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Abstract

Nonlinearities in the drift and diffusion coefficients influence temporal de-
pendence in diffusion models. We study this link using three measures of tempo-
ral dependence: ρ−mixing, β−mixing and α−mixing. Stationary diffusions
that are ρ−mixing have mixing coefficients that decay exponentially to zero.
When they fail to be ρ−mixing, they are still β−mixing and α−mixing; but
coefficient decay is slower than exponential. For such processes we find trans-
formations of the Markov states that have finite variances but infinite spectral
densities at frequency zero. The resulting spectral densities behave like those of
stochastic processes with long memory. Finally we show how state-dependent,
Poisson sampling alters the temporal dependence.
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1 Introduction

This paper studies how nonlinearity induces temporal dependence in continuous-
time Markov models. Our interest in temporal dependence stems from a variety of
empirical evidence. Bond prices are known to be highly persistent and the conditional
volatilities of financial time series are often temporally clustered, e.g., see Ding et al.
(1993), Bollerslev and Mikkelsen (1996), and Andersen et al. (2001). Using linear time
series methods, many researchers have documented the presence of long memory in
empirical descriptions of data. Here we investigate when high degrees of temporal
dependence are present in first-order (and hence finite memory) Markov models. In
these models the dependence emerges because of the nonlinearities in the evolution
equation for the Markov state.

Since hedging and pricing theory in financial economics often assume securities
follow continuous-time nonlinear diffusions, we use these models to capture nonlin-
earities in time series. For pedagogical and analytical convenience, we primarily treat
the case of scalar diffusions. That is, we study the solution to a stochastic differential
equation:

dxt = µ(xt)dt+ σ(xt)dWt

where µ is the drift coefficient, σ2 is the diffusion coefficient and {Wt} is a one-
dimensional standard Brownian motion. While scalar diffusion processes are special,
they provide a very nice laboratory for our analysis. They allow for nonlinearities in
the time series to be captured fully by two functions: the drift and the diffusion coef-
ficients. By focusing on diffusion models, we are able to show clearly the mechanism
whereby nonlinearities in a time series get transmitted into temporal dependence.
After studying scalar diffusions in some detail, we explore the implications of subor-
dination whereby the scalar diffusion operates according to a stochastic time scale.
We conclude with some multivariate extensions.

We classify the temporal dependence of scalar diffusions using three alternative
notions of mixing: ρ−mixing, β−mixing and α−mixing. The ρ−mixing coefficients
measure the temporal decay of maximally autocorrelated (nonlinear) functions of the
Markov state. When ρ − mixing coefficients decay to zero, the spectral density of
any process with finite second moments formed by taking a nonlinear function of the
state has a continuous (and hence finite) spectral density at all frequencies, including
frequency zero. Thus ρ−mixing gives an operational way to classify the dependence
of a nonlinear Markov process. The process is weakly dependent if the ρ −mixing
coefficients decay to zero and strongly dependent if the ρ − mixing coefficients are
identically one. In our study of strongly dependent processes, we also use β−mixing
and α−mixing, which for our purposes are more refined concepts. The β −mixing
or α − mixing coefficients for the strongly dependent processes have a decay rate
that is slower than exponential and the implied spectral density functions for some of
these processes diverge at frequency zero. Since the β−mixing coefficients dominate
the corresponding α −mixing coefficients, implications for β −mixing have direct
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consequences for α−mixing.
For both ρ− and β− mixing we are lead to use:

µ

σ
−
σ′

2

to measure the pull from the boundaries. When this pull measure is negative at the
right boundary and positive at the left boundary, Hansen and Scheinkman (1995) have
shown how the non-zero boundary pull restrictions imply ρ−mixing with exponential
decay. We extend their result by showing that in the case of scalar diffusions, β −
mixing and ρ−mixing with exponential decay are almost equivalent concepts, and
both are implied by the non-zero boundary pull restrictions.

When the pull measure is zero at one of the boundaries, the Markov process is
strongly dependent: the ρ−mixing coefficients are identically one and the β−mixing
coefficients decay at a rate slower than exponential. We provide sufficient conditions
for β − mixing coefficients to decay at a polynomial rate. These conditions are
expressed as restrictions on how slow the pull measure goes to zero at one of the
boundaries. For some of these strongly dependent processes we may find functions
of the Markov state with spectral densities that are infinite at frequency zero. Thus
in spite of the first-order Markov property, best linear predictors are compelled to
weight heavily past observations. We display scalar diffusions whose spectral densities
near frequency zero diverge in the same manner as stationary linear models that are
fractionally integrated.1

We also provide some characterizations of ρ−mixing and α−mixing coefficients as
functions of the stationary density and diffusion coefficient. These characterizations
allow us to relate the behavior of the mixing coefficients to the thickness of the tails
of the stationary density and to the growth of the diffusion coefficient as a function
of the Markov state. This analysis includes multivariate diffusion processes.

Our findings complement the work of Granger and Teräsvirta (1999), who pro-
duce a (discrete-time) nonlinear Markov model with sample statistics that suggest
evidence for long memory. We construct Markov models for which population spec-
tral densities diverge because of the forms of the nonlinearities in the conditional
means and the conditional volatilities. Our construction differs from the nonlinear
example in Granger and Teräsvirta (1999), since theirs is still weakly dependent as
measured by the population attributes. It only looks like a long memory process from
the vantage point of sample statistics.2 In contrast, the first-order strictly stationary
Markov examples we construct are strongly dependent in the population.

1While we provide simple sufficient conditions for β −mixing decay rates in terms of the pull
measures, there are alternative sufficient conditions for a diffusion process to be ρ − mixing or
β − mixing; see, e.g., Genon-Catalot et al. (2000) for ρ − mixing and Veretennikov (1987) and
Veretennikov (1997) for β −mixing. The sufficient conditions and proof strategies in these papers
are different from ours. More importantly, they do not discuss the possibility of generating long
memory type behavior from strongly dependent strictly stationary Markov diffusions.

2Similarly, Diebold and Inoue (2001) present several nonlinear time series models, including
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We study how the temporal dependence of a diffusion is altered when it is sampled
in a state dependent manner. For convenience, we use the Poisson sampling scheme
advocated by Duffie and Glynn (2004) with a state dependent intensity parameter.
The state dependence and hence endogeneity in the sampling alters the temporal
dependence and the stationary distribution. We show how to adjust the measure of
pull to take account of this endogeneity.

The rest of the paper is organized as follows. Section 2 briefly reviews alternative
mixing concepts for a continuous-time stationary Markov process. Section 3 estab-
lishes that ρ −mixing is equivalent to exponential ergodicity for a scalar diffusion,
which in turn implies β−mixing with exponential decay. Section 4 provides sufficient
conditions for ρ−, β − mixing with exponential decay rates expressed as boundary
pull restrictions. Sections 5 and 6 study strongly dependent diffusion processes in the
sense that ρt ≡ 1 for all t ≥ 0, and β − mixing with sub-exponential decay rates.
While Section 5 provides sufficient conditions for β −mixing with sub-exponential
decay rates. Section 6 presents examples where some nonlinear transformations of
the strongly dependent Markov diffusions behave as long memory processes. Section
7 considers the diffusions subject to a Poisson sampling. Section 8 explores some
multivariate extensions obtained by featuring the behavior of the stationary density
and the diffusion matrix. Section 9 gives some concluding remarks.

2 Review: mixing conditions

Consider a stationary Markov process {xt} on an open connected set Ω ⊆ R
n. For

convenience, use a stationary distribution Q to initialize this process. Let Lp denote
the space of Borel measurable functions that have finite p−th moments in accordance
with the distribution Q:

Lp =

{
φ : Ω → R : ||φ||p =

(∫
|φ|pdQ

)1/p

<∞

}
, 1 ≤ p <∞,

L∞ =

{
φ : Ω → R : ||φ||∞ = ess sup

x
|φ(x)| = inf

c>0
(Q {x : |φ(x)| > c} = 0) <∞

}

In L2 we will use the familiar inner product: 〈φ, ψ〉 =
∫
φψdQ. Associated with

the Markov process {xt : t ≥ 0} is a semigroup of conditional expectation operators
{Tt : t ≥ 0} defined on L2:

Ttφ(x) = E[φ(xt)|x0 = x].

models with regime switching, structure changes, and permanent stochastic breaks, that look like
long memory models from the vantage point of the sample variances of partial sums. Hidalgo and
Robinson (1996) discuss the difficulty of distinguishing a structural break model from a long memory
model.
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For notational simplicity, we also let T be shorthand notation for T1. As in Hansen
and Scheinkman (1995), we suppose that the semigroup is (right) continuous at t = 0.
This allows us to construct a generator A on a domain D that is dense in L2:

Aφ(x) = lim
tց0

E[φ(xt)|x0 = x] − φ(x)

t

where the limit is defined using the mean-square norm on L2. Thus the generator is
the time zero derivative of the semigroup of conditional expectation operators.

2.1 Alternative Notions of Mixing

We consider three alternative notions of mixing. While these notions are defined
more generally, we consider their specialization for Markov processes and use operator
formulations as in Rosenblatt (1971). 3

Let Z = {φ ∈ L2 :
∫
φdQ = 0} denote the space of square-integrable functions

with mean zero. The first measure of temporal dependence is the ρ-mixing (or max-
imal correlation) coefficients:4

Definition 2.1. The ρ−mixing coefficients are given by:

ρt = sup
φ∈Z,||φ||2=1

||Ttφ||2

The process {xt} is ρ−mixing if limt→∞ ρt = 0; and is ρ−mixing with exponential
decay rate if ρt ≤ exp(−δt) for some δ > 0.

Banon (1977) (Lemma 3.11) and Bradley (1986) (Theorem 4.2) established that for
a stationary Markov process either the ρ−mixing coefficients decay exponentially or
they are identically equal to one.

The next measure of temporal dependence we consider is the α-mixing (or strong
mixing):5

Definition 2.2. The α−mixing coefficients are given by:

αt = sup
φ∈Z,||φ||∞=1

||Ttφ||1.

The process {xt} is α−mixing if limt→∞ αt = 0; and is α−mixing with exponential
decay rate if αt ≤ γ exp(−δt) for some δ > 0 and γ > 0. The process is α −mixing
with a sub-exponential decay rate if αt ≤ ξ(t) for some positive non-increasing rate
function ξ satisfying 1

t
log ξ(t) → 0, as t→ ∞.

3This subsection is largely based on Rosenblatt (1971) and Bradley (1986). They stated their
results for discrete-time stationary Markov processes on general state spaces. However, it is easy to
see that their results and proofs remain valid for continuous-time Markov processes.

4See the proof of Lemma VII.4.1 in Rosenblatt (1971).
5See the proof of Lemma VII.3.1 in Rosenblatt (1971)
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Since the L2 norm of a function φ is less than the L∞ norm but exceeds the L1

norm,
||Ttψ||2
||ψ||2

≥
||Ttψ||1
||ψ||∞

.

Therefore,
ρt ≥ αt.

In contrast to the ρ−mixing coefficients, the α−mixing coefficients need not converge
to zero at an exponential rate.

A third way way of measuring temporal dependence is given by the β −mixing
coefficients.6

Definition 2.3. (Davydov (1973)) The β −mixing coefficients are given by:

βt =

∫
sup

0≤φ≤1

∣∣∣∣Ttφ(x) −

∫
φdQ

∣∣∣∣ dQ.

The process {xt} is β − mixing if limt→∞ βt = 0; is β − mixing with exponential
decay rate if βt ≤ γ exp(−δt) for some δ > 0 and γ > 0. The process is β −mixing
with sub-exponential decay rate if limt→∞ ξtβt = 0 for some positive non-decreasing
rate function ξ satisfying ξt → ∞, t−1 ln ξt → 0 as t→ ∞.

A strictly stationary Markov process is β − mixing if and only if it is (Harris)
recurrent and aperiodic; see e.g., Bradley (1986) (Theorem 4.3). Since

sup
|φ|≤1

∫ ∣∣∣∣Ttφ(x) −

∫
φdQ

∣∣∣∣ dQ ≤

∫
sup
|φ|≤1

∣∣∣∣Ttφ(x) −

∫
φdQ

∣∣∣∣ dQ,

it follows that
βt ≥ αt.

In contrast to the ρ − mixing coefficients, the β − mixing coefficients, like the
α−mixing coefficients, need not converge to zero at an exponential rate. For general
stationary Markov processes, the two dependence measures are not comparable: ρ−
mixing does not imply β − mixing and β − mixing does not imply ρ − mixing;
see e.g., Bradley (1986). Nevertheless, all of the diffusion models we consider in this
paper are β −mixing, but some have ρt ≡ 1 for all t.

6β −mixing is also called absolutely regular. It was studied by Volkonskii and Rozanov (1959),
but they attribute the concept to Kolmogorov. The definition presented here is an alternative but
equivalent one for a stationary Markov process, see e.g. Davydov (1973).
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2.2 f- ergodicity

The notion β −mixing for a Markov process is closely related to the concept called
f − ergodicity (in particular 1 − ergodicity), see e.g., Meyn and Tweedie (1993).

Definition 2.4. Given a Borel measurable function f ≥ 1 , the Markov process {xt}
is f − ergodic if

lim
t→∞

sup
0≤φ≤f

∣∣∣∣Ttφ(x) −

∫
φdQ

∣∣∣∣ = 0 , for all x .

The Markov process {xt} is f − uniformly ergodic if for all t ≥ 0,

sup
0≤φ≤f

∣∣∣∣Ttφ(x) −

∫
φdQ

∣∣∣∣ ≤ cf(x) exp(−δt)

for positive constants c and δ.7

A stationary process that is f-uniformly ergodic will be β − mixing with expo-
nential decay rate provided that Ef (xt) < ∞. This connection is valuable because
Meyn and Tweedie (1993) and Down et al. (1995) provide convenient drift conditions
for f -uniform ergodicity. There exist other methods to establish 1 − ergodicity (i.e.
when f ≡ 1) with sub-exponential decay rates, for example see Lindvall (1983).

3 Temporal dependence of a scalar diffusion

A scalar diffusion is typically represented as the solution to a stochastic differential
equation:

dxt = µ(xt)dt+ σ(xt)dWt (1)

with left boundary ℓ and right boundary r, either of which can be infinite. The
function µ is the drift, σ2 is the diffusion coefficient and {Wt} is a standard Brownian
motion.

Assumption 3.1. µ and σ are continuous on (ℓ, r) with σ strictly positive on this
interval.

The generator of this scalar diffusion is known to be the differential operator:

Aφ = µφ′ +
1

2
σ2φ′′.

We will give a precise statement of the domain D of this generator subsequently.

7Our use of the term uniform ergodicity follows Down et al. (1995), but it differs from the use in
Meyn and Tweedie (1993). Meyn and Tweedie (1993) define f -uniform ergodicity by requiring the
left-hand side to converge to zero uniformly in x as t gets large.

7



The boundary behavior of a diffusion is characterized by the behavior of its scale
function S(.):

S(x) =

∫ x

a

s(y)dy , for some fixed a ∈ (ℓ, r) ,

s(y) = exp

[
−

∫ y

a

2µ(u)

σ2(u)
du

]
.

Since the scale function is increasing, it is well defined at both boundaries. A bound-
ary is attracting when the scale function is finite at that boundary. We focus exclu-
sively on the case in which neither boundary is attracting:

Assumption 3.2. S(ℓ) = −∞ and S(r) = +∞.

We provide sufficient conditions that, among other things, guarantee that there
exists a stationary distribution Q for the scalar diffusion. Since both boundaries are
not attracting, this distribution, when it exists, is known to be unique and have a
density q that is proportional to 1

sσ2 . Thus stationarity is satisfied when:

Assumption 3.3.
∫ r

ℓ
1

s(x)σ2(x)
dx <∞ .

From Has’minskii (1980) (Example 2, page 105), the process {xt} is Harris re-
current if Assumptions 3.1 and 3.2 hold. Hence {xt} is positive (Harris) recurrent
if Assumptions 3.1, 3.2 and 3.3 hold. The diffusion is also aperiodic under these
assumptions. Therefore,

Remark 3.4. Under Assumptions 3.1, 3.2 and 3.3, the process {xt} is β −mixing.

Hansen and Scheinkman (1995) provide sufficient conditions for a scalar diffusion
to be ρ−mixing with exponential decay, and Hansen et al. (1998) provide alternative
conditions for a diffusion to be strongly dependent in the sense that ρt ≡ 1 for all t.

3.1 Diffusion in natural scale

For convenience, we transform the diffusion {xt} monotonically to its natural scale
process {zt}:

zt = S(xt).

Clearly the state space for {zt} is the entire real line (−∞,+∞) under Assumption
3.2. Moreover, {zt} in the natural scale is known to be a local martingale (have zero
drift) with diffusion coefficient:

θ2(z) = s2[S−1(z)]σ2[S−1(z)].

An equivalent statement of Assumption 3.3 is:
∫ +∞

−∞

1

θ2(z)
dz <∞.
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For the natural scale diffusion, the generator is the second-order differential oper-
ator

Aφ =
1

2
θ2φ′′

defined on the domain:

D =



φ : φ′ is absolutely continuous and

∫
1

θ2(z)
φ2(z)dz <∞∫

(φ′(z))2 dz <∞∫
(θ(z)φ′′(z))2 dz <∞



 .

It follows from the definitions that the ρ−,β− and α− mixing coefficients for {zt} are
the same as those for {xt}.

3.2 Equivalence of f-uniform ergodicity to ρ -mixing

We already pointed out that f−uniform ergodicity implies β - mixing with expo-
nential decay. In this section, we explore further the near equivalence of f−uniform
ergodicity and ρ - mixing for a stationary scalar diffusion. To establish such a link,
we use a characterization of f − uniform ergodicity by Down et al. (1995) and a
characterization of ρ−mixing by Hansen et al. (1998).

Let C2 denote the space of functions mapping (ℓ, r) into R with continuous first
and second derivatives. We construct the local operator:

BV = µV ′ +
1

2
σ2V ′′,

which coincides with the generator A on the intersection of the domain D of the
generator and C2. A non-negative function V in C2 is norm-like if {x : V (x) ≤ v} is
compact in (ℓ, r) for any v > 0.

The following result is Theorem 5.2 of Down et al. (1995) (page 1681) specialized
to our scalar diffusion {xt}:

Theorem 3.5. Suppose Assumptions 3.1 and 3.2 hold, and that there exists a non-
negative function V ∈ C2 (not necessarily norm-like) such that:

BV ≤ −c(V + 1) + d1K (2)

for some positive constants c and d and some compact set K. Then: (i) {xt} has a
unique invariant probability measure Q; (ii)

∫
V (x)dQ(x) <∞; (iii) {xt} is (V +1)-

uniformly ergodic.

For a diffusion in natural scale, we consider solutions to the second-order differ-
ential equation:

Bφ = −cφ
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for φ ∈ C2, and some c > 0, which is in the form of an eigenvalue problem. Weidmann
(1987) (page 225) shows that there exists a nonnegative a such that for c ≥ a solutions
φ cross the zero axis only a finite number of times and for c < a they cross the axis an
infinite number of times. Hansen et al. (1998) show that the corresponding diffusion
is ρ−mixing if and only if a > 0. We exploit this characterization of ρ−mixing to
establish the following two theorems.

Theorem 3.6. Suppose that Assumptions 3.1, 3.2 and 3.3 hold, and {xt} is ρ −
mixing. Then there exists a nonnegative function V ∈ C2 such that

1

2
θ2V ′′ ≤ −c(V + 1) + d1K .

for some compact interval K and positive constants c and d. As a consequence, the
diffusion is (V + 1) uniformly ergodic and β - mixing with exponential decay.

Proof. See Appendix.

We next present a (partial) converse to this result.

Theorem 3.7. Suppose that Assumptions 3.1 and 3.2 hold, and there is a nonnegative
function V ∈ C2, a compact interval K and positive constants c and d such that

1

2
θ2V ′′ ≤ −c(V + 1) + d1K . (3)

Then: {xt} satisfies Assumption 3.3 and is ρ -mixing.

Proof. See Appendix.

4 Mixing with exponential decay rates

In this section we show that
µ

σ
−
σ′

2

provides a measure of the pull of the diffusion by establishing formally its implica-
tions for weak dependence (i.e., ρ−, β−mixing with exponential decay rates). We
also propose extensions of this measure that avoid differentiability of the diffusion
coefficient.

4.1 Natural Scale Case

We first study the temporal dependence of diffusions in the natural scale. As we will
see, for these diffusions there is a direct link between the thickness of the tails of
stationary density and the temporal dependence of the diffusion. We use this link to
provide convenient sufficient conditions for decay rates of the mixing coefficients.
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Theorem 4.1. Suppose Assumptions 3.1 and 3.2 are satisfied. If

lim inf
|z|→∞

θ(z)

|z|
> 0, (4)

then: (i) Assumptions 3.3 is satisfied; and (ii) {zt} is ρ - and β - mixing with expo-
nential decay.

Proof. We establish this result by applying Theorems 3.6 and 3.7. We consider the
following Lyapunov function:

V (z) =
|z|α

α
, |z| ≥ 1

for some 0 < α < 1, and we fill in the function V on (−1, 1) so that it is C2 and
nonnegative. The constructed function is norm-like, and to guarantee inequality (3),
we restrict θ2 to satisfy:

θ2

2
V ′′ ≤ −cV + d , c > 0 , (5)

for positive constants c and d. Inequality (5) will be satisfied if we can find positive
constants c and d such that

1

2
(α− 1)θ2(z)|z|α−2 ≤ −c

|z|α

α
+ d for |z| ≥ 1.

If necessary, we adjust the constant d so that (5) is satisfied over the entire real line.
Such constants exist given inequality (4). Clearly this condition is also sufficient for

∫
1

θ2(z)
dz <∞

which guarantees the existence of a stationary distribution (Assumption 3.3).

4.2 Diffusion with Nonzero Drift

If a diffusion {zt} in natural scale is stationary and β − mixing with exponential
decay rates, clearly so is the original process {xt} where xt = S−1(zt). Transforming
the limit in (4) of Theorem 4.1 back to the original scale, we obtain:

Corollary 4.2. Suppose that Assumptions 3.1 and 3.2 are satisfied. If

lim inf
xրr

sσ

S
> 0

lim sup
xցℓ

sσ

S
< 0,

then: {xt} satisfies Assumption 3.3, and is ρ - and β - mixing with exponential decay.
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Remark 4.3. Under Assumptions 3.1 and 3.2, if σ is differentiable, then the inequal-
ities in Corollary 4.2 are implied by:

lim sup
xրr

(
µ

σ
−
σ′

2

)
(x) < 0, (6)

lim inf
xցℓ

(
µ

σ
−
σ′

2

)
(x) > 0

We may think of (
µ

σ
−
σ′

2

)
(x)

as providing a measure of the pull of the diffusion process {xt} (or −1
2
θ′(z) as the pull

measure for the natural scale diffusion {zt}). For the scalar diffusion to be β−mixing
with exponential decay we require that the pull be negative at the right boundary and
positive at the left boundary. These restrictions are identical to the ones proposed by
Hansen and Scheinkman (1995) for ρ −mixing with exponential decay, albeit their
derivation is different than ours.

Remark 4.4. Instead of assuming the differentiability of σ, we can require the exis-
tence of a positive function g that is differentiable and is dominated by σ:

σ

g
≥ 1.

The inequalities in Corollary 4.2 are now implied by:

lim sup
xրr

(
µ

σ2
g −

g′

2

)
< 0

lim inf
xցℓ

(
µ

σ2
g −

g′

2

)
> 0.

Notice that these inequalities provide a trade-off between the drift and the diffu-
sion behavior and cover examples in which the drift is dominated by the square root
of the diffusion coefficient. In these cases, the exponential decay of the β-mixing co-
efficients is induced by the rapid increase in the volatility as a function of the Markov
state. The drift may even be positive for states in the vicinity of the right boundary
and negative in the vicinity of the left boundary (suggesting a pull to the left) while
the resulting diffusion may still be stationary and uniformly ergodic. (See Conley
et al. (1997) for a further discussion of volatility-induced stationarity.) Also, these
conditions permit the diffusion coefficient to go to zero at either boundary.

We conclude this section by relating our work to that of Veretennikov (1987).
Notice that for the special case when (i) σ is differentiable, we can transform our
original process (1) using the twice differentiable function:

R(x) =

∫ x

d

1

σ(u)
du,

12



where d is an interior point in the state space (ℓ, r). This scale transformation results
in a new diffusion process {yt = R(xt) : t ≥ 0} with state space (R(ℓ), R(r)), a unit
diffusion coefficient a2 = 1 and a drift given by our pull measure:

b =
µ

σ
−
σ′

2
.

Under an additional condition (ii) (R(ℓ), R(r)) = (−∞,∞),8 one can now apply
Veretennikov (1987)’s theorem to establish β−mixing with exponential decay based
on the behavior of the drift coefficient b of the transformed diffusion with a constant
diffusion coefficient. While this provides an alternative way to justify our (6) as a
sufficient condition for β −mixing with exponential decay, our derivation does not
need the extra conditions (i) and (ii).9

5 β−Mixing with polynomial decay rates

Previously, we deduced sufficient condition for a diffusion process to be weakly de-
pendent. In this section, we study diffusions which are strongly dependent in the
sense that the ρ−mixing coefficients ρt ≡ 1 for all t ≥ 0, or β −mixing coefficients
decay at rates that are slower than exponential.

To study strong dependence, we focus on cases in which the pull measure

µ

σ
−
σ′

2

converges to zero at one of the two boundaries. To characterize the strong dependence
we study how fast this measure converges to zero. This leads us to investigate the
limits:

ν+ ≡ lim sup
xրr

[(
σ2

σσ′ − 2µ

)′
−

2µ

σσ′ − 2µ

]

ν− ≡ lim inf
xցℓ

[(
σ2

σσ′ − 2µ

)′
−

2µ

σσ′ − 2µ

]

to obtain a more refined measure of strong dependence. These limits bound the
behavior of the β-mixing coefficients.

5.1 Hitting Times

For a general discrete time Markov process, the β−mixing polynomial decay rates are
implied by restrictions on the moments of the random time it takes to hit a compact

8Notice that for volatility-induced stationarity type of diffusion models, it may well be R(ℓ) > −∞
and/or R(r) <∞. So (R(ℓ), R(r)) = (−∞,∞) is an additional restriction.

9In particular, our Corollary 4.2 cannot be derived from Veretennikov (1987)’s theorem.
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set; see e.g., Tuominen and Tweedie (1994) (theorems 2.3 and 4.3). A version of this
kind of result for scalar diffusion was established by Lindvall (1983), which we now
state.10 Let τK denote the first time that the process {zt} hits the point K in the
interior of the state space conditioned on being in state z at date zero:

τK(z) = inf {t ≥ 0, zt = K|z0 = z] .

Theorem 5.1. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Suppose that there is a
function ξ ≥ 0 non-decreasing on [0,∞) such that E [ξ(τK)] <∞. Then

lim
t↑∞

ξ(t)βt = 0,

if further, ξ is absolutely continuous with respect to Lebesgue measure and has a
density ξ′, then ∫ ∞

0

ξ(t)′βt <∞.

In particular, if ξ(t) = tδ for some δ > 0 and E
[
(τK)δ

]
<∞, then:

∫ ∞

0

tδ−1βt <∞,

lim
t→∞

tδβt = 0. (7)

Proof. See Appendix.

5.2 Natural Scale Case

One strategy for establishing the hitting time moment bounds of Theorem 5.1 is to
follow Lindvall (1983) and study natural scale diffusion processes. Transforming the
scale does not alter the hitting time distribution. Lindvall (1983) derives a sufficient
condition for E(τK)δ <∞ based on a moment restriction expressed using the natural
scale stationary distribution. The following result is based on Lemma 1 and Proposi-
tion 2 of Lindvall (1983) and our Theorem 5.1, but is stated in terms of growth rates
of θ. It is the counterpart of Theorem 4.1, but for slower growth rates.

Theorem 5.2. Suppose that Assumptions 3.1 and 3.2 hold, and there exists some
constant 1

2
< η < 1 such that:

lim inf
|z|→∞

θ(z)

|z|
=0, lim inf

|z|→∞

θ(z)

|z|η
> 0. (8)

Let

η∗ ≡ sup

{
η ∈

(
1

2
, 1

)
: inequality (8) is satisfied

}
.

10Lindvall (1983) does not make any link to β-mixing, but, as we show in the Appendix, it is easy
to modify his result to obtain β-mixing coefficients decaying at a polynomial order.
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Then: (i) Assumption 3.3 is satisfied; (ii) {zt : t ≥ 0} is β−mixing with limt→∞ tδβt =
0 for any δ < δ∗ = 2η∗−1

2−2η∗
, but is not β - mixing with exponential decay.

Proof. Equation (8) implies the result (i) as long as η > 1/2. Equation (8) also
implies that

∫ ∞

−∞
|z|1−(α)−1 1

θ2(z)
dz <∞ provided 2η + (α)−1 − 1 > 1.

Let 0 < δ ≡ α − 1 < 2η−1
2−2η

. Then by Lemma 1 or Proposition 2 of Lindvall

(1983), we have
∫ ∞
−∞(τK)δ 1

θ2 < ∞. The result (ii) now follows from Theorem 5.1
inequality (7). Finally, Hansen et al. (1998) (Theorems 4.2 and 4.3) show that when

lim inf |z|→∞
θ(z)
|z| =0 there is no spectral gap (i.e., ρt = 1); hence {zt : t ≥ 0} cannot

be β −mixing with exponential decay.

Theorem 5.2 gives interesting results when the tail growth of θ as a function of |z|

exceeds |z|
1

2 but is less than linear. Slower growth in θ implies slower decay in the
β −mixing coefficients.

We next derive a sufficient condition for (8) in the natural scale. Although we
derive this in terms of the natural scale, our interest in this sufficient condition is its
counterpart in the original scale. The logarithmic derivative of a power function is
proportional to 1/z. The coefficient used in this proportionality dictates when the
tail inequality (8) is satisfied. Thus we are led to compute the derivative:

(
θ

θ′

)′
(z) = 1 −

θ′′(z)θ(z)

[θ′(z)]2

to study the tail behavior of θ. We are interested in the case in which θ′ tends to
zero. Define,

ν+ ≡ lim sup
z→+∞

[
1 −

θ′′(z)θ(z)

[θ′(z)]2

]

ν− ≡ lim inf
z→−∞

[
1 −

θ′′(z)θ(z)

[θ′(z)]2

]
.

Moreover, let

ν∗ ≡





ν+ if lim supzց−∞ θ′(z) > 0
ν− if lim infzր+∞ θ′(z) < 0

max{ν+, ν−} otherwise.

Lemma 5.3. Suppose that θ is twice differentiable, and that

lim inf
zր+∞

θ′(z) ≤ 0,

lim sup
zց−∞

θ′(z) ≥ 0,

where at least one of these two limits is zero. If 1 < ν∗ < 2, then (8) is satisfied for
any η < 1

ν∗
. In particular, η∗ ≥ 1

ν∗
.
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Proof. We prove this result when both limiting derivatives are equal to zero. The
other cases can be proved using a more direct argument for one boundary and an
entirely similar argument to what follows for the other boundary. Consider any
1
η
> ν∗. For sufficiently large z∗, and z ≥ z∗,

1

(log θ)′(z)
≤
z

η
+ c1,

and z ≤ −z∗
1

(log θ)′(z)
≥
z

η
− c1

where c+ and c− are some appropriately chosen positive constants. Taking reciprocals
reverses the inequalities. Hence taking reciprocals and integrating implies that for
z ≥ z∗:

log θ(z) ≥ η log(z/η + c1) + c2,

and for z ≤ −z∗:
log θ(z) ≥ η log(−z/η + c1) + c2

for some appropriately chosen constant c2. Consequently, we may find a positive
constant c3 such that

θ(z) ≥ c3 (|z|/η + c1)
η

for |z| ≥ z∗. Therefore, (8) is satisfied.

The following example illustrates the polynomial bounds on the β−mixing coef-
ficients and in particular when Lemma 5.3 produces the same bounds (i.e. η∗ = 1

ν∗
).

Example 5.4. Suppose that θ(z) = (1 + |z|2)
γ

2 and 1/2 < γ < 1. It may be shown
directly that η∗ = γ. Thus from Theorem 5.2, limt→∞ tδβt = 0 for any

δ <
2γ − 1

2 − 2γ
.

Notice also that ν∗ used in Lemma 5.3 is given by ν∗ = 1
γ

= 1
η∗

.

5.3 Diffusion with a Nonzero Drift

Our main interest in Lemma 5.3 is its implication for a diffusion process in the original
scale. We now transform the condition given in this lemma. Note that

θ′(S(x)) = −2

(
µ

σ
−
σ′

2

)
(x) =

(
σσ′ − 2µ

σ

)
(x).

We are interested in cases in which θ′ tends to zero. Since θ(S(x)) = s(x)σ(x),
(
θ[S(x)]

θ′[S(x)]

)′
=

1

s

(
sσ2

σσ′ − 2µ

)′
(x) =

[(
σ2

σσ′ − 2µ

)′
−

2µ

σσ′ − 2µ

]
(x).
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This leads us to define:

ν+ ≡ lim sup
xրr

[(
σ2

σσ′ − 2µ

)′
−

2µ

σσ′ − 2µ

]

ν− ≡ lim inf
xցℓ

[(
σ2

σσ′ − 2µ

)′
−

2µ

σσ′ − 2µ

]
.

Corollary 5.5. Suppose that

lim sup
xրr

(
µ

σ
−
σ′

2

)
≤ 0

lim inf
xցℓ

(
µ

σ
−
σ′

2

)
≥ 0

with at least one of these limits equal to zero. Let ν∗ be ν+ if only the first limit is
zero, be ν− if only the second limit is zero, and be max{ν+, ν−} if both limits are zero.
If 1 < ν∗ < 2, then for any δ < 2−ν∗

2ν∗−2
the process {xt : t ≥ 0} is β − mixing and

limt→∞ tδβt = 0.

This corollary shows how to compute a polynomial bound on the rate of decay of
the β mixing coefficients when the pull measure is zero in one of the two tails.

Example 5.6. Suppose that σ = 1 and

µ(x)

{
≤ −κ

x
x ≥ a

≥ −κ
x

x ≤ −a

for some positive κ and a as in Veretennikov (1997). Then

ν∗ ≡ 1 +
1

2κ
∈ (1, 2) provided κ >

1

2
,

and the restriction on δ is:

δ <
2 − ν∗

2ν∗ − 2
= κ−

1

2
.

This matches the conclusion in Veretennikov (1997) for a scalar diffusion.

6 Strong dependence and spectral densities

For linear time series models, it is common to link temporal dependence to the behav-
ior of the spectral density near frequency zero. For instance, the rate of divergence
of the spectral density at frequency zero gives a way to characterize long memory
of a stochastic process. For this reason, we now examine the implied behavior of
spectral density function for test functions applied to the Markov diffusion. In what
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follows, we will first deduce a convenient formula for calculating the spectral density
at a given frequency for transformations of a natural scale diffusion. Then we will
construct diffusion processes with spectral densities that diverge at frequency zero.
For this phenomenon to occur, at the very least we need the processes to fail to be
ρ−mixing. However, even when the ρ−mixing coefficients are identically one, the
spectral density at frequency zero will still be finite for many (but not all) functions
of the Markov state. In particular, we will use Example 5.4 as a starting point for a
natural scale diffusion that fails to be ρ−mixing, and transform the state space to
obtain Markov processes with divergent spectral density functions.

6.1 A formula for the spectral density

Let {zt} be a natural scale diffusion with diffusion coefficient θ2 (and generator A =
θ2φ′′/2). Let Z ≡ {φ ∈ L2 :

∫
φdQ = 0} denote the class of real-valued test functions

with zero means and finite variances, where Q has density proportional to 1
θ2 . For

any test function φ ∈ Z, the process {φ(zt)} is stationary β − mixing, hence its
spectral measure is absolute continuous and the spectral density f(ω) exists satisfying∫ ∞
−∞

| ln f(ω)|
1+ω2 dω < ∞ and can be represented as: (see e.g. Ibragimov and Rozanov

(1978), pages 34-36, 112 and 138)

f(ω) =
1

2π

∫ +∞

−∞
exp(−iωt)

[∫
φ (Ttφ) dQ

]
dt if

∫ ∞

0

(∫
[φ (Ttφ)] dQ

)
dt <∞,

and

f(ω) = lim
M→∞

fM(ω) in L2((−∞,∞), Leb) if

∫ ∞

0

(∫
[φ (Ttφ)] dQ

)2

dt <∞,

fM(ω) =
1

2π

∫ +M

−M

exp(−iωt)

[∫
φ (Ttφ) dQ

]
dt.

Since the natural scale diffusion {zt} is time-reversible, the autocorrelations are non-
negative: ∫

[φ (Ttφ)] dQ ≥ 0.

Thus the spectral density function at frequency zero dominates the spectral density
at all other frequencies.

For any given φ ∈ Z and frequency ω, we solve the differential equation system:

(A− iωI)ψ = φ (9)

where ψ = ψr + iψi and ψr, ψi ∈ D, (notice that the solution ψ depends implicitly on
ω). Thus ψ solves the pair of differential equations:

θ2

2
ψ′′

r = −ωψi + φ

θ2

2
ψ′′

i = ωψr
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for ψr, ψi ∈ D. By construction, the solution ψ satisfies for any ω 6= 0

ψ = (A− iωI)−1 φ = −

∫ ∞

0

Tt exp(−iωt)φdt.

Then {φ(zt)} has a finite spectral density at frequency ω 6= 0 given by:

f(ω) =

∫
φ

[∫ +∞

−∞
(Tt exp(−iωt)φ) dt

]
dQ

= −2 real

(∫
φ

[
(A− iωI)−1 φ

]
dQ

)

= −2

(∫
φψrdQ

)
.

For frequency ω = 0, the pair of differential equations (9) becomes ψi = 0 and
θ2

2
ψ′′

r = φ (i.e. Aψ = φ), which has a solution ψ = A−1φ ∈ D if and only if φ ∈ Z
belongs to the range of A. In this case, an integration-by-parts argument leads to:

f(0) = −2

∫
φ

(
A−1φ

)
dQ =

∫
(ψ′

r)
2

∫
1
θ2

. (10)

Moreover, f(0) gives the asymptotic variance for the central limit approximation for{
1√
N

∫ N

0
φ(xt)dt

}
(see Bhattacharya (1982) and Hansen and Scheinkman (1995)).

Notice that when the diffusion process {zt} is ρ−mixing, the range of A coincides
with the space Z, hence any test function φ ∈ Z has finite f(0) given by the formula
(10). However, when the diffusion process is strongly dependent in the sense ρt ≡ 1
for all t ≥ 0, the range of A is merely a dense subset of Z; hence there exist functions
φ ∈ Z that are outside the range of A. For all the test functions φ that belong to the
range of A, the familiar central limit approximations continue to apply to {φ(xt)},
and for which the spectral densities remain bounded in the vicinity of frequency zero.
When φ is outside the range of A, we can no longer solve the operator equation
Aψ = φ in D. Bhattacharya (1982)’s Central Limit Theorem may fail and the
spectral density may diverge at frequency zero. We now construct examples for which
the spectral density becomes unbounded at frequency zero.

6.2 Divergent Spectral Densities

Formula (10) also suggests a way to construct transformations (test functions) φ with
finite variances but infinite spectral densities at frequency zero for strongly dependent
processes. Find φ’s with zero means and finite variances that satisfy:

θ

2

2

ψ′′ = φ
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for which the corresponding ψ’s are outside the domain D and in particular:

∫
(ψ′)

2
= +∞. (11)

We illustrate such a construction by developing further Example 5.4:

θ(z) =
(
1 + z2

)γ/2

for 1
2
< γ < 1. For this range of γ’s we have already argued that the ρ − mixing

coefficients are all one. To find a test function φ with zero mean, finite variance and
infinite spectral density at frequency zero, we use the construction:

φ =
θ

2

2

ψ′′

and find a function ψ that satisfies (11) along with

∫
θ2 (ψ′′)

2
<∞, (12)

lim
z→±∞

ψ′(z) = 0. (13)

An example of such a function is:

ψ(z)′ =
(
1 + z2

)−η/2

for

γ −
1

2
< η ≤

1

2
. (14)

The resulting test function φ has a finite variance and a zero mean against the sta-
tionary distribution by virtue of (12) and (13). The infinite spectral density of the
process {φ(zt)} at frequency zero is suggested by (11).

The process {φ(zt)} is itself Markov for 1
2
< γ ≤ 3

4
(since φ(z) is decreasing),

and also a scalar diffusion (since φ ∈ C2), but with a nonzero drift. To illustrate the
divergence of the spectral density, we plot the spectral density for alternative choices
of γ and η. First, we compute the spectral density functions f(ω) for frequencies ω
in the vicinity of frequency zero for three values of (γ, η) :

(
.51, 1

4

)
,
(

3
4
, 1

3

)
,
(
.99, 1

2

)
in

Figure 1. The γ values .51 and .99 were chosen because they are near the endpoints of
the interval (1

2
, 1). Recall that when γ is greater than or equal to one, the process is

ρ−mixing with exponential decay, and when γ is less than or equal to 1
2
, the process

fails to be stationary. The γ value of 3
4

is chosen because the β −mixing coefficients
are integrable for γ > 3

4
, and the mean time to hit a compact set is infinite when
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γ ≤ 3
4
. The corresponding η’s were chosen to be close to the midpoint of the interval

(γ − 1
2
, 1

2
] in (14).11

Long memory processes including stationary versions of fractional Brownian mo-
tion (see Mandelbrot and Ness (1968)) have spectral densities that behave like:

log f(ω) ≈ c0 − c1 log(ω) (15)

in the vicinity of frequency zero for 0 < c1 < 1. For this reason, we also depict the
spectral densities in a log− log scale in Figure 2. Notice that while the log spectral
density is distinctly concave in log(ω) for γ = .99, it is almost linear for γ = .51. This
latter behavior imitates closely the spectral density of long memory time series. We
also study how η alters the slope:

slope =
d log f

d logω

in Figure 3. Notice that decreasing η increases the magnitude of the slope, but slope
never exceeds one, which is the upper bound on the parameter c1 in (15).

Remark 6.1. In the preceding example, our calculations were based primarily on the
tail properties of the natural scale diffusion coefficient θ and of the function ψ. We
are free to alter the behavior of these functions on compact subsets and to modify ac-
cordingly the transient dynamics for Markov states on compact sets without changing
the divergence of the resulting spectral density functions.

Remark 6.2. Stationary versions of fractional Brownian motion are known to have
infinite quadratic variations with probability one. As emphasized by Maheswaran and
Sims (1993), this property may make such processes fail to be local martingales and
as a consequence unappealing as models of arbitrage-free asset prices.12 Maheswaran
and Sims (1993) go on to argue that a nice feature of fractional Brownian motion that
is often featured is its long range dependence and not its “finite-time unit” properties.
They then study continuous-time Gaussian moving-average models that break the link
between short run responses to shocks and long run dependence.13 (Also, see Robinson

11To compute the (normalized) spectral density for frequency ω, we first solved the differential
equation (9) numerically subject to the boundary restrictions ψ′(z∗) = ψ′(−z∗) for a large value of
z∗. We then evaluated numerically:

f(ω) = −2

∫
φψr

θ2∫
φ2

θ2

and checked the sensitivity of the answer to the choice of z∗.
12As follows from Harrison and Kreps (1979), Harrison et al. (1984) and Maheswaran and Sims

(1993), local martingale or semimartingale implications for security markets are tied directly to the
classes of admissible trading rules. Trading rule restrictions are required at the outset to admit even
geometric Brownian motions as admissible processes. The more severe the trading rule restrictions,
the larger is the class of admissible price processes.

13Similar properties have also been investigated by Comte and Renault (1996) for a multivariate
continuous-time moving-average models driven by fractional Brownian Motion.
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(1995) for a semiparametric estimation method of models that break this link in a
discrete-time setting.) In a similar vein, our nonlinear diffusion examples show how
to maintain the local Gaussian structure while inducing nonlinearities and long-run
dependence. In particular, the local martingale property is preserved by construction.

7 Endogenous sampling

We conclude the paper by considering discrete-time processes obtained by sampling
a diffusion in a manner that is state dependent. Following Duffie and Glynn (2004)
we construct an endogenous sampling scheme built from a Poisson process with a
state dependent intensity. Let {xt} denote a Markov process with generator A, and
let {Nt} denote a Poisson process with state-dependent intensity λ. The event times
τ ∗j = inf {t : Nt = j} are the times at which xt is observed. We denote the discrete-

time process as
{
y∗j : j = 0, 1, 2, ...

}
, where y∗j = xτ∗

j
, with τ ∗0 = 0.

While the intensity λ can depend on the Markov state, there is an equivalent
way to depict the process

{
y∗j

}
with an intensity that is state independent. This

construction first alters the time clock of the diffusion {xt} in a manner analyzed
by Ethier and Kurtz (1986), and then uses a Poisson sampling process with a unit
intensity applied to the diffusion with a distorted time clock.

7.1 Altering the time clock

The continuous-time Markov process {ŷt : t ≥ 0} with a distorted time clock may be
constructed as follows:

ŷt = xτt

with the increasing process:

τt =

∫ t

0

1

λ(xu)
du

Assumption 7.1. λ is continuous, strictly positive on (ℓ, r).

Ethier and Kurtz (1986) (pages 308-309) show that we may construct the Markov
process {ŷt} by using the generator:

Â =
1

λ
A

motivated heuristically by the chain rule. Since λ can be state dependent, the domain
of Â may differ from that of A, but the intersection of the domains will typically con-
tain a dense (in L2) set of functions. While the Ethier and Kurtz (1986) construction
is applicable to a general class of Markov processes, we are interested in the case
in which the original process is a scalar diffusion with continuous drift and diffusion
coefficients, A and hence Â is a second-order differential operator that is at least well
defined on the space C2. The time-deformed process {ŷt : t ≥ 0} is still a diffusion,
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where the drift and the diffusion coefficients are obtained by multiplying the original
drift and diffusion coefficients of {xt} by the reciprocal of the intensity λ. The scale
function of the new process remains unchanged.

The stationary distribution Q̂ of the process {ŷt} may be constructed as the
Radon-Nikodym derivative proportional to:

dQ̂ =
λ

sσ2∫ r

ℓ
λ

sσ2

.

Given the state dependent intensity λ, Q̂ is different from the stationary distribution
Q of {xt}. In fact one may not even exist while the other one is a positive finite

measure. The next assumption ensures the existence of Q̂ :

Assumption 7.2.
∫ r

ℓ
λ(x)

s(x)σ2(x)
dx <∞.

Now all the results in previous sections apply to the time-altered diffusion {ŷt : t ≥ 0}.
In particular, the pull measure for the altered process is given by:

1

λ1/2

[
µ

σ
−
σ′

2
+
σλ′

4λ

]

when λ and σ are differentiable.

7.2 Poisson sampling

We can now form the discrete-time process
{
y∗j : j = 0, 1, 2, ...

}
by taking a Poisson

sample of {ŷt : t ≥ 0} with a unit intensity. The resulting discrete-time process is still

stationary with distribution Q̂ , and is an aperiodic Markov chain with one-period
transition operator:

T̂ φ(y) =
(
I − Â

)−1

φ(y). (16)

The discrete-time transition operator is a special case of what is referred to as a
resolvent operator for the generator Â.

The next result states that
{
y∗j : j = 0, 1, 2, ...

}
preserves all the temporal depen-

dence properties of {ŷt : t ≥ 0} .

Theorem 7.3. Suppose that Assumptions 3.1, 3.2 and 7.1 are satisfied. If

lim inf
xրr

sσ

|S|λ1/2
> 0 (17)

lim sup
xցℓ

sσ

|S|λ1/2
< 0, (18)

then: Assumption 7.2 holds and {y∗j : j = 0, 1, 2, ...} is stationary, ρ −mixing and
β −mixing with exponential decay rates.
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This theorem is a special case of Theorem A.1, which is stated and proved in
the appendix. The latter theorem includes a characterization of the β − mixing
coefficients when the resulting process is strongly dependent.

Remark 7.4. When σ and λ are smooth, the sufficient conditions for inequalities
(17) and (18) are:

lim sup
xրr

λ−1/2

[
µ

σ
−
σ′

2
+
σλ′

4λ

]
< 0,

lim inf
xցℓ

λ−1/2

[
µ

σ
−
σ′

2
+
σλ′

4λ

]
> 0.

Consider now the case in which the subordinated process {ŷt} is stationary (As-
sumption 7.2 is satisfied), but its pull measure:

λ−1/2

[
µ

σ
−
σ′

2
+
σλ′

4λ

]

is zero at one of the two boundaries. By the arguments in Hansen et al. (1998), there
exists a sequence of functions {φj} with norm one such that:

lim
j→∞

∫
φj

(
Âφj

)
dQ̂ = 0.

It follows that there exists a sequence of functions {ψj} with mean zero and unit
norm such that:

lim
j→∞

∫
ψj

(
T̂ ψj

)
dQ̂ = 1,

which implies that all of the discrete-time ρ −mixing coefficients are unity. Hence
the dependence properties of the Poisson sampled discrete-time process {y∗j} mirror
that of the deformed continuous-time process {ŷt}.

Our next examples illustrate how subordination can alter the unconditional dis-
tribution as well as the temporal dependence of a scalar diffusion:

Example 7.5. Let {xt} be a stationary diffusion process on (−∞,+∞) with µ(x) =
−γx for some γ > −1

2
and σ2(x) = 1+x2. The stationary density q(x) is proportional

to (1 + x2)−γ−1 (Example “E” in Wong (1964)). Clearly,

lim
xց−∞

µ

σ
−
σ′

2
= γ +

1

2
> 0 , lim

xր+∞

µ

σ
−
σ′

2
= −γ −

1

2
< 0.

Thus the ρ − mixing and β − mixing coefficients decay exponentially. Let {ŷt} be
the time-deformed diffusion with λ(x) = 1 + x2. Then for γ ∈ (−1

2
, 1

2
], this diffu-

sion does not have a stationary distribution. While for γ > 1
2

this diffusion has a
stationary density proportional to (1 + x2)−γ, and has a pull measure equal to zero
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at both boundaries. Thus the ρ −mixing coefficients are unity and the β −mixing
coefficients decay slowly. When we take a Poisson sample of the process {ŷt} with a
unit intensity, the discrete-time process

{
y∗j

}
remains non-stationary for γ ∈ (−1

2
, 1

2
],

and stationary but strongly dependent for γ > 1
2
.

Example 7.6. Suppose that {xt} has the same drift and diffusion coefficient as {ŷt}
had in the previous example: µ = −γx

1+x2 and σ2 = 1. As we just argued, this process

is stationary and strongly dependent for γ > 1
2
, and fails to be stationary when γ ∈

(−1
2
, 1

2
]. Let λ(x) = 1

1+x2 , then the resulting time-deformed {ŷt} process coincides
with the {xt} process of the previous example. Hence {ŷt} and the associated Poisson-
sampled discrete-time process

{
y∗j

}
with a unit intensity are stationary, β −mixing

and ρ−mixing with exponential decay.

8 Multivariate diffusions

We now explore an alternative convenient formulation of a Markov diffusion process
and give some extensions of our previous results. We use Ω to denote the set of
hypothetical Markov states, and we restrict Ω to be open and connected subset of R

n.
Let y denote an element of Ω, or equivalently a possible realized value of the Markov
state.14 We will model a multivariate diffusion by first constructing a quadratic
form on the domain C2

K of twice continuously differentiable functions with compact
support. This form is built using a multivariate diffusion matrix and a stationary
density. We study mixing as a restriction on tail behavior of these two objects.

For any pair of functions φ and ψ in C2
K , we construct the positive semidefinite

quadratic form:

fo(φ, ψ) =
1

2

∫ ∑

i,j

σij
∂φ

∂yj

∂ψ

∂yi

q.

where
Σ = [σij ]

is a positive definite matrix for each Markov state y and q is a positive density that
integrates to unity.

Assumption 8.1. Σ is a continuously differentiable, positive definite matrix function
on Ω.

Assumption 8.2. q = exp(−2h), and h is twice continuously differentiable satisfying∫
Ω

exp(−2h) = 1.

14Here and elsewhere in the section we define new notation with a distinct usage from that in
previous sections.
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We construct the generator for the semigroup of conditional expectation operators
for Markov diffusion from the differential operator associated with the form by solving:

fo(φ, ψ) = −〈Bφ, ψ〉 = −〈φ,Bψ〉 .

Applying integration by parts:

Bφ =
1

2

∑

i,j

σij
∂2φ

∂yi∂yj
+

1

2q

∑

i,j

∂(qσij)

∂yi

∂φ

∂yj
.

With this formula, Σ is interpreted as the diffusion matrix and q as the stationary
density. The implicit drift can be constructed from Σ and q via: µ = (µ1, ..., µn)′

satisfies

µj =
1

2q

n∑

i=1

∂(qσij)

∂yi

for j = 1, ..., n when {xt} satisfies the stochastic differential equation:

dxt = µ(xt)dt+ Λ(xt)dWt

with appropriate boundary restrictions. The process {Wt : t ≥ 0} is an n-dimensional,
standard Brownian motion, and Σ = ΛΛ′. Notice that we start with Σ and q and
infer a unique generator for a Markov diffusion. Under this construction the process
{xt} is time reversible, although later we will also consider irreversible diffusions.

We extend the form fo to a larger space H using the weak notion of a derivative.

H = {φ ∈ L2 : there exists g measurable, with

∫
g′Σgq <∞,

and

∫
φ∇ψ = −

∫
gψ, for all ψ ∈ C∞

K }

The Borel measurable function g is unique (for each φ) and is referred to as the weak
derivative of φ. From now on, for each φ in H we write ∇φ = g. Then H is a Hilbert
space under the inner product

< φ, ψ >∗=< φ, ψ > +
1

2

∫
(∇φ)′Σ(∇ψ)q.

For any pair of functions ψ and φ in H , we define a quadratic form f

f(φ, ψ) =
1

2

∫
(∇φ)′Σ(∇ψ)q,

as a closed form extension of fo to H .
For the purpose of approximation, we maintain:
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Assumption 8.3. For any φo in H, there exists a sequence {φj} in C2
K such that

lim
j→∞

< φj − φo, φj − φo >∗= 0.

Fukushima et al. (1994) and Chen et al. (2009) give sufficient conditions for this
assumption to be satisfied. Under this assumption we can focus our attention on the
form fo defined on C2

K instead of the extension f .
Hansen and Scheinkman (1995) give the following necessary and sufficient condi-

tion for the Markov process to be ρ-mixing with exponential decay. (See Proposition
8.)

Condition 8.4. There exists a δ > 0 such that

fo(φ, φ) ≥ δ

[
< φ, φ > −

(∫
φq

)2
]

for all φ ∈ C2
K.

In the case of a scalar diffusion with state space (ℓ, u) and Σ = ς2, Hansen and
Scheinkman (1995) show that Condition 8.4 is satisfied when

lim inf
y→u

[
ς ′(y) + ς(y)

q′(y)

q(y)

]
> 0

lim sup
y→ℓ

[
ς ′(y) + ς(y)

q′(y)

q(y)

]
< 0

where both limits are assumed to exist. This shows how ρ-mixing (and hence β and
α-mixing with exponential decay) can be induced either by a stationary density with
a thin tail or by a volatility specification that grows at least linearly with the Markov
state. Hansen and Scheinkman (1995) show that this restriction is equivalent to the
scalar drift condition introduced previously in (6).

To obtain multivariate results, we follow an approach in Chen et al. (2009) de-
veloped for a different purpose.15 We assume that Ω = R

n. In what follows we will
impose a lower bound on the diffusion matrix Σ.

Assumption 8.5. Suppose that

Σ(y) ≥ ς(y)2I ≥ ǫI

where ς(y) = exp[v(y)] and v is continuously differentiable.

One possibility is to set ς2 = ǫ. Define a potential function:

F (y) ≡ −
∑

i,j

σij
∂2h

∂yi∂yj

−
∑

i,j

∂σij

∂yi

∂h

∂yj

+ (∇h)′Σ(∇h). (19)

15Chen et al. (2009) study the existence of functional principal components, which requires more
stringent restrictions.
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Theorem 8.6. Let Assumptions 8.1, 8.2, 8.3 and 8.5 be satisfied. If

lim inf
|y|→∞

F (y) > 0,

then Condition 8.4 is satisfied. Hence {xt} is ρ−mixing.

Proof. See Appendix.

As in Chen et al. (2009) it is sometimes possible to construct a more refined result
by exploiting even more the state dependent growth in volatility. Such a result is
important to accommodate processes with stationary densities and tail behavior that
is algebraic rather than exponential. Form the potential function

F̂ (y) = ς(y)2

(
−trace

[
∂2h(y)

∂yi∂yj
−
∂2v(y)

∂yi∂yj

]
+ |∇h(y) −∇v(y)|2

)

+ ǫ

(
∇v(y) · ∇v(y) − trace

[
∂2v(y)

∂yi∂yj

])
.

Theorem 8.7. Let Assumptions 8.1, 8.2, 8.3 and 8.5 be satisfied. If

lim inf
|y|→∞

F̂ (y) > 0,

then Condition 8.4 is satisfied. Hence {xt} is ρ−mixing.

Proof. See Appendix.

Notice that derivatives of the logarithms of both the density and the state dependent
bound on the diffusion matrix contribute to the construction of the potential function
F̂ .

While our use of forms leads naturally to representing a Markov diffusion in terms
of a stationary density q and a diffusion matrix Σ, as we noted the resulting process is
time reversible. In multivariate settings there are typically many other constructions
of a generator which result in diffusions with the same density and the same diffusion
matrix. Provided that the generator A satisfies

fo(φ, ψ) = −

∫
ψ(Aφ)q

on C2
K , our results remain applicable to a diffusion process with generator A.

Rockner and Wang (2001) use forms to study multivariate Markov processes with
slower than exponential rates of convergence of the α-mixing coefficients. Let C2

B be
given by all linear combinations of functions in C2

K and constant functions. These
functions are necessarily in H . Rockner and Wang (2001) provide sufficient conditions
for the inequality

(||Ttφ||2)
2 ≤ ξ(t)

[
(||φ||∞)2 + (||φ||2)

2
]

for all φ ∈ C2
B ∩ Z,
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For instance, see their Theorem 2.1. From this inequality, we see that

||Ttφ||1
||φ||∞

≤
||Ttφ||2
||φ||∞

≤
√

2ξ(t)

and hence
αt ≤

√
2ξ(t).

For an example of the construction of ξ(t) in terms of Σ and h = −1
2
log q, see the

discussion on page 579 of Rockner and Wang (2001).16

9 Concluding remarks

In this paper we studied the temporal dependence of nonlinear scalar diffusion models.
As we have seen, scalar diffusion models provide a convenient and pedagogically valu-
able platform for understanding how nonlinearities in time series models get transmit-
ted into temporal dependence. Scalar diffusions are of course special. Nevertheless,
they are often used as building blocks in more realistic empirical models of financial
data.

We explored extensions in Sections 7 and 8. We studied the temporal dependence
in models of subordinated diffusions. In these models the time clock is distorted
in a random and temporally dependent way. Since the work of Clark (1973) and
Nelson (1990), it has been known that subordination is a convenient way to model
returns with unconditional distributions that have fat tails and volatility that is clus-
tered over time. Strongly dependent diffusions provide a useful tool for studying the
time clock distortions as a way of inducing highly persistent stochastic volatility.17

Also we showed how to extend some characterizations of dependence through the
use of quadratic forms as a modeling device. This approach allowed us to include
multivariate diffusion models in our analysis, and it demonstrates the connection be-
tween mixing properties and the tail behavior of stationary densities and conditional
volatilities.

Strongly dependent diffusions, like models of fractional integration, serve to blur
the distinction between stationary and nonstationary processes. As we have seen, the
strong dependence of diffusions is conveniently manifested in the pull of the diffusion
at extreme values of the Markov state. As a practical matter, this pull behavior will
be hard to measure accurately without using parametric restrictions on, at the very
least, the tail behavior of the drift and diffusion coefficients. This practical problem,
however, is no different than what occurs in attempts to detect the degree of long
range dependence in times series. It is known that once we allow for flexible transient
dynamics, the degree of long range dependence is hard to measure.

16See Veretennikov (1997) for sufficient conditions for the polynomial decay rate of the β−mixing
coefficients for multivariate, continuous-time Markov processes.

17Mixing properties of models with other forms of subordination are explored in Carrasco et al.
(1999).
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A Appendix

Proof. (Theorem 3.6): It suffices to prove this result in the natural scale. We
establish uniform ergodicity by finding a nonnegative, C2 function V that satisfies:

1

2
θ2V ′′ ≤ −c(V + 1) + d1K (20)

for some positive numbers c and d and some compact set K. We construct the
function V by first solving the eigenvalue problem:

1

2
θ2φ′′ = −cφ

for some c > 0 and some φ ∈ C2, and then we construct V from φ. If φ solves this
differential equation than so does aφ for any real number a. Since the diffusion is
ρ −mixing, we may choose a sufficiently small c > 0 such that φ has only a finite
number of zeroes (e.g. see Weidmann (1987), page 225). Let K be a closed interval
containing all of the zeroes as interior points. Notice that φ is concave when it is
positive and convex when it is negative. Thus φ is bounded away from zero in both
tails. We let V +1 be equal to aφ to the left of K and bφ to the right of K where the
scale factors are chosen so that V + 1 exceeds one outside K. We extend V to the
interior so that it remains nonnegative and is C2, and select d to guarantee inequality
(20) on K.

Proof. (Theorem 3.7): Let φ be a non-trivial solution of the eigenvalue problem:

1

2
θ2φ′′ = −cφ. (21)

It suffices to show that φ has a finite number of zeroes. In the study of second-order
differential equations, it is common to use the Prufer substitution (Birkhoff and Rota
(1989), page 312) to count the number of zeroes of a solution to a second-order
differential equation. We recall the Prufer substitution:

φ′(z) = r(z) cosα(z) , φ(z) = r(z) sinα(z) (22)

where

(r(z))2 = (φ(z))2 + (φ′(z))
2

; α(z) = arctan

(
φ(z)

φ′(z)

)
.

Obviously r(z) = 0 for a given z if and only if φ′(z) = 0 = φ(z), which leads to a
trivial solution φ(·) ≡ 0 for (21). Hence we can assume r(z) > 0 for all z. Then
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the second-order differential equation (21) is equivalent to the following system of
first-order differential equations for (r, α) :

(α(z))′ =
2c

θ2(z)
sin2 α(z) + cos2 α(z) (23)

(r(z))′ =
1

2

[
1 −

2c

θ2(z)

]
r(z) sin 2α(z) (24)

Notice that although arctan
(

φ(z)
φ′(z)

)
is not defined whenever φ′(z) = 0, the Prufer

system of first-order differential equations (23)-(24) are well-defined and have unique
solution given any initial values say (r(z0), α(z0)) = (r0, α0), which in turn defines
a unique solution φ(z) for the second-order equation (21) via (22). Moreover, every
non-trivial solution φ(·) to (21) takes value zero at a point z (φ(z) = 0) if and only
if the solution α(·) to (23) takes value nπ for some integer n at that point z, (i.e.
sinα(z) = 0).

The equation (23) has a unique solution α(z) for any initial value say α(z0) = a,
and the solution is an increasing (continuously differentiable) function. In particular,
α(z) is bounded (above and below) over the compact set K. Thus φ has only a finite
number of zeroes over the compact set K.

We now show that φ has at most finite many zeros outside the set K, (or equiva-
lently, α(z) is bounded above and below outside the set K). Suppose φ has a zero to
the right of K. (Otherwise the conclusion follows immediately.) Thus there exists a
z∗ to the right of K such that

α(z∗) = n∗π for some integer n∗.

Applying the Prufer substitution to inequality (3), and denote the corresponding new
dependent variables as (rV +1, αV +1) (in particular αV +1(z) = arctan

(
V +1
V ′

)
). It may

be shown that

(αV +1(z))
′ ≥

2c

θ2(z)
sin2 αV +1(z) + cos2 αV +1(z).

Since V + 1 never crosses the zero axis, the function αV +1(z) can be initialized to be
in the interval (n∗π, (n∗ + 1)π) for z ≥ z∗. In particular,

αV +1(z
∗) > n∗π = α(z∗).

From the Comparison Theorem (e.g. see Birkhoff and Rota (1989), pages 29-31),

αV +1(z) ≥ α(z) for all z ≥ z∗

implying that
α(z) < (n∗ + 1)π for all z ≥ z∗

Hence φ has no zero values for all z > z∗. An analogous argument that studies the
behavior of α(z), φ(z) to the left of the set K.
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Proof. (Theorem 5.1): We follow Lindvall (1983) and use a coupling argument.
Consider two independent diffusions. One {z1

t : t ≥ 0} is initialized at z and the
other is initialized according to the stationary distribution. We are interested in the
stopping time τ ≡ inf{t ≥ 0 : z1

t = z2
t }. The probability distribution for z1

t and z2
t

coincide from τ on. Define the conditional β-mixing coefficient:

βt(z) ≡ sup
0≤φ≤1

|E[φ(z1
t )|z

1
0 = z] − Eφ(z2

t )|

Then from Lindvall (1983) (Section 2),

βt(z) ≤ Pr{τ > t|z1
0 = z}.

As a consequence,
βt ≤ E[βt(z

1
0)] ≤ Pr{τ > t}.

To bound the tail probabilities of the hitting time τ , we follow Pitman (1974)
and Lindvall (1983) by using a familiar inequality for nonnegative random variables.
Suppose that Eξ(τ) <∞ for ξ ≥ 0 non-decreasing on [0,∞). Then

lim
t↑∞

ξ(t)Pr{τ > t} = 0 hence lim
t↑∞

ξ(t)βt = 0.

If further, ξ is absolutely continuous with respect to Lebesgue measure and has density
ξ′, then a simple integration-by-parts argument implies that

∫ ∞

0

ξ′(t)Pr{τ > t} <∞ and hence

∫ ∞

0

ξ′(t)βt <∞.

Theorem A.1. Suppose that Assumptions 3.1, 3.2 and 7.1 are satisfied. If for some
η ∈ (1

2
, 1],

lim inf
xրr

sσ

|S|ηλ1/2
> 0

lim sup
xցℓ

sσ

|S|ηλ1/2
< 0,

then: (i) Assumption 7.2 holds and {y∗j : j = 0, 1, 2, ...} is stationary β −mixing for
η > 1

2
. Denote

η∗ ≡ sup{η ∈ (
1

2
, 1] : inequalities (17) and (18) are satisfied}.

(ii) If η∗ = 1, then {y∗j : j = 0, 1, 2, ...} is ρ−mixing and β−mixing with exponential

decay rates; (iii) if η∗ ∈ (1
2
, 1), then limj→∞ jδβj = 0 for any δ < δ∗ where δ∗ = 2η∗−1

2−2η∗
.
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Proof. (Theorem A.1): In what follows we let D̂ denote the domain of Â constructed

using the stationary distribution Q̂, and L̂2 denote the space of functions with finite
second moment (against Q̂).

(i) As long as η > 1
2
, Assumptions 3.1, 3.2 and 7.1 imply that the time-altered

continuous time diffusion {ŷt : t ≥ 0} is stationary, recurrent and aperiodic. Hence
{y∗j : j = 0, 1, 2, ...} is still stationary, recurrent and aperiodic; hence it is β−mixing.

(ii) If η = 1 in inequalities (17) and (18), then {ŷt : t ≥ 0} is ρ − mixing and
β −mixing with exponential decay by Corollary 4.2.

Next, by the result of Banon (1977) (see also Hansen and Scheinkman (1995)), ρ−
mixing of {ŷt : t ≥ 0} implies the existence of spectral gap of the negative semidefinite

generator Â. That is, Â satisfies
∫
φ

(
Âφ

)
dQ̂ ≤ −δ

∫
φ2dQ̂ (25)

for all φ ∈ Ẑ for some δ > 0 where

Ẑ =

{
φ ∈ D̂ :

∫
φdQ̂ = 0

}
.

An implication of (25) is that
∫
φ

(
I−Â

)
φdQ̂ ≥ (1 + δ)

∫
φ2dQ̂.

Therefore, by equation (16)
∫
φT̂ φdQ̂ ≤

1

1 + δ

∫
φ2dQ̂

for φ ∈ Ẑ. In other words, the conditional expectation operator T̂ of the discrete time
process

{
y∗j : j = 0, 1, 2, ...

}
is a strong contraction on φ ∈ Ẑ. Since D̂ is dense in L̂2,

it follows from Rosenblatt (1971) that
{
y∗j : j = 0, 1, 2, ...

}
is ρ −mixing with expo-

nential decay provided that inequality (25) is satisfied, which holds given inequalities
(17) and (18) with η = 1.

Finally, by Theorem 3.6, the ρ − mixing of {ŷt : t ≥ 0} also implies that there
exists a non-negative Lyapunov function V ∈ C2 with V ≥ 1, a compact set K,
positive constants c and d such that:

ÂV ≤ −cV + d1K

Thus: (
I − Â

)
V ≥ (1 + c)V − d1K

Take inverses and obtain:

V ≥ (1 + c)
(
I − Â

)−1

V − d1K ,
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or

T̂ V (y) ≤
1

1 + c
V (y) +

d

1 + c
1K .

We may now apply theorem 2.1 of Down et al. (1995) to justify that
{
y∗j : j = 0, 1, 2, ...

}

is β −mixing with exponential decay.
(iii) If η ∈ (1

2
, 1] in inequalities (17) and (18), then by Theorem 5.2, {ŷt : t ≥ 0}

is β −mixing with limt→∞ tδβt = 0. To establish the result for
{
y∗j : j = 0, 1, 2, ...

}
,

we apply the theorems 2.3 and 4.3 of Tuominen and Tweedie (1994), which is for
discrete-time Markov processes.

Proof. (Theorem 8.6): First we consider a closed quadratic form

f̃(φ, ψ) =
1

2

∫
(∇φ)′Σ(∇ψ) +

1

2

∫
Fφψ

on the domain

D(f̃) = {ψ ∈ L2(leb) : ψ has a weak derivative and∫
F (ψ)2 +

∫
(∇ψ)′Σ(∇ψ) <∞}.

As shown in Chen et al. (2009) , under our assumption on Σ and F , the form f̃ will
be positive semidefinite because f is. Moreover, the spectrum of f is the same as
that of f̃ .

Notice that

f̃(ψ, ψ) ≥
ǫ

2

∫
(∇ψ)′(∇ψ) +

1

2

∫
Fψψ for all ψ ∈ D(f̃). (26)

The essential spectrum for the form f̃ is necessarily to the right of the essential
spectrum for the form on the right-hand of (26). See Davies (1989) Section 1.1.11.
The essential spectrum for the form on the right-hand side is in turn to the right of

lim inf
|y|→∞

F (y)

which is positive by assumption. See exercise 8.2 in Davies (1995). Thus the spectrum

for f̃ is discrete to the right of zero and zero is not an accumulation point. Therefore
Condition 8.4 is satisfied.

Proof. (Theorem 8.7): We first construct a lower bound for the form f̃ in the same
way as in the proof of Theorem 8.6 except that we use F̂ in place of F . See Chen
et al. (2009) for a detailed construction and justification for F̂ . The remainder of the
proof follows from that of Theorem 8.6.
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processus de markov. Ph.D. thesis, Université Paul Sabatier, Toulouse, France.
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Figure 1: Spectral density functions for different pairs (γ, η). Spectral densities are
rescaled to integrate to one.
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Figure 2: Spectral density functions for different pairs (γ, η) plotted on a log− log
scale. Spectral densities are rescaled to integrate to one.
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Figure 3: Spectral density functions for different values of η plotted on a log− log
scale. Spectral density functions are rescaled to integrate to one.
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