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Abstract
A local limit theorem is proved for sample covariances of nonstationary time se-

ries and integrable functions of such time series that involve a bandwidth sequence.
The resulting theory enables an asymptotic development of nonparametric regression
with integrated or fractionally integrated processes that includes the important prac-
tical case of spurious regressions. Some local regression diagnostics are suggested for
forensic analysis of such regresssions, including a local R2 and a local Durbin Watson
(DW ) ratio, and their asymptotic behavior is investigated. The most immediate �nd-
ings extend the earlier work on linear spurious regression (Phillips, 1986), showing
that the key behavioral characteristics of statistical signi�cance, low DW ratios and
moderate to high R2 continue to apply locally in nonparametric spurious regression.
Some further applications of the limit theory to models of nonlinear functional re-
lations and cointegrating regressions are given. The methods are also shown to be
applicable in partial linear semiparametric nonstationary regression.

Keywords: Brownian motion, Kernel method, Local R2; Local Durbin Watson ratio, Local
time, Integrated process, Nonparametric regression, Spurious regression
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1 Introduction

In a now-famous simulation experiment involving linear regressions of independent ran-
dom walks and integrated processes, Granger and Newbold (1974) showed some of the
key features of a spurious regression �spuriously signi�cant coe¢ cients, moderate to high
R2 and low Durbin Watson ratios �and argued that such phenomena were widespread in
applied economics. Of course, concerns in economics over the potential for spurious and
nonsense correlations in empirical work go back much further, at least to Hooker (1905),
Student (1914), Yule (1921), and Fisher (1907, 1930). The �rst systematic study of spu-
rious relations in time series was undertaken by Yule (1926) in an important contribution
that revealed some of the dangers of regressing variables with trends. But, following Yule�s
study, the subject fell into dormancy for some decades with no further attempts at formal
analysis.

The Granger and Newbold paper brought the subject to life again with some startling
simulation �ndings on stochastic trends that quickly attracted attention. The paper itself
was only 10 pages long and soon became accepted as a cautionary tale in econometrics,
warning against the uncritical use of level regressions for trending economic variables.
Looking back now, the simulation experiment reported in the paper seems tiny by mod-
ern standards, with only 100 replications and two small tabulations of results. In addition
to its simulations, the paper contained some recommendations for and warnings to ap-
plied researchers concerning the conduct of empirical research with time series data and
the use of formulations in di¤erences rather than levels for such regressions.1 These
recommendations were taken seriously in applied work and were incorporated into econo-
metrics teaching, at least until the mid 1980s, when the concept of cointegration and
the methodology of unit root/cointegration testing exploded conventional thinking in the
profession about time series regressions in levels and led to formal analytical procedures
for evaluating the presence of levels and di¤erences in time series regression equations.

Phillips (1986) initiated the asymptotic analysis of spurious regressions by utilizing
function space central limit theory, giving the �rst implementation of that limit theory to
regression problems in econometrics and providing a formal apparatus of analysis. The
approach revealed the limit behavior of the regression coe¢ cients, signi�cance tests and
regression diagnostics and con�rmed that the simulation �ndings in Granger and Newbold
(1974) accorded well with the new limit theory. A later paper, Phillips (1998), gave a
deeper explanation of the limit theory and simulation �ndings, proving that the �tted

1This recommendation on the use of di¤erences has a long history. To control for secular trend e¤ects,
Hooker (1905) originally suggested examining correlations of time di¤erences after having earlier suggested
the use of deviations from average trend (Hooker, 1901). Persons (1910) looked at various methods,
including regressions in di¤erences. �Student� (1914) made a more elaborate suggestion on the use of
di¤erences and higher order di¤erences, which corresponds more closely to the ideas in Box and Jenkins
(1970) and Box and Pierce (1970), which motivated Granger and Newbold�s (1974) recommedations. To
cite Yule (1921): � �Student�therefore introduces quite a new idea that is not found in any of the writers
previously cited. He desires to �nd the correlation between x and y when every component in each of the
variables is eliminated which can well be called a function of the time, and nothing is left but residuals
such that the residual of a given year is uncorrelated with those that precede it or follow it�. Interestingly,
Yule (1921) disagreed with this particular suggestion, while at the same time being acutely aware of the
spurious correlation problem.
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regressions estimated (and in the limit accurately reproduced) a �nite number of terms in
the formal mathematical series representation of the limit process to which the (suitably
normalized) dependent variable converged. This result validated a formal interpretation
of such �tted (spurious) regressions as coordinate regression systems which capture the
trending behavior of one variable in terms of the trends that appear in other variables.
The coordinate approach was investigated more systematically in Phillips (2005).

The present paper extends the asymptotic analysis of Phillips (1986) to a nonpara-
metric regression setting. To develop nonparametric regression asymptotics, a local limit
theorem is provided for sample cross moments of a nonstationary time series and inte-
grable functions of another such time series. The theory allows for the presence of kernel
functions and bandwidth parameter sequences. The approach taken in this local limit
theory draws on recent work of Wang and Phillips (2006) dealing with nonparametric
cointegrating regression, although the results here relate to spurious regression phenom-
ena and are therefore di¤erent in character and involve some technical modi�cation of the
methods.

The linear spurious regression asymptotics in Phillips (1986) have the simple interpre-
tation of an L2 regression involving the trajectories of the limiting stochastic processes
corresponding to the variables in the original regression, at least after some suitable stan-
dardization. A similar interpretation is shown here to apply in the case of nonparametric
regression. In the present case, the limiting form of the nonparametric regression at some
point x (in the space of the regressor) is simply a weighted average of the trajectory of
the limiting stochastic process corresponding to the dependent variable, where the aver-
age of the dependent variable is taken only over those time points for which the limiting
stochastic process of the regressor variable happens to be in the immediate locality of x:
Accordingly, the limit theory in the present paper integrally involves the concept of the
local time of a stochastic process, a quantity that directly measures the time spent by a
process around a particular value. As is shown here, nonparametric spurious regression
asymptotics correspond to a weighted L2 regression of the limit process of the dependent
variable with weights delivered by the local time of the regressor in the locality of x: In
e¤ect, the limit is just a continuous time nonparametric kernel regression.

Fig. 1 shows a cross plot of (yt; xt) coordinates corresponding to 500 observations of
two independently drawn Gaussian random walks for yt and xt originating at the origin
and having standard normal increments. The cloud of points in the �gure shows a pattern
where y appears to increase for some values of x and decrease for others. Patterns in the
data are typical in such cases when a �nite number of draws of independent random walks
are taken. The speci�c pattern depends, of course, on the actual time series evolution
of the processes. The particular pattern shown in Fig. 1 is much more sympathetic to
broken trend modeling and nonparametric �tting than it is to linear regression, as the
kernel regression �t shown in the �gure indicates. Again, this is fairly typical with random
walk data. Accordingly, the potential opportunities for spurious trend break regression
and nonparametric �tting with such unrelated time series are considerable. One object of
the present paper is to explore such phenomena and provide new analytic machinery for
studying such nonparametric regressions with nonstationary data.

3



Figure 1(a) Scatter plot and Nadaraya
Watson Nonparametric Regression

Figure 1(b) Two Independent Random
Walks

The rest of the paper is organized as follows. Section 2 provides some heuristic analysis
and formal discussion using array limits which avoid some of the main technical di¢ culties
of the limit theory while revealing the main results. Sections 3, 4, and 5 give the main
results on the limit theory, its application to nonparametric spurious regression and some
asymptotics for local regression diagnostics. The latter include some new theory on local
R2 and local Durbin Watson statistics. Section 6 concludes and outlines some further
uses of the limit theory and approach given here. Proofs and related technical results are
provided in the Appendix in Section 7.

2 Heuristics

To motivate and interpret some key results in the paper, this section provides heuristic
explanations of the limit theory. The simple derivations given here involve sequential limit
arguments that avoid many of the technical complications dealt with later that arise in
kernel asymptotics for nonstationary time series.

The object of interest in nonparametric regression typically involves two triangular ar-
rays (yk;n; xk;n); 1 � k � n; n � 1 constructed by standardizing some underlying time se-
ries. We assume that there are continuous limiting Gaussian processes (Gy(t); Gx (t)); 0 �
t � 1; for which we have the joint convergence

(y[nt];n; x[nt];n)) (Gy(t); Gx (t)) ; (1)

where [a] denotes the integer part of a and) denotes weak convergence. This framework
will include most nonstationary data cases of interest, including integrated and fractionally
integrated time series. The main functional of interest Sn in the present paper is de�ned
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by the sample covariance

Sn =
cn
n

nX
k=1

yt;ng(cn xk;n); (2)

where cn is a certain sequence of positive constants and g is a real function on R. The limit
behavior of Sn when both cn !1 and n=cn !1 is particularly interesting and important
for practical applications as it provides a setting where the sample function depends on
both a primary sequence (n) and a secondary sequence (cn) which both tend to in�nity.
This formulation is particularly convenient in situations like kernel regression where a
bandwidth parameter (hn) is involved and whose asymptotic behavior (hn ! 0) needs
to be accounted for in the analysis. The form of Sn in (2) accommodates a su¢ ciently
wide range of bandwidth choices to be relevant for non-parametric kernel estimation. In
most applications the bandwidth arises in a very simple manner and is embedded in the
secondary parameter sequence cn; for instance as in cn =

p
n=hn:

Accordingly, the present paper derives by direct calculation the limit distribution of
Sn when cn ! 1 and n=cn ! 1; showing that under very general conditions on the
function g and the processes yt;n and xt;n

Sn )
Z 1

�1
g (s) ds

Z 1

0
Gy (p) dLGx (p; 0) ; (3)

where LGx (p; s) is the local time (de�ned below in (9)) of the process Gx(t) at the spatial
point s: When the function g is a kernel density, the �energy�functional

R1
�1 g (s) ds = 1

and the limit (3) is then an average of the limit process Gy taken with respect to the local
time measure of Gx at the origin. This result relates to work by Jeganathan (2004) and
Wang and Phillips (2006), who investigated the asymptotic form of similar sample mean
functionals involving only a single array xk;n: Some other related works that involve limit
theory with local time limits can be found in Akonom (1993), Borodin and Ibragimov
(1995), Phillips and Park (1998) and Park and Phillips (1999, 2000). Another approach
to developing a limit theory for sample functions involving kernel densities has been
developed by Karlsen, Myklebust and Tjøstheim (2007) using null recurrent Markov chain
methods.

A typical example of Sn in the econometric applications that we consider later has the
form of a sample cross moment of one variable (yt) with a kernel function (K (�)) of another
variable (xt). This sample moment may be written in standardized form corresponding
to (2) as

Sn =
1

nhn

nX
t=1

ytK

�
xt � x
hn

�
=

1p
nhn

nX
t=1

ytp
n
K

0@pn
�
xtp
n
� xp

n

�
hn

1A
=
cn
n

nX
t=1

yt;nK

�
cn

�
xt;n �

xp
n

��
;

with cn =
p
n=hn; yt;n = yt=

p
n; xt;n = xt=

p
n; and where hn is the bandwidth parameter.

When
�
y[n�];n; x[n�];n

�
) (By (�) ; Bx (�)) ; so the limit processes are Brownian motions, and
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when
R1
�1K (s) ds = 1; the limit behavior of Sn for �xed x is given by

Sn )
Z 1

0
By (p) dLBx(p; 0): (4)

This limit is simply the average value of the trajectory of the limit Brownian motion
By (p) taken over time points p 2 [0; 1] where the limit process Bx sojourns around the
origin. Result (4) and its various extensions turn out to play an important role in kernel
regression asymptotics with nonstationary series.

The limit distribution of Sn in the situation where cn is �xed as n!1 is very di¤erent
from that when cn !1 and n=cn !1. For example, when cn = 1, it is well known that

1

n

nX
k=1

yk;ng(xk;n))
Z 1

0
Gy (t) g(Gx(t))dt; (5)

by virtue of weak convergence and continuous mapping under rather weak conditions
on the function g: Various results related to (5) are well known �see Park and Phillips
(1999), de Jong (2004), Pötscher (2004), de Jong and Wang (2005), and Berkes and
Horváth (2006)). However, when cn ! 1; not only is the limit result di¤erent, but the
rate of convergence is a¤ected, the limit theory is much harder to prove, and the �nal
result no longer has a form that is directly associated with a continuous map.

The following heuristic arguments help to reveal the nature of these di¤erences. Note
�rst that by virtue of the extended occupation times formula (see (11) below), limits of
the form given in (5) may also be written asZ 1

0
Gy (p) g (Gx (p)) dp =

Z 1

�1
g (a)

Z 1

0
Gy (p) dLGx (p; a) ; (6)

where LGx(p; a) is the local time at a of the limit process Gx over the time interval [0; p],
as discussed in Section 3 below. Since the process LGx(p; a) is continuous and increasing
in the argument p, the integral

R r
0 g (a) dLGx (p; a) is a conventional Lebesgue-Stieltjes

integral with respect to the local time measure dLGx(p; a). Next, rewrite the average Sn
so that it is indexed by twin sequences cm and n; de�ning

Sm;n =
cm
n

nX
k=1

yt;ng(cm xk;n); (7)

and noting that Sm;n = Sn when m = n: Thus, the limit of Sn is the diagonal limit of
the multidimensional sequence Sm;n. The limit may also be obtained in a simple manner
using sequential convergence methods. In particular, if we �rst hold cm �xed as n ! 1
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and then pass m!1; we have from (5) - (6)

Sm;n ) cm

Z 1

0
Gy(t)g(cmGx(t))dt as n!1;

= cm

Z 1

�1
g(cms)

Z 1

0
Gy (p) dLGx(p; s)ds

=

Z 1

�1
g(a)

Z 1

0
Gy (p) dLGx(p;

a

cm
)da := Sm;1:

)
Z 1

�1
g (a) da

Z 1

0
Gy (p) dLGx (p; 0) ; as m!1: (8)

It follows that (8) may be regarded as a certain limiting version of Sn in terms of the
sequential limits Sm;n ) Sm;1 ) S1;1: The goal is to turn this sequential argument
into a joint limit argument so that cn may play an active role as a sequence involving a
bandwidth parameter, thereby including functionals that arise in density estimation and
kernel regression.

Observe that the limit (8) involves the local time process LGx (p; 0) where the origin
is the relevant spatial point. An extended version of (8) involving di¤erent localities for
Gx arises for functionals of the type

Sm;n =
cm
n

nX
t=1

yt;ng (cm (xt;n � a)) ;

where the sequence xt;n is recentred about a: Correspondingly, we then have in the same
manner as (8)

Sm;n ) cm

Z 1

0
Gy (p) g (cm (Gx (p)� a)) dp = cm

Z 1

�1
g (cm (b� a))

Z 1

0
Gy (p) dLGx (p; b) db

=

Z 1

�1
g (s)

Z 1

0
Gy (p) dLGx

�
p;
s

cm
+ a

�
ds; using s = cm (b� a)

)
Z 1

�1
g (s) ds

Z 1

0
Gy (p) dLGx (p; a) ;

where the local time process LGx (p; a) is now evaluated at the spatial point a:
We next proceed to make these results rigorous in terms of direct limits as n ! 1;

corresponding to the diagonal sequence Sn = Sn;n.

3 Local Limit Theory

The local time fL�(t; s); t � 0; s 2 Rg of a measurable stochastic process f�(t); t � 0g is
de�ned as

L�(t; s) = lim
"!0

(1=2")

Z t

0
1 fj� (r)� sj < "g dr: (9)
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The two dimensional process L�(t; s) is a spatial density that records the relative time
that the process �(t) sojourns at the spatial point s over the time interval [0; t]: For any
locally integrable function T (x), the equationZ t

0
T [�(r)]dr =

Z 1

�1
T (s)L�(t; s)ds (10)

holds with probability one and is known as the occupation times formula. An extended
version of the occupation times formula (10) which is useful in our development in this
paper takes the form Z t

0
T [r; �(r)]dr =

Z 1

�1
ds

Z t

0
T (r; s)dL�(r; s); (11)

(see Revuz and Yor, 1999, p. 232). For further discussion, existence theorems and proper-
ties of local time processes we refer to Geman and Horowitz (1980), Karatzas and Shreve
(1991), and Revuz and Yor (1999). Phillips (2001, 2005) and Park (2006) provide various
economic applications and empirical implementations of local time and associated hazard
functions.

As in Section 2, let xt;n; and yt;n for 0 � t � n; n � 1 (de�ne x0;n � 0 and y0;n � 0)
be random triangular arrays and let g(x) be a real measurable function on R. We make
the following assumptions and use the notation


n(�) = f(l; k) : � n � k � (1� �)n; k + � n � l � ng ;

where 0 < � < 1, following Wang and Phillips (2006).

Assumption 2.1. g(x) and g2(x) are Lebesgue integrable functions on R with energy
functional � �

R
g(x)dx 6= 0.

Assumption 2.2. There exist stochastic processes (Gx(t); Gy(t)) for which the weak
convergence

�
x[nt];n; y[nt];n

�
) (Gx(t); Gy(t)) holds with respect to the Skorohod topology

on D[0; 1]2. The process Gx (t) has continuous local time LG(t; s):

Assumption 2.2*. On a suitable probability space (
;F ; P ) there exists a stochas-
tic process G (t) for which sup0�t�1

��z[nt];n �G(t)�� = op(1) where zt;n = (xt;n; yt;n) and
G (t) = (Gx(t); Gy(t)) :

Assumption 2.3. For all 0 � k < l � n; n � 1, there exist a sequence of (re)standardizing
constants dl;k;n and a sequence of �-�elds Fk;n (de�ne F0;n = �f�;
g, the trivial �-�eld)
such that:

(i) for some m0 > 0 and C > 0, inf(l;k)2
n(�) dl;k;n � �m0=C as n!1;
(ii) xk;n are adapted to Fk;n and, conditional on yk;n and Fk;n, (xl;n�xk;n)=dl;k;n has

a density hxl;k;n(xjy) which is bounded by a constant for all x and y, 1 � k < l � n and
n � 1; and

sup
(l;k)2
n[�1=(2m0)]

sup
juj��

sup
y

��hxl;k;n(ujy)� hxl;k;n(0jy)�� = oP (1); (12)

when n!1 �rst and then � ! 0.
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(iii) yk;n=dk;0;n has a density h
y
k;0;n(y) which satis�es

���hyk;0;n(y)��� � h (y) for some h (y)
for which

R1
�1 y

2h (y) dy <1:

As discussed in Wang and Phillips (2006), Assumptions 2.1 and 2.2 are quite weak
and likely to be close to necessary conditions for this kind of problem. Assumption 2.2
involves a joint convergence condition on the process zt;n; whereas Wang and Phillips
(2006) place the convergence condition solely on xt;n because in the context of an explicit
(cointegrating) regression model the properties of the other variable follow directly from
the model.

As for Assumption 2.3, we may choose Fk;n = �(x1;n; :::; xk;n), the natural �ltration
for xt;n, and the numerical sequence dl;k;n is typically chosen as a standardizing sequence
so that, conditional on Fk;n, (xl;n�xk;n)=dl;k;n has a limit distribution as l�k !1. For
instance, if xi;n =

Pi
j=1 �j=

p
n, where �j are iid random variables with E�1 = 0 and E�21 =

1, we may choose Fk;n = �(�1; :::; �k) and dl;k;n =
p
l � k=

p
n. Assumption 2.3 (ii) requires

the existence and boundedness of the conditional densities hxl;k;n(xjy). This assumption is
very convenient in technical arguments. As shown in Corollary 2.2 of Wang and Phillips
(2006), Assumption 2.3 (ii) holds when xk;n is a standardized partial sum of a linear
process under weak summability conditions on the coe¢ cients and with iid innovations
whose characteristic function is integrable, without conditioning on a secondary sequence
yk;n: Obviously, Assumption 2.3 (ii) holds in precisely the same framework when yk;n is
an independent process and extension of those conditions to a multivariate linear process
seems relatively innocuous. On the other hand, assuming the existence of the conditional
densities of (xl;n�xk;n)=dl;k;n rules out cases where the constituent variables are discrete.
While it seems likely that the results may hold under a weakening of the assumption to
allow for such cases, this has not been proved. Assumption 2.3 (iii) is a simple dominating
second moment condition on the density of yk;n=dk;0;n. Again, this seems like a reasonably
mild requirement and may be strengthened further when higher order sample moments
are involved, such as in

Sn =
cn
n

nX
k=1

ypt;ng(cn xk;n);

for some integer p > 2.
Assumption 2.3 presumes that the same (re)standardizing sequence dl;k;n applies for

both xt;n and yt;n; which helps to simplify the conditions and the proof of our main
results. This assumption will be su¢ cient for our purpose in the present paper and
will often be satis�ed because the observed time series xt and yt have similar generating
mechanisms. However, we can also allow for individual speci�c (re)standardizing constants
(say, dxl;k;n; d

y
l;k;n): With some modi�cation of the statement and proof of the result and

under some further conditions on (dxl;k;n; d
y
l;k;n), the limit theory given below in Theorem

1 can be shown to continue to hold. But a full extension along these lines is not needed
for the present paper.

The main result needed to develop a regression theory in the present case involves
sample covariances between yt;n and integrable functions of the scaled versions cnxt;n of
xt;n: The latter are designed to include kernel functions whose bandwidth sequences are
embodied in the sequence cn.
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Theorem 1 Suppose Assumptions 2.1-2.3 hold. Then, for any cn ! 1, cn=n ! 0 and
r 2 [0; 1],

cn
n

[nr]X
t=1

yt;ng (cn xt;n)) �

Z r

0
Gy (p) dLGx(p; 0): (13)

If Assumption 2.2 is replaced by Assumption 2.2*, then, for any cn !1 and cn=n! 0,

sup
0�r�1

������cnn
[nr]X
t=1

yt;ng (cn xt;n)� �
Z r

0
Gy (p) dLGx(p; 0)

������!P 0; (14)

under the same probability space de�ned as in Assumption 2.2*.

Remarks

(a) For a 6= 0; we have the following useful extension of (13)

cn
n

[nr]X
t=1

yt;ng (cn (xt;n � a))!D �

Z r

0
Gy (p) dLGx(p; a); (15)

which gives the limit behavior of the sample moment when xt;n is in the neighbour-
hood of some point a: The limit (15) is expressed in terms of an integral of Gy with
respect to the local time measure of the limit process Gx around a. The proof of
(15) follows in precisely the same way as (13).

(b) Higher order sample moments have similar limit behavior under suitable integrability
conditions in place of Assumption 2.3(iii). For instance

cn
n

[nr]X
t=1

y2t;ng (cn (xt;n � a))) �

Z r

0
G2y (p) dLGx(p; a); (16)

and, more generally, for any locally integrable function f

cn
n

[nr]X
t=1

f (yt;n) g (cn (xt;n � a))) �

Z r

0
f (Gy (p)) dLGx(p; a): (17)

Then, for the constant function f (yt;n) = 1; we have the scaled local time result

cn
n

[nr]X
t=1

g (cn (xt;n � a))! �

Z r

0
1dLGx(p; a) = �LGx(r; a); (18)

given earlier in Wang and Phillips (2006). Again, these results may be established
in the same way as (13).
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(c) Theorem 1 has quite extensive applications in econometrics that include spurious
nonparametric regressions, nonparametric cointegrated regression models, and para-
metric cointegrated regressions. The next section provides a detailed study of the
spurious nonparametric regression application and later work will consider other
applications. Also included in the range of applications are cases where a functional
relationship may exist between the limit processes, such as Gy(t) = f (Gx(t)) : We
may then write the limit in (13) as

�

Z r

0
Gy (p) dLGx(p; 0) = �

Z r

0
f (Gx(p)) dLGx(p; 0) = �f (0)LGx(r; 0):

When xt;n � a as in (15), we end up with the corresponding limit

�

Z r

0
Gy (p) dLGx(p; a) = �

Z r

0
f (Gx(p)) dLGx(p; a) = �f (a)LGx(r; a):

Of course, when xt and yt are cointegrated I (1) or I (d) processes, we have a simple
linear relationship between the Gaussian limit processes of the form Gy(t) = �Gx(t)
for some �xed parameter �: In that case, the limit result (15) gives

�

Z r

0
Gy (p) dLGx(p; a) = ��aLGx(r; a): (19)

Combining (19) with (18), we get the following limit of the nonparametric (cointe-
grating) regression function

��aLGx(r; a)

�LGx(r; a)
= �a;

which reproduces the linear cointegrating relationship in neighbourhoods where
Gx (t) � a: That case was studied in Wang and Phillips (2006), who also provided
the limit distribution of the kernel estimate.

4 Nonparametric Spurious Regression

Suppose (yt; xt) satisfy Assumptions 2.2-2.3 and the nonparametric regression

yt = ĝ (xt) + v̂t (20)

is performed, where ĝ is the Nadaraya-Watson kernel estimate

ĝ (x) =

Pn
t=1 ytK

�
xt�x
hn

�
Pn
t=1K

�
xt�x
hn

� = argmin
g

nX
t=1

(yt � g)2Khn (xt � x) ;

for some kernel function K; with Kh(s) = 1
hK(

s
h) and with bandwidth parameter h = hn:

We assume that K satis�es the following condition and hn ! 0 as n!1:

11



Assumption 3.1. The kernel K is a non-negative real function for which
R1
�1K(s)ds =

1;
R1
�1K(s)

2ds <1; and supsK(s) <1.

Let dn be a standardizing sequence for which dn !1 as n!1 and yt;n = d�1n yt and
xt;n = d

�1
n xt: For example, when both xt and yt are I (1) time series we have dn =

p
n:

Set cn = dn=hn and assume that cn=n! 0 which requires that nhn=dn !1; so that hn
should not go to zero too fast. Also, cn !1 requires that hn be of lower order than dn:

Theorem 2 Suppose Assumptions 2.2, 2.3 and 3.1 hold. Let dn be a standardizing se-
quence for which dn !1 as n!1 and for which yt;n = d�1n yt and xt;n = d

�1
n xt satisfy

Assumption 2.2. Then, for any hn satisfying nhn=dn !1 and dn=hn !1,

d�1n ĝ (x))

8<:
R 1
0 Gy(p)dLGx (p;0)

LGx (1;0)
for �xed xR 1

0 Gy(p)dLGx (p;a)

LGx (1;a)
for x = dna; with a �xed

: (21)

Remarks

(d) The limit (21) is the local weighted average of Gy (p) taken over values of p 2 [0; 1]
where Gx (p) sojourns at a: The limit may be expressed as the mean local level from
a continuous time weighted regression, viz.,R 1

0 Gy (p) dLGx(p; a)

LGx(1; a)
= argmin

�

Z 1

0
fGy (p)� �g2 dLGx(p; a): (22)

Here, the locality is determined by the weight in the spatial measure dLGx(p; a)
which con�nes attention to the locality Gx � a: The latter simply serves as the
relevant timing device for the measurement of the average and may be interpreted
as a continuous time kernel function.

(e) Theorem 2 implies that ĝ (x) = Op (dn) ; so the local level regression coe¢ cient di-
verges at the rate dn: When yt and xt are I (1) ; this means that ĝ (x) = Op (

p
n) ;

which corresponds to the order of magnitude of the intercept divergence in a linear
spurious regression (Phillips, 1986). Thus, there is a correspondence in the limit
behavior between linear and nonparametric spurious regression. This is explained
by the fact that whatever regression line is �tted, a recurrent time series like yt visits
every point in the space an in�nite number of times, so that the order of magnitude
of the level (or intercept in a regression) is the same as that of y[n�]; viz. Op (

p
n) for

an I (1) series. Thus, the heuristic reasoning for divergent behavior in the regression
is the same in both cases. In e¤ect, when xt sojourns around some level x = dna for
some a (behavior that is mimicked by the limit process Gx (p) sojourning around
a), yt may be taking any value in the space (because xt and yt are not cointegrated)
and since y[n�] = Op (dn) the corresponding level of yt is Op (dn) also, thereby pro-
ducing a local regression level which has this order asymptotically. More explicitly,
suppose xt and yt are not cointegrated and satisfy yt = �xt+ut where ut;n = d�1n ut

12



satis�es
�
x[n�];n; u[n�];n

�
) (Gx (�) ; Gu (�)) for some nontrivial Gaussian limit process

Gu: Then, as n!1; Theorem 2 implies that

d�1n ĝ (dna)) �a+

R 1
0 Gu (p) dLGx(p; a)

LGx(1; a)
;

whereas in the cointegrated case d�1n ĝ (dna) !p �a because Gu (p) � 0; giving a
constant limit that reproduces the local form of the cointegrating relation.

(f) If, in place of (20), we run the linear spurious regression

yt = �̂+ �̂xt + v̂t;

then the corresponding intercept limit theory is

d�1n �̂)
Z 1

0
Gy � �

Z 1

0
Gy := �; (23)

where � =
R 1
0 GyGx=

R 1
0 G

2
x: The limit (23) is simply the intercept in a global con-

tinuous time regression of Gy on Gx over [0; 1] ; so that � and � satisfy

(�; �) = argmin
a;b

Z 1

0
fGy (p)� a� bGx (p)g2 dp: (24)

Thus, (22) gives a local level limit version of the global regression limit result (24).

(g) Theorem 2 does not require that hn ! 0: Instead, hn simply needs to be of lower
order than dn so that cn = dn=hn ! 1; and hn should not go to zero too fast so
that n=cn = nhn=dn !1; thereby satisfying the conditions of Theorem 1.

(h) Theorem 2 also covers the case where there is a functional relationship between the
limit processes Gy and Gx; as discussed in Remark (c). Suppose, for example,
that Gy (p) = f (Gx (p)) for some locally integrable function f: If the standardizing
sequence for yt is dy;n so that yt;n = d�1y;nyt; then as indicated earlier we have the
same limit behavior as in (21) and this becomes

d�1y;nĝ (x))
R 1
0 Gy (p) dLGx(p; a)

LGx(1; a)
=

R 1
0 f (Gx (p)) dLGx(p; a)

LGx(1; a)
= f (a) :

Thus, d�1y;nĝ (x) !p f (a) and the nonparametric regression function correctly re-
produces the functional relation between the limit processes at the spatial point
a: When yt is linearly cointegrated with xt and of the same (possibly fractional)
order, nonparametric regression at x = dna produces d�1n ĝ (x)!p �a = �GxjGx=a ;
thereby giving the local form of the cointegrating relationship when Gx = a; as
already noted in Remarks (c) and (e).

13



5 Testing and Diagnostics

We start by introducing the concept of local residuals from the nonparametric regression
(20). These are the residuals v̂t in (20) that occur around certain points such as those
where xt is in the vicinity of dna: Local residuals are useful in developing local versions
of signi�cance tests and residual diagnostics. The latter can be used to monitor the local
behavioral characteristics of a nonparametric regression. At present, there seems to be
no literature on local nonparametric regression diagnostics even for stationary regression
models.2 We therefore introduce two new diagnostic statistics here: a local R2 to measure
�t and a local Durbin Watson ratio to assess speci�cation. These correspond to the
diagnostics considered in Granger and Newbold (1974) and Phillips (1986).

Local residuals may be written as

v̂tjxt�dna = (yt � ĝ (xt))jxt�dna ;

where the a¢ x xt � dna signi�es that the residuals to be taken are those that arise
when xt is in the vicinity of dna: The localization may be accomplished in the practical
construction of statistics by the use of a kernel. More precisely, we de�ne a local residual
sum of squares as

s2(dna) =
1

n

nX
t=1

v̂2tKhn (xt � dna) ; (25)

where the kernel function now performs the localizing operation. The following lemma
gives some preliminary limit theory for s2(dna):

Lemma A Under the conditions of Theorem 2 as n!1

s2(dna)

dn
)
Z 1

0
C2a (r) dLGx (r; a) ; (26)

where Ca (r) = Gy (r)�
R 1
0 Gy (p) dLGx(p; a)=LGx(1; a):

Remarks

(i) The limit process Ca (r) in (26) is the limiting form of the standardized localized
residual process v̂[nr]=dn

��
x[nr]�dna

: As is apparent in its form, Ca (r) is simply a

demeaned version of the process Gy where the mean extracted is the average level
of Gy when Gx � a:

2For instance, standard econometric treatments (e.g., Horowitz (1998), Pagan and Ullah (1999),
Yatchew (2003), Li and Racine (2007) and Gao (2007)) make no mention of the idea of local diagnostic
testing. After this paper was written the author discovered that Huang and Chen (2007) de�ned a local
R2 in a similar way to (30).
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(j) The limit (26) may be rewritten as follows

Z 1

0
C2a (r) dLGx (r; a) =

Z 1

0
G2y (r) dLGx (r; a)�

nR 1
0 Gy (p) dLGx(p; a)

o2
LGx(1; a)

=

Z 1

0
G2y (r) dLGx (r; a)�

Z 1

0
Ĝ2y (r; a) dLGx (r; a) (27)

which provides a decomposition of the local residual variation (or sum of squares)R 1
0 C

2
a (r) dLGx (r; a) into the local total variation

R 1
0 G

2
y (r) dLGx (r; a) minus the

explained local variation

Z 1

0
Ĝ2y (r; a) dLGx (r; a) =

nR 1
0 Gy (p) dLGx(p; a)

o2
LGx(1; a)

; (28)

where Ĝy (r; a) =
R 1
0 Gy (p) dLGx(p; a)=LGx(1; a): The expression for the explained

local variation
R 1
0 Ĝ

2
y (r; a) dLGx (r; a) is based on the continuous time local regres-

sion (22). Thus, (27) is a continuous time localized version of the usual least squares
decomposition, where the localizing e¤ect is generated through the local time mea-
sure dLGx (r; a) : Observe that the �tted local mean Ĝy (r; a) is constant in r and
depends only on the spatial point a: In e¤ect, Ĝy (r; a) is the predicted level of Gy (r)
delivered from the continuous time regression (22) when Gx � a and this �mean�
level does not depend on r:

To compute a �standard error�for ĝ (x) at x =
p
na; we assume empirical usage of the

standard asymptotic variance formula in a nonparametric regression (based on stationarity
assumptions). This has the usual form (e.g., Härdle and Linton, 1994)

s2ĝ(x) =
s2(x)�K2Pn

t=1K
�
xt�x
hn

� ; �K2 =

Z 1

�1
K (s)2 ds: (29)

In order to assess local �signi�cance� we use in (29) the local residual variance esti-
mate s2(x) = n�1

Pn
t=1 v̂

2
tKh (xt � x) in place of the sample residual second moment

n�1
Pn
t=1 v̂

2
t : Then, as in conventional linear regression, we assess local statistical sig-

ni�cance in terms of the t- ratio tĝ(x) = ĝ (x) =sĝ(x):
Local regression diagnostics for (20) may be developed in a similar way. Primarily, we

shall consider local R2 and local Durbin Watson (DW ) ratio statistics, corresponding to
the analysis of global versions of these diagnostics in linear spurious regression in Phillips
(1986). Local versions of R2 and DW may be de�ned as follows:

R2n (dna) = 1�
Pn
t=1 (yt � ĝ (xt))

2Khn (xt � dna)Pn
t=1 y

2
tKhn (xt � dna)

; (30)

DWn (dna) =

Pn
t=1 (�v̂t)

2Khn (xt � dna)Pn
t=1 v̂

2
tKhn (xt � dna)

: (31)
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R2n (dna) measures the goodness of �t of the nonparametric regression locally around
x � dna: The statistic DWn (dna) is a local variance ratio measuring the extent of local
serial correlation in the residuals measured around x � dna: The limit theory for these
local diagnostic statistics and the local nonparametric regression t- test is given in the
next result.

Theorem 3 Under the conditions of Theorem 2, as n!1;

1p
nhn

tĝ(dna) )
R 1
0 Gy (p) dLGx(p; a)

fLGx(1; a)g
1=2
nR 1

0 C
2
a (r) dLGx (r; a)�K2

o1=2 (32)

R2n (dna))

�R 1
0 Gy (p) dLGx(p; a)

�2
LGx(1; a)

R 1
0 Gy (p)

2 dLGx(p; a)
; (33)

DWn (dna)!p 0: (34)

Remarks

(k) Evidently from (32) the t- ratio diverges, so the nonparametric regression coe¢ cient
ĝ (dna) will inevitably be deemed signi�cant as n!1; just as in the linear regres-
sion case. The divergence rate is

p
nhn; which (at least when hn ! 0) is slower than

the divergence rate (
p
n) of the regression t- statistic in linear spurious regression

(Phillips, 1986).

(l) The local coe¢ cient of determination R2n (dna) converges weakly to a positive random
variable distributed on the interval [0; 1] since�Z 1

0
Gy (p) dLGx(p; a)

�2
� LGx(1; a)

Z 1

0
Gy (p)

2 dLGx(p; a);

by Cauchy-Schwarz. Using (27) and (28), the limit of R2n (dna) can also be written
in the simple format R 1

0 Ĝy (p)
2 dLGx(p; a)R 1

0 Gy (p)
2 dLGx(p; a)

of the ratio of the explained local variation
R 1
0 Ĝy (p)

2 dLGx(p; a) to the total local
variation

R 1
0 Gy (p)

2 dLGx(p; a): This limiting ratio is the local R
2 associated with

the continuous time weighted regression (22). By comparison, in a linear spurious
regression of yt on xt the limiting form of the R2 statistic is

R2n )

�R 1
0 GyGx

�2�R 1
0 G

2
y

��R 1
0 G

2
x

� = R 10 Ĝ2yR 1
0 G

2
y

; (35)
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where Ĝy =
n�R 1

0 GyGx

�
=
�R 1
0 G

2
x

�o
Gx; and Gy = Gy �

R 1
0 Gy and Gy = Gx �R 1

0 Gx are demeaned versions of Gy and Gx: The limit (35) is the R
2 associated with

the continuous time global regression (24) and is the ratio of the global explained
variation to total variation in Gy:

(m) The DW statistic tends to zero, just as in linear spurious regression. In the present
case, this behavior indicates that the serial correlation in the residuals of (20) has a
dominating e¤ect in the vicinity of every spatial realization of xt: As in the case of
linear regression, we might expect this behavior to be helpful in diagnostic analysis
of the regression.

6 Conclusions and Extensions

The present paper extends the analysis of Phillips (1986) to nonparametric regression
�tting. The results show that all the usual characteristics of linear spurious regression
are manifest in the context of local level regression, including divergent signi�cance tests,
local goodness of �t, and Durbin Watson ratios converging to zero. There is therefore a
need for local diagnostic procedures to assist in validating nonparametric regressions of
this type. Some global tests for nonlinear cointegration have recently been developed for
parametric models. For example, Hong and Phillips (2006) developed a RESET test for
nonlinearity in cointegrating relations and Kasparis (2006) developed a CUSUM test for
functional form misspeci�cation in cointegration.

To complement procedures of this type, it would be useful to have tests for local
(possibly nonlinear) cointegration in a nonparametric context. The test possibilities are
vast, as in the case of linear cointegration, and deserve extensive study. For instance, local
versions of the residual based test statistics that are in common use for testing the null of
no cointegration may be constructed, one example being a suitably designed modi�cation
of the local residual variance statistic (25) whose asymptotic behavior will di¤er according
to the presence or absence of local cointegration. The detailed study of procedures such
as these for validating local cointegrating behavior is left for later research.

The local limit theory given in (13) has various applications beyond those presented
here. For example, in nonlinear regression models and partial linear regression models
where the data are nonstationary, the limit behavior of various sample cross moments
must be evaluated. These moments often involve certain integrable functions of nonsta-
tionary series and other nonstationary series, such as n�1

Pn
t=1 f (xt) yt where f satsi�es

Assumption 2.1 and both xt and yt are nonstationary. Suppose xt and yt are standard-
ized by dn !1; so that

�
x[n�];n; y[n�];n

�
= d�1n

�
x[n�]; y[n�]

�
satis�es Assumption 2.2. Then,

setting cn = dn in (13), theorem 1 yields the following limit behavior

n�1
[nr]X
t=1

f (xt) yt =
cn
n

[nr]X
t=1

f (cnxt;n) yt;n )
Z 1

�1
f (a) da

Z r

0
Gy (p) dLGx (p; 0) : (36)

Results of this type are particularly useful in considering parametric nonlinear regressions
and in developing a limit theory for partial linear cointegrating regressions.
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To illustrate, suppose xt and zt are I (1) processes and yt is generated by the partial
linear system

yt = �
0xt + g (zt) + vt; (37)

where g satis�es Assumption 2.1. Model (37) is a semiparametric cointegrated regression.
The behavior of yt is dominated by the linear component �0xt in (37) because g atten-
tuates the e¤ects of large zt: Accordingly, (37) may be regarded as a linear cointegrated
system which is systematically perturbed by the presence of g (zt) : The nonparametric
element g (zt) has an important in�uence on estimation and inference even though its con-
tribution is of a smaller order than the linear component. In particular, if we ignore the
nonparametric component in (37), the least squares estimate �̂ of � obtained by regress-
ing yt on xt is easily seen to have the following limit theory under conventional regularity
conditions (e.g. Phillips, 1988; Phillips and Solo, 1992) and using (36)

n
�
�̂ � �

�
)
�Z 1

0
BxB

0
x

��1�Z 1

�1
g (a) da

Z 1

0
Bx (p) dLBz (p; 0) +

Z 1

0
BxdBv +�xv

�
;

(38)
where Bv is the limit Brownian motion of the standardized partial sum n�1=2

P[n�]
t=1 vt

and �xv =
P1
h=0E (�xtvt+h) : Thus, the conventional second order bias of least squares

regression is augmented by an additional bias term arising from the presence of the non-
parametric element in (37) via the sample covariance n�1

Pn
t=1 g (zt)xt; whose limiting

form is delivered by (36) above. Standard cointegrating procedures like FM regression
su¤er from the same second order bias e¤ect. These di¢ culties are resolved by appropriate
nonparametric treatment of g in the cointegrated system (37). The details are currently
under investigation and will be reported in subsequent work.

7 Notation
:= de�nitional equality
1 f�g indicator function
op(1) tends to zero in probability
oa:s:(1) tends to zero almost surely

[�] integer part
�!a:s: almost sure convergence
�!p convergence in probability
=);!D weak convergence
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8 Appendix: Technical Results and Proofs

We start with the following result.

Lemma B Let

L(r)n;� (x) =
cn
n

[nr]X
t=1

yt;n

Z 1

�1
g
�
cn (xt;n + x+ z�)

�
�(z)dz;

��(x) =
1

�
p
2�
exp

�
� x2

2�2
	
;

and �(z) = �1(z): Then, for each � > 0

L(r)n;� (x)�
�Z 1

�1
g (s) ds

�
1

n

[nr]X
t=1

yt;n�� (xt;n + x) = op (1) (39)

uniformly in r 2 [0; 1] and x as n!1 and cn !1:

Proof of Lemma B. The proof follows Lemma 7 of Jeganathan (2004). We can set � = 1
and consider

L
(r)
n;1 (x) =

cn
n

[nr]X
t=1

yt;n

Z 1

�1
g (cn (xt;n + x+ z))� (z) dz

=
cn
n

[nr]X
t=1

yt;n

Z 1

�1
g (cns)� (s� xt;n � x) ds:

De�ne Gn (x) =
R x
�1 cng (cnu) du =

R xcn
�1 g (s) ds so that dGn (x) = cng (cnx) dx: Further,

de�ne G (x) =
R1
�1 g (s) ds for x � 0 and G (x) = 0 for x < 0: Then, Gn (x) ! G (x) at

all continuity points of G as n!1; and G (b)�G (a) = 0 if 0 62 (a; b]:
Note that

L
(r)
n;1 (x) =

1

n

[nr]X
t=1

yt;n

Z 1

�1
� (s� xt;n � x) dGn (s) :

Hence for any v > 0 we have

L
(r)
n;1 (x)�

1

n

[nr]X
t=1

yt;n

Z
jsj�v

� (s� xt;n � x) dGn (s) =
1

n

[nr]X
t=1

yt;n

Z
jsj>v

� (s� xt;n � x) dGn (s) :
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Now

sup
r2[0;1]

������ 1n
[nr]X
t=1

yt;n

Z
jsj>v

� (s� xt;n � x) dGn (s)

������
� 1

n

nX
t=1

jyt;nj
�����
Z
jsj>v

� (s� xt;n � x) dGn (s)
�����

� 1

n

nX
t=1

jyt;nj
Z
jsj>v

� (s� xt;n � x) cn jg (cns)j ds

=
1

n

nX
t=1

jyt;nj
Z
juj>cnv

�

�
u

cn
� xt;n � x

�
jg (u)j du

� 1

n

nX
t=1

jyt;nj
Z
juj>cnv

jg (u)j du = op (1) ;

because cn !1 and � is bounded. Thus

L
(r)
n;1 (x)�

1

n

[nr]X
t=1

yt;n

Z
jsj�v

� (s� xt;n � x) dGn (s) = op (1)

uniformly in r 2 [0; 1] :Next, by partitioning the interval [�v; v] with a grid fsm;i : i = �m; :::;mg
such that supi jsm;i � sm;i�1j � 2v

m ! 0 as m!1; and

sm;�m = �v < sm;�m+1 < :::: < sm;m�1 < sm;m = v;

we have������ 1n
[nr]X
t=1

yt;n

Z
jsj�v

� (s� xt;n � x) dGn (s)�
mX

i=�m

8<: 1n
[nr]X
t=1

yt;n� (sm;i � xt;n � x)
Z sm;i+1

sm;i

dGn (s)

9=;
������

� C v
m

1

n

[nr]X
t=1

jyt;nj
�����
Z
jsj�v

dGn (s)

����� :
Here and below C is a constant whose value may change in each usage. Also,������

mX
i=�m

8<: 1n
[nr]X
t=1

yt;n� (sm;i � xt;n � x)
Z sm;i+1

sm;i

dGn (s)

9=;
�

mX
i=�m

8<: 1n
[nr]X
t=1

yt;n� (sm;i � xt;n � x)
Z sm;i+1

sm;i

dG (s)

9=;
������

� C
mX

i=�m

1

n

[nr]X
t=1

jyt;nj
�����
Z sm;i+1

sm;i

d (Gn (s)�G (s))
����� :
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Observe that
R sm;i+1
sm;i

dG (s) = 0 for all 0 < sm;i < sm;i+1 and sm;i < sm;i+1 < 0: Hence,
as m!1; we have

1

n

[nr]X
t=1

yt;n

mX
i=�m

(
� (sm;i � xt;n � x)

Z sm;i+1

sm;i

dG (s)

)
=

�Z 1

�1
g (s) ds

�
1

n

[nr]X
t=1

yt;n� (xt;n + x)+op (1) ;

uniformly in r 2 [0; 1] : It follows that

sup
r;x

������L(r)n;1 (x)�
�Z 1

�1
g (s) ds

�
1

n

[nr]X
t=1

yt;n� (xt;n + x)

������
� C 1

n

nX
t=1

jyt;njQ (v;m; n) ;

where

Q (v;m; n) =

Z
juj>cnv

jg (u)j du+ v

m

�����
Z
jsj�v

dGn (s)

�����+
mX

i=�m

�����
Z ym;i+1

ym;i

d (Gn (s)�G (s))
����� :

Evidently,
lim
v!1

lim
m!1

lim
n!1

Q (v;m; n) = 0;

thereby giving the stated result.

Proof of Theorem 1. De�ne

L(r)n =
cn
n

[nr]X
k=1

yk;ng (cn xk;n) ; L(r)n;� =
cn
n

[nr]X
k=1

yk;n

Z 1

�1
g [cn (xk;n + z�)]�(z)dz; (40)

where �(x) = �1(x). L
(r)
n;� may be regarded as a locally smoothed version of L

(r)
n using the

normal density �(x): This version is useful because it leads to a further approximation
which is amenable to the use of a continuous mapping.

It follows from Lemma B that, for any � > 0,

L(r)n;� �
�

n

[nr]X
k=1

yk;n��(xk;n) = op(1); (41)

uniformly in r 2 [0; 1]. Hence, Theorem 1 will follow if we prove that

lim
�!0

lim
n!1

sup
0�r�1

EjL(r)n � L(r)n;�j = 0: (42)

Indeed, it follows from the continuous mapping theorem that, for 8� > 0,

1

n

[nr]X
k=1

yk;n��(xk;n) =

Z r

0
y[np];n��(x[np];n)dp�

1

n
y0;n��(0) +

1

n
y[nr];n��(xn;[nr])

!D

Z r

0
Gy (p)��(Gx(p))dp: (43)
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Next, using the extended occupation times formula (11) and the fact that the local time
process LGx(t; s) is a:s: continuous, we �nd thatZ r

0
Gy (p)��(Gx(p))dp =

Z 1

�1
ds

Z r

0
Gy (p)��(s)dLGx(p; s)

=

Z 1

�1
ds

Z r

0
Gy (p)

1

"
�(
s

"
)dLGx(p; s)

=

Z 1

�1
da

Z r

0
Gy (p)�(a)dLGx(p; "a)

=

Z 1

�1
�(a)da

Z r

0
Gy (p) dLGx(p; 0) + oa:s:(1)

=

Z r

0
Gy (p) dLGx(p; 0) + oa:s:(1); (44)

as �! 0. Combining (44) and (41) we have

L(r)n;� !D �

Z r

0
Gy (p) dLGx(p; 0);

as n!1 and �! 0:
Thus, it remains to show (42). To do so, we use a similar argument to that of the

proof of Theorem 2.1 of Wang and Phillips (2006).De�ne

X"
k;n(z) = fg[cnxk;n]� g[cn(xk;n + z�)]g ;
Y "k;n(z) = yk;nX

"
k;n(z):

By de�nition (40) and since
R1
�1 �(x)dx = 1 we have

L(r)n � L(r)n;� =
Z 1

�1

cn
n

[nr]X
k=1

yk;nX
"
k;n (z)�(z)dz =

Z 1

�1

cn
n

[nr]X
k=1

Y "k;n (z)�(z)dz;

and we may proceed as in Wang and Phillips (2006) who prove the result without the
variable yk;n, i.e. with Y "k;n (z) replaced by X

"
k;n (z). We have

sup
0�r�1

EjL(r)n � L(r)n;�j �
Z 1

�1

cn
n
sup
0�r�1

E

������
[nr]X
k=1

Y "k;n (z)

������ �(z)dz: (45)

Recall that xk;n=dk;0;n has a conditional density hxk;0;n(xjy) and yk;n=dk;0;n has a density
hyk;0;n(y); both of which are bounded by a constant for all x and y, 1 � k � n and n � 1.
It follows that, for all z 2 R and 1 � k � n, and a generic constant C;

cnE
��Y "k;n(z)�� = cn Z 1

�1

Z 1

�1
jg (cn dk;0;n x)� g [cn (dk;0;n x+ z�)]jhxk;0;n(xjy)dx jdk;0;nyjh

y
k;0;n(y)dy

� C
Z 1

�1
jg (u)� g (u+ cnz�)j du

Z 1

�1
jyjhyk;0;n(y)dy

� 2C
Z 1

�1
jg (u)j du

Z 1

�1
jyjh(y)dy <1: (46)
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since
���hyk;0;n(y)��� � h (y) ; R1�1 jyjh(y)dy <1; and R1�1 jg (u)j du <1: Thus,

Z 1

�1

cn
n
sup
0�r�1

E

������
[nr]X
k=1

Y �k;n (z)

������ �(z)dz
�
Z 1

�1

cn
n
sup
0�r�1

[nr]X
k=1

E
��Y �k;n(z)�� �(z)dz

=

Z 1

�1

cn
n

nX
k=1

E
��Y �k;n(z)�� �(z)dz

� 2C
Z 1

�1
jg (u)j du

Z 1

�1
jyjh(y)dy <1: (47)

This, together with (45) and the dominated convergence theorem, implies that to prove
(42) it su¢ ces to show for each �xed z that

�n(�) �
c2n
n2

sup
0�r�1

E

24 [nr]X
k=1

Y �k;n(z)

352 ! 0; (48)

when n ! 1 �rst and then � ! 0. With some modi�cations, the proof of (48) follows
the proof of theorem 2.1 in Wang and Phillips (2006). We rewrite �n as

�n(�) =
c2n
n2

sup
0�r�1

[nr]X
k=1

E
�
Y �k;n(z)

�2
+
2 c2n
n2

sup
0�r�1

[nr]X
k=1

[nr]X
l=k+1

E
�
Y �k;n(z)Y

�
l;n(z)

�
= �1n(�) + �2n(�); say.

First, since g2(x) is integrable, by a similar argument as that leading to (47), we have

�1n(�) =
c2n
n2

sup
0�r�1

[nr]X
k=1

E
�
Y �k;n(z)

�2
=
c2n
n2

nX
k=1

E
�
Y �k;n(z)

�2
=
c2n
n2

nX
k=1

Z 1

�1

Z 1

�1
jg (cn dk;0;n x)� g [cn (dk;0;n x+ z�)]j2 hxk;0;n(xjy)dx jdk;0;nyj

2 hyk;0;n(y)dy

� Acndk;0;n
n

Z 1

�1
jg (u)� g (u+ cnz�)j2 du

Z 1

�1
jyj2 hyk;0;n(y)dy

� 4Acndk;0;n
n

Z 1

�1
jg (u)j2 du

Z 1

�1
jyj2 h(y)dy ! 0

as n!1 because
R1
�1 jg (u)j

2 du
R1
�1 jyj

2 h(y)dy <1 and cndk;0;n
n � cn

n ! 0:
We next prove that lim�!0 limn!1 �2n(�) = 0, and then the required result (48)

follows. First, note that

E
�
Y "k;n(z)Y

"
l;n(z)

�
= E

�
Y "k;n(z)E

�
Y "l;n(z)jFk;n

	�
: (49)
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Let 
n = 
n(�1=(2m0)) where, as de�ned earlier,


n(�) = f(l; k) : � n � k � (1� �)n; k + � n � l � ng ; for 0 < � < 1:

Recall that xk;n are adapted to Fk;n and conditional on Fk;n and yl;n; (xl;n � xk;n)=dl;k;n
has a bounded density hl;k;n(xjy): We have

cn
��E(Y "l;n j Fk;n)�� = cn

����Z 1

�1

Z 1

�1
(g [cnxk;n + cndl;k;nx]� g [cn(xk;n + z�) + cndl;k;n x])

� hxl;k;n(xjy)dx jdl;k;nyjh
y
l;k;n(y)dy

=

����Z 1

�1

Z 1

�1
(g [cnxk;n + u]� g [cn(xk;n + z�) + u])h

x
l;k;n(

u

cndl;k;n
jy)du jyjhyl;k;n(y)dy

����
�
Z 1

�1

Z 1

�1
jg(v)j jV (v; cn xk;njy)j dv jyjhyl;k;n(y)dy

�

8>><>>:
C; if (l; k) 62 
n
C
nR1

�1

�R
jvj�pcn jg(v)jdv

�
jyjhyl;k;n(y)dy

+
R1
�1

�R
jvj�pcn jg(v)j jV (v; cn xk;njy)jdv

�
jyjhyl;k;n(y)dy

o
;

if (l; k) 2 
n,

(50)

where

V (v; tjy) = hxl;k;n
�
v � t
cndl;k;n

jy
�
� hxl;k;n

�
v � t� cn z �
cndl;k;n

jy
�
:

Furthermore, as in the proof of (46), whenever jvj � pcn, n is large enough and (l; k) 2 
n,

E
���Y "k;n (z)�� jV (v; cn xk;njy)j�
=

Z 1

�1

Z 1

�1
jg [cn (dk;0;n x+ z�)]� g (cn dk;0;n x)j jV (v; cn dk;0;nx)j

� hxk;0;n(xjy)dx jdk;0;nyjh
y
k;0;n(y)dy

� C

cn

Z 1

�1

Z 1

�1
jg(x+ cnz�)� g(x)j jV (v; xjy)j dx jyjhyk;0;n(y)dy

� C

cn

Z 1

�1

Z 1

�1
jg(x)j fjV (v; xjy)j+ jV (v; x� cnz�jy)jg dx jyjhyk;0;n(y)dy

� C

cn

 Z
jxj�pcn

jg(x)jdx+ sup
juj�Cz�1=2

jhxl;k;n(ujy)� hxl;k;n(0jy)j
!
; (51)

where we have used the facts that inf(l;k)2
n dl;k;n � �1=2=C, cn !1; V (v; tjy) is bounded,
and

R1
�1 jyjh

y
k;0;n(y)dy <1. In particular, the second term in parentheses in (51) occurs
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because jvj � pcn and jxj �
p
cn; so that����hxl;k;n�v � x+ cnz�cndl;k;n

jy
�
� hxl;k;n

�
v � x
cndl;k;n

jy
�����

=

�����hxl;k;n
 
cnz�+O

�p
cn
�

cndl;k;n
jy
!
� hxl;k;n

�
O

�
1

p
cndl;k;n

�
jy
������

=

����hxl;k;n� z�

dl;k;n

�
1 +O

�
1
p
cn

��
jy
�
� hxl;k;n (o (1) jy)

����
� sup
juj�Cz�1=2

jhxl;k;n(ujy)� hxl;k;n(0jy)j;

since inf(l;k)2
n dl;k;n � �1=2=C:
In view of these results, together with (46) and (49), we �nd that for (l; k) 62 
n,��E �Y �k;n(z)Y �l;n(z)��� = ��E �Y �k;n(z)E �Y �l;n(z)jFk;n	���

� C

cn
E jYk;n(z)j �

C

c2n
; (52)

and, if (l; k) 2 
n; using (50) and (51)��E �Y �k;n(z)Y �l;n(z)���
� A

cn
E jY �k;n(z)j

Z
jvj�pcn

jg(v)jdv

+
A

cn

Z 1

�1

Z
jvj�pcn

jg(v)jE
���Y �k;n(z)�� jV (v; cn xk;njy)j	 dv jyjhyl;k;n(y)dy

� A

c2n

Z
jvj�pcn

jg(v)jdv

+
A

c2n

Z
jvj�pcn

jg(v)jdv
Z 1

�1
sup

juj�Cz�1=2
jhxl;k;n(ujy)� hxl;k;n(0jy)j jyjh

y
l;k;n(y)dy (53)

It follows from (52)-(53) that, with � = �1=2=C below,

j�2n(�)j �
2 c2n
n2

0@ X
l>k;(l;k) 62
n

+
X

(l;k)2
n

1A jE fYk;n(z)Yl;n(z)gj

� C

n2

X
l�k��n

+
C

n2

X
(l;k)2
n

Z
jvj�pcn

jg(v)jdv

+
C

n2

X
(l;k)2
n

sup
juj�Cz�1=2

sup
y
jhxl;k;n(ujy)� hxl;k;n(0jy)j

� C�2 + C

Z
jvj�pcn

jg(v)jdv + C sup
juj�Cz�1=2

sup
y
jhxl;k;n(ujy)� hxl;k;n(0jy)j

! 0;
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as n!1 and �! 0, as required. The proof of Theorem 1 is now complete.

Proof of Theorem 2. Set cn = dn=hn: By virtue of Theorem 1 and Assumption 3.1, we
have

1

nhn

nX
t=1

ytK

�
xt � x
hn

�
=
dn
nhn

nX
t=1

yt
dn
K

0@dn
�
xt
dn
� x

dn

�
hn

1A
=
cn
n

nX
t=1

yt;nK

�
cn

�
xt;n �

x

dn

��

)
( R 1

0 Gy (p) dLGx(p; 0) for �xed xR 1
0 Gy (p) dLGx(p; a) for x = dna with a �xed

; (54)

and

dn
nhn

nX
t=1

K

�
xt � x
hn

�
=
dn
nhn

nX
t=1

K

0@dn
�
xt
dn
� x

dn

�
hn

1A
=
cn
n

nX
t=1

K

�
cn

�
xt;n �

x

dn

��
)
�
LGx(1; 0) for �xed x
LGx(1; a) for x = dna with a �xed

(55)

Joint convergence of (54) and (55) holds in view of Assumption 2.2. It follows that

d�1n ĝ (x) =

1
nhn

Pn
t=1 ytK

�
xt�x
hn

�
dn
nhn

Pn
t=1K

�
xt�x
hn

�
)

8<:
R 1
0 Gy(p)dLGx (p;0)

LGx (1;0)
for �xed xR 1

0 Gy(p)dLGx (p;a)

LGx (1;a)
for x = dna with a �xed

;

giving the stated result.

Proof of Lemma A. Write s2(dna) in standardized form as

s2(dna)

dn
=
dn
n

nX
t=1

�
v̂t
dn

�2
Kh (xt � dna) : (56)

The standardized residuals v̂t=dn have the following local form for xt � dna

v̂t
dn

����
xt�dna

=

�
yt
dn
� ĝ (xt)

dn

�����
xt�dna

;
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whose limit behavior is given by

v̂[nr]

dn

����
x[nr]�dna

) Gy (r)�
R 1
0 Gy (p) dLGx(p; a)

LGx(1; a)
:= Ca (r) ;

which follows from Assumption 2.2 and Theorem 2.
The limit of s2(dna)=dn is then a simple consequence of (a second moment version of)

Theorem 1, viz.,

dn
n

nX
t=1

�
v̂t
dn

�2
Kh (xt � dna) =

dn
nhn

nX
t=1

�
v̂t
dn

�2
K

�
dn (xt;n � a)

h

�

=
cn
n

nX
t=1

�
v̂t
dn

�2
K (cn (xt;n � a))

)
Z 1

0
C2a (r) dLGx (r; a) ; (57)

giving the stated result.

Proof of Theorem 3. From Lemma A, (18) and Assumption 2.2, we have

nhn
d2n
s2ĝ(dna) =

d�1n s
2
(dna)

�K2

dn
nhn

Pn
t=1K

�
xt�dna
hn

�
)
R 1
0 C

2
a (r) dLGx (r; a)

LGx (1; a)
: (58)

Then, using Assumption 2.2, (21), (26), and (29) we have

1p
nhn

tĝ(dna) =
1p
nhn

ĝ (dna)

sĝ(dna)
=

1p
nhn

dn�
d2n
nhn

�1=2 d�1n ĝ (dna)n
nhn
d2n
s2ĝ(dna)

o1=2
=

d�1n ĝ (dna)n
nhn
d2n
s2ĝ(dna)

o1=2
)

R 1
0 Gy(p)dLGx (p;a)

LGx (1;a)�R 1
0 C

2
a(r)dLGx (r;a)�K2
LGx (1;a)

�1=2
=

R 1
0 Gy (p) dLGx(p; a)n

LGx(1; a)
R 1
0 C

2
a (r) dLGx (r; a)�K2

o1=2 ;
giving the stated result.
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Next, using (16), Lemma A, (27), and Assumption 2.2, the local R2 coe¢ cient is

R2n (dna))
Pn
t=1 y

2
tKhn (xt � dna)�

Pn
t=1 v̂

2
tKhn (xt � dna)Pn

t=1 y
2
tKhn (xt � dna)

=

dn
n

Pn
t=1 y

2
t;nKhn (xt � dna)� dn

n

Pn
t=1

�
v̂t
dn

�2
Khn (xt � dna)

dn
n

Pn
t=1 y

2
t;nKhn (xt � dna)

)
R 1
0 Gy (p)

2 dLGx(p; a)�
R 1
0 C

2
a (r) dLGx (r; a)R 1

0 Gy (p)
2 dLGx(p; a)

=

R 1
0 Ĝ

2
y (r) dLGx (r; a)R 1

0 Gy (p)
2 dLGx(p; a)

=

�R 1
0 Gy (p) dLGx(p; a)

�2
LGx(1; a)

R 1
0 Gy (p)

2 dLGx(p; a)
;

as required.
Finally,

DWn

�p
na
�
=

Pn
t=1 (�v̂t)

2Khn (xt �
p
na)Pn

t=1 v̂
2
tKhn (xt �

p
na)

=

dn
n

Pn
t=1

�
�v̂t
dn

�2
Khn (xt �

p
na)

dn
n

Pn
t=1

�
v̂t
dn

�2
Khn (xt � dna)

; (59)

and we need to consider

dn
n

nX
t=1

�
�v̂t
dn

�2
Khn

�
xt �

p
na
�
:

Now
�v̂t
dn

=

�
yt
dn
� yt�1
dn

�
�
�
ĝ (xt)

dn
� ĝ (xt�1)

dn

�
and so, by Assumption 2.2 and Theorem 2,

�v̂[nr]
dn

!p 0 for all r 2 [0; 1] : Thus,

dn
n

nX
t=1

�
�v̂t
dn

�2
Khn

�
xt �

p
na
�
!p 0: (60)

Since dn
n

Pn
t=1

�
v̂t
dn

�2
Khn (xt � dna))

R 1
0 C

2
a (r) dLGx (r; a) > 0; it follows from (59) and

(60) that DWn (
p
na)!p 0; as required.
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