk − x)/h],

for 0 ≤ t ≤ 1, where c0 and d0 are defined as in (3.3), and d1 = φEu2
m0

∫∞
−∞K

2(s)dt.

We will prove in Propositions 7.1 and 7.2 that ζ ′n(t) ⇒ W ′(t), ξn →D ψ(1) and ψn(t) ⇒
ψ(t) on D[0, 1], where ψ(t) := L(t, 0) and L(t, s) is a local time process of the Wiener

process {W ′(t), 0 ≤ t ≤ 1} defined by (3.4). Furthermore we will prove in Proposition

7.4 that {Sn(t)}n≥1 is tight on D[0, 1]. These facts imply that {Sn(t), ψn(t), ζ ′n(t), ξn}n≥1

is tight on D[0, 1]4. Hence, for each {n′} ⊆ {n}, there exists a subsequence {n′′} ⊆ {n′}
such that {

Sn′′(t), ψn′′(t), ζ
′
n′′(t), ξn′′

}
→d

{
η(t), ψ(t),W ′(t), ψ(1)

}
,

on D[0, 1]4, where η(t) is a process continuous with probability one by noting (7.19) below.

By virtue of (7.1), we also have{
Sn′′(t), ψn′′(t), ζn′′(t), ξn′′

}
→d

{
η(t), ψ(t),W ′(t), ψ(1)

}
, (6.1)

on D[0, 1]4. Write Fs = σ{W ′(t), 0 ≤ t ≤ 1; η(t), 0 ≤ t ≤ s}. It is readily seen that Fs ↑
and η(s) is Fs-measurable for each 0 ≤ s ≤ 1. Also note that ψ(t) (for any fixed t ∈ [0, 1])

is Fs-measurable for each 0 ≤ s ≤ 1. If we prove that for any 0 ≤ s < t ≤ 1,

E
([
η(t)− η(s)

]
| Fs

)
= 0, a.s., (6.2)

E
({

[η(t)− η(s)]2 − [ψ(t)− ψ(s)]
}
| Fs

)
= 0, a.s., (6.3)
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then it follows from Lemma 6.1 that the finite-dimensional distributions of (η(t), ξ) co-

incide with those of {N L1/2(t, 0), L(1, 0)}, where N is normal variate independent of

L(t, 0). The result (3.3) therefore follows, since η(t) does not depend on the choice of the

subsequence.

Let 0 ≤ t0 < t2 < ... < tr = 1, r be an arbitrary integer and G(...) be an arbitrary

bounded measurable function. In order to prove (6.2) and (6.3), it suffices to show that

E[η(tj)− η(tj−1)]G[η(t0), ..., η(tj−1);W
′(t0), ...,W

′(tr)] = 0, (6.4)

E
{
[η(tj)− η(tj−1)]

2 − [ψ(tj)− ψ(tj−1)]
}
G[η(t0), ..., η(tj−1);W

′(t0), ...,W
′(tr)] = 0. (6.5)

Recall (6.1). Without loss of generality, we assume the sequence {n′′} is the {n} itself.

Since Sn(t), S
2
n(t) and ψn(t) for each 0 ≤ t ≤ 1 are uniformly integrable (see Proposition

7.3), the statements (6.4) and (6.5) will follow if prove

E[Sn(tj)− Sn(tj−1)]G[...] → 0, (6.6)

E
{
[Sn(tj)− Sn(tj−1)]

2 − [ψn(tj)− ψn(tj−1)]
}
G[...] → 0, (6.7)

where G[...] = G[Sn(t0), ..., Sn(tj−1); ζn(t0), ..., ζn(tr)] (see, e.g., Theorem 5.4 of Billingsley,

1968). Furthermore, by using the similar arguments as in the proofs of Lemma 5.4 and

5.5 in Borodin and Ibragimov (1995), we may choose

G(y0, y1, ..., yj−1; z0, z1, ..., zr) = exp
{
i
( j−1∑
k=0

λkyk +
r∑

k=0

µkzk
)}
.

Therefore, by independence of εk, we only need to show that

E
{ [ntj ]∑
k=[ntj−1]+1

ukK[(xk − x)/h]eiµj [ζn(tj)−ζn(tj−1)]+iχ(tj−1)
}

= o[(nh2)1/4], (6.8)

E
{[ [ntj ]∑

k=[ntj−1]+1

ukK[(xk − x)/h]
]2 −

[ntj ]∑
k=[ntj−1]+1

u2
kK

2[(xk − x)/h]
}
eiµj [ζn(tj)−ζn(tj−1)]+iχ(tj−1)

= o[(nh2)1/2], (6.9)

where χ(s) = χ(x1, ..., xs, u1, ..., us), a functional of x1, ..., xs, u1, ..., us.
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Note that χ(s) depends only on (..., εs−1, εs) and λ1, ..., λs, and we may write

xt =
t∑

j=1

j∑
i=−∞

εiφj−i

=
s∑
j=1

j∑
i=−∞

εiφj−i +
t∑

j=s+1

j∑
i=−∞

εiφj−i

= xs +
t∑

j=s+1

s∑
i=−∞

εiφj−i +
t∑

j=s+1

j∑
i=s+1

εiφj−i

:= x∗s,t + x′t, (6.10)

where x∗s,t depends only on (..., εs−1, εs) and

x′t =
t−s∑
j=1

j∑
i=1

εi+sφj−i =
t−s∑
i=1

εi+s

t−s∑
j=i

φj−i =d

t−s∑
i=1

εi

t−s−i∑
j=0

φj,

where =d denotes the same in distribution.

Now, by independence of εk again and conditional arguments, it suffices to show that,

for any 0 ≤ s < t ≤ 1 and any µ,

sup
y,1≤m≤n

E
{ m∑
k=1

ukK[(y + x′′k)/h] e
iµ

Pm
i=1 εi/

√
n
}

= o[(nh2)1/4], (6.11)

sup
y,1≤m≤n

E
({ m∑

k=1

ukK[(y + x′′k)/h]
}2 −

m∑
k=1

u2
kK

2[(y + x′′k)/h]
)
eiµ

Pm
i=1 εi/

√
n

= o[(nh2)1/2], (6.12)

where x′′k =
∑k

i=1 εi
∑k−i

j=0 φj. This follows from Proposition 7.5.

The proof of Theorem 3.1 is now complete.

7 Some Useful Subsidiary Propositions

In this section we will prove the following propositions required in the proof of theorem

3.1. Notation will be same as in the previous section except when explicitly mentioned.

PROPOSITION 7.1. Under an appropriate probability space {Ω,F , P}, there exist a

Winner process W (t) such that supt |ζn(t)−W (t)| = oP (1) and

sup
0≤t≤1

|ζn(t)− ζ ′n(t)| = oP (1) (7.1)

(which implies that ζn(t) ⇒ W (t) and ζ ′n(t) ⇒ W (t) on D[0, 1]).
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PROPOSITION 7.2. For any h satisfying h→ 0 and nh2 →∞, we have

1√
nh2

[nt]∑
k=1

K[(xk − x)/h] ⇒ d0 ψ(t), (7.2)

1√
nh2

[nt]∑
k=1

K2[(xk − x)/h]u2
k ⇒ d1 ψ(t), (7.3)

on D[0, 1], where d0 = φ
∫∞
−∞K(s)dt and d1 = φEu2

m0

∫∞
−∞K

2(s)dt.

PROPOSITION 7.3. For any fixed 0 ≤ t ≤ 1, we have that Sn(t), S
2
n(t) and ψn(t),

n ≥ 1, are uniformly integrable.

PROPOSITION 7.4. We have that {Sn(t)}n≥1 is tight on D[0, 1].

PROPOSITION 7.5. We have that, for any u ∈ R,

sup
y,1≤m≤n

E
{ m∑
k=1

ukK[(y + x′′k)/h] e
iµ

Pm
i=1 εi/

√
n
}

= o[(nh2)1/4], (7.4)

sup
y,1≤m≤n

E
({ m∑

k=1

ukK[(y + x′′k)/h]
}2 −

m∑
k=1

u2
kK

2[(y + x′′k)/h]
)
eiµ

Pm
i=1 εi/

√
n

= o[(nh2)1/2]. (7.5)

Proposition 7.1 is well-known. In order to prove Proposition 7.2-7.5, we need some

preliminaries.

Let r(x) and r1(x) be bounded functions such that
∫∞
−∞(|r(x)|+ |r1(x)|)dx <∞. We

first calculate the values of Ik,l and IIk defined by

Ik,l = E
[
r(x′′k/h) r1(x

′′
l /h) g(uk) g1(ul) exp

{
iµ

l∑
j=1

εj/
√
n
}]
,

IIk = E
[
r(x′′k/h) g(uk) exp

{
iµ

k∑
j=1

εj/
√
n
}]
, (7.6)

under different settings of g(x) and g1(x). We have the following lemmas, which will play

a core rule in the proof of main results. We always assume l < k and let C denote a

constant not depending on k, l and n, which may be different from line to line.

LEMMA 7.1. Suppose
∫
|r̂(λ)|dλ <∞ where r̂(t) =

∫
eitxr(x)dx.

(a) If E|g(uk)| <∞, then

|IIk| ≤ C h/
√
k. (7.7)
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(b) If Eg(uk) = 0 and Eg2(uk) <∞, then

|IIk| ≤ C (k−2 + h/k). (7.8)

LEMMA 7.2. Suppose that
∫

(1+ |λ|)|r̂(λ)|dλ <∞ and
∫

(1+ |λ|)|r̂1(λ)|dλ <∞, where

r̂(t) =
∫
eitxr(x)dx and r̂1(t) =

∫
eitxr1(x)dx. Suppose that Eg(ul) = Eg1(uk) = 0 and

Eg2(um0) + Eg2
1(um0) < ∞. Then, for any ε > 0, there exists a n0 > 0 such that, for all

n ≥ n0 and all l − k ≥ 1,

|Ik,l| ≤ C
[
ε (l − k)−3/2 + h (l − k)−1

] (
k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k
)
, (7.9)

where we define
∑∞

j=k/2 =
∑

j≥k/2.

We only prove Lemma 7.2. The proof of Lemma 7.1 is the same and hence the details

are omitted.

The proof of Lemma 7.2. We have r(x) = 1
2π

∫
e−ixtr̂(t)dt and r1(x) = 1

2π

∫
e−ixtr̂1(t)dt

as
∫

(|r(t)|+ |r1(t)|)dt <∞. This yields that

Ik,l = E
[
r(x′′k/h) r1(x

′′
l /h) g(uk) g1(ul) exp

{
iµ

l∑
j=1

εj/
√
n
}]

=

∫ ∫
E

{
e−it x

′′
k/h eiλ x

′′
l /h g(uk) g1(ul) e

iµ
Pl

j=1 εj/
√
n
}
r̂(t) r̂1(λ) dt dλ.

Define
∑l

j=k = 0 if l < k. Since

x′′l =
l∑

q=1

εt

l−q∑
j=0

φj =
( k∑
q=1

+

l−m0∑
q=k+1

+
l∑

q=l−m0+1

)
εq

l−q∑
j=0

φj,

it follows from independence of the εk’s that

|Ik,l| ≤
∫ ∣∣∣E{

eiz
(2)/h

}∣∣∣ ∣∣∣E{
eiz

(3)/h g1(ul)
}∣∣∣ |r̂1(λ)|( ∫ ∣∣E{

eiz
(1)/h g(uk)

}∣∣ |r̂(t)| dt) dλ, (7.10)

where

z(1) =
k∑
q=1

εq
[
λ

l−q∑
j=0

φj − t

k−q∑
j=0

φj + uh/
√
n
]
,

z(2) =

l−m0∑
q=k+1

εq
(
λ

l−q∑
j=0

φj + uh/
√
n
)
,

z(3) =
l∑

q=l−m0+1

εq
(
λ

l−q∑
j=0

φj + uh/
√
n
)
.
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We may take n sufficiently large so that u/
√
n is as small as required. Without loss of

generality we assume u = 0 in the following proof for convenience of notation. We first

show that, for all k sufficiently large,

Λ(λ, k) :=

∫ ∣∣E{
eiz

(1)/h g(uk)
}∣∣ |r̂(t)| dt

≤ C
(
|λ|h−1k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k

)
. (7.11)

To estimate Λ(λ, k), take δ sufficiently large such that |Eeisε1| ≤ e−1/2 whenever

|s| ≥ δ|φ|/2, where φ =
∑∞

j=0 φj. This may be done by using the fact |Eeitε| → 0, as

t → ∞, since Eε1 = 0, Eε21 = 1 and ε1 has a density. Furthermore, take k0 (k0 ≥ 2m0)

sufficiently large such that
∑∞

j=k0/2+1 |φj| ≤ |φ|/2. We claim that, for all k ≥ k0/2,

∣∣∣Eei ε1 t Pk
j=0 φj

∣∣∣ ≤

{
e−1/2 if |t| ≥ δ,

e−γt
2

if |t| ≤ δ,
(7.12)

where γ > 0 is a constant not depending on k. Indeed, the result (7.12) for |t| ≥ δ

follows from the fact that
∣∣t ∑k

j=0 φj
∣∣ ≥ δ|φ|/2 whenever k ≥ k0/2. If |t| ≤ δ, then∣∣t ∑k

j=0 φj
∣∣ ≤ t0 := δ

∑∞
j=0 |φj|. Since |Eeit0ε1 | ≤ e−1/2, it follows from Theorem 3 of

Petrov (1995) that

∣∣∣Eei ε1 t Pk
j=0 φj

∣∣∣ ≤ 1− 1− e−1/2

8t20
t2

( k∑
j=0

φj)
2 ≤ e−γt

2

,

with γ = (1− e−1/2)φ2/(32t20) > 0. This gives (7.12).

The result (7.12) will be used to estimate Λ(λ, k). To this end, put τ
(q)
λ,t = λ

∑l−q
j=0 φj−

t
∑k−q

j=0 φj, W
(1) =

∑k/2
q=1 εq τ

(q)
λ,t and W (2) = (λ − t)

∑k/2
q=1 εq

∑k−q
j=0 φj. Note that τ

(q)
λ,t =

(λ− t)
∑k−q

j=0 φj + λ
∑l−q

j=k−q+1 φj. We have

E|W (1) −W (2)| ≤ |λ|
k/2∑
q=1

E|εq|
l−q∑

j=k−q+1

|φj| ≤ C |λ| k
∞∑

j=k/2

|φj|.

This together with (7.12) yields that, for all k ≥ k0,∣∣EeiW (1)/h
∣∣ ≤ E|W (1) −W (2)|/h+

∣∣EeiW (2)/h
∣∣

≤ C |λ|h−1 k

∞∑
j=k/2

|φj|+

{
e−k/4 if |t− λ| ≥ δ h,

e−γk(t−λ)2/2h2
if |t− λ| ≤ δ h.
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Hence, by noting Z(1) = W (1) +
∑k

q=k/2+1 εqτ
(q)
λ,t and k/2 ≤ k − m0 (which implies that

W (1) is independent of uk), it follows from the independence of εk again that

Λ(λ, k) ≤
∫ ∣∣E{

eiW
(1)/h

}∣∣E∣∣g(uk)∣∣ |r̂(t)| dt
≤ C |λ|h−1 k

∞∑
j=k/2

|φj|+ e−k/4
∫
|t−λ|≥δh

|r̂(t)| dt+

∫
|t−λ|≤δh

e−γk(t−λ)2/2h2

dt

≤ C
(
|λ|h−1 k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k

)
.

This proves (7.11) for k ≥ k0.

We now turn back to the proof of (7.9). We will estimate Ik,l in three separate settings:

l − k ≥ 2k0 and k ≥ k0; l − k ≤ 2k0 and k ≥ k0; l > k and k ≤ k0.

Case I. l − k ≥ 2k0 and k ≥ k0. In this case, we note that |Ik,l| ≤ I
(1)
k,l + I

(2)
k,l , where,

Λ(λ, k) is defined as in (7.11), δ is defined as in (7.12),

I
(1)
k,l =

∫
|λ|≤δh

∣∣∣E{
eiz

(2)/h
}∣∣∣ ∣∣∣E{

eiz
(3)/h g1(ul)

}∣∣∣ Λ(λ, k) |r̂1(λ)| dλ,

I
(2)
k,l =

∫
|λ|>δh

∣∣∣E{
eiz

(2)/h
}∣∣∣ ∣∣∣E{

eiz
(3)/h g1(ul)

}∣∣∣ Λ(λ, k) |r̂1(λ)| dλ.

First estimate I
(1)
k,l . Since Eg1(ul) = 0, we have∣∣∣E{

eiz
(3)/h g1(ul)

}∣∣∣ =
∣∣∣E{(

eiz
(3)/h − 1

)
g1(ul)

}∣∣∣
≤ h−1E

[
|z(3)| |g1(ul)|

]
≤ m0(Eε

2
1)

1/2(Eg2
1(ul))

1/2 |λ|h−1.

On the other hand, by noting l −m0 ≥ (l + k)/2 and l − q ≥ k0 for all k ≤ q ≤ (l + k)/2

since l − k ≥ 2k0 and k0 ≥ 2m0, it follows from (7.12) that∣∣E{eiz(2)/h∣∣ ≤ Π
(l+k)/2
q=k

∣∣Eeiεq λ Pl−q
j=0 φj/h

∣∣ ≤ e−γ(l−k)λ
2/2h2

.

These estimates, together with (7.11), yield that, for |λ| ≤ δh,

I
(1)
k,l ≤ C h−1

∫
|λ|≤δh

|λ| e−γ(l−k)λ2/h2

Λ(λ, k) dλ

≤ C h (l − k)−3/2 k

∞∑
j=k/2

|φj|+ C h (l − k)−1 (k−2 + h/
√
k).

By using similar arguments, we obtain that |E{eiz(3)/h g1(ul)}| ≤ E|g1(ul)| and
∣∣E{eiz(2)/h}∣∣ ≤

e−(l−k)/4 when |λ| ≥ δh. On the other hand, we also have

|E{eiz(3)/h g1(ul)}| → 0, whenever λ/h→∞, (7.13)
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uniformly for all l ≥ m0. Indeed, supposing φ0 6= 0 (if φ0 = 0, we may use ψ1 and so on),

we have E{eiz(3)/h g1(ul)} = E
{
eiεlφ0λ/hg∗(εl)

}
, where g∗(εl) = E

[
ei(z

(3)−εlφ0λ)/hg1(ul) | εl
]
.

By recalling that εl has a density d(x), it is readily seen that∫
sup
λ
|g∗(x)|d(x)dx ≤ E|g1(ul)| <∞,

uniformly for all l. The result (7.13) follows from the Riemann-Lebesgue theorem. By

virtue of (7.13), for any ε > 0, there exists a n0 (A0 respectively) such that, for all n ≥ n0

(|λ|/h ≥ A0 respectively), |E{eiz(3)/h g1(ul)}| ≤ ε. Hence,

I
(2)
k,l ≤ e− (l−k)/4

( ∫
|λ|>A0h

+

∫
δh≤|λ|≤A0h

)
|E{eiz(3)/h g1(ul)}|Λ(λ, k) |r̂1(λ)| dλ

≤ C (ε+ h) e−(l−k)/4 [
k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k
]
,

where we have used the fact
∫

(1 + |λ|)|r̂1(λ)| dλ < ∞. Combining the estimates for I
(1)
k,l

and I
(2)
k,l , simple calculations provide the result (7.9) in case I.

Case II. l − k ≤ 2k0 and k ≥ k0. In this case, we only need to show that

|Ik,l| ≤ C (ε+ h)
(
h−1k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k
)
. (7.14)

In fact, as in (7.10), we have

|Ik,l| ≤
∫ ∫ ∣∣E{

eiz
(4)/h

}∣∣ ∣∣∣E{
eiz

(5)/h g(uk) g1(ul)
}∣∣∣ |r̂(t)| |r̂1(λ)| dt dλ, (7.15)

where

z(4) =

k−m0∑
q=1

εq
[
λ

l−q∑
j=0

φj − t

k−q∑
j=0

φj + uh/
√
n
]
,

z(5) =
l∑

q=k−m0+1

εq
(
λ

l−q∑
j=0

φj + uh/
√
n
)
−

k∑
q=k−m0+1

εq t

k−q∑
j=0

φj.

Similar arguments as in the proof of (7.11) give that, for all λ and all k ≥ k0,

Λ1(λ, k) :=

∫ ∣∣E{
eiz

(4)/h
}∣∣ |r̂(t)| dt

≤ C
(
|λ|h−1k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k
)
.

Note that

E|g(uk) g1(ul)| ≤ (Eg2(uk))
1/2 (Eg2

1(ul))
1/2 <∞.
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For any ε > 0, similar to the proof of (7.13), there exists a n0 (A0 respectively) such that,

for all n ≥ n0 (|λ|/h ≥ A0 respectively), |E{eiz(5)/h g(uk) g1(ul)}| ≤ ε. By virtue of these

facts, we have

|Ik,l| ≤
∫ ( ∫

|λ|≤A0h

+

∫
|λ|>A0h

)∣∣E{
eiz

(4)/h
}∣∣ ∣∣∣E{

eiz
(5)/h g(uk) g1(ul)

}∣∣∣ |r̂(t)| |r̂1(λ)| dt dλ

≤ C

∫
|λ|≤A0h

Λ1(λ, k) dλ+ C ε

∫
|λ|>A0h

Λ1(λ, k) |r̂1(λ)| dλ

≤ C (ε+ h)
(
h−1k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k
)
.

This proves (7.14) and hence the result (7.9) in case II.

Case III. l > k and k ≤ k0. In this case, we only need to prove

|Ik,l| ≤ C
[
ε (l − k)−3/2 + h (l − k)−1

]
. (7.16)

In order to prove (7.16), split l > k into l−k ≥ 2k0 and l−k ≤ 2k0. The result (7.9) then

follows from the same arguments as in proofs of cases I and II but replacing the estimate

of Λ(λ, k) in (7.11) by

Λ(λ, k) ≤ E|g(uk)|
∫
|r̂(t)|dt ≤ C.

We omit the details. The proof of Lemma 7.2 is now complete.

We are now ready to prove the propositions. We first mention that, under the condi-

tions forK(t), if we let r(t) = K(y/h+t) or r(t) = K2(y/h+t), then it follows from Propo-

sition 17.2.1 of Gasquet and Witomski (1998, page 157) that
∫
|r(x)|dx =

∫
|K(x)|dx <∞

and
∫

(1 + |λ|) |r̂(λ)|dλ ≤
∫

(1 + |λ|)|K̂(λ)|dλ <∞ uniformly for all y ∈ R.

Proof of Proposition 7.5. Let r(t) = r1(t) = K(y/h + t) and g(x) = g1(x) = x. It

follows from Lemma 7.2 that for any ε > 0, there exists a n0 such that, whenever n ≥ n0,∑
1≤k<l≤n

|Ik,l| ≤ C
∑

1≤k<l≤n

[
ε (l − k)−3/2 + h (l − k)−1

] (
k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k
)

≤ C (ε+ h

n∑
k=1

k−1)
n∑
k=1

(
k

∞∑
j=k/2

|φj|+ k−2 + h/
√
k
)

≤ C(ε+ h log n) (C +
√
nh),

since
∑∞

k=1 k
2|φk| <∞. This implies (7.5) since h log n→ 0. The proof of (7.4) is similar

and the details are omitted.
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Proofs of Proposition 7.3. Let ψ′n(t) = 1√
nh

∑[nt]
k=1K

2[(xk − x)/h]Eµ2
k. We first prove

sup
0≤t≤1

E|ψn(t)− ψ′n(t)|2 = o(1), (7.17)

sup
0≤t≤1

|Eψn(t)− ES2
n(t)| = o(1). (7.18)

In fact, by recalling xk = x∗0,k + x′′k [see (6.10)] where x∗0,k depends only on ε0, ε−1, ..., we

have, almost surely,

E
[
|ψn(t)− ψ′n(t)|2 | ε0, ε−1, ...

]
≤ 1

nh2
sup

y,1≤m≤n
E

[ m∑
k=1

K2[(y + x′′k)/h](µ
2
k − Eµ2

k)
]2

≤ 1

nh2
sup
y

[ n∑
k=1

Er2(x′′k/h)g
2(uk)

+ 2
∑

1≤k<l≤n

|Er(x′′k)r(x′′l )g(uk)g(ul)|
]
,

where r(t) = K2(y/h + t) and g(t) = t2 − Eµ2
k. Again it follows from Lemmas 7.1 and

7.2 that, for any ε > 0, there exists a n0 such that for all n ≥ n0, almost surely,

E
[
|ψn(t)− ψ′n(t)|2 | ε0, ε−1, ...

]
≤ C

1

nh

n∑
k=m0

k−1/2 + C(ε+ h log n)

≤ C[ε+ h log n+ 1/(
√
nh)].

The result (7.17) follows from nh2 →∞, h log n→ 0 and arbitrary of ε.

By noting

Eψn(t)− ES2
n(t) =

2

nh2

∑
1≤k<l≤[nt]

E
{
uk ulK[(xk − x)/h]K[(xl − x)/h]

}
,

in a similar argument as above we may prove (7.18). The details are omitted.

By noting that ψ′n(t) ⇒ L(t, 0) on D[0, 1] by using Proposition 7.1 and Theorem 2.1

of Wang and Phillips (2006), it follows from (7.17) and (7.18) that

Eψn(t) → EL(t, 0) and ES2
n(t) → EL(t, 0).

for each fixed 0 ≤ t ≤ 1. This yields that S2
n(t) and ψn(t) are uniformly integrable by

Theorem 5.4 of Billingsly (1968), since both S2
n(t) and ψn(t) are positive and integrable

random variables. The integrability of Sn(t) follows from that of S2
n(t). The proof of

Proposition 7.3 is now complete.

Proof of Proposition 7.2. The result (7.17) means that ψn(t) and ψ′n(t) have the same

finite dimensional limit distributions. Hence, the finite dimensional distributions of ψn(t)
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converge to those of L(t, 0), since ψ′n(t) ⇒ L(t, 0) on D[0, 1]. On the other hand, ψn(t) is

tight on D[0, 1] since ψn(t) is positive. This proves ψn(t) ⇒ L(t, 0) on D[0, 1].

Proof of Proposition 7.4. We will use Theorem 4 of Billingsly (1974) to establish the

tightness of Sn(t) on D[0, 1]. According to this theorem, we only need to show that

max
1≤k≤n

|ukK[(xk − x)/h]| = oP [(nh2)1/4], (7.19)

and there exists a sequence of αn(ε, δ) satisfying limδ→0 lim supn→∞ αn(ε, δ) = 0 for each

ε > 0 such that, for

0 ≤ t1 ≤ t2 ≤ ... ≤ tm ≤ t ≤ 1, t− tm ≤ δ,

we have

P
[
|Sn(t)− Sn(tm)| ≥ ε | Sn(t1), Sn(t2), ..., Sn(tm)

]
≤ αn(ε, δ), a.s. (7.20)

By noting max1≤k≤n |ukK[(xk−x)/h]| ≤
{ ∑n

j=1 u
4
jK

4[(xj−x)/h]
}1/4

, the result (7.19)

follows from Eu4
jK

4[(xj − x)/h] ≤ C h/
√
j by Lemma 7.1, with a simple calculation. As

for (7.20), it only needs to show that

sup
|t−s|≤δ

P
(
|

[nt]∑
k=[ns]+1

ukK[(xk − x)/h]| ≥ ε dn | ε[ns], ε[ns]−1, ...; η[ns], ..., η1

)
≤ αn(ε, δ).(7.21)

In terms of the independence, we may choose αn(ε, δ) as

αn(ε, δ) := ε−2 (nh2)−1/2 sup
y,0≤t≤δ

E
{ [nt]∑
k=1

ukK[(y + x′′k)/h]
}2
.

As in the proof of (7.18) with a minor modification, it is clear that, whenever n is large

enough,

αn(ε, δ) ≤ ε−2 (nh2)−1/2 sup
y

[nδ]∑
k=1

E
{
u2
kK

2[(y + x′′k)/h]
}

+ε−2 (nh2)−1/2 sup
y

[nδ]∑
k=1

|E
{
ukulK[(y + x′′k)/h]K[(y + x′′l )/h]

}
|

≤ ε−2 (nh2)−1/2

[nδ]∑
k=1

h/
√
k + C(ε+ h log n).

This yields limδ→0 lim supn→∞ αn(ε, δ) = 0 for each ε > 0. The proof of Proposition 7.4 is

complete.
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Figure 1: Graphs over the interval [0; 1] of fA (x) and Monte Carlo estimates

of E
³
f̂A (x)

´
for h = n¡1=2 (short dashes), h = n¡1=3 (dotted) and h = n¡1=5

(long dashes) with µ = 100; ¾ = 0:1 and n = 500:

Figure 2: Graphs over the interval [0; 1] of estimation bands for fA (x) (solid

line), the Monte Carlo estimate of E
³
f̂A (x)

´
for h = n¡1=2 (short dashes) and

95% estimation bands (dotted) with µ = 100; ¾ = 0:1 and n = 500:

1



Figure 3: Graphs of fB (x) and Monte Carlo estimates of E
³
f̂B (x)

´
for h =

n¡1=2 (short dashes), h = n¡1=3 (dotted) and h = n¡1=5 (long dashes) with
µ = 100; ¾ = 0:1 and n = 500:

Figure 4: Graphs of estimation bands for fB (x) (solid line), the Monte Carlo

estimate of E
³
f̂B (x)

´
for h = n¡1=3 (short dashes) and 95% estimation bands

(dotted) with µ = 100; ¾ = 0:1 and n = 500:

2
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