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Abstract

This paper investigates the size properties of a two-stage test in the linear instru-
mental variables model when in the �rst stage a Hausman (1978) speci�cation test is
used as a pretest of exogeneity of a regressor. In the second stage, a simple hypothesis
about a component of the structural parameter vector is tested, using a t-statistic
that is based on either the ordinary least squares (OLS) or the two-stage least squares
estimator (2SLS) depending on the outcome of the Hausman pretest. The asymptotic
size of the two-stage test is derived in a model where weak instruments are ruled out
by imposing a lower bound on the strength of the instruments. The asymptotic size
is a function of this lower bound and the pretest and second stage nominal sizes. The
asymptotic size increases as the lower bound and the pretest size decrease. It equals
1 for empirically relevant choices of the parameter space. It is also shown that, as-
ymptotically, the conditional size of the second stage test, conditional on the pretest
not rejecting the null of regressor exogeneity, is 1 even for a large lower bound on the
strength of the instruments.
The size distortion is caused by a discontinuity of the asymptotic distribution of

the test statistic in the correlation parameter between the structural and reduced form
error terms. The Hausman pretest does not have su¢ cient power against correlations
that are local to zero while the OLS t-statistic takes on large values for such nonzero
correlations.
Instead of using the two-stage procedure, the recommendation then is to use a

t-statistic based on the 2SLS estimator or, if weak instruments are a concern, the
conditional likelihood ratio test by Moreira (2003).

Keywords: asymptotic size, exogeneity, Hausman speci�cation test, pretest, size dis-
tortion

JEL Classi�cation Numbers: C12



1 Introduction

This paper is concerned with the asymptotic size properties of a two-stage test
where in the �rst stage, a Hausman (1978) speci�cation test is used as a pretest. As
the lead example, the pretest tests exogeneity of a regressor in a linear instrumental
variables (IV) model. In the second stage, a hypothesis about a component of the
structural parameter vector is tested using a t-statistic based on either the ordinary
least squares (OLS) or the two-stage least squares (2SLS) estimator, depending on
the outcome of the pretest. An explicit formula for the asymptotic size of the two-
stage test is derived in a model where weak instruments are ruled out by imposing a
lower bound on the strength of the instruments. The asymptotic size is a function of
the nominal size of the pretest, the nominal size of the second stage test, the number
of instruments, and the lower bound on the strength of the instruments.
The speci�cation tests proposed in Hausman (1978) are routinely used as pretests

in applied work, see e.g. Bradford (2003).1 As of November 2007, www.jstor.org
lists about 450 citations of Hausman (1978). This number is likely a lower bound
on the number of applied papers that use Hausman tests as pretests because many
applied papers that use a Hausman test do so, without explicitly citing Hausman
(1978) in the references. In the American Economic Review alone (until 2004) there
are at least 75 applied papers that use a Hausman test (about 25 of these papers
were written in the years 2000-2004). Many of these papers did not cite Hausman
(1978). Hausman speci�cation tests appear on the syllabus of most graduate courses
in Econometrics and are discussed in any of the major Econometric textbooks, see
e.g., Davidson and McKinnon (1993), Wooldridge (2002), Florens, Marimoutou, and
Peguin-Feissolle (2007), and Greene (2008). However, to the best of my knowledge,
no results are stated anywhere regarding the impact of the Hausman pretest on the
size of a two-stage test.
First, I assess the size properties of the two stage test that uses a Hausman

pretest in the �rst stage, via a Monte Carlo study in the linear IV model. An array
of empirically relevant parameter choices is used for the concentration parameter �2

and the correlation between structural and reduced form error �: Hansen, Hausman,
and Newey (2004) provide estimates of �2 and � from data sets in recently published
applied papers in several top journals. Of the data sets they consider, the �rst and
third quartiles of the estimated concentration parameter are 13 and 105 and the �rst
and third quartiles of the estimated correlation are .07 and .47. For sample size

1Oftentimes, these speci�cation tests are also referred to as Durbin-Wu-Hausman tests based on
the papers by Durbin (1954), Wu (1973), and Hausman (1978).
Bradford (2003, p.1755-1758) conducts a Hausman pretest (based on the di¤erence of the 2SLS

and OLS estimators) to test whether the regressor variables "dummy variable for pregnancy" and
"number of children in the household" are exogenous in a linear regression model with left hand
side variable "number of cigarettes smoked per day". The author concludes that the test "fails to
reject the null at any reasonable level of signi�cance. Consequently, these two variables are treated
as exogenous regressors hereafter".
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n = 1000, 5 instruments, nominal sizes of the pretest and second stage test equal to
.05, the �nite sample null rejection probabilities of the two-stage test equal .87, .91,
.72, .74, .15, .06 when (�2; �) equals (13,.1), (13,.3), (13,.5), (113,.1), (113,.3), and
(113,.5), respectively. On the other hand, a simple t-test based on the 2SLS estimator
has null rejection probabilities equal to .01, .06, .15, .04, .05, and .07 for these cases
and thus virtually uniformly dominates the size distorted two-stage procedure in
terms of null rejection properties.
Second, the paper then develops the theory to con�rm the simulation results by

deriving an explicit formula for the asymptotic size of the two-stage test under strong
instruments asymptotics. The asymptotic size of the two-stage test increases as the
lower bound on the instrument strength, denoted by �; or the pretest size decrease.2

It is equal to 1 for empirically relevant scenarios.3 For example, for a pretest and
second stage test nominal size of 5% and � = :001 or :1, the asymptotic size of the
symmetric two-sided test equals 1.00 and .95, respectively. For comparison, note that
for the Angrist and Krueger (1991) data the strength of the instruments equals .017
and .028 for the setup with 3 and 180 instruments, respectively. See below for further
discussion of this example.
As another main result, it is shown that the conditional size of the two-stage test,

conditional on the Hausman pretest not rejecting the null hypothesis of exogeneity,
equals 1 or is close to 1 in empirically relevant scenarios.
Sequences of nuisance parameters are characterized that lead to the highest null

rejection probabilities of the two-stage test asymptotically. For sequences of correla-
tions � that are local to zero of order n�1=2; the Hausman pretest statistic converges
to a noncentral chi-squared distribution. The noncentrality parameter is small when
the strength of the instruments is small. In this situation, the Hausman pretest has
low power against local deviations of the pretest null hypothesis and consequently,
with high probability, OLS based inference is done in the second stage. However, the
second stage OLS based t-statistic may take on very large values under such local

2Intuitively, the terminology �strong�can be interpreted as a situation where the reduced form
coe¢ cient matrix is �xed and has full rank. In the scalar situation, it essentially means that the
correlation between the instrument and the included endogenous variable is bounded away from
zero. The precise de�nition, in the notation of (2.10), is that 2 = jj(
1=2�=�vjj = (�2=n)1=2 is
bounded away from zero, i.e. 2 � � for some lower bound on the instrument strength � > 0. This
rules out limit distributions for estimators and test statistics obtained under the �local to zero�
framework of Staiger and Stock (1997).

3The result on the asymptotic size of the two-stage test, denoted by AsySz(�0); immediately
implies an upper bound on the asymptotic con�dence size of con�dence intervals, obtained by
inverting the two-stage test, given by 1�AsySz(�0). It follows that the asymptotic con�dence size
of a con�dence interval based on a two-stage procedure that uses a Hausman pretest in the �rst
stage, equals 0.
The Supplementary Appendix studies the asymptotic size properties of the two-stage test when

weak instruments are allowed for, i.e. � = 0: When weak instruments are not excluded, the space
of nuisance parameters is larger, and it follows that the asymptotic size (and con�dence size) of the
two-stage test (or con�dence interval) equals 1 (0).
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deviations. The latter causes size distortion in the two-stage test. If, on the other
hand, � is kept �xed as n goes o¤ to in�nity, then the two-stage procedure has good
asymptotic null rejection probabilities: If � is nonzero, the Hausman pretest statistic
diverges to in�nity, and in the second stage a 2SLS based t-statistic is used. In this
case, the asymptotic null rejection probability of the two-stage test equals the nominal
size. If � equals zero, the Hausman pretest statistic converges to a central chi-squared
distribution and therefore with probability equal to 1�� (where � denotes the nom-
inal size of the pretest) a t-statistic based on the OLS estimator is used in the second
stage. In this case, the two-stage procedure has acceptable null rejection probability.
However, this heuristic pointwise justi�cation of the two-stage procedure does not
hold uniformly and the asymptotic size of the test is 1 for empirically relevant values
of �:
Note that in the �strong instrument scenario�considered here, a 2SLS based t-

statistic has correct asymptotic size while the two-stage procedure is severely size
distorted in empirically relevant scenarios. If inference on the structural parameter
is the object of interest and the researcher is concerned about the null rejection
probability of the inference procedure, then, based on the above �ndings, one cannot
recommend the use of a Hausman test as a pretest. On the other hand, simply using
a 2SLS based t-statistic is theoretically justi�ed. If, in addition, instruments are
potentially weak, that is, the strength of the instruments is not bounded away from
zero, my recommendation is to use any of the robust testing procedures suggested by
Anderson and Rubin (1949), Moreira (2001, 2003), Kleibergen (2002), Guggenberger
and Smith (2005), and Andrews, Moreira, and Stock (2006).
From the pretesting literature, it is known that pretesting may impact the size

properties of two-stage tests. For example, Kabaila (1995), Andrews and Guggen-
berger (2005e, AG henceforth), and Leeb and Pötscher (2005) discuss con�dence
intervals (CIs) based on an estimator that can be viewed as a post-model-selection
estimator based on a consistent model selection procedure. They show that the CI
has asymptotic con�dence size equal to 0. AG (2005b) considers tests concerning a
parameter in a linear regression model after a �conservative�model selection pro-
cedure has been applied to determine whether another regressor should enter the
model. They �nd that the two-stage test is extremely size distorted but can be size-
corrected. This paper is closely related to the sequence of papers AG (2005a-e). As
in these papers, size distortion arises here because the test statistic has an asymptotic
distribution that is discontinuous in nuisance parameters of the model. The disconti-
nuity in the present case arises when there is zero correlation between the structural
and reduced form error terms. Earlier references on the impact of pretests include
Judge and Bock (1978) and Pötscher (1991). For additional references, see the recent
surveys by Dufour (2007) and Leeb and Pötscher (2008) on model selection.
This paper is related to the papers by Hahn and Hausman (2002) and Hausman,

Stock, and Yogo (2005). The former paper suggests a Hausman-type (pre-)test of
the null hypothesis of instrument validity. The latter paper shows that a second
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stage Wald test is equally size distorted unconditionally and conditional on the Hahn
and Hausman (2002) pretest not rejecting the null hypothesis of strong instruments.
Another paper that is concerned with the size e¤ects of pretests is Hall, Rudebusch,
and Wilcox (1996). They investigate by Monte Carlo simulation the conditional and
unconditional null rejection probabilities of a second stage t-test, if in the �rst stage
the sample correlation between regressors and instruments is used as a pretest for
instrument relevance. They �nd that the conditional size properties of the t-test,
conditional on the pretest rejecting the null of instrument irrelevance, are not better
than the unconditional size properties. Dhrymes (2003) and papers cited therein
provide modi�ed versions of Hausman pretests.
Next, other common applications of Hausman speci�cation tests as pretests are

discussed. The recent paper by Hausman and White (2006) provides a more de-
tailed overview. In a panel data context, under independence of the regressors and
individual speci�c e¤ects, the random e¤ects estimator is consistent and e¢ cient but
inconsistent otherwise. On the other hand the �xed e¤ect estimator is consistent even
if the independence assumption fails. It is to be expected that analogues of the above
results hold for the size properties of a test after a Hausman pretest in this context as
well. Hausman pretests have also been suggested to test for exogeneity of potential
instruments. Staiger and Stock (1997) shows size distortion of the standard Hausman
pretest under weakness of instruments and Hahn, Ham, and Moon (2007) introduces
a modi�ed version of the Hausman pretest that is robust to weak instruments. They
do not however investigate the size properties of the two-stage test which is the focus
of this paper. We show in the Appendix that the conditional size of the two-stage
test, conditional on the pretest not rejecting, is 1.
The remainder of the paper is organized as follows. Subsections 2.1 and 2.2

describe the model and test statistic. Subsection 2.3 reports �nite sample results
using empirically relevant parameter choices. The remainder of Section 2 derives the
asymptotic size results of the two-stage test when the Hausman pretest is used to
test for exogeneity of a regressor. The Appendix discusses the impact on size of the
Hahn, Ham, and Moon (2007) pretest.4

2 The Size of Tests After a Hausman Pretest

This section deals with the asymptotic size of the two-stage test in the linear IV model
where in the �rst stage the Hausman pretest tests for exogeneity of a regressor.

4The Supplementary Appendix discusses several additional results. It shows that, for a given
bound on the instrument strength, the size correction methods of Andrews and Guggenberger
(2005b) could be applied to size-correct the two-stage test. It shows that, if one allows for weak
instruments, the asymptotic size of the two-stage test is 1 and size-correction is not possible. It
discusses subsampling versions of the test. It shows that the same size problems of two-stage tests
arise in other applications of a Hausman pretest. Finally, additional Monte Carlo results are given,
including power results for the simulations in Section 2.3.
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2.1 Model and De�nitions

Consider the linear IV model

y1 = y2� +X� + u;

y2 = Z� +X�+ v; (2.1)

where y1; y2 2 Rn; X 2 Rn�k1 for k1 � 0 is a matrix of exogenous variables, Z 2 Rn�k2
for k2 � 1 is a matrix of IVs, and (�; � 0; �0; �0)0 2 R1�k1�k1�k2 are unknown parameters.
Let Z = [X:Z] and k = k1+ k2: For j = 1; 2; denote by yj;i; ui; vi; Xi; Zi; and Zi the
i-th rows of yj; u; v; X; Z; and Z; respectively, written as column vectors (or scalars).
The observed data are y1; y2; X; and Z: The data (ui; vi; Zi); i = 1; :::; n; are i.i.d.
The paper investigates the asymptotic size of a two-stage test of the null hypothesis

H0 : � = �0 (2.2)

where in the �rst stage a Hausman (1978) test is undertaken as a pretest. One- and
two-sided alternatives are considered.
The Hausman pretest tests exogeneity of the variable y2;i.5 If the pretest rejects

the exogeneity hypothesis, then, in the second stage, H0 : � = �0 is tested by using
a t-test based on the 2SLS estimator. If the pretest does not reject the exogeneity
hypothesis, a t-test based on the OLS estimator is used in the second stage.
Denote by � and � the nominal sizes of the second stage and �rst stage test. To my

knowledge, it has not been discussed in the literature what the resulting asymptotic
null rejection probability of the two-stage test is as a function of � and �; even under
the assumption of strong identi�cation and �xed � (in particular, � = 0), let alone its
asymptotic size. To derive the resulting asymptotic null rejection probability under
these assumptions is not hard and only requires deriving the joint distribution of the
pretest statistic and the possible second stage statistics. In this section, a formula
for the asymptotic size of the two-stage test is derived. By de�nition, the asymptotic
size of a test of the null hypothesis H0 : � = �0 in the presence of nuisance parameters
 2 � equals

AsySz(�0) = lim sup
n!1

sup
2�

P�0;(Tn(�0) > c1��); (2.3)

where Tn(�0) is the test statistic, c1�� the critical value of the test, and P�;(�) denotes
probability when the true parameters are (�; ). The test statistics Tn(�0), critical
values c1��; and parameter space � for the present application are de�ned in the next
subsections. The parameter vector  in our application contains as one component
the correlation between ui and vi and as second component 2 = (�

2=n)1=2; where �2

is the concentration parameter. The parameter space � is modelled as a function of

5Hillier (1987) and Moreira (2001, p.7 of the July 2005 revision of the paper) provide an interesting
discussion of the connection between structural parameter tests and exogeneity tests.
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the strength of the instruments in subsection 2.4. By de�nition, the asymptotic size
is simply the limit as n!1 of the exact size sup2� P�0;(Tn(�0) > c1��):
See AG (2005a) and Section 2 in AG (2005d) for a detailed discussion of uniformity

and the important distinction between pointwise null rejection probability and size.
Uniformity over  2 � which is built into the de�nition of AsySz(�0) is crucial for
the asymptotic size to give a good approximation for the �nite sample size.

2.2 Test Statistics and Critical Values

In this subsection the two-stage test statistic Tn(�0) for the hypothesis testH0 : � = �0
is de�ned. Denote by In the n-dimensional identity matrix. For a matrix W with n
rows, de�ne PW = W (W 0W )�1W 0, MW = In � PW ; and W? = MXW and, if no X
appears in (2.1), set W? = W:
The Hausman pretest is de�ned as

Hn =
n(b�2SLS � b�OLS)2bV2SLS � bVOLS ; (2.4)

where

b�2SLS = y02PZ?y1=(y
0
2PZ?y2);b�OLS = y02MXy1=(y
0
2MXy2);bV2SLS = (y02PZ?y2=n)�1b�2u(b�2SLS);bVOLS = (y02MXy2=n)
�1b�2u(b�OLS); andb�2u(b�l) = n�1(y?1 � y?2
b�l)0(y?1 � y?2

b�l) (2.5)

for l = OLS and 2SLS: Other de�nitions of Hn are possible, that replace b�2u(b�OLS)
by b�2u(b�2SLS) or vice versa. The results on the asymptotic size do not depend on
which de�nition is used, see (2.18) below. If y2 is exogenous and the instruments are
strong then Hn !d �

2
1 as n!1 under assumptions given in Hausman (1978).

De�ne the t-test statistic

T �l (�) = n1=2(b�l � �)=bV 1=2
l (2.6)

for l = OLS and 2SLS. The standard de�nition of the two-stage test statistic is

T �n(�0) = T �OLS(�0)I(Hn � �21(1� �)) + T �2SLS(�0)I(Hn > �21(1� �)); (2.7)

where, again, � is the nominal size of the pretest, I is the indicator function, and
�21(1��) the 1�� quantile of a chi-square random variable with one degree of freedom.
De�ne the two-stage test statistic Tn(�0) as �T �n(�0) or jT �n(�0)j depending on whether
the test is a lower/upper one-sided or a symmetric two-sided test, respectively.
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The nominal 1� � standard �xed critical value (FCV) test rejects H0 if

Tn(�0) > c1(1� �); (2.8)

where c1(1 � �) = z1��; z1��; and z1��=2 for the upper one-sided, lower one-sided,
and symmetric two-sided test, respectively and z1�� is the 1�� quantile of a standard
normal distribution.

2.3 Finite Sample Evidence

Next, the �nite sample size properties of the two-stage test are investigated in a
simulation study based on parameter choices for the concentration parameter �2 and
the correlation � de�ned as

�2 = n�0EZiZ
0
i�=Ev

2
i and � = Corr(ui; vi) (2.9)

that were estimated from data sets in applied papers published in the last �ve years in
the American Economic Review (AER), Journal of Political Economy (JPE), and the
Quarterly Journal of Economics (QJE), see Hansen, Hausman, and Newey (2004).6

Their Table 7 is reproduced here; it reports several percentiles Q10, ..., Q90 for the
concentration and correlation parameters in these data sets:

Hansen, Hausman, and Newey (2004), Table 7
Five years of AER, JPE, and QJE

# of papers Q10 Q25 Q50 Q75 Q90
�2 28 8:95 12:7 23:6 105 588
� 22 :022 :0735 :279 :466 :555

In the simulations, the nominal sizes of the pretest and the second stage test are
� = � = :05: Furthermore, EZiZ 0i = Ik2 and Ev

2
i = 1: This implies jj�jj =

p
�2n�1=2:

The vector � is chosen to have all components equal, � = �0(1; :::; 1)
0 2 Rk2 for

�0 2 R. The vector (ui; vi; Zi) is chosen as i.i.d. normal with zero mean and unit
variances and Zi is independent of ui and vi: The asymptotic results do not depend
on k1; the number of included exogenous variables, and therefore k1 = 0 in the
simulations.
Two Monte Carlo experiments based on the information in Table 7 of Hansen,

Hausman, and Newey (2004) are implemented.
In the �rst experiment, the values of �2 and � are �xed at the estimated median

values over the data sets, namely �2 = 23:6 and � = :279: Empirical null rejection
probabilities of the two-stage test are reported for various values of the sample size n

6The concentration parameter �2 equals n�0EZiZ 0i�=Ev
2
i when there are no included exogenous

variables. In general, the concentration parameter is de�ned as n22 where 2 is de�ned in (2.10).
The latter de�nition boils down to the former when there are no included exogenous variables.
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and the number of instruments k2; namely n 2 f100; 1000; 10000g and k2 = f1; 5; 20g:
In Table Ia below, columns 4 and 5 with headings �Upper�and �Sym�report these
�nite sample null rejection probabilities for upper and symmetric two-stage tests.
Column 6 with heading �HPre�reports null rejection probabilities of the Hausman
pretest. Finally, columns 7 and 8 with headings �CondlUpper� and �CondlSym�
report conditional probabilities of rejecting the null hypothesis of the second stage
test, conditional on the Hausman pretest not rejecting the pretest null hypothesis.
For all con�gurations, the two-stage test overrejects severely, with null rejection

probabilities in the range [:62; :85]. The pretest null hypothesis is only rejected with
probabilities ranging roughly between 10% and 20% even though � = :279. However,
conditional on not rejecting the pretest null hypothesis and thus using an OLS based
t-statistic in the second stage, the null rejection probabilities equal 100% in most
scenarios. The OLS based t-statistic takes on very large values under the failure of
the pretest null hypothesis while the Hausman pretest does not.

Insert Table Ia about here

In the second experiment, the sample size and the number of instruments are
�xed at n = 1000; k2 = 5 and various values of the concentration parameter �2

and � are considered that cover the whole range of values reported in Hansen,
Hausman, and Newey (2004), namely �2 2 f0; 13; 50; 113; 200; 313; 450; 613g and
� 2 f0; :05; :1; :2; :3; :4; :5; :6g: Therefore, the results cover all the cases of combi-
nations of �2 and � that were found in the applied papers in the last �ve years in
AER, JPE, and QJE considered in the table above. For each such combination, Table
Ib below reports null rejection probabilities of the symmetric two-stage test and of
the symmetric t-test based on the 2SLS estimator. The results imply that in terms
of null rejection probabilities, simply using the one-stage t-test, is the better of the
two methods. In situations, where the two-stage test has good null rejection proba-
bilities (the cases where � = 0 or (� � :3 and �2 � 200)), the same is true for the
one-stage t-test. However, in all other situations the two-stage test overrejects, of-
tentimes severely, while the one-stage test has relatively good size properties (except
when � � :5 and �2 � 13). For example, for the cases (:1 � � � :4 and �2 � 13) the
null rejection probabilities of the two-stage test fall into the interval [:84; 1:00] while
the corresponding interval for the one-stage test is [0; :1]. For � = :1 the null rejection
probability of the two-stage test is :87 when � = 13 and :38 when � = 613 while for
the one-stage test, the corresponding probabilities are :01 and :05.

Insert Table Ib about here

In the next subsections, the theoretical evidence is provided to support the results
of the �nite sample simulations. The next subsection de�nes the space of nuisance
parameters. Finally, the asymptotic size of the two-stage test is derived.
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2.4 Parameter Space

In this subsection, the parameter space � of the nuisance parameter vector  is de-
�ned. Following AG (2005a), the parameter  has three components:  = (1; 2; 3):
The points of discontinuity of the asymptotic distribution of the test statistic of in-
terest are determined by the �rst component, 1: The parameter space of 1 is �1:
The second component, 2; of  also a¤ects the limit distribution of the test statistic,
but does not a¤ect the distance of the parameter  to the point of discontinuity.
The parameter space of 2 is �2: The third component, 3; of  does not a¤ect the
limit distribution of the test statistic. The parameter space for 3 is �3(1; 2); which
generally may depend on 1 and 2:
The �strength of the instruments�, 2 = jj(
1=2�=�vjj de�ned in (2.10) below;

a¤ects the limit distribution of the test statistics discontinuously at the point 0 of no
identi�cation, see the Supplementary Appendix, Section 6. Because the data evidence
in Hansen, Hausman, and Newey (2004) suggests that extremely weak identi�cation is
rather the exception, a lower bound on the strength of the instruments jj(
1=2�=�vjj �
� is imposed for some � > 0: Weak instruments as in Staiger and Stock (1997), that
would correspond to � = 0, are therefore ruled out. By imposing a lower bound,
jj(
1=2�=�vjj no longer a¤ects the limit distribution discontinuously, but continuously,
see below.
Assume that f(ui; vi; Xi; Zi) : i � ng are i.i.d. with distribution F: De�ne the

vector of nuisance parameters  = (1; 2; 3); by

1 = �; 2 = jj(
1=2�=�vjj; and 3 = (F; �; �; �); where
�2u = EFu

2
i ; �

2
v = EFv

2
i ; � = CorrF (ui; vi);


 = QZZ �QZXQ
�1
XXQXZ ; and Q =

�
QXX QXZ
QZX QZZ

�
= EFZiZ

0
i; (2.10)

and jj�jj denotes Euclidean norm. The parameter 1 measures the degree of endogene-
ity of y2:7 The parameter 2 measures the strength of the instruments. It is related
to the concentration parameter �2 (de�ned above for the particular case k1 = 0) by
2 = n�1=2�: Let

�1 = [�1; 1]; �2 = [�; �] (2.11)

7Note that we choose the above parameterization for  because it allows for veri�cation of As-
sumption B in AG (2005a) in the most parsimonious way. Assumption B allows us to calculate the
asymptotic size of the two-stage test for di¤erent speci�cations of �; in particular of �2: The latter
is important to assess the relevance of our �ndings on asymptotic size for empirical applications, see
the discussion around Table II below.
Note that in AG (2005a-e) the speci�cation for  has always been chosen such that when 1 times

nr diverges to in�nity, the �standard FCV�asymptotic distribution is obtained. In this example,
when n1=2j1j ! 1; y2 is not exogenous. Instead, the �standard�Hausman (1978) result Hn !d �

2
1

is obtained under n1=2j1j ! 0 and additional assumptions.
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for some 0 < � < � < 1: The technical details of the de�nition of �3 = �3(1; 2)
are given in the Appendix, see (3.1).8 Finally, de�ne the parameter space � of  as

� = f = (1; 2; 3) : 1 2 �1; 2 2 �2; 3 2 �3(1; 2)g: (2.12)

2.5 Asymptotic Distributions and Size

In this subsection, the asymptotic distribution of the test statistic is derived under
certain parameter sequences fn;hg de�ned below. Then the asymptotic size of the
test is determined.
Let R1 = R [ f�1g: De�ne

H = fh = (h1; h2) 2 R21 : 9 fn = (n;1; n;2; n;3) 2 � : n � 1g
such that n1=2n;1 ! h1 and n;2 ! h2g: (2.13)

It follows that
H = H1 �H2 = R1 � [�; �]: (2.14)

Two cases are dealt with separately. Case I has jh1j <1 while Case II has jh1j =1:
In Case I, � ! 0 and thus var(uivi)=(�2u�

2
v) ! 1, see (3.2). In Case I, y2 is only

�weakly endogenous�while in Case II it is �strongly endogenous�.

De�nition of fn;hg : For h = (h1; h2) 2 H; let fn;hg � � denote a sequence
of parameters with components n;h;1; n;h;2; and n;h;3; n;h = (n;h;1; n;h;2; n;h;3)

0;
where

n;h;1 = CorrFn(ui; vi); n;h;2 = jj(
1=2n �n=(EFnv
2
i )
1=2jj; for


n = EFnZiZ
0
i � EFnZiX

0
i(EFnXiX

0
i)
�1EFnXiZ

0
i; s.t.

n1=2n;h;1 ! h1; n;h;2 ! h2; and n;h;3 = (Fn; �n; �n; �n) 2 �3(n;h;1; n;h;2):
(2.15)

As Theorem 1 below shows, the highest asymptotic null rejection probability of the
test is realized along some sequence of the type fn;hg: It is therefore enough to study

8In a panel data model,
yit = xit� + ci + uit

with individual speci�c e¤ects ci; a Hausman pretest is often used to test the key assumption needed
to justify the use of a random e¤ects estimator, namely E(cijxi) = 0; where xi = (xi1; :::; xiT )
and T is the time series dimension of the panel. The �xed e¤ects estimator based on the within
transformation, eyit = yit�yi; where yi denotes the time average, eyit = exit�+euit (where the notation
for exit and euit should be clear), is justi�ed even when this assumption fails. An assumption needed
for the �xed e¤ect estimator is that rank(

PT
t=1Eex0itexit) is maximal. There is a problem if for an i;

xit does not vary much over time, and therefore exit � 0: In the panel model, the analogues to 1 and
2 are parameters that measure the failure of E(cijxi) = 0 and �rank(

PT
t=1Eex0itexit) is maximal�,

respectively.
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the asymptotic rejection rates along sequences fn;hg: Under any sequence fn;hg for
which CorrFn(ui; vi)! �; the following convergence result holds0@ (n�1Z?0Z?)�1=2n�1=2Z?0u=�u

(n�1Z?0Z?)�1=2n�1=2Z?0v=�v
n�1=2(u0v � EFnu

0v)=(�u�v)

1A!d

0@  u;�
 v;�
 uv;�

1A
� N(0;

�
V� 
 Ik2 0
00 1 + �2

�
) for V� =

�
1 �
� 1

�
; (2.16)

where  u;�;  v;� 2 Rk2 ;  uv;� 2 R. See AG (2005c, eq. (2.15)) for similar statements.9

Next the limit distribution of the test statistic T �n(�0) is derived under sequences
n;h: To do so, (2.16) and derivations from AG (2005c, Sections 2.3 and 4.1.2) are
used. For Case I and �h = (�1;h; :::; �4;h)

0; h = (h1; h2)
00BB@

n�1=2y02PZ?u=(�u�v)
n�1=2y02MXu=(�u�v)
n�1y02PZ?y2=�

2
v

n�1y02MXy2=�
2
v

1CCA!d �h =

0BB@
h2s

0
k2
 u;0

h2s
0
k2
 u;0 +  uv;0 + h1

h22
h22 + 1

1CCA ; (2.17)

where sk2 2 Rk2 is an arbitrary vector with jjsk2jj = 1. Therefore,0BBBB@
T �2SLS(�0)
T �OLS(�0)
Hnb�2u(b�2SLS)=�2ub�2u(b�OLS)=�2u

1CCCCA!d �h =

0BBBB@
s0k2 u;0

(1 + h22)
�1=2�2;h

(1 + h22)[s
0
k2
 u;0 � h2(1 + h

2
2)
�1�2;h]

2

1
1

1CCCCA : (2.18)

for �0h = (�1;h; :::; �5;h):
10 Case II is dealt with in the Appendix. In Case II, the

pretest statistic goes o¤ to in�nity, Hn !p 1; and thus w.p.a.1, T �2SLS(�0) is used in
the second stage. Because T �2SLS(�0)!d N(0; 1), there is no size-distortion under the
strong endogeneity of Case II.

We have
T �n(�0)!d J

�
h; (2.19)

where J�h; by de�nition, is the distribution of

��h = �2;hI(�3;h � �21(1� �)) + �1;hI(�3;h > �21(1� �)): (2.20)

9Condition (3.2) in the de�nition of �3(1; 2) ensures that we get the zero entries in the covari-
ance matrix of the asymptotic distribution of ( 0u;�;  

0
v;�;  uv;�) and also that the right lower entry

(��2u ��2v )var(uivi) in the covariance matrix equals 1 + �2.
10Because �3;h = (1+h

2
2)
�1[s0k2 u;0�h2 uv;0�h2h1]

2 and s0k2 u;0�h2 uv;0�h2h1 � N(�h2h1; 1+
h22); the limit distribution of Hn is �21(h

2
1h
2
2(h

2
2+1)

�1): Therefore, Hn !d �
2
1 if h1 = 0; that is under

exogeneity and strong instruments, we obtain Hausman�s (1978) result as a subcase. If h2h1 6= 0
the Hausman test has nonzero local power.
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The distribution J�h depends on the nominal size � of the pretest. For notational sim-
plicity, this dependence is suppressed. The derivations above imply that Assumption
B in AG (2005a) holds with r = 1=2:

Next, an explanation is provided for the size distortion of the two-stage test.
Simply to gain some intuition, we evaluate the formulas in (2.18) at h2 = 0, i.e.
the unidenti�ed case. Strictly speaking, this is not allowed, because for h2 = 0 weak
instrument asymptotics could apply. However, by continuity, the same intuition given
below applies for small values for h2 rather than h2 = 0: This is con�rmed by the
theoretical results stated below Theorem 1.
The formulas in (2.18) evaluated at h2 = 0 read

T �2SLS(�0) ! d s
0
k2
 u;0;

T �OLS(�0) ! d  uv;0 + h1; and

Hn ! d (s
0
k2
 u;0)

2 � �2(1): (2.21)

It follows that in this situation, the Hausman pretest rejects with probability equal
to �: When the Hausman test does not reject the pretest hypothesis (which happens
with probability 1��) and thus the OLS based t-statistic is used in the second stage,
the maximal asymptotic rejection probability for the null H0 : � = �0 equals 1. The
latter is seen by picking h1 very large or very negative depending on the type of test.11

Note that picking a large nominal pretest size � does not solve this problem. While
picking a large � reduces the probability at which OLS based inference is performed
in the second stage, it does not lower the conditional size of the second stage test,
conditional on not rejecting the pretest null hypothesis. In particular, assume the
nominal size of the pretest is chosen such that � = �n ! 1. While the probability
of using OLS based inference in the second stage goes to zero (and the two-stage
test essentially boils down to the much simpler one-stage test that always uses a t-
statistic based on 2SLS), whenever OLS based inference is used in the second stage,
the conditional size of the test equals 1. So whenever one tries to gain power by using
OLS based inference, the size of the test is completely distorted.
The typically more powerful OLS based inference in the second stage comes at the

price of extreme size distortion. If, for example, � = � = :05; then the unconditional
asymptotic size for the upper two-stage FCV test is at least 97.5%: With probability
1 � �; a t-statistic based on OLS is used and always rejects the null (for h1 large
enough) and with probability �; a t-statistic based on 2SLS is used which rejects the
null with probability 1/2. Intuitively, the pretest does not pick up the local invalidity
of the exogeneity assumption, � = n�1=2h1. On the other hand, the mean of the limit
distribution of the OLS based t-statistic is a¤ected which leads to overrejection.

11Consider, for example, the case of an upper one-sided test. For every " > 0 there exists a
h1 = h1(") such that P ( uv;0 + h1 > z1��) > 1 � ": Therefore, under the sequence �n = n�1=2h1;
asymptotically, conditional null rejection probabilities no smaller than 1� " are obtained.
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The next theorem gives an explicit formula for the asymptotic size AsySz(�0) of
the two-stage test of H0 : � = �0 based on Tn(�0). The results apply to upper, lower
one-sided, and symmetric two-sided versions of the test with �h de�ned as �

�
h;���h;

and j��hj; respectively.

Theorem 1 For upper, lower, and symmetric FCV tests based on Tn(�0) of nominal
size �, the AsySz(�0) equals suph2H P (�h > c1(1� �)):

The proof follows from Theorem 1(a) in AG (2005a). Note that the asymptotic
sizes depend on the pretest size � and on �: For notational simplicity, this dependence
is suppressed. Note that the results do not depend on k1:

Table IIa contains information on the asymptotic size of the two-stage test when
k2 = 5 and � = :05 for various values of � and �, namely � 2 f:001; :1; :5; 1; 2; 10g
and � 2 f:05; :1; :2; :5g:12 Here and in the tables below, only results on upper and
symmetric tests are reported. Results for lower (and equal-tailed) tests are virtually
identical to the upper (and symmetric) ones. Note that a one-stage t-test based on
the 2SLS estimator has asymptotic size equal to 5% whenever � > 0:

Insert Table IIa about here

Naturally, AsySz(�0) is decreasing in both � and �: Table IIa shows thatAsySz(�0)
by far exceeds the nominal size � for small numbers of � and �: For example, when
� = :1 and � = :05 then the asymptotic size equals .93 and .95 for upper and sym-
metric tests, respectively. On the other hand, when � = 10 and � = :05 then the
asymptotic size equals .06 and .05 for upper and symmetric tests, respectively, and
therefore basically equals the nominal size of the test. For � = :05 the symmetric
test has asymptotic size equal to 1 for small lower bounds on the strength of the
instrument.
To gain further insight, the asymptotic probability of the event �pretest does not

reject the pretest null hypothesis�and the conditional probability of the event �test
rejects the null hypothesis�conditional on the pretest not rejecting the pretest null
hypothesis, are investigated. Table IIb contains the results for the case where h1 = 5
and various values of h2 and pretest nominal sizes �: For h2 � 1; this conditional
rejection probability is very close to or equal to 1 for both upper and symmetric
tests for all nominal sizes � considered. Picking a large � decreases the asymptotic
size of the two-stage test by more often using 2SLS based inference in the second
stage, but it does not decrease the size problems of the test if OLS based inference is
used in the second stage. The pretest does not detect a violation of the pretest null

12In the simulations, � = 1000: Hansen, Newey, and Hausman (2004, Table 1) reports estimated
concentration parameters �2 for the Angrist and Krueger (1991) data for two di¤erent setups with
number of instruments equal to 3 and 180, respectively. The estimated concentration parameters
are �2 = 95:6 and 257, respectively. For the sample size n = 329; 509 this implies 2 = :017 and
:028; respectively.
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hypothesis, however the second stage t-statistic based on the OLS estimator takes
on very large values. The probability of not rejecting the pretest null hypothesis,
P (Hn < �21(1 � �)); is of course decreasing in � and h2 � 1: For � = :05 and
h2 = :1; it equals .92. The asymptotic size AsySz(�0) is large because, the pretest
null hypothesis is not rejected with a large probability and conditional on this, the
second stage t-test based on OLS almost certainly rejects the null.

Insert Table IIb about here
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3 Appendix
De�nition of the set �3(1; 2) : De�ne

�3(1; 2) = f(F; �; �; �) :

EFui = EFvi = 0; EFu
2
i = �2u; EFv

2
i = �2v; EFZiZ

0
i = Q =

�
QXX QXZ
QZX QZZ

�
;

for some �2u; �
2
v > 0; pd Q 2 Rk�k; & � 2 Rk2 that satisfy

CorrF (ui; vi) = 1; jj
1=2�=�vjj = 2 for 
 = QZZ �QZXQ
�1
XXQXZ ;

�; � 2 Rk1 ; EFuiZi = EFviZi = 0; EF (u
2
i ; v

2
i ; uivi)ZiZ

0
i = (�

2
u; �

2
v; �u�v�)Q;

EF (u
2
i viZi) = EF (uiv

2
iZi) = 0; var(uivi)=(�

2
u�

2
v) = 1 + 

2
1;

�min(EFZiZ
0
i) �M�1;

EF �jui=�uj2+�; jvi=�vj2+�; juivi=(�u�v)j2+��0 �M; &EF �jjZiui=�ujj2+�; jjZivi=�vjj2+�; jjZijj2+��0 �Mg (3.1)

for some constants � > 0 and M < 1; where �pd�denotes �positive de�nite.�The
restrictions in �3(1; 2) are similar to those in AG (2005c) and comprise exogeneity
restrictions on Z; moment restrictions that ensure the validity of central limit the-
orems and, for simplicity, conditional homoskedasticity is assumed. The additional
conditions

EF (u
2
i viZi) = EF (uiv

2
iZi) = 0 and var(uivi)=(�

2
u�

2
v) = 1 + �

2; (3.2)

where � = CorrF (ui; vi); ensure that under exogeneity and strong instruments b�2SLS�b�OLS is asymptotically uncorrelated with b�OLS. Hausman (1978) exploits the latter
property when deriving the asymptotic variance of b�2SLS � b�OLS when showing that
H !d �

2
1 under strong instruments and exogeneity of y2: Su¢ cient conditions for

(3.2) are, for example, independence of (ui; vi) and Zi and joint normality of (ui; vi)
with zero mean.

Limit distribution of test statistic in Case II: Under sequences fn;hg for
which CorrFn(ui; vi)! � and h = (h1; h2)0 with jh1j =1 the following holds jointly0BB@

n�1=2y02PZ?u=(�u�v)
n�1=2[y02MXu� EFnu

0v]=(�u�v)
n�1y02PZ?y2=�

2
v

n�1y02MXy2=�
2
v

1CCA!d �h =

0BB@
h2s

0
k2
 u;�

h2s
0
k2
 u;� +  uv;�
h22

h22 + 1

1CCA (3.3)

and 0BBBB@
T �2SLS(�0)
T �OLS(�0)
Hnb�2u(b�2SLS)=�2ub�2u(b�OLS)=�2u

1CCCCA!d �h =

0BBBB@
s0k2 u;�
h1
1
1

1� �2=(h22 + 1)

1CCCCA : (3.4)
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3.1 Pretesting Instrument Exogeneity

In this application, the Hausman speci�cation test is used as a pretest to test for
instrument exogeneity. More precisely, the instruments are decomposed into Z =
(W;S); where W has k21 and S has k22 columns and k2 = k21+ k22: The instruments
S are potentially invalid, that is correlated with u, while the instruments W are
assumed to be valid. The Hausman pretest tests whether S are valid instruments. If
the pretest is rejected, then in the second stage, the hypothesis H0 : � = �0 is tested
by using a t-statistic based on only the instruments W . Otherwise, a t-statistic is
used based on all instruments Z. In an application, one could think of W and S as
weak and strong instruments, respectively.
We show that the conditional size of the two-stage test, conditional on the Haus-

man pretest not rejecting the pretest null hypothesis, is 1 asymptotically. Similar
results can be shown for the (unconditional) asymptotic size.
To test orthogonality of the instruments S; two di¤erent versions of a pretest are

being considered. The �rst one, denoted again by Hn; is a standard version of a
Hausman test and the second one, denoted by H4 is the version of the Hausman test
introduced in Hahn, Ham, and Moon (2007) using their notation. In this subsection,
for ease of presentation, there are no included exogenous variables and � is again
scalar. The formulas are

Hn =
n(b�W � b�Z)2bVW � bVZ ;

H4 = e��2u (y1 � y2b�Z)0W [W 0W �W 0y2(y
0
2PZy2)

�1y02W ]
�1W 0(y1 � y2b�Z);e�2u = n�1(y1 � y2b�Z)0MZ(y1 � y2b�Z); (3.5)

where b�W and bVW are de�ned analogously to the 2SLS expressions in (2.5), when
the estimators are based only on the instruments W ; likewise, b�Z and bVZ denote
what was previously denoted by b�2SLS and bV2SLS in (2.5). Similar straightforward
modi�cations to the notation are used for other expressions, e.g. T ��W (�0) and T

��
Z (�0)

are used in place of T ��2SLS(�0) when the statistic is based on instruments W or Z,
respectively. As shown by Hahn, Ham, and Moon (2007), H4 is asymptotically �2

even when instruments are weak. This is not true for Hn, see Staiger and Stock
(1997):
For simplicity, assume k22 = 1; ESi = 0; and ESiWi = 0k21, where 0k denotes a k-

dimensional vector of zeros. That is, there is only one (potentially) strong instrument,
it has mean zero and is uncorrelated with the other instruments. Simply view Si as
the residual of a strong instrument that is being regressed on the instruments Wi:
Denote by fn;hg � � a sequence of parameters with components n;h;1; n;h;2;

and n;h;3; such that

n;h;1 = (jj((EFnZiZ 0i)1=2�n=(EFnv2i )�1=2jj; CorrFn(ui; Si));
n;h;2 = (n;h;1; CorrFn(ui; vi)); n

1=2n;h;1 ! h1; n;h;2 ! h2; and (3.6)
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n;h;3 satisfying similar restrictions to those in (6.14) includingEFnWiSiu
2
i = EFnWiSiu

2
i =

0k21 ; and varFnSiui=(EFnS
2
iEFnu

2
i ) = 1+Corr

2
Fn
(Si; vi). With these assumptions, un-

der any sequence fn;hg; the following convergence result similar to (6.26) holds�
(n�1Z 0Z)�1=2n�1=2((W 0u)0; S 0u� ES 0u)0=�u

(n�1Z 0Z)�1=2n�1=2Z 0v=�v

�
!d

�
 u;h2
 v;h2

�
� N(0;

�
Ik2;h22 h23Ik2
h23Ik2 Ik2

�
) for Ik2;h22 =

�
Ik21 0
0 1 + h222

�
: (3.7)

For simplicity, it is only shown that conditional on the Hausman pretest (based
on Hn or H4) not rejecting the pretest null hypothesis of instrument exogeneity, the
asymptotic size of the two-stage FCV procedure equals 1. It turns out that, to show
this, only requires looking at a particular scenario modelled by

y2 = n�1=4�SS + v

n1=2n;h;1;2 ! h12 �nite (3.8)

for a �xed nonzero number �S:13 The coe¢ cients on the weak instruments are mod-
elled as zero while the coe¢ cient on the strong instrument shrinks to zero at rate
n�1=4. The instruments are strong in the sense that the concentration parameter
goes o¤ to in�nity. Because n1=2n;h;1;2 ! h12 for h12 �nite, the instrument is weakly
endogenous. Model (3.8), when viewed as a sequence fn;hg, has h = (h1; h2) with
h1 = (1; h12) and h2 = (0; 0; h23):
Using (3.7) it follows that under (3.8) for �h = (�1;h; :::; �6;h)

00BBBBBB@

n�1=4y02PZu=(�u�S)
y02PWu=(�u�v)
n�1=2y02PZy2=�

2
S

y02PWy2=�
2
vb�2u(b�Z)=�2ub�2u(b�W )=�2u

1CCCCCCA!d �h =

0BBBBBB@
�S( u;h2;k2 + h12)
 0v;h2;1:k21 u;h2;1:k21

�2S
 0v;h2;1:k21 v;h2;1:k21

1
1� 2h23�2;h=�4;h + (�2;h=�4;h)2

1CCCCCCA ; (3.9)

where  u;h2;k2 denotes the k2-th entry in  u;h2 and  v;h2;1:k21 and  u;h2;1:k21 denote the

�rst k21 entries of  v;h2 and  u;h2, respectively. The statistics
b�W and bVW in Hn are

of higher order than the statistics b�Z and bVZ and the latter hence do not matter for
the asymptotic distribution of Hn in model (3.8). Likewise, in H4; W

0W is of higher
order than W 0y2(y

0
2PZy2)

�1y02W and the latter term can be neglected for the limit
theory. Finally, e�2u=�2u !p 1: By (3.9), we therefore have in model (3.8)0@ T ��Z (�0)

Hn

H4

1A!d �h =

0@  u;h2;k2 + h12
�22;h�4;h=(�

2
4;h � 2h23�2;h�4;h + �22;h)

 0u;h2;1:k21 u;h2;1:k21

1A : (3.10)

13The result of conditional size equal to 1 asymptotically can be shown by looking at many di¤erent
sequences of the nuisance parameters. Here, I pick one particularly simple choice that makes the
analysis easy. Assume, in addition, that �2v = EFnv

2
i and �

2
S = EFnS

2
i are nonzero and do not

depend on n:
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Let �h = (�1;h; �2;h; �3;h)
0: Note that �1;h and �2;h are independent, because �2;h and

�4;h only depend on  v;h2;1:k21 and  u;h2;1:k21 and by (3.7) those random variables are
independent of  u;h2;k2. Therefore, asymptotically, conditional on the pretest based
on Hn not rejecting, T ��Z (�0) is distributed as  u;h2;k2 + h12: Hence, picking h12 large
enough (or small enough for lower one-sided tests), it is clear that the conditional size
of the two-stage test, conditional on the pretest based on Hn not rejecting the pretest
null hypothesis, is 1 asymptotically. The same argument holds for the two-stage test
with the pretest based on H4: The limit distribution of H4 is a chi-squared with k21
degrees of freedom that is independent of  u;h2;k2 + h12:
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TABLE Ia
Finite Sample Null Rejection Probabilities (in %) of Two-stage Test
k1 = 0; � = � = :05; jj�jj =

p
23:6n�1=2; � = :279; based on 50,000 repetitions

n k2 �0 Upper Sym HPre CondlUpper CondlSym
100 1 .49 69.6 62.4 15.4 82.2 73.0
1000 1 .15 78.9 79.4 21.1 100 100
10000 1 .05 78.6 79.1 21.5 100 100
100 5 .22 70.9 63.2 14.0 82.4 73.0
1000 5 .07 80.7 81.0 19.3 100 100
10000 5 .02 80.3 80.7 19.7 100 100
100 20 .11 74.3 66.2 10.3 82.5 73.4
1000 20 .03 85.3 85.4 14.8 100 100
10000 20 .01 84.2 84.3 15.9 100 100

TABLE Ib
Finite Sample Null Rejection Probabilities (in %) of Symmetric

Two-stage Test and 2SLS Based t-Test14

k1 = 0; � = � = :05; n = 1000; k2 = 5; based on 50,000 repetitions
�2n� 0 .05 .1 .2 .3 .4 .5 .6
0 5.1;0.0 34.9;0.0 88.5;0.1 99.9;0.4 99.9;2.4 99.9;8.5 99.9;22.2 99.9;42.6
13 6.7;0.7 35.2;0.8 86.8;1.3 95.4;3.1 91.0;5.9 83.8;10.0 71.6;14.9 53.8;20.6
50 7.8;3.4 34.5;3.5 81.4;3.6 77.1;4.2 50.0;5.3 21.2;6.7 8.0;8.4 7.7;10.2
113 7.8;4.4 32.3;4.4 74.0;4.4 51.6;4.7 15.3;5.1 5.5;5.7 5.7;6.6 6.3;7.5
200 7.4;4.8 29.7;4.7 65.1;4.8 29.2;4.9 5.8;5.0 5.2;5.4 5.3;5.8 5.7;6.4
313 7.1;4.9 27.1;4.9 55.4;4.9 15.1;4.9 5.1;5.1 5.1;5.3 5.3;5.5 5.4;5.9
450 6.8;5.0 24.6;5.0 46.3;4.9 8.8;5.0 5.1;5.1 5.1;5.2 5.2;5.4 5.3;5.6
613 6.5;5.0 22.2;5.0 38.4;5.0 6.5;5.0 5.1;5.1 5.1;5.2 5.2;5.3 5.2;5.4

14For each entry in the table, the �rst component is the �nite sample null rejection probability of
the two-stage test and the second component is the null rejection probability of the t-test based on
2SLS.
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Table IIa15

AsySz(�0) (in %) of Two-stage FCV Test for k2 = 5 and � = :05

Upper Symmetric
�n� .05 .1 .2 .5 .05 .1 .2 .5
.001 97.4 94.8 84.9 55.4 100 94.9 85.0 55.6
.1 93.0 88.4 80.3 51.5 95.2 89.9 80.1 51.0
.5 62.4 52.9 40.6 23.1 58.6 50.0 38.9 21.4
1 30.0 24.2 18.5 10.5 27.0 20.4 15.8 9.9
2 13.5 11.1 8.8 6.5 10.7 9.3 7.7 6.2
10 5.9 5.6 5.4 5.2 5.3 5.3 5.2 5.2

Table IIb
Asymptotic Rejection Probabilities (in %) of Two-stage Test Conditional

on Pretest Not Rejecting for k2 = 5; � = :05; h1 = 5

Upper Symmetric P (Hn < �21(1� �))
h2n� .05 .1 .2 .5 .05 .1 .2 .5 .05 .1 .2 .5
.001 100 100 100 100 99.9 99.9 99.9 99.9 94.9 89.8 79.8 50.3
.1 100 100 100 100 99.9 99.9 99.9 99.9 91.9 85.7 74.7 45.2
.5 99.7 99.8 99.8 99.8 99.4 99.4 99.5 99.5 39.1 27.5 16.9 5.7
1 97.5 97.4 97.3 96.9 94.5 94.8 95.2 94.8 5.7 2.9 1.1 0.2
2 71.7 71.2 71.4 74.5 60.8 59.8 60.3 61.4 0.5 0.2 0.1 0
10 13.0 14.8 14.8 14.3 8.5 10.0 9.0 8.6 0.1 0 0 0

15The results in Tables IIa and IIb are based on R = 50; 000 simulation repetitions. If conditional
events occur less than 100 times, the number of repetitions is increased.

23



Supplementary Appendix
Section 4 discusses power results of the two-stage test and a simple t-test based

on 2SLS for the second experiment in Section 2.3. Section 5 discusses plug-in size-
correction of the two-stage test for the application in Section 2 in the case where
there is a positive lower bound on the strength of the instruments. The size-corrected
version of the two-stage test is obtained by increasing the critical value of the test
appropriately. The size-corrected critical value depends on the estimated strength
of the instruments, using the plug-in methods introduced in AG (2005b). Section
6 derives the asymptotic size properties of the two-stage test for the application
in Section 2 in a situation where weak instruments are allowed for. It is shown
that then the asymptotic size equals 1 and that size-correction is no longer possible.
Section 7 contains additional Monte Carlo evidence. Section 8 contains theoretical
results on subsampling, hybrid (see AG (2005b)), and equal-tailed two-stage tests
where a Hausman pretest is used in the �rst stage. It is shown that the subsampling
versions of the two-stage test have asymptotic size equal to 1 and no size-correction
is possible. Section 9 contains a theoretical treatment of another application of a
Hausman pretest. In particular, the asymptotic size properties of a two-stage test
are investigated when the second stage test-statistic is robust to weak instruments in
the case when the Hausman pretest rejects the pretest null hypothesis of regressor
exogeneity. The asymptotic size of this modi�ed two-stage test is shown to equal 1.

4 Power results

Table Ic, reports power results for the second experiment in Section 2.3. The null
hypothesis is H0 : � = �0 = 0. The true value is � = :1 in the �rst chart of the table
and � = :2 in the second chart of the table. The power of the two tests is virtually
identical for the cases (� � :3 and �2 � 113). If identi�cation and endogeneity are
large enough, the Hausman pretest rejects the pretest null hypothesis of exogeneity
of the regressor, and in the second stage, inference based on 2SLS is used. The power
gains of the two-stage procedure over the one-stage test for all other cases where � > 0
come at the price of size distortion of the two-stage test as documented above. If
� = 0; the two-stage test is by far superior in terms of power and is not size-distorted
in this case. Unfortunately, the researcher does not know whether � = 0 or whether
� > 0 �this is why the pretest is implemented in the �rst place. But if � > 0; the
two-stage procedure is often extremely size-distorted.

5 Plug-in Size Correction

In Section 2.5 it was shown that the two-stage test is size-distorted. The test can
be size-corrected by increasing the critical value c1(1 � �) in (2.8) appropriately.
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In this section, following the work in AG (2005b), I discuss plug-in size-correction
methods for the two-stage test that employ a consistent estimator bn;2 of the nuisance
parameter 2;n = jj(


1=2
n �n=(EFnv

2
i )
�1=2jj: The idea is to use di¤erent critical values

for di¤erent values of bn;2; rather than to use a critical value that is su¢ ciently large
to work uniformly for all 2 2 �2: This yields a more powerful test. De�ne the
estimator

b2;n = jj(b
1=2n b�n=b�v;njj forb�n = (Z?0Z?)�1Z?0y?2 ;b
n = n�1Z?0Z?; andb�2v;n = n�1(y?2 � Z?0b�n)0(y?2 � Z?0b�n)0: (5.11)

Under the technical assumption �2v = o(n) it is easy to show that the estimator
satis�es Assumption N of AG (2005b), namely, bn;2 � n;2 !p 0 under all sequences
fn = (n;1; n;2; n;3) 2 � : n � 1g:
Denote by ch(1� �) the (1� �)-quantile of the distribution J�h in (2.19). De�ne

cvh2(1� �) = sup
h12H1

c(h1;h2)(1� �): (5.12)

The plug-in size-corrected (PSC)-FCV two-stage test, rejects the null hypothesis if
(2.8) holds with c1(1� �) replaced by cvb2;n(1� �):
The following theorem follows from Theorem 2 in AG (2005b).

Theorem 2 If � > 0 and �2v = o(n) then the PSC-FCV test satis�es AsySz(�0) = �:

6 The Weak IV Case

In this section, the asymptotic size properties of the two-stage test are discussed in a
situation where weak instruments are no longer excluded. The weak instrument setup
is interesting in the sense that there are several distinct sources of discontinuities in
the limit distribution of the two-stage test. The �rst source is the correlation of
the regressor and the structural error term, the second one is the potential weakness
of the instruments, and the third one is an interaction term between the two. In
all examples considered in AG (2005a-e) there is only one source of discontinuity.
The asymptotic size of the two-stage test is 1. If instruments are potentially weak,
size-correction of the two-stage test using the plug-in method is not possible.

6.1 Parameter Space

When the strength of the instruments, jj(
1=2�=�vjj; is not bounded away from
zero, the nuisance parameter space � is much more complex. Assume again that
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f(ui; vi; Xi; Zi) : i � ng are i.i.d. with distribution F: De�ne the vector of nuisance
parameters  = (1; 2; 3); 1 = (11; 12; 13); 2 = (21; 22) by

1 = (jj(
1=2�=�vjj; �; 1112) 2 R3; 2 = (11; 12) 2 R2;
and 3 = (F; �; �; �); where

�2u = EFu
2
i ; �

2
v = EFv

2
i ; � = CorrF (ui; vi);


 = QZZ �QZXQ
�1
XXQXZ ; and Q =

�
QXX QXZ
QZX QZZ

�
= EFZiZ

0
i (6.13)

and jj � jj denotes Euclidean norm. The �rst component of 1 measures the strength
of the instruments and the second component the degree of endogeneity of y2:16 The
third component is the product of the �rst two. If n1=211 ! 1; jn1=212j ! 1;
and 2 9 (0; 0) then n1=21112 ! limn1=212 is pinned down. On the other hand, if
n1=211 ! 1; jn1=212j ! 1; and 2 ! (0; 0); the limit of n1=21112 could be any
number in sgn(12)R+;1. In that case, as shown in (6.31), the limit distribution of
the Hausman statistic depends on the limit of n1=21112:
Note that jj(
1=2�=�vjj and � appear in both vectors 1 and 2 because they

in�uence the asymptotic distribution of Tn(�0) �continuously�and �discontinuously�.
Let �1 = f1 2 R3; f11; 12g 2 [0; �]� [�1; 1]; 13 = 1112g for some � < 1:17 For
given 1 2 �1; de�ne �2(1) = f(11; 12)g: De�ne

�3(1) = f(F; �; �; �) :

EFui = EFvi = 0; EFu
2
i = �2u; EFv

2
i = �2v; EFZiZ

0
i = Q =

�
QXX QXZ
QZX QZZ

�
; &

EFuivi=(�u�v) = � for some �2u; �
2
v > 0; pd Q 2 Rk�k; & � 2 Rk2 that

satisfy jj
1=2�=�vjj = 11 for 
 = QZZ �QZXQ
�1
XXQXZ ; � = 12;

�; � 2 Rk1 ; EFuiZi = EFviZi = 0; EF (u
2
i ; v

2
i ; uivi)ZiZ

0
i = (�

2
u; �

2
v; �u�v�)Q;

EF (u
2
i viZi) = EF (uiv

2
iZi) = 0; var(uivi)=(�

2
u�

2
v) = 1 + �

2;

�min(EFZiZ
0
i) �M�1;

EF �jui=�uj2+�; jvi=�vj2+�; juivi=(�u�v)j2+��0 �M; &EF �jjZiui=�ujj2+�; jjZivi=�vjj2+�; jjZijj2+��0 �Mg (6.14)

for some constants � > 0 and M < 1; where �pd�denotes �positive de�nite.�The
restrictions in �3(1) are similar to those in AG (2005c) and comprise exogeneity

16Note that in AG (2005a-e) the speci�cation for  has always been chosen such that when the
components of  times nr diverge to in�nity, we obtain the �standard FCV�asymptotic distribution.
In this example, when n1=2j12j ! 1; y2 is not exogenous. Instead, the �standard�Hausman (1978)
result Hn !d �

2
1 is obtained under n

1=2j12j ! 0 and additional assumptions.
17Note that an upper bound � is imposed on the component 11 = 21 to avoid sequences 21

that diverge to in�nity. Allowing for such sequences would cause unnecessary complications in the
asymptotic theory below. Removing the bound on �; the same asymptotic size results are obtained:
The asymptotic size equals 1 with a bound on � and therefore still equals 1 in the larger model
where � is unbounded.
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restrictions on Z; moment restrictions that ensure the validity of central limit the-
orems and, for simplicity, conditional homoskedasticity is assumed. The additional
conditions

EF (u
2
i viZi) = EF (uiv

2
iZi) = 0 and var(uivi)=(�

2
u�

2
v) = 1 + �

2 (6.15)

ensure that under exogeneity and strong instruments b�2SLS � b�OLS is asymptotically
uncorrelated with b�OLS. Hausman (1978) exploits the latter property when deriving
the asymptotic variance of b�2SLS � b�OLS when showing that H !d �

2
1 under strong

instruments and exogeneity of y2: Su¢ cient conditions for (6.15) are, for example,
independence of (ui; vi) and Zi and joint normality of (ui; vi) with zero mean.
Finally, de�ne the parameter space � as

� = f = (1; 2; 3) : 1 2 �1; 2 2 �2(1); 3 2 �3(1)g: (6.16)

Unlike the de�nition of � in AG (2005a, eq. (5.1)), � does not have a product
structure �1 � �2 in the �rst two components (1; 2) because the third component
in 1 depends on the �rst two and �2 = �2(1) depends on 1:

6.2 Test Statistics and Critical Values

We use slightly di¤erent notation than before. De�ne the partially studentized t-test
statistic

T �l (�) = b�u(b�l)n1=2(b�l � �)=bV 1=2
l (6.17)

for l = OLS and 2SLS. Writing the test as in (6.17) using a partially studen-
tized statistic, simpli�es the asymptotic theory in situations where b�u converges to 0.
Also, for subsampling tests, studentizing is not necessary, see AG (2005c) for further
discussion. De�ne the two-stage test statistic

T �n(�0) = T �OLS(�0)I(Hn � �21(1� �)) + T �2SLS(�0)I(Hn > �21(1� �)); (6.18)

where, again, � is the nominal level of the pretest, I is the indicator function, and
�21(1��) the 1�� quantile of a chi-square random variable with one degree of freedom.
De�ne the two-stage test statistic Tn(�0) as �T �n(�0) or jT �n(�0)j depending on whether
the test is a lower/upper one-sided or a symmetric two-sided test, respectively.
The nominal 1� � standard �xed critical value (FCV) test rejects H0 if

Tn(�0) > c1(1� �)b�u; whereb�u = b�u(b�OLS)I(Hn � �21(1� �)) + b�u(b�2SLS)I(Hn > �21(1� �)); (6.19)

c1(1 � �) = z1��; z1��; and z1��=2 for the upper one-sided, lower one-sided, and
symmetric two-sided test, respectively and z1�� is the 1 � � quantile of a standard
normal distribution.
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6.3 Asymptotic Distributions and Size

The tests above are equivalent to analogous tests de�ned with T �l (�0) and b�u replaced
by

T ��l (�0) = T �l (�0)=�u; and b�u=�u; (6.20)

respectively, where again l = OLS or 2SLS: Note that this also rescales T �n(�0)
to T ��n (�0) = T �n(�0)=�u: The reason for equivalence is that for all the tests above
1=�u scales both the test statistic and the critical value equally. In this subsection,
the asymptotic distribution of the statistics written as in (6.20) are derived. This
simpli�es certain expressions in the asymptotic distributions that arise. Let R+;1 =
fx 2 R;x � 0g [ f+1g and R1 = R [ f�1g: Let

H = fh = (h1; h2) 2 R3+21 : 9 fn = (n;1; n;2; n;3) 2 � : n � 1g
such that n1=2n;1 ! h1 and n;2 ! h2g: (6.21)

Next an exact characterization of the set H is given: With h1 = (h11; h12; h13) and

h2 = (h21; h22) it follows that

H = fh = (h1; h2); (h11; h12) 2 R+;1 �R1; h2 2 H2(h1); h13 2 H13((h11; h12; h2))g;
(6.22)

where H2(h1) = H21(h11)�H22(h12);

H21(h11) =

�
f0g for h11 <1
[0; �] for h11 =1

; H22(h12) =

8<:
f0g for jh12j <1
[0; 1] for h12 =1

[�1; 0] for h12 = �1
; (6.23)

and

H13((h11; h12; h2)) =

8>>>><>>>>:
f0g for h11 <1 and jh12j <1

fh12h21g for h11 =1 and jh12j <1
fh11h22g for h11 <1 and jh12j =1

sgn(h12)R+;1 for h11 = jh12j =1; h21 = h22 = 0

fh12g for h11 = jh12j =1; (h21 6= 0 or h22 6= 0):

(6.24)

Note that except for the case h11 = jh12j = 1; (h21 6= 0 or h22 6= 0) the vector
(h11; h12; h21; h22) uniquely pins down h13 and H13((h11; h12; h2)) is a singleton. Only
in Case II, when h21 = h22 = 0; h13 is not uniquely pinned down and can take on any
value in the set sgn(h12)R+;1:
Let h1 = (h11; h12; h13) and h2 = (h21; h22): There are four di¤erent cases. Case I

has h11 = 1 and jh12j < 1 (and consequently h13 = h12h21), Case II has h11 = 1
and jh12j = 1, Case III has h11 < 1 and jh12j = 1 (and thus h13 = h11h22),
and Case IV has h11 < 1 and jh12j < 1 (and thus h13 = 0). In Case II, when
h21 = h22 = 0, h13 is not determined by the other components in h; in all other cases
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h13 is determined by the other components in h: In Cases I and IV, h22 = 0 and thus
in the limit var(uivi)=(�2u�

2
v) = 1: In Cases III and IV h21 = 0: In Cases I and II, the

instruments are strong while in Cases III and IV they are weak. In Cases I and IV
y2 is (essentially) exogenous while in Cases II and III it is endogenous.

De�nition of fn;hg : For h = (h1; h2) 2 H; let fn;hg � � denote a sequence
of parameters with components n;h;1; n;h;2; and n;h;3; n;h;1 = (n;h;1; n;h;2; n;h;3)

0;
where

n;h;1 = (jj(
1=2n �n=(EFnv
2
i )
�1=2jj; CorrFn(ui; vi); n;h;1n;h;2);


n = EFnZiZ
0
i � EFnZiX

0
i(EFnXiX

0
i)
�1EFnXiZ

0
i;

n;h;2 = n;h;1; n
1=2n;h;1 ! h1; n;h;2 ! h2; and

n;h;3 = (Fn; �n; �n; �n) 2 �3(n;h;1): (6.25)

As Theorem 3 below shows, the highest asymptotic null rejection probability of the
test is realized along some sequence fn;hg: It is therefore enough to study the asymp-
totic rejection rates along sequences fn;hg: Under any sequence fn;hg; the following
convergence result holds0@ (n�1Z?0Z?)�1=2n�1=2Z?0u=�u

(n�1Z?0Z?)�1=2n�1=2Z?0v=�v
n�1=2(u0v � EFnu

0v)=(�u�v)

1A!d

0@  u;h22
 v;h22
 uv;h22

1A
� N(0;

�
Vh22 
 Ik2 0

00 1 + h222

�
) for Vh22 =

�
1 h22
h22 1

�
; (6.26)

where  u;h22 ;  v;h22 2 Rk2 ;  uv;h22 2 R. See AG (2005c, eq. (2.15)) for similar
statements.18

Next the limit distribution of the test statistic T ��n (�0) is derived under sequences
n;h: To do so, (6.26), (6.27), and derivations from AG (2005c, Sections 2.3 and 4.1.2)
are used.
To derive the asymptotic theory, (6.26) and the following convergence results that

hold jointly with (6.26), are used:

n�1(u0u=�2u; v
0v=�2v; u

0v=(�u�v))!p (1; 1; h22); n
�1Z

0
[u:v]!p 0;


�1n (n
�1Z?0Z?)!p Ik2 ; (EFnXiX

0
i)
�1(n�1X 0X)!p Ik1 &

n�1X 0Z � EFnXiZ
0
i !p 0; (6.27)

see AG (2005c, (2.15) and (4.1)). The IV results of the following results are given in
AG (2005c, (2.16)-(2.18)).

18Condition (6.15) in the de�nition of �3(1) ensures that we get the zero entries in the covari-
ance matrix of the asymptotic distribution of ( 0u;h22 ;  

0
v;h22 ;  uv;h22) and also that the (3,3) entry

(��2u ��2v )var(uivi) in the matrix equals 1 + h222.

29



Straightforward but lengthy calculations using (6.26) and (6.27) below yield the
following results for Case I; see AG (2005c) for similar statements. For �h = (�1;h; :::; �4;h)

0;
h = (1; h12; h12h21; h21; 0)

00BB@
n�1=2y02PZ?u=(�u�v)
n�1=2y02MXu=(�u�v)
n�1y02PZ?y2=�

2
v

n�1y02MXy2=�
2
v

1CCA!d �h =

0BB@
h21s

0
k2
 u;0

h21s
0
k2
 u;0 +  uv;0 + h12

h221
h221 + 1

1CCA ; (6.28)

where sk2 2 Rk2 is an arbitrary vector with jjsk2jj = 1. Therefore, for �h =
(�1;h; :::; �5;h)

0

0BBBB@
T ��2SLS(�0)
T ��OLS(�0)
Hnb�2u(b�2SLS)=�2ub�2u(b�OLS)=�2u

1CCCCA!d �h =

0BBBB@
s0k2 u;0

(1 + h221)
�1=2�2;h

(1 + h221)[s
0
k2
 u;0 � h21(1 + h

2
21)

�1�2;h]
2

1
1

1CCCCA (6.29)

by using (6.32).19

In Case II, jointly under fn;hg for h = (1; h12; h13; h21; h22)
0 with jh12j =10BB@

n�1=2y02PZ?u=(�u�v)
n�1=2[y02MXu� EFnu

0v]=(�u�v)
n�1y02PZ?y2=�

2
v

n�1y02MXy2=�
2
v

1CCA!d �h =

0BB@
h21s

0
k2
 u;h22

h21s
0
k2
 u;h22 +  uv;h22
h221

h221 + 1

1CCA : (6.30)

Therefore, as shown below, for �h = (�1;h; :::; �5;h)
0; we have0BBBB@

T ��2SLS(�0)
T ��OLS(�0)
Hnb�2u(b�2SLS)=�2ub�2u(b�OLS)=�2u

1CCCCA!d �h =

0BBBB@
s0k2 u;h22
h12

(s0k2 u;0 � h13)
2

1
1� h222=(h

2
21 + 1)

1CCCCA (6.31)

and again TOLS(�0) goes o¤ to plus or minus in�nity.
Note that if h13 = 1 then Hn goes o¤ to in�nity and asymptotically T ��n (�0) =

T ��2SLS(�0) with probability 1. On the other hand, if h = (1;1; 0; 0; 0)0 it follows
that b�2u(b�OLS)=�2u !p 1; b�2u(b�2SLS)=�2u !p 1; and Hn !d (s

0
k2
 u;0)

2 � �2(1): In

19Because �3;h = (1 + h221)
�1[s0k2 u;0 � h21 uv;0 � h21h12]

2 and s0k2 u;0 � h21 uv;0 � h21h12
� N(�h21h12; 1+ h221); the limit distribution of Hn is �21(h

2
12h

2
21(h

2
21 +1)

�1): Therefore, Hn !d �
2
1

if h12 = 0; that is under exogeneity and strong instruments, we obtain Hausman�s (1978) result as
a subcase. If h21h12 6= 0 the Hausman test has local power.
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particular, the pretest rejects with probability �: If it does not reject, which happens
with probability 1 � �; the second stage test (for the upper and symmetric case)
rejects with probability 1 because T ��OLS(�0) ! 1 (and analogously for lower type
tests by looking at the case h = (1;�1; 0; 0; 0)0). If the pretest rejects, then the
second stage test rejects with probability 50% for upper and lower tests and with
100% for a symmetric test.
To see that Hn !d (s

0
k2
 u;0 � h13)

2 in (6.31), note that from

Hn =

�2v
�2u
(
y02PZ?u

y02PZ?y2
� y02MXu

y02MXy2
)2

b�2u(b�2SLS)
�2u

�2v
y02PZ?y2

� b�2u(b�OLS)
�2u

�2v
y02MXy2

; (6.32)

it follows that up to lower order terms

Hn = n
[n�1=2�1n;h;2;1s

0
k2
 u;h22 � n;h;2;2(h

2
21 + 1)

�1]2

�2n;h;2;1 � (1�
h222
h221+1

) 1
h221+1

=
[s0k2 u;h22 � n1=2n;h;2;1n;h;2;2(h

2
21 + 1)

�1]2

(h221 + 1)
�2(1 + h221 + h221h

2
22)

; (6.33)

where n;h;2;i denotes the i-th element of n;h;2 for i = 1; 2: The denominator in the
second line of (6.33) is always a positive number. If h21 6= 0 or h22 6= 0 (which implies
jn1=2n;h;2;1n;h;2;2j ! 1) then Hn !d 1 follows. If h21 = h22 = 0; then up to lower
order terms Hn = (s

0
k2
 u;0 � n1=2n;h;2;1n;h;2;2)

2:

In Case III, we have jointly under fn;hg for h = (h11; h12; h11h22; 0; h22)
0 with

jh12j =1;0BB@
y02PZ?u=(�u�v)

n�1=2[y02MXu� EFnu
0v]=(�u�v)

y02PZ?y2=�
2
v

n�1y02MXy2=�
2
v

1CCA!d �h =

0BB@
( v;h22 + h11sk2)

0 u;h22
 uv;h22

( v;h22 + h11sk2)
0( v;h22 + h11sk2)
1

1CCA
(6.34)

and therefore,0BBBB@
T ��2SLS(�0)
T ��OLS(�0)
Hnb�2u(b�2SLS)=�2ub�2u(b�OLS)=�2u

1CCCCA!d �h =

0BBBB@
�1;h=�

1=2
3;h

h12
((�1;h=�3;h)� h22)

2=(�5;h=�3;h)
(1� h22�1;h=�3;h)

2 + (1� h222)�
2
1;h=�

2
3;h

1� h222

1CCCCA : (6.35)

In this case, T ��OLS(�0) goes o¤ to plus or minus in�nity. Note that  uv;h22 � N(0; 1+
h222):
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In Case IV, we have jointly under fn;hg for h = (h11; h12; 0; 0; 0)0;0BB@
y02PZ?u=(�u�v)

n�1=2y02MXu=(�u�v)
y02PZ?y2=�

2
v

n�1y02MXy2=�
2
v

1CCA!d �h =

0BB@
( v;0 + h11sk2)

0 u;0
h12 +  uv;0

( v;0 + h11sk2)
0( v;0 + h11sk2)
1

1CCA ; (6.36)

where sk2 is any vector in R
k2 with jjsk2 jj = 1. Therefore, we have0BBBB@

T ��2SLS(�0)
T ��OLS(�0)
Hnb�2u(b�2SLS)=�2ub�2u(b�OLS)=�2u

1CCCCA!d �h =

0BBBB@
�1;h=�

1=2
3;h

h12 +  uv;0
(�21;h=�3;h)=(1 + (�1;h=�3;h)

2)
1 + �21;h=�

2
3;h

1

1CCCCA : (6.37)

Note that asymptotically the OLS-components of Hn are dominated by the 2SLS-
components and do not appear in the asymptotic distribution of Hn:

In all Cases I-IV we then have

T ��n (�0)!d J
��
h ; (6.38)

where J��h ; by de�nition, is the distribution of

���h = �2;hI(�3;h � �21(1� �)) + �1;hI(�3;h > �21(1� �)) (6.39)

and b�u=�u !d Ju;h; (6.40)

where Ju;h; by de�nition, is the distribution of

�u;h = �
1=2
5;h I(�3;h � �21(1� �)) + �

1=2
4;h I(�3;h > �21(1� �)): (6.41)

The distribution Ju;h depends on the pretest nominal size �: For notational simplicity,
this dependence is suppressed. The derivations above imply that Assumption B in
AG (2005a) holds with r = 1=2:
The motivation for the size distortion of the two-stage tests is fully analogous to

the discussion in Subsection 2.5. The next theorem gives an explicit formula for the
asymptotic size AsySz(�0) of the two-stage test of H0 : � = �0 based on Tn(�0) and
FCV. The results apply to upper, lower one-sided, and symmetric two-sided versions
of the test with �h de�ned as �

��
h ;����h ; and j���h j; respectively.

Theorem 3 For upper, lower, and symmetric FCV tests based on Tn(�0) of nominal
size �, the AsySz(�0) equals suph2H P (�h > �u;hc1(1� �)):
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Proof. A straightforward modi�cation of Theorem 3 in AG (2005d) from the
asymptotic con�dence size of con�dence intervals to the asymptotic size of tests gives
the desired result, noting that Assumptions A0 and B0 in AG (2005d) hold. Note
that Theorem 1 in AG (2005a) can not be applied here because the parameter space
does not have a product structure. Assumption A0 holds trivially and Assumption
B0 holds because the result (6.38) that has been veri�ed under sequences fn;hg also
holds under subsequences wn of n: �
Note that the asymptotic sizes depend on the pretest size �: For notational sim-

plicity, this dependence is suppressed. Note that the results do not depend on k1:
For � = � = :05 and k2 = 5; evaluation of the formulas imply that AsySz = 1 for all
versions of the two-stage tests considered. As argued above, the conditional size of
the tests, conditional on the Hausman pretest not rejecting, is 1.
Table IIc contains information on the asymptotic size of the above tests when

k2 = 5 and � = � = :05: Here and in the tables below, only results on upper and
symmetric tests are reported. Results for lower and equal-tailed tests are virtually
identical to the upper and symmetric ones, respectively. Table IIc also contains results
on the maximum asymptotic null rejection probabilities of the two-stage test when
the maximum is only taken over h values that conform with the restrictions imposed
by Cases I-IV. Table IIc shows that asymptotic null rejection probabilities equal to 1
occur in a wide array of parameter combinations that include the cases of weak and
strong instruments and the case of weak and strong endogeneity of the regressor y2:

Table IIc20

Maximal Null Rejection Probabilities of Two-stage FCV Test for Cases I-IV and
AsySz(�0) for k2 = 5 and � = � = :05

TypenCase I II III IV AsySz(�0)
Upper 97.4 97.5 100 99.9 100
Symmetric 100 100 100 100 100

7 Finite Sample Results

In this section, the results of a small Monte Carlo study are reported that re�ect the
asymptotic results from Sections 2 and 6. The study shows that size distortion of
the two-stage test occurs for a wide array of parameter combinations by modelling
sequences of parameter values that fall into each of the four cases, Case j for j 2
fI; :::; IV g; considered above.
20The results in this table are based on R = 50; 000 simulation repetitions. In columns 2-5, the

maximum null rejection probabilities are given for upper and symmetric tests, where the maximum
is taken over a �ne grid of h vectors that satisfy the restrictions imposed by the particular Case
considered. For example, Case I has h11 =1 and h12 �nite. The maximum is taken over a �ne grid
of h12 2 R and h21 2 [0; �] values. The constant � is taken as 1000:
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The model considered is intentionally simple. The asymptotic results do not
depend on k1; the number of included exogenous variables, and therefore I take k1 = 0:
I also take only one instrument k2 = 1. The nominal sizes of the pretest and the second
stage test are � = � = :05: The vector (ui; vi; Zi) is i.i.d. normal with zero mean and
unit variances and Zi is independent of ui and vi:
The parameters Corr(ui; vi) = � and � are modelled as functions of the sample

size n: More precisely, for Case I, let � = 10n�1=2; � = n�1=4: For Case II, consider
� = n�1=4; � = n�1=4; for Case III, let � = n�1=4; � = 10n�1=2; and for Case IV, let
� = 10n�1=2; � = 10n�1=2: Two additional cases, Case I�and Case II�will be de�ned
below. Various values of n are considered, namely n 2 f100; 1000; 10000; 100000g:
Table Id provides �nite sample null rejection probabilities of the two-stage test,

rejection probabilities of the pretest, and conditional rejection probabilities of the
two-stage test conditional on the pretest not rejecting the pretest null hypothesis.
Only results for upper and symmetric tests are reported because the lower and equal-
tailed results are fully analogous. The same column headings as in Table Id are used,
namely �Upper�and �Sym�for the �nite sample null rejection probabilities for upper
and symmetric two-stage tests, �HPre� for the pretest null rejection probabilities,
and �CondlUpper�and �CondlSym�for the conditional rejection probabilities. The
charts I-IV, I�, and IV�state the results for Cases I-IV described above and Cases I�
and II�described below.

Insert Table Id about here

The simulation results re�ect well the asymptotic �ndings and show that extreme
size distortion of the two-stage test is a common situation that covers situations in
which the instrument is weak or strong and endogeneity is weak or strong. The
conditional results seem to indicate that the main cause of size distortion is the
failure of the Hausman pretest to reject the pretest null hypothesis in situations
where the pretest null is �locally�violated. In these situations, the resulting second
stage t-statistic based on the OLS estimator rejects with very high probabilities.
Actually, the conditional rejection probability equals 100% for all cases considered
with n � 1000:
If the Case II setup is modelled as � = n�1=3:5 and � = n�1=3:5 (instead of � = n�1=4

and � = n�1=4), a case not reported in Table Id, then h13 = 0 and the discussion
below (6.31) predicts that the problem of overrejection becomes more severe. Indeed,
for n = 100000, � = :04; and � = :04 the simulated null rejection probabilities for the
upper and symmetric two-stage tests are 94.0% and 96.4%, respectively.
There are however situations where the overrejection of the two-stage test is not

as severe or where there is no overrejection at all. For example, in a Case I situation,
where � = 10n�1=2 and � = 1 identi�cation is strong and endogeneity is weak.
Because Hn !d �

2
1(h

2
12h

2
21(h

2
21 + 1)

�1) in this situation, the Hausman pretest has
power against the local alternative and with high percentage a t-statistic based on
2SLS is used in the second stage. See chart I�in Table Id. Also, in a Case II situation
where � = :2 and � = 1; it follows that h13 =1 and Hn !1: Thus, asymptotically
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in the second stage a t-statistic based on the 2SLS is used with probability 1 that
rejects with probability �: Chart II� in Table Id shows that the �nite sample null
rejection probabilities are very close to 5% in this situation. In the setup of charts
I�and II�, where the two-stage procedure has correct null rejection probabilities, a
one-stage procedure based on a 2SLS t-statistic would of course also have correct null
rejection probabilities. In addition, the one-stage procedure would have correct null
rejection probabilities in charts I and II, whereas the two-stage procedure is extremely
size distorted.

8 Subsampling, Hybrid, and Equal-Tailed Tests

This section contains theoretical results on subsampling, hybrid (see AG (2005b)), and
equal-tailed two-stage tests where a Hausman pretest is used in the �rst stage in the
case where weak instruments are allowed for. The asymptotic size of the subsampling
versions of the two-stage test is 1. A priori, it is not clear that subsampling versions of
the two-stage test have asymptotic size equal to 1 in weak instrument scenarios. Note
that, for example, in the linear IV model a two-sided symmetric con�dence interval
based on inverting a t-statistic using normal FCVs has asymptotic con�dence size
equal to zero, but has virtually correct asymptotic con�dence size for subsampling
critical values, see Dufour (1997) and AG (2005c) for details.
In this section, subsampling and hybrid critical values are de�ned. The latter are

introduced and discussed in AG (2005b). Also, critical values for equal-tailed FCV,
subsampling, and hybrid tests are discussed.
For subsampling and hybrid tests, let b denote the subsample size, which de-

pends on n: The number of di¤erent subsamples of size b is denoted by qn: With
i.i.d. observations, there are qn = n!=((n � b)!b!) di¤erent subsamples of size b: Let
fT �n;b;j(�0) : j = 1; :::; qng be subsample statistics that are de�ned exactly as T �n(�0)
in (6.18) is de�ned, but are based on subsamples of the data of size b rather than
the full sample. De�ne fTn;b;j(�0) : j = 1; :::; qng in the obvious way: The blocksize b
satis�es b!1 and b=n! 0: The empirical distribution of fTn;b;j(�0) : j = 1; :::; qng
is

Un;b(x) = q�1n

qnX
j=1

1(Tn;b;j(�0) � x): (8.42)

The nominal 1 � � upper and lower one-sided and symmetric two-sided subsample
tests reject H0 if Tn(�0) > cn;b(1 � �); where cn;b(1 � �) is the 1 � � quantile of
Un;b(x):

21

21The subsample statistics are evaluated at the null value �0 and, hence, satisfy Assumption Sub2
of AG (2005a). Evaluating them at b�n is generally not recommended because b�n is not a consistent
estimator of �0 when the IVs are weak. See Guggenberger and Wolf (2004). Under Assumption
Sub2, Assumption G2 in AG (2005a) holds trivially.
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The nominal 1� � hybrid test is de�ned to reject H0 if

Tn(�0) > maxfcn;b(1� �); c1(1� �)b�ug: (8.43)

Finally, equal-tailed tests are de�ned. A nominal level � (2 (0; 1=2)) equal-tailed
t-test rejects H0 when

Tn(�0) > c1��=2 or Tn(�0) < c�=2; (8.44)

where c1�� = c1(1� �) for FCV tests, c1�� = cn;b(1� �) for subsampling tests and
c1��=2 = maxfcn;b(1��=2); c1(1��=2)g and c�=2 = minfcn;b(�=2); c1(�=2)g for the
hybrid test: The exact size, ExSzn(�0); of the equal-tailed t-test is

ExSzn(�0) = sup
2�

�
P�0;(Tn(�0) > c1��=2) + P�0;(Tn(�0) < c�=2)

�
: (8.45)

The asymptotic size of the test is then again AsySz(�0) = lim supn!1ExSzn(�0):

Similar to AG (2005d), de�ne

De�nition of fwn;g;h : n � 1g: For g = (g1; g2) 2 R51; and h = (h1; h2) 2 R51
with g2 = h2; let fwn;g;h = (wn;g;h;1; wn;g;h;2; wn;g;h;3) : n � 1g denote a sequence
of parameters in � for which w1=2n wn;g;h;1 ! h1; b

1=2
wn wn;g;h;1 ! g1; wn;g;h;2 ! h2; if

such a sequence exists.

By de�nition, a sequence fwn;g;h : n � 1g also is of the form fwn;h : n � 1g:
The index set of the asymptotic distributions of Twn(�0) and Twn;bwn ;j(�0) under

sequences fwn;g;h : n � 1g is denoted by GH: By de�nition,

GH = f(g; h) 2 R51 �R51 : 9 a subsequence fwng and
a sequence fwn;g;h : n � 1gg: (8.46)

Note that the set GH may depend on the relative size of b with respect to n: In fact,
it does here, see below.
Let ch(1 � �) be the 1 � � quantile of Jh; where Jh is de�ned as J��h ;�J��h ; and

jJ��h j; respectively, and J��h is de�ned on top of 6.39. The next theorem gives formulas
for the asymptotic sizes of subsampling and hybrid two-stage tests of H0 : � = �0.

Theorem 4 For upper, lower, and symmetric tests based on Tn(�0) of nominal size
�, the subsampling and hybrid test have asymptotic sizes AsySz(�0) equal to

sup
(g;h)2GH

[1� Jh(cg(1� �))];

sup
(g;h)2GH

P (�h > maxfcg(1� �); �u;hc1(1� �)g);
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respectively. The asymptotic sizes AsySz(�0) for subsampling, FCV, and hybrid equal-
tailed test equal

sup
(g;h)2GH

[1� Jh(cg(1� �=2)) + Jh(cg(�=2))];

sup
h2H

P (�h > �u;hc1(1� �=2) or �h < �u;hc1(�=2));

sup
(g;h)2GH

P (�h > maxfcg(1� �=2); �u;hc1(1� �=2)g or �h < minfcg(�=2); �u;hc1(�=2)g):

Again for notational simplicity, the possible dependence on � is suppressed in the
notation. The proof of the above theorem follows as a straightforward modi�cation
of Theorem 3 in AG (2005d).
The set GH can be written as [j2JGHj for j 2 fI; II; III; IV g; where GHj is

the subset of elements (g; h) in GH for which h satis�es the restriction of Case j. For
j = I; h11 =1; jh12j <1; and

GHI = f(1; h12; h12h21; h21; 0)� (1; 0; 0; h21; 0);h12 2 R & h21 2 (0; �]g
[f(1; h12; 0; 0; 0)� (h11; 0; 0; 0; 0);h12 2 R & h11 2 R+;1g: (8.47)

The characterization ofGHII depends on the relative sizes of b and n: For example,
let w1=2n wn;g;h;1 ! h1 = (1;1; h13) for 0 < h13 < 1 and h = (h1; (0; 0)): In

particular, w1=2n wn;g;h;1;1wn;g;h;1;2 ! h13; which implies that wn;g;h;1;1 or wn;g;h;1;2 is

at most of order w�1=4n . If bwn = w
1=3
n then for (g; h) 2 GH with h1 = (1;1; h13) it

is possible that (g11; g12) = (1;1); on the other hand, if bwn = w
1=5
n then necessarily,

one component of (g11; g12) equals 0. One could characterize GH for various choices
of b but this is not necessary here. For the purpose here, it is enough to �nd a subset
of GHII whose de�nition is not a¤ected by the particular choice of b; and on which
the size of the two-stage test is 1. The setgGHII = f(1; h12; h12; h21; h22)

2; jh12j =1; h21 2 (0; �]; & h22 2 sgn(h12)(0; 1]g
[f(1; h12; h12; h21; 0)� (1; g12; g12h21; h21; 0); jh12j =1; h21 2 (0; �]; & g12 2 sgn(h12)R+;1g
[f(1; h12; h12; 0; h22)� (g11; h12; g11h22; 0; h22); jh12j =1; h22 2 sgn(h12)(0; 1]; & g11 2 R+;1g

(8.48)

is always contained in GHII :
For j = III; h11 <1; jh12j =1; and

GHIII = f(h11; h12; h11h22; 0; h22)� (0; h12; 0; 0; h22);h11 � 0 & h22 2 sgn(h12)(0; 1]g
[f(h11; h12; 0; 0; 0)� (0; g12; 0; 0; 0);h11 � 0 & g12 2 sgn(h12)R+;1g: (8.49)

For j = IV; h11 <1; jh12j <1; and

GHIV = (R+ �R� f0g3)� f0g5: (8.50)
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Table IId contains information on the asymptotic size of the above tests when
k2 = 5 and � = � = :05: Only results on subsampling upper and symmetric tests are
reported. Results for lower and equal-tailed tests are virtually identical to the upper
and symmetric ones, respectively, and FCV results have been reported earlier already.
The asymptotic size of all tests equals 1. Note that the results do not depend on k1:
In the rows, �Case I�,...,�Case IV�, the maximal null rejection probabilities are

reported over the sets GHI ; gGHII ; GHIII ; and GHIV , respectively. For each column,
the quantity AsySz(�0) is bounded from below by the maximum of the entries in this
column in the rows above. Table IId shows that asymptotic null rejection probabilities
equal to 1 occur in a wide array of parameter combinations that include the cases
of weak and strong instruments and the case of weak and strong endogeneity of the
regressor y2: A priori, it is not clear that subsampling versions of the two-stage test
have asymptotic size equal to 1. Note that, for example, in the linear IV model a two-
sided symmetric con�dence interval based on inverting a t-statistic has asymptotic
con�dence size equal to zero when based on normal critical values but has virtually
correct asymptotic con�dence size for subsampling critical values, see Dufour (1997)
and AG (2005c) for details.

Table IId22

Maximal Null Rejection Probabilities of Subsampling Two-stage Test for Cases I-IV
and AsySz(�0) for k2 = 5 and � = � = :05

TypenCase I II III IV AsySz(�0)
Upper 97.4 100 100 99.9 100
Symmetric 99.7 100 100 100 100

The results for subsampling tests immediately yield analogous results for m out of
n bootstrap tests under the condition that m2=n! 0; where n and m are the sample
size and the bootstrap blocksize, see AG (2005a) for a more detailed discussion of
this point.

9 Additional Application

In order to show that the asymptotic size distortion of the two-stage test in (2.7) is
not primarily caused by the potential weakness of the instruments, this subsection
studies the asymptotic size properties of a test based on a modi�cation of the test
statistic in (2.7) for the application in Section 2 that employs a second stage test
statistic that is robust to weak instruments if the exogeneity hypothesis is rejected
in the �rst stage. Speci�cally, the member Tg of the class of similar test statistics,
22The results in this table are based on R = 50; 000 simulation repetitions.
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introduced in Moreira�s (2001) Example 2, that is robust to weak instruments, is
used. Let

T �n(�0) = T �OLS(�0)I(Hn � �21(1� �)) + T �(�0)I(Hn > �21(1� �));

T �(�) = (n�1�0Z?0Z?�)�1=2�0n�1=2Z?0(y?1 � y?2 �): (9.51)

De�ne the two-stage test statistic Tn(�0) as �T �n(�0) or jT �n(�0)j depending on whether
the test is a lower/upper one-sided or a symmetric two-sided test, respectively.23

De�ne a modi�ed estimator for the variance of u as

b�u = b�u(b�OLS)I(Hn � �21(1� �)) + b�u(�0)I(Hn > �21(1� �)): (9.52)

As above in (6.20), consider rescaled versions of the test statistic. Instead of T �(�0)
and b�u(�), T ��(�0) = T �(�0)=�u and b�u(�)=�u are used.
Jointly with the results in (6.29), (6.31), (6.35), and (6.37) we have in Cases I-IV

under the null, T ��(�0)!d s
0
k2
 u;h22 and b�2u(�0)=�2u !p 1: In all Cases I-IV, let �h be

de�ned as above with its �rst component replaced by s0k2 u;h22 and let �h be de�ned
as above with the �fth component replaced by 1:With these modi�cations, the result
T ��n (�0)!d J

��
h in (6.38) and the results in Theorem 3 still hold.

Table IIe contains information on the maximal null rejection probabilities in Cases
I-IV of the tests in this subsection when k2 = 5 and � = � = :05: Only results for
upper and symmetric FCV and subsampling tests are reported because lower and
equal-tailed tests and hybrid tests have essentially the same size properties. Table IIe
shows that AsySz(�0) = 1 for all types of FCV and subsampling tests. The maximal
null rejection probabilities essentially equal 1 on each of the subsets de�ned by Cases
I-IV. Therefore, use of a robust second stage statistic in the case where the Hausman
pretest rejects the null hypothesis, does not alleviate the problem of size distortion.

Table IIe24

Maximal Null Rejection Probabilities of Two-stage Test in (9.51) for Cases I-IV and
AsySz(�0) for k2 = 5 and � = � = :05

23To avoid additional subindices, the same notation, T �n(�0); is used for both statistics in (9.51)
and (2.7). Similarly, in (9.52), the same notation, b�u; is used for the modi�ed variance estimator as
was used in (2.8). The same is true for �h and other quantities.
The second stage test statistic T �(�) is an infeasible version of the similar statistic Tg in Example

2 in Moreira (2001) with g � �; because � is unknown. The goal here is to establish that a robust
second stage statistic - in the case where the Hausman pretest rejects - does not solve the size
distortion problem of the two stage test. Using g � b�, where b� is the restricted maximum likelihood
estimator of � when the structural parameter vector is �xed at the null values, or g = e; where e is a
k2 vector of ones, provide feasible alternatives. However, it is more di¢ cult to handle the asymptotic
results in these latter cases because the result T ��(�0) !d s

0
k2
 u;h22 would no longer hold jointly

with the results in (6.29), (6.31), (6.35), and (6.37): a di¤erent �direction� sk2 would arise in this
case that depends on �: This would unnecessarily complicate the evaluation by simulation of the
formulas in the asymptotic size results of Theorem 3.
24The results in this table are based on R = 50; 000 simulation repetitions.
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Upper Symmetric
Sub FCV Sub FCV

Case I 97.4 97.4 99.9 100
Case II 100 97.5 100 100
Case III 100 99.8 100 100
Case IV 99.8 99.8 99.9 100
AsySz(�0) 100 99.8 100 100
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TABLE Ic25

Finite Sample Power of Symmetric Two-stage Test and 2SLS Based
t-Test

� = :1; �0 = 0; k1 = 0; � = � = :05; n = 1000; k2 = 5; based on 50,000 repetitions
�2n� 0 .05 .1 .2 .3 .4 .5 .6
0 88.2;0.0 99.6;0.1 99.9;0.4 99.9;1.8 99.9;6.2 99.9;16.0 99.9;32.2 99.9;52.0
13 88.0;2.3 98.2;3.6 97.7;5.0 95.2;8.8 91.0;14.1 83.8;19.8 71.8;26.0 56.3;32.4
50 88.3;9.9 95.7;11.1 91.8;12.4 76.0;15.2 49.4;18.0 25.6;20.8 21.2;24.0 23.5;27.1
113 89.6;18.5 93.3;19.6 84.5;20.5 50.4;22.7 25.4;24.9 25.5;27.1 27.3;29.1 29.0;31.2
200 91.3;29.6 91.0;30.4 76.3;31.2 36.9;32.7 33.6;34.3 35.0;35.9 36.4;37.5 37.8;39.0
313 93.0;42.7 88.7;43.2 68.8;43.7 44.8;44.8 45.5;45.8 46.5;46.8 47.5;47.8 48.4;48.9
450 94.5;56.0 87.0;56.3 67.5;56.6 57.4;57.2 58.0;57.8 58.5;58.3 59.1;58.9 59.7;59.4
613 95.8;69.3 87.0;69.3 73.1;69.4 69.7;69.5 70.0;69.6 70.2;69.8 70.5;70.0 70.8;70.1

TABLE Ic (continued)
Finite Sample Power of Symmetric Two-stage Test and 2SLS Based

t-Test
� = :2; �0 = 0; k1 = 0; � = � = :05; n = 1000; k2 = 5; based on 50,000 repetitions
�2n� 0 .05 .1 .2 .3 .4 .5 .6
0 99.8;0.3 99.9;0.7 99.9;1.5 99.9;4.7 99.9;12.0 99.9;24.7 99.9;41.8 99.9;60.0
13 98.8;8.5 98.4;10.8 97.6;13.5 95.2;19.4 91.0;25.8 83.8;32.0 72.9;38.3 61.4;44.4
50 97.9;30.9 95.7;32.5 91.6;34.0 76.0;37.1 53.2;40.0 43.3;42.9 44.1;45.7 46.5;48.3
113 97.8;57.3 93.4;57.8 84.6;58.3 63.2;59.3 60.7;60.4 61.7;61.4 62.7;62.4 63.8;63.4
200 97.3;80.3 92.0;80.1 84.3;80.0 80.5;79.9 80.6;79.8 80.7;79.7 80.8;79.6 81.0;79.7
313 98.2;93.7 95.2;93.5 93.7;93.3 93.4;92.8 93.1;92.4 92.6;92.0 92.6;91.6 92.4;91.3
450 99.3;98.6 98.6;98.4 98.5;98.4 98.3;98.1 98.2;97.9 98.1;97.7 97.9;97.5 97.8;97.2
613 99.9;99.8 99.8;99.8 99.8;99.7 99.7;99.7 99.7;99.6 99.6;99.5 99.6;99.4 99.5;99.3

Table Id26

Finite Sample Rejection Probabilities for the Test in Section 2
k1 = 0; k2 = 1; � = � = :05

I. Case I setup: � = 10n�1=2; � = n�1=4

n � � Upper Sym HPre CondlUpper CondlSym
100 .32 1 25.3 22.1 86.6 100 100
1000 .18 .32 60.7 61.3 39.3 100 100
10000 .10 .10 84.5 86.5 15.6 100 100
100000 .06 .03 92.3 94.7 8.1 100 100

II. Case II setup: � = n�1=4; � = n�1=4

25For each entry in the table, the �rst component is the �nite sample null rejection probability of
the two-stage test and the second component is the null rejection probability of the t-test based on
2SLS.
26The simulation results are based on R = 10; 000 simulation repetitions.
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n � � Upper Sym HPre CondlUpper CondlSym
100 .32 .32 88.3 83.2 4.5 92.7 87.2
1000 .18 .18 86.5 87.6 13.5 100 100
10000 .10 .10 84.5 86.5 15.6 100 100
100000 .06 .06 83.9 86.3 16.2 100 100

III. Case III setup � = n�1=4; � = 10n�1=2

n � � Upper Sym HPre CondlUpper CondlSym
100 1.00 .32 30.7 27.7 59.2 74.1 63.1
1000 .32 .18 60.8 62.7 39.2 100 100
10000 .10 .10 84.5 86.5 15.6 100 100
100000 .03 .06 92.6 94.9 7.7 100 100

IV. Case IV setup: � = 10n�1=2; � = 10n�1=2

n � � Upper Sym HPre CondlUpper CondlSym
100 1 1 7.7 5.3 100 - -
1000 .32 .32 12.5 13.5 88.2 100 100
10000 .10 .10 84.5 86.5 15.6 100 100
100000 .03 .03 95.4 97.7 5.5 100 100

I�. Case I setup: � = 10n�1=2; � = 1
n � � Upper Sym HPre CondlUpper CondlSym
100 1 1 7.7 5.3 100 - -
1000 1 .32 4.9 4.8 100 - -
10000 1 .10 5.0 4.9 100 - -
100000 1 .03 5.1 4.8 100 - -

II�. Case II setup: � = :2;� = 1
n � � Upper Sym HPre CondlUpper CondlSym
100 1 .2 31.1 24.0 25.4 41.7 29.6
1000 1 .2 4.9 5.1 99.5 100 100
10000 1 .2 5.0 4.9 100 - -
100000 1 .2 5.1 4.8 100 - -
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