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Abstract

This paper studies nonparametric estimation of conditional moment restrictions in which
the generalized residual functions can be nonsmooth in the unknown functions of endogenous
variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose
a class of penalized sieve minimum distance (PSMD) estimators, which are minimizers of a
penalized empirical minimum distance criterion over a collection of sieve spaces that are dense
in the infinite dimensional function parameter space. Some of the PSMD procedures use slowly
growing finite dimensional sieves with flexible penalties or without any penalty; others use large
dimensional sieves with lower semicompact and/or convex penalties. We establish their consis-
tency and the convergence rates in Banach space norms (such as a sup-norm or a root mean
squared norm), allowing for possibly non-compact infinite dimensional parameter spaces. For
both mildly and severely ill-posed nonlinear inverse problems, our convergence rates in Hilbert
space norms (such as a root mean squared norm) achieve the known minimax optimal rate for
the nonparametric mean IV regression. We illustrate the theory with a nonparametric additive
quantile IV regression. We present a simulation study and an empirical application of estimating
nonparametric quantile IV Engel curves.
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1 Introduction

This paper is about estimation of the unknown functions h0(·) ≡ (h01(·), ..., h0q(·)) satisfying the

following conditional moment restrictions:

E[ρ(Y,Xz; θ0, h01(·), ..., h0q(·))|X] = 0, (1)

where Z ≡ (Y ′, X ′
z)

′, Y is a vector of endogenous (or dependent) variables, Xz is a subset of

the conditioning (or instrumental) variables X and the conditional distribution of Y given X is

not specified. ρ() is a vector of generalized residuals with functional forms known up to a finite

dimensional parameter θ0 and functions of interest h0(·) ≡ (h01(·), ..., h0q(·)), where each function

h0�(·), � = 1, ..., q may depend on different components of X and Y , and some could depend on

θ0 and h0�′(·) for �′ �= �. In this paper ρ() may depend on the unknown (θ0, h0) nonlinearly and

pointwise nonsmoothly.

Model (1) extends the semi/nonparametric conditional moment framework previously consid-

ered in Chamberlain (1992), Newey and Powell (2003) (henceforth NP) and Ai and Chen (2003)

(AC) to allow for the generalized residual function ρ(Z; θ, h) to be pointwise non-smooth with re-

spect to the unknown parameters of interest (θ, h). As already illustrated by these papers, many

semi/nonparametric structural models in economics are special cases of (1). For instance, it in-

cludes the model of a shape-invariant system of Engel curves with endogenous total expenditure

of Blundell, Chen and Kristensen (2007) (BCK), which itself is an extension of the nonparametric

mean instrumental variables regression (NPIV) analyzed in NP, Darolles, Fan, Florens and Renault

(2010) (DFFR) and Hall and Horowitz (2005) (HH):

E[Y1 − h0(Y2)|X] = 0. (2)

Model (1) also nests the quantile instrumental variables (IV) treatment effect model of Cher-

nozhukov and Hansen (2005) (CH), and the nonparametric quantile instrumental variables regres-

sion (NPQIV) of Chernozhukov, Imbens and Newey (2007) (CIN) and Horowitz and Lee (2007)

(HL):

E[1{Y1 ≤ h0(Y2)}|X] = γ ∈ (0, 1), (3)

where 1{·} denotes the indicator function. Additional examples include a partially linear quantile

IV regression E[1{Y1 ≤ h0(Y2) + Y ′
3θ0}|X] = γ, a single index quantile IV regression E[1{Y1 ≤

h0(Y ′
2θ0)}|X] = γ, an additive quantile IV regression E[1{Y3 ≤ h01(Y1) + h02(Y2)}|X] = γ and

many more.

Most asset pricing models also imply the conditional moment restriction (1), in which the gen-

eralized residual function ρ(Z; θ, h) takes the form of some asset returns multiplied by a pricing

kernel (or stochastic discount factor). Different asset pricing models correspond to different func-

tional form specifications of the pricing kernel up to some unknown parameters (θ, h). For instance,
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Chen and Ludvigson (2009) study a consumption-based asset pricing model with an unknown habit

formation. Their model is an example of (1), in which the generalized residual function ρ(Z; θ, h)

is highly nonlinear, but smooth, in the unknown habit function h. Many durable goods and invest-

ment based asset pricing models with flexible pricing kernels also belong to the framework (1); see,

e.g., Gallant and Tauchen (1989), Bansal and Viswanathan (1993). In some asset pricing models

involving cash-in-advance constraints, or in which the underlying asset is a defaultable bond, the

pricing kernels (hence the generalized residual functions) are not pointwise smooth in (θ, h). See,

e.g., Arellano (2008) for an economic general equilibrium model and Chen and Pouzo (2009b, 2010)

for an econometric study of pricing default risk.

As demonstrated in NP, AC, CIN and Chen, Chernozhukov, Lee and Newey (2010) (CCLN),

the key difficulty of analyzing the semi/nonparametric model (1) is not the presence of the unknown

finite dimensional parameter θ0, but the fact that some of the unknown functions h0�(·), � = 1, ..., q

depend on the endogenous variable Y .1 Therefore, in this paper we shall focus on the nonparametric

estimation of h0(), which is identified by the following conditional moment restrictions:

E[ρ(Y,Xz;h01(·), ..., h0q(·))|X] = 0, (4)

where h0(·) ≡ (h01(·), ..., h0q(·)) depends on Y and may enter ρ() nonlinearly and possibly non-

smoothly.2 Suppose that h0(·) belongs to a function space H, which is an infinite dimensional

subset of a Banach space with norm || · ||s, such as the space of bounded continuous functions

with the sup-norm ||h||s = supy |h(y)|, or the space of square integrable functions with the root

mean squared norm ||h||s =
√

E[h(Y )2]. We are interested in consistently estimating h0(·) and

determining the rate of convergence of the estimator under || · ||s.
In this paper, we first propose a broad class of penalized sieve minimum distance (PSMD) es-

timation procedures for the general model (4). All of the PSMD procedures minimize a possibly pe-

nalized consistent estimate of the minimum distance criterion, E {E[ρ(Z;h(·))|X]′W (X)E[ρ(Z;h(·))|X]},
over sieve spaces (Hn) that are dense in the infinite dimensional function space H.3 Some of the

PSMD procedures use slowly growing finite dimensional sieves (i.e., dim(Hn) → ∞, dim(Hn)/n →
0), with flexible penalties or without any penalty; others use large dimensional sieves (i.e., dim(Hn)/n →
const. > 0), with lower semicompact4 and/or convex penalties. Under relatively low level sufficient

conditions and without assuming || · ||s−compactness of the function parameter space H, we es-

tablish consistency and the convergence rates under norm || · ||s for these PSMD estimators. Our
1In some applications the presence of the parametric part θ0 in the semi/nonparametric model (1) aids the

identification of the unknown function h0; see, e.g., Chen and Ludvigson (2009) and CCLN.
2See Chen and Pouzo (2009a) for semiparametric efficient estimation of the parametric part θ0 for the general

semi/nonparametric model (1) with possibly nonsmooth residuals. Their results depend crucially on the consistency
and convergence rates of the nonparametric estimation of h0, which are established in this paper.

3In this paper, W denotes a weighting matrix, n is the sample size, and dim(Hn) is the dimension of the sieve
space.

4See Section 2 for its definition.
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convergence rates in the case when H is an infinite dimensional subset of a Hilbert space coincide

with the known minimax optimal rate for the NPIV example (2).

The existing literature on estimation of nonparametric IV models consists of two separate ap-

proaches: the sieve minimum distance (SMD) method and the function space Tikhonov regularized

minimum distance (TR-MD) method. The SMD procedure minimizes a consistent estimate of the

minimum distance criterion over some finite dimensional compact sieve space; see, e.g., NP, AC,

CIN and BCK. The TR-MD procedure minimizes a consistent penalized estimate of the minimum

distance criterion over the whole infinite dimensional function space H, in which the penalty func-

tion is of the classical Tikhonov type (e.g.,
∫
{h(y)}2dy or

∫
{∇rh(y)}2dy with ∇rh being the r-th

derivative of h); see, e.g., DFFR, HH, HL, Carrasco, Florens and Renault (2007) (CFR), Cher-

nozhukov, Gagliardini and Scaillet (2010) (CGS) and the references therein. When h0 enters the

residual function ρ(Z; h0) linearly such as in the NPIV model (2), both SMD and TR-MD estima-

tors can be computed analytically. But, when h0 enters the residual function ρ(Z; h0) nonlinearly,

such as in the NPQIV model (3), the numerical implementations of TR-MD estimators typically

involve some finite dimensional sieve approximations to functions in H.5 For example, in the sim-

ulation study of the NPQIV model (3), HL approximate the unknown function h0(·) by a Fourier

series with a large number of terms; hence they could ignore the Fourier series approximation error

and view their implemented procedure as a solution to the infinite dimensional TR-MD problem. In

another simulation study and empirical illustration of the NPQIV model, CGS use a small number

of Chebyshev polynomial series terms to approximate h0 in order to compute their function space

TR-MD estimator. Although one could numerically compute the SMD estimator using finite di-

mensional compact sieves (equation (9)), simulation studies in BCK and Chen and Pouzo (2009a)

indicate that it is easier to compute a penalized SMD estimator using finite dimensional linear

sieves (equation (8)).6 In summary, some versions of our proposed PSMD procedures have already

been numerically implemented in the existing literature, but their asymptotic properties have not

been established for the general model (4).

There are some published papers on the asymptotic properties of the SMD and the TR-MD

procedures for the linear NPIV model (2).7 For example, see NP for consistency of the SMD

estimator in a (weighted) sup-norm; BCK for the convergence rate in a root mean squared norm of

the SMD estimator; HH, DFFR, and Gagliardini and Scaillet (2010) (GS) for the convergence rate

in a root mean squared norm of their kernel based TR-MD estimators; HH and Chen and Reiss

(2010) (CR) for the minimax optimal rate in a root mean squared norm for the NPIV model.

There are currently only a few published papers on the asymptotic properties of any nonpara-
5This is because numerical optimization algorithms cannot handle infinite dimensional objects in H.
6This is because a constraint optimization problem is typically more difficult to compute than the corresponding

unconstraint optimization problem.
7See NP, DFFR, BCK, CFR, Severini and Tripathi (2006), D’Haultfoeuille (2010), Florens, Johannes and van

Bellegem (2010) and others for identification of the NPIV model.
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metric estimators of h0 when it could enter the conditional moment restrictions (4) nonlinearly.

Assuming that the function space H is compact (in || · ||s) and that the residual function ρ(Z, h(·))
is pointwise smooth in h, NP established the || · ||s−consistency of the SMD estimator, and AC

derived some convergence rate of the SMD estimator in a pseudo metric weaker than || · ||s. For

the NPQIV example (3),8 CIN obtained the consistency (in a sup-norm) of the SMD estimator

when the function space H is sup-norm compact, and HL established the convergence rate (in a

root mean squared norm) of a kernel based TR-MD estimator. In a recent working paper on the

same NPQIV model, CGS present the consistency (in a root mean squared norm) and pointwise

asymptotic normality of their kernel based TR-MD estimator. To the best of our knowledge, there

is no published work that establishes the convergence rate (in || · ||s) of any estimator of h0 for the

general model (4).

The original SMD procedures of NP, AC and CIN can be viewed as PSMD procedures using

slowly growing finite dimensional linear sieves (dim(Hn) → ∞, dim(Hn)/n → 0) with lower semi-

compact penalty functions; hence our theoretical results immediately imply the consistency and the

rates of convergence (in || · ||s) of the original SMD estimators for the general model (4), without

assuming the || · ||s−compactness of the function space H. Our PSMD procedures using large di-

mensional linear sieves (dim(Hn)/n → const. > 0) and lower semicompact and/or convex penalties

are computable extensions of the current TR-MD procedures for the NPIV and the NPQIV models

to all conditional moment models (4), and allow for much more flexible penalty functions.

In Section 2, we first explain the technical hurdle associated with nonparametric estimation of

h0() for the general model (4), and then present the PSMD procedures. Section 3 provides sufficient

conditions for consistency in a Banach space norm || · ||s and Section 4 derives the convergence rate.

Under relatively low level sufficient conditions, Section 5 presents the rate of convergence in a Hilbert

norm ||·||s and shows that the rate for the general model (4) coincides with the optimal minimax rate

for the NPIV model (2). Throughout these sections, we use the NPIV example (2) to illustrate key

sufficient conditions and various theoretical results. Section 6 specializes the general theoretical

results to a nonparametric additive quantile IV model: E[1{Y3 ≤ h01(Y1) + h02(Y2)}|X] = γ ∈
(0, 1) where h0 = (h01, h02). In Section 7, we first present a simulation study of the NPQIV

model (3) to assess the finite sample performance of the PSMD estimators. We then provide an

empirical application of nonparametric quantile IV Engel curves using data from the British Family

Expenditure Survey (FES). Based on our simulation and empirical studies, the PSMD estimators

using slowly growing finite dimensional linear sieves with flexible penalties are not only easy to

compute but also perform well in finite samples. Section 8 briefly concludes. Some regularity

conditions and general lemmas are stated in the appendix. The online supplemental material
8See CH, CIN and CCLN for identification of the NPQIV model; also see Chesher (2003), Matzkin (2007) and

the references therein for identification of nonseparable models.
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contains all the proofs, as well as a brief review of some functional spaces and sieve bases.

Notation. In this paper, we denote fA|B(a; b) (FA|B(a; b)) as the conditional probability density

(cdf) of random variable A given B evaluated at a and b and fAB(a, b) (FAB(a, b)) the joint density

(cdf) of the random variables A and B. Denote Lp(Ω, dμ) as the space of measurable functions

with ||f ||Lp(Ω,dμ) ≡ {
∫
Ω |f(t)|pdμ(t)}1/p < ∞, where Ω is the support of the sigma-finite positive

measure dμ (sometimes Lp(dμ) and ||f ||Lp(dμ) are used for simplicity). For any positive sequences

{an}∞n=1 and {bn}∞n=1, an 
 bn means that there exist two constants 0 < c1 ≤ c2 < ∞ such that

c1an ≤ bn ≤ c2an; an = Op(bn) means that limc→∞ lim supn Pr (an/bn > c) = 0; and an = op(bn)

means that for all ε > 0, limn→∞ Pr (an/bn > ε) = 0. We use “wpa1” to denote “with probability

approaching one”. For any vector-valued A, we let A′ denote its transpose and ||A||W ≡
√

A′WA

for its weighted norm, although sometimes we also use |A| = ||A||I ≡
√

A′A without too much

confusion. We use Hn ≡ Hk(n) to denote sieve spaces.

2 Penalized Sieve Minimum Distance Estimation

Suppose that observations {(Y ′
i , X ′

i)}n
i=1 are strictly stationary ergodic, that for each i, the dis-

tribution of (Y ′
i , X ′

i) is the same as that of (Y ′, X ′) with support Y × X , where Y is a subset

of Rdy and X is a compact subset of Rdx . Denote Z ≡ (Y ′, X ′
z)

′ ∈ Z ≡ Y × Xz and Xz ⊆ X .

Suppose that the unknown distribution of (Y ′, X ′) satisfies the conditional moment restriction (4),

where ρ : Z × H → Rdρ is a measurable mapping known up to a vector of unknown functions,

h0 ∈ H ≡ H1 × · · · × Hq, with each Hj , j = 1, ..., q, being a space of real-valued measurable func-

tions whose arguments vary across indices. We assume that the parameter space H is a non-empty,

closed, possibly non-compact infinite dimensional subset of H ≡ H1×· · ·×Hq, a separable Banach

space with norm ||h||s ≡
∑q

�=1 ||h�||s,�.
Denote by mj(X, h) ≡

∫
ρj(y,Xz, h(·))dFY |X(y) the conditional mean function of ρj(Y, Xz, h(·))

given X for j = 1, ..., dρ. Then mj is a (nonlinear) mapping (or operator) from H into L2(fX) such

that mj(·, h0) is a zero function in L2(fX) for all j = 1, ..., dρ. (Note that the functional form

of mj(X, h) is unknown since the conditional distribution FY |X is not specified.) Let m(X,h) ≡(
m1(X, h), ...,mdρ(X,h)

)′ and W (X) be a positive-definite finite weighting matrix for almost all

X. Under the assumption that model (4) identifies h0 ∈ H, we have

E
[
||m(X,h)||2W

]
≥ 0 for all h ∈ H; and = 0 if and only if h = h0. (5)

One could construct an estimator of h0 ∈ H by minimizing a sample analog of E
[
||m(X, h)||2W

]
over the function space H. Unfortunately, when h0(·) depends on the endogenous variables Y ,

the “|| · ||s−identifiable uniqueness” condition for || · ||s−consistency might fail in the sense that

for any ε > 0 there are sequences {hk}∞k=1 in H with lim infk→∞ ||hk − h0||s ≥ ε > 0 but
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lim infk→∞ E
[
||m(X, hk)||2W

]
= 0; that is, the metric ||h − h0||s is not continuous with respect

to the population criterion function E
[
||m(X,h)||2W

]
, and the problem is ill-posed.9

When E
[
||m(X,h)||2W

]
is lower semicontinuous on (H, ||·||s) and h0 ∈ H is its unique minimizer,

one way to ensure the “|| · ||s−identifiable uniqueness” is to assume that the parameter space H is

a compact subset of (H, || · ||s); see, e.g., NP, CIN, AC and BCK for imposing such a compactness

condition to establish || · ||s−consistency of their SMD estimators.

In many economic applications, although the functional forms of structural functions h0 (such

as Engel curves or cost functions) are unknown, they are believed to be Hölder continuous or to

have continuous derivatives. Thus, it is reasonable to assume that the parameter space H is a

subset of a Hölder space (denoted as Λα) or a Sobolev space (denoted as Wα
p ) with α > 0,10 but,

it could be a non-compact subset of a space of smooth functions. For example, when applying the

NPIV (2) or the NPQIV (3) model to estimate an Engel curve h0, it is sensible to assume that

h0 belongs to H = {h ∈ Wα
2 (fY2) : supy |h(y)| ≤ 1, ||∇αh||L2(fY2

) < ∞} for some α ≥ 1, which

is a smooth function space, but is not ‖·‖L2(fY2
) −compact nor ‖·‖L∞(leb) −compact. To allow for

wider applicability, in this paper we assume that the parameter space H is an infinite dimensional,

possibly non-compact subset of a separable Banach space (H, || · ||s).11

In order to design a consistent estimator for h0 ∈ H with possibly non-compact parameter space

H we need to tackle two issues. First, we need to replace the unknown population minimum distance

criterion, E
[
||m(X, h)||2W

]
, by a consistent empirical estimate. Second, we need to regularize the

problem to make the metric ||h − h0||s continuous with respect to the criterion function.

2.1 PSMD estimators

In this paper we consider a class of (approximate) penalized sieve minimum distance (PSMD)

estimators, ĥn, defined as:

Q̂n(ĥn) ≤ inf
h∈Hn

Q̂n(h) + η̂n, with η̂n ≥ 0, η̂n = Op(ηn), (6)

and Q̂n(h) ≡ 1
n

n∑
i=1

m̂(Xi, h)′Ŵ (Xi)m̂(Xi, h) + λnP̂n(h), (7)

where {ηn}∞n=1 is a sequence of positive real values such that ηn = o(1), m̂(X,h) is any nonparamet-

ric consistent estimator of m(X, h); Hn ≡ H1
n×···×Hq

n is a sieve parameter space whose complexity

(denoted as k(n) ≡ dim(Hn)) grows with sample size n and becomes dense in the original function

space H; λn ≥ 0 is a penalization parameter such that λn → 0 as n → ∞; the penalty P̂n() ≥ 0
9An alternative way to explain the ill-posed problem is that the inverse of the unknown (nonlinear) mapping

mj : (H, ‖·‖s) → (L2(fX), ‖·‖L2(fX )) is not continuous for at least one j = 1, ..., dρ.
10See Chen (2007) and the online supplemental material for definitions of Hölder space, Sobolev space, Besov space

and other widely used function spaces in economics.
11A subset of (H, || · ||s) is ‖·‖s −compact if and only if it is closed and totally bounded (in ‖·‖s). It is well known

that a closed and bounded subset of (H, || · ||s) is ‖·‖s −compact if and only if it is finite dimensional.
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is an empirical analog of a non-random penalty function P : H → [0, +∞); Ŵ (X) is a consistent

estimator of W (X) that is introduced to address potential heteroskedasticity. In this paper we

assume that each of m̂(·, h), Ŵ (·) and P̂n(h) is jointly measurable in the data {(Y ′
i , X ′

i)}n
i=1 and

the parameter h ∈ H, and hence the approximate PSMD estimator ĥn exists.12

The sieve space Hn in the definition of the PSMD estimator (6) could be finite-dimensional,

infinite-dimensional, compact or non-compact (in ‖·‖s). Commonly used finite-dimensional linear

sieves (also called series) take the form:

Hn =

⎧⎨⎩h ∈ H : h(·) =
k(n)∑
k=1

akqk(·)

⎫⎬⎭ , k(n) < ∞, k(n) → ∞ slowly as n → ∞, (8)

where {qk}∞k=1 is a sequence of known basis functions of a Banach space (H, ‖·‖s) such as wavelets,

splines, Fourier series, Hermite polynomial series, etc.13 Commonly used linear sieves with con-

straints can be expressed as:

Hn =

⎧⎨⎩h ∈ H : h(·) =
k(n)∑
k=1

akqk(·), Rn(h) ≤ Bn

⎫⎬⎭ , Bn → ∞ slowly as n → ∞, (9)

where the constraint Rn(h) ≤ Bn reflects prior information about h0 ∈ H such as smooth-

ness properties. The sieve space Hn in (9) is finite dimensional and compact (in ‖·‖s) if and

only if k(n) < ∞ and Hn is closed and bounded; it is infinite dimensional and compact (in

‖·‖s) if and only if k(n) = ∞ and Hn is closed and totally bounded. For example, Hn ={
h ∈ H : h(·) =

∑k(n)
k=1 akqk(·), ‖h‖s ≤ log(n)

}
is compact if k(n) < ∞, but it is not compact

if k(n) = ∞.

The penalty function P () in the definition of the PSMD estimator (6) is typically convex and/or

lower semicompact (i.e., the set {h ∈ H : P (h) ≤ M} is compact in (H, ‖·‖s) for all M ∈ [0,∞)),

and reflects prior information about h0 ∈ H. For instance, when H ⊆ Lp(dμ), 1 ≤ p < ∞,

a commonly used penalty function is P̂n(h) = ||h||ps = ||h||pLp(dμ) for a known measure dμ, or

P̂n(h) = ||h||pLp(dμ̂) for an empirical measure dμ̂ when dμ is unknown. When H is a mixed weighted

Sobolev space {h : ||h||2L2(dμ) + ||∇rh||pLp(leb) < ∞}, 1 ≤ p < ∞, r ≥ 1, we can let || · ||s be the

L2(dμ)−norm, and P̂n(h) = ||h||2L2(dμ̂) + ||∇kh||pLp(leb) or P̂n(h) = ||∇kh||pLp(leb) for some k ∈ [1, r].

Our definition of PSMD estimators includes many existing estimators as special cases. For

example, when η̂n = 0, λn = 0 and Hn given in (9) is a finite-dimensional (i.e., k(n) < ∞) compact

sieve space of H, the (approximate) PSMD estimator (6) becomes solution to:

1
n

n∑
i=1

||m̂(Xi, ĥn)||2
Ŵ

≤ inf
h∈Hn

1
n

n∑
i=1

||m̂(Xi, h)||2
Ŵ

,

12In this paper we implictly assume that ĥn is measurable with respect to the underlying probability. If not, its
asymptotic properties remain valid after being stated under the outer measure. See Remark A.1 in the appendix for
sufficient conditions to ensure measurability.

13See Chen and Shen (1998), Chen (2007) and the references therein for additional examples of linear sieves (or
series), and nonlinear sieves.
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which is the original SMD estimator proposed in NP, AC and CIN. When η̂n = 0, λnP̂n() > 0,

P̂n() = P () and Hn = H (i.e., k(n) = ∞), the (approximate) PSMD estimator (6) becomes solution

to:
1
n

n∑
i=1

||m̂(Xi, ĥn)||2
Ŵ

+ λnP (h) ≤ inf
h∈H

{
1
n

n∑
i=1

||m̂(Xi, h)||2
Ŵ

+ λnP (h)

}
,

which is a function space penalized minimum distance estimator. When the penalty P (h) is of the

classical Tikhonov type (e.g.,
∫
{h(y)}2dy or

∫
{∇rh(y)}2dy), such an estimator is also called the

TR-MD estimator. See DFFR, HH, CFR, GS, HL and CGS for their TR-MD estimators for the

NPIV and NPQIV models.

To solve the ill-posed inverse problem, the PSMD procedure (6) effectively combines two types

of regularization methods: the regularization by sieves and the regularization by penalization. The

family of PSMD procedures consists of two broad subclasses: (1) PSMD using slowly growing

finite dimensional sieves (k(n)/n → 0), with small flexible penalty (λnP () ↘ 0 fast) or zero

penalty (λnP () = 0); (2) PSMD using large dimensional sieves (k(n)/n → const. > 0), with

positive penalty (λnP () > 0) that is convex and/or lower semicompact. The first subclass of

PSMD procedures mainly follows the regularization by sieves approach, while the second subclass

adopts the regularization by penalizing criterion function approach.

The class of PSMD procedures using slowly growing finite dimensional sieves (k(n)/n → 0)

solves the ill-posed inverse problem by restricting the complexity of the sieve spaces (and the

sieve tuning parameter k(n)), while imposing very mild restrictions on the penalty. It includes

the original SMD procedure as a special case by letting λn = 0 and Hn given in (9) be a finite

dimensional compact sieve. However, it also allows for λn ↘ 0 fast with Hn given in (8) being a

finite dimensional linear sieve (i.e., series), which is computationally easier than the original SMD

procedure.

On the other hand, the class of PSMD procedures using large dimensional sieves solves the ill-

posed inverse problem by imposing strong restrictions on the penalty (and the penalization tuning

parameter λn > 0), but mild restrictions on the sieve spaces. It includes the function space TR-MD

procedure as a special case by setting Hn = H (i.e., k(n) = ∞) and λn ↘ 0 slowly. Moreover, it

also allows for large but finite dimensional (k(n) < ∞) linear sieves with k(n)/n → const. > 0 and

λn ↘ 0 slowly, which is computationally much easier than the function space TR-MD procedure.

When n−1
∑n

i=1 ||m̂(Xi, h)||2
Ŵ

is convex in h ∈ H and the space H is closed convex (but not

compact in || · ||s), it is computationally attractive to use a convex penalization function λnP̂n(h)

in h, and a closed convex sieve space Hn (e.g., Rn is a positive convex function in the definition of

the sieve space (9)). To see why, let clsp(Hn) denote the closed linear span of Hn (in || · ||s). Then

the PSMD procedure (6) is equivalent to

Q̂n(ĥn) + νnRn(ĥn) ≤ inf
h∈clsp(Hn)

{
Q̂n(h) + νnRn(h)

}
+ Op(ηn), (10)
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where Rn(ĥn) ≤ Bn and νn ≥ 0 is such that νn(Rn(ĥn) − Bn) = 0; see Eggermont and LaRiccia

(2001). Therefore, in this case we can recast the constrained optimization problem that repre-

sents our PSMD estimator as an unconstrained problem with penalization νnRn(h). For most

applications, it suffices to have either λnP̂n(h) > 0 or νnRn(h) > 0.

Even when n−1
∑n

i=1 ||m̂(Xi, h)||2
Ŵ

is not convex in h, our Monte Carlo simulations indicate

that it is still much easier to compute PSMD estimators using finite dimensional linear sieves (i.e.,

series (8)) with small penalization λn > 0.

Which class of PSMD estimators to use? In most economics applications, the unknown

structural function h0 is Hölder continuous or has continuous derivatives or satisfies some shape

restrictions (such as monotonicity or concavity). To estimate such smooth functions for the model

(4), we recommend to apply either the class of PSMD estimators using slowly growing finite di-

mensional sieves with/without small flexible penalty (k(n) → ∞ slowly, k(n)/n → 0; λn ↘ 0 fast

or λn = 0), or the class of PSMD estimators using faster growing finite dimensional sieves with

big lower semicompact penalty (k(n) → ∞ faster, k(n)/n → 0; λn = O (k(n)/n)). Our subsequent

theoretical results and simulation studies indicate that these two classes of estimators perform well

in finite samples, and can achieve the optimal rate of convergence under weaker assumptions than

the class of PSMD estimators using large dimensional sieves with big lower semicompact penalty

(k(n)/n → const. > 0; λn ↘ 0 slowly) can. Among these two, the subclass of PSMD estimators

using slowly growing finite dimensional linear sieves (i.e., series (8)) with small flexible penalty is

our favorite since it is easier to compute and performs very well in finite samples.

2.2 Nonparametric estimation of m(·, h) and W (·)

To compute the PSMD estimator ĥn defined in (6), nonparametric estimators of the conditional

mean function m(·, h) ≡ E[ρ(Z, h)|X = ·] and of the weighting matrix W (·) are needed. Without

an analysis of asymptotic efficiency in nonparametric estimation of h0, one typically let Ŵ (·) =

W (·) = I (identity), and m̂(·, h) be any nonparametric least squares (LS) estimator of m(·, h) such

as the ones based on kernel, local linear, sieve (or series) methods.

In this paper, we establish the asymptotic properties of the PSMD estimator ĥn, allowing for

any nonparametric estimators of m(·, h) and W (·) that satisfy a mild regularity assumption 3.3.

All the commonly used nonparametric consistent estimators such as the kernel estimators and the

series LS estimators can be shown to satisfy assumption 3.3. For the sake of concreteness, in the

empirical application and Monte Carlo simulations we use a series LS estimator

m̂(X, h) = pJn(X)′(P ′P )−
n∑

i=1

pJn(Xi)ρ(Zi, h), (11)

where {pj()}∞j=1 is a sequence of known basis functions that can approximate any square integrable

function of X well, Jn is the number of approximating terms such that Jn → ∞ slowly as n → ∞,
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pJn(X) = (p1(X), ..., pJn(X))′, P = (pJn(X1), ..., pJn(Xn))′, and (P ′P )− is the generalized inverse

of the matrix P ′P . See NP, AC, BCK, CIN, CR and others for more details and applications of

this estimator.

3 Consistency

In the appendix, we provide a general consistency result (Lemma A.1) for any approximate penal-

ized sieve extremum estimator, allowing for both well-posed and ill-posed problems, as well as time

series observations. Here, in the main text we present consistency of various PSMD estimators (6).

We first impose three basic conditions on identification, sieve spaces, penalty functions and

sample criterion function.

Assumption 3.1. (identification, sieves) (i) W (X) is a positive-definite finite weighting ma-

trix for almost all X; (ii) E[ρ(Z, h0)|X] = 0, and ‖h0 − h‖s = 0 for any h ∈ (H, ‖·‖s) with

E[ρ(Z, h)|X] = 0; (iii) {Hk : k ≥ 1} is a sequence of non-empty closed subsets satisfying Hk ⊆
Hk+1 ⊆ H, and for any h ∈ H, there is Πnh ∈ Hk(n) such that ||Πnh − h||s = o(1); (iv)

E[||m(X, Πnh0)||2W ] = o(1).

Assumption 3.2. (penalty) either (a) or (b) or (c) holds: (a) λn = 0; (b) λn > 0, λn = o(1),

suph∈Hk(n)
|P̂n(h)−P (h)| = Op(1) and |P (Πnh0)−P (h0)| = O(1) with P : H → [0,∞), P (h0) < ∞;

(c) λn > 0, λn = o(1), suph∈Hk(n)
|P̂n(h) − P (h)| = op(1) and |P (Πnh0) − P (h0)| = o(1) with

P : H → [0,∞), P (h0) < ∞.

Let {η0,n}∞n=1 and {δ̄2
m,n}∞n=1 be sequences of positive real values that decrease to zero as n → ∞.

Let HM0

k(n) ≡ {h ∈ Hk(n) : λnP (h) ≤ λnM0} for a large but finite M0 such that Πnh0 ∈ HM0

k(n) and

that ĥn ∈ HM0

k(n) with probability arbitrarily close to one for all large n. Given assumptions 3.2 and

3.3(i), such a M0 always exists (see Lemma A.2 in the appendix).

Assumption 3.3. (sample criterion) (i) 1
n

∑n
i=1 ||m̂(Xi, Πnh0)||2

Ŵ
≤ c0E

[
||m(X,Πnh0)||2W

]
+

Op(η0,n) for some η0,n = o(1) and a finite constant c0 > 0; (ii) 1
n

∑n
i=1 ||m̂(Xi, h)||2

Ŵ
≥ cE

[
||m(X,h)||2W

]
−

Op(δ̄2
m,n) uniformly over HM0

k(n) for some δ̄2
m,n = o(1) and a finite constant c > 0.

Under assumption 3.1(ii) (global identification) and assumption (iii) (definition of sieves), as-

sumption 3.1(iv) is satisfied if E[||m(X, h)||2W ] is continuous at h0 (under ‖·‖s). Assumptions 3.2(b)

and (c) are trivially satisfied when Hk(n) = H and P̂n = P . Assumption 3.2(c) is a stronger ver-

sion of assumption 3.2(b). Under assumption 3.1(iii) and P (h0) < ∞, a sufficient condition for

|P (Πnh0) − P (h0)| = o(1) is that P (·) is continuous at h0.

Assumption 3.3 is satisfied by most nonparametric estimators of m(·, h) and W (·). Note that

assumption 3.3(i) only needs to hold at Πnh0. Lemma C.2 in the appendix shows that the series

LS estimator m̂(X, h) defined in (11) satisfies assumption 3.3.
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Under the above regularity conditions, one can show that the PSMD estimator ĥn defined in

(6) approximately solves the optimization problem:

inf
h∈Hn

{
E
[
||m(X, h)||2W

]
+ λnP (h)

}
+ Op(ηn) for some sequence ηn = o(1),

which has a solution, provided that the set
{
h ∈ Hn : E

[
||m(X, h)||2W

]
+ λnP (h) ≤ M

}
is com-

pact in some topology T (that may be weaker than the norm ‖·‖s −topology on H) for all

M ∈ [0,∞). Further, when E
[
||m(X, h)||2W

]
has a unique minimizer (h0) on (H, || · ||s), we

establish T −consistency of ĥn under choices of smoothing parameters k(n) ≡ dim(Hn) and λn,

which in turn leads to ‖·‖s −consistency of ĥn under some assumptions over the penalty and the

smoothing parameters. This explains why one could obtain ‖·‖s −consistency of ĥn by regularizing

either the sieve space Hn or the penalty λnP (·) > 0 or both, without the need to assume the

‖·‖s −compactness of the whole parameter space H.

In the following, for easy reference, we present consistency results for PSMD estimators using

slowly growing finite dimensional sieves (k(n)/n → 0) and PSMD estimators using large (k(n)/n →
const. > 0) or infinite dimensional sieves in separate subsections.

3.1 PSMD using slowly growing finite dimensional sieves

Denote g (k(n), ε) ≡ inf
h∈HM0

k(n)
:||h−h0||s≥ε

E
[
‖m(X,h)‖2

W

]
for any ε > 0.

Theorem 3.1. Let ĥn be the PSMD estimator with λn ≥ 0, ηn = O(η0,n), and assumptions 3.1,

3.2(a)(b) and 3.3 hold. Suppose that for each integer k < ∞, dim(Hk) < ∞, Hk is bounded and

E
[
‖m(X, h)‖2

W

]
is lower semicontinuous on (Hk, || · ||s). Let k(n) < ∞ and k(n) → ∞ as n → ∞.

If

max
{
η0,n, E

[
||m(X,Πnh0)||2W

]
, δ̄2

m,n, λn

}
= o (g (k(n), ε)) for all ε > 0, (12)

then ||ĥn − h0||s = op(1), and P (ĥn) = Op(1) if λn > 0.

Theorem 3.1 applies to a PSMD estimator using slowly growing finite dimensional compact

sieves, allowing for no penalty (λn = 0), or any flexible penalty P (h) with λn > 0. It is clear

that, when λn = 0, lim infk(n)→∞ g (k(n), ε) = infh∈H:||h−h0||s≥ε E
[
‖m(X, h)‖2

W

]
. Thus, given

assumption 3.1(ii) (identification), for all ε > 0, lim infk(n)→∞ g (k(n), ε) > 0 if (H, ||·||s) is compact;

otherwise lim infk(n)→∞ g (k(n), ε) could be zero. When (H, || · ||s) is compact, restriction (12)

becomes max
{
η0,n, E

[
||m(X, Πnh0)||2W

]
, δ̄2

m,n, λn

}
= o (1) and is trivially satisfied. Theorem 3.1

(with λn = 0) not only recovers the consistency results of NP, AC and CIN when (H, || · ||s) is

compact, but also implies consistency of the original SMD estimator when H is a class of smooth

functions that is not compact in || · ||s.
NPIV example (2): For this model, m(X, h0) = E[Y1 − h0(Y2)|X] = 0 and m(X, h) =

E[Y1 − h(Y2)|X] = E[h0(Y2) − h(Y2)|X]. Let W = I (identity weighting), H = {h ∈ L2(fY2) :
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||∇rh||2L2(leb) < ∞} (for some r > 0), which is not compact in || · ||s = || · ||L2(fY2
). Under very

mild regularity conditions on the conditional density of Y2 given X, E[·|X] is a compact operator

mapping from H ⊆ L2(fY2) to L2(fX) (see, e.g., BCK), which has a singular value decomposition

{μk; φ1k, φ0k}∞k=1, where {μk}∞k=1 are the singular numbers arranged in non-increasing order (μk ≥
μk+1 ↘ 0), {φ1k()}∞k=1 and {φ0k()}∞k=1 are eigenfunctions in L2(fY2) and L2(fX) respectively. Let

Hn = {h ∈ H : h(y2) =
∑k(n)

k=1 akφ1,k(y2), ||∇rh||L2(leb) ≤ log(n)} and λnP (h) = λn||∇rh||2L2(leb) for

λn ≥ 0. Note that E[‖m(X,h)‖2
W ] is continuous on (Hn, ‖·‖s) and

E
[
||m(X, Πnh0)||2W

]
= E[(E[Πnh0(Y2) − h0(Y2)|X])2] =

∞∑
j=k(n)+1

μ2
j |〈h0, φ1,j〉L2(fY2

)|2

≤ μ2
k(n)+1

∞∑
j=k(n)+1

|〈h0, φ1,j〉L2(fY2
)|2 = μ2

k(n)+1||Πnh0 − h0||2s.

Since Hn is finite dimensional, bounded and closed, it is compact; thus there is an element h∗
n ∈ Hn

and ||h∗
n − h0||s ≥ ε such that h∗

n = arg minh∈Hn:||h−h0||s≥ε E[(E[h(Y2) − h0(Y2)|X])2]. Then

g (k(n), ε) ≥ E[(E[h∗
n(Y2) − h0(Y2)|X])2] =

∞∑
j=1

μ2
j |〈h∗

n − h0, φ1,j〉L2(fY2
)|2

≥ μ2
k(n)

k(n)∑
j=1

|〈h∗
n − h0, φ1,j〉L2(fY2

)|2 = μ2
k(n)||h∗

n − Πnh0||2s.

Note that ||h∗
n − Πnh0||2s is bounded below by a constant c(ε) > 0 for all k(n) large enough;

for otherwise there is a large k(n) such that ||h∗
n − Πnh0||2s < (ε/3)2 and thus ||h∗

n − h0||s ≤
ε/3 + ||Πnh0 − h0||s < 2ε/3 < ε. This, however, contradicts the fact that ||h∗

n − h0||s ≥ ε

for all k(n). Thus E
[
||m(X,Πnh0)||2W

]
/g (k(n), ε) ≤ const. × ||Πnh0 − h0||2s = o(1). By letting

max
{
η0,n, δ̄2

m,n, λn

}
/g (k(n), ε) = o(1), Theorem 3.1 is applicable hence ||ĥn − h0||L2(fY2

) = op(1).

3.2 PSMD using large or infinite dimensional sieves

In this subsection we present consistency results for PSMD estimators using large or infinite di-

mensional sieves, depending on the properties of the penalty function.

3.2.1 Lower semicompact penalty

Theorem 3.2. Let ĥn be the PSMD estimator with λn > 0, ηn = O(η0,n), and assumptions

3.1, 3.2(b) and 3.3 hold. Suppose that P () is lower semicompact and E[‖m(X,h)‖2
W ] is lower

semicontinuous on (H, ‖·‖s). If

max
{
η0,n, E

[
||m(X, Πnh0)||2W

]}
= O (λn) , (13)

then: ||ĥn − h0||s = op(1) and P (ĥn) = Op(1).
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The lower semicompact penalty implies that the effective parameter space, {h ∈ H : P (h) ≤ Mn}
with Mn ↗ ∞ slowly, is compact in the ‖·‖s −topology, and hence converts an ill-posed problem to

a well-posed one.14 Theorem 3.2 applies to the class of PSMD estimators with any positive lower

semicompact penalty functions, allowing for k(n) = ∞ or k(n)/n → const. ≥ 0. To apply this

theorem, it suffices to choose the penalization parameter λn > 0 to ensure restriction (13).

NPIV example (2): For this model with identity weighting W = I, E[‖m(X, h)‖2
W ] is ob-

viously lower semicontinuous on (H, ‖·‖s) with a norm ||h||s = ||h||L2(Rd,fY2
) or = supy∈Rd |(1 +

|y|2)−θ/2h(y)| for some θ ≥ 0. For a penalty function P (h) to be lower semicompact, it suf-

fices that the embedding of the set {h ∈ H : P (h) ≤ M} into (H, || · ||s) is compact for all

M ∈ [0,∞). For example, if || · ||s = || · ||L2(fY2
) then P (h) = ||(1 + | · |2)−ϑ/2h(·)||p

W α
p (Rd)

with

0 < p ≤ 2, α > d
p − d

2 , ϑ ≥ 0, fY2(y2)|y2|ϑ → 0 as |y2| → ∞ will yield the desired result. If

||h||s = supy∈Rd |(1+ |y|2)−θ/2h(y)| then both P (h) = ||(1+ | · |2)−ϑ/2h(·)||Λα(Rd) with α > 0, θ > ϑ

and P (h) = ||(1 + | · |2)−ϑ/2h(·)||p
W α

p (Rd)
with 0 < p < ∞, α > d

p , θ > ϑ are lower semicompact;

see Edmunds and Triebel (1996). Theorem 3.2 immediately implies ||ĥn − h0||L2(fY2
) = op(1) or

supy∈Rd |(1 + |y|2)−θ/2[ĥn(y) − h0(y)]| = op(1). Moreover, these examples of lower semicompact

penalties P (h) are also convex when p ≥ 1, but are not convex when 0 < p < 1, which illustrates

that one can have penalties that are lower semicompact but not convex.

Remark 3.1. When P (h) is lower semicompact and convex, under assumption 3.1(ii) (identifica-

tion), the PSMD estimator ĥn using finite dimensional linear sieves (8) Hk(n) is equivalent to the

original SMD estimator using finite dimensional compact sieves {h ∈ Hk(n) : P̂n(h) ≤ Mn}:

ĥn = arg inf
h∈Hk(n):P̂n(h)≤Mn

1
n

n∑
i=1

‖m̂(Xi, h)‖2
Ŵ

with Mn → ∞ slowly.

Therefore, Theorem 3.2 also establishes the consistency of the original SMD estimator using fi-

nite dimensional compact sieves of the type {h ∈ Hk(n) : P̂n(h) ≤ Mn} without assuming the

|| · ||s−compactness of the function parameter space H. In particular, this immediately implies the

consistency of the SMD estimators of the NPIV model (2) studied in NP and BCK without requiring

that H is a compact subset of the space L2(fY2).

3.2.2 Convex penalty

For a Banach space H we denote H∗ as the dual of H (i.e., the space of all bounded linear functionals

on H), and a bilinear form 〈·, ·〉H∗,H : H∗ × H → R as the inner product that links the space H

with its dual H∗. A Banach space H is reflexive iff (H∗)∗ = H. For example, the spaces Lp for

1 < p < ∞, and the Sobolev spaces Wα
p for 1 < p < ∞ are reflexive and separable Banach spaces.

14We are grateful to Victor Chernozhukov for pointing out this nice property of lower semicompact penalties.
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Assumption 3.4. (i) There is a t0 ∈ H∗ with 〈t0, ·〉H∗,H a bounded linear functional with respect

to || · ||s, and a non-decreasing lower semicontinuous function g() with g(0) = 0, g(ε) > 0 for ε > 0,

such that P (h)−P (h0)−〈t0, h−h0〉H∗,H ≥ g(||h−h0||s) for all h ∈ Hk and all k ≥ 1; (ii) (H, || · ||s)
is a reflexive Banach space; H is a closed, bounded and convex subset in (H, || · ||s).

Assumption 3.4(i) is satisfied if P (h) is strongly convex at h0 under || · ||s, that is, there exists

a c > 0 such that P (h) − P (h0) − 〈DP (h0), h − h0〉H∗,H ≥ c||h − h0||2s for all h ∈ H, where

DP (h0) ∈ H∗ is the Gateaux derivative of P () at h0. We note that strong convexity is satisfied by

commonly used penalization functions; see, e.g., Eggermont and LaRiccia (2001). In assumption

3.4(ii) the condition that H is bounded in || · ||s (i.e., suph∈H ||h||s ≤ K < ∞) is implied by the

so-called coercive condition: E
[
‖m(X,h)‖2

W

]
+ λP (h) → +∞ as ||h||s → +∞ for λ ∈ (0, 1].

A functional G : H → (−∞, +∞) is weak sequentially lower semicontinuous at h ∈ H iff

G(h) ≤ lim infj→∞ G(hj) for each sequence {hj} in H that converges weakly to h.

Theorem 3.3. Let ĥn be the PSMD estimator with λn > 0, ηn = O(η0,n), and assumptions 3.1,

3.2(c), 3.3 and 3.4 hold. Let E
[
‖m(X, h)‖2

W

]
be weak sequentially lower semicontinuous on H. If

max
{
η0,n, E

[
||m(X,Πnh0)||2W

]}
= o (λn) , (14)

then: ||ĥn − h0||s = op(1), and P (ĥn) = P (h0) + op(1).

Remark 3.2. Under assumption 3.4(ii), E
[
||m(X, h)||2W

]
is weak sequentially lower semicontinu-

ous on H if either (1) or (2) or (3) holds: (1) E
[
||m(X, ·)||2W

]
is convex and lower semicontinuous

on (H, ‖·‖s); or (2) E
[
||m(X, ·)||2W

]
: H → [0,∞) has compact Gateaux derivative on H; or (3)√

W (·)m(·, h) : H → L2(fX) is compact and Frechet differentiable.

NPIV example (2): For this model with W = I, the assumption that H is reflexive rules

out the (weighted) sup-norm case; but assumption 3.4(ii) is readily satisfied by H = L2(fY2),

|| · ||s = || · ||L2(fY2
) and H = {h ∈ L2(fY2) : ||h||L2(fY2

) ≤ M < ∞}. E
[
‖m(X, h)‖2

W

]
=

E
[
(E[Y1 − h(Y2)|X])2

]
is convex and lower semicontinuous on (H, ‖·‖s) and hence is weak sequen-

tially lower semicontinuous on H. Let P (h) = ||h||2L2(fY2
) be the penalty function, then assumption

3.4(i) is satisfied with t0 = 2h0. Theorem 3.3 immediately leads to ||ĥn − h0||L2(fY2
) = op(1).

Comparing Theorem 3.3 to Theorem 3.2, both consistency results allow for non-compact (in

|| · ||s) parameter space H and infinite dimensional sieve spaces. Nevertheless, Theorem 3.2 for ĥn

using a lower semicompact penalty allows for consistency under sup-norm and mild restriction (13)

on smoothing parameters, while Theorem 3.3 for ĥn using a convex penalty does not. Therefore,

if one has some prior information about smoothness of h0 in the sense that P (h0) < ∞ and

the set {h ∈ H : P (h) ≤ M} is compact in (H, ‖·‖s) for all M ∈ [0,∞), then one should apply

either a PSMD procedure using large dimensional sieves with a lower semicompact penalty, or

15



a PSMD procedure using slowly growing finite dimensional sieves
{
h ∈ Hk(n) : P (h) ≤ Mn

}
with

k(n), Mn ↗ ∞ slowly.

4 Convergence Rates in a Banach Norm

Given the consistency results stated in Section 3, we can now restrict our attention to a shrinking

|| · ||s−neighborhood around h0. Let

Hos ≡ {h ∈ H : ||h − h0||s ≤ ε, ||h||s ≤ M1, λnP (h) ≤ λnM0} and Hosn ≡ Hos ∩Hn (15)

for some positive finite constants M1, M0, and a sufficiently small positive ε such that Pr(ĥn /∈
Hos) < ε. Then, for the purpose of establishing a rate of convergence under the || · ||s metric, we

can treat Hos as the new parameter space and Hosn as its sieve space.

We first introduce a pseudo-metric on Hos that could be weaker than || · ||s. Define the first

pathwise derivative in the direction [h − h0] evaluated at h0 as

dm(X, h0)
dh

[h − h0] ≡
dE[ρ(Z, (1 − τ)h0 + τh)|X]

dτ

∣∣∣∣
τ=0

a.s. X .

Following AC, we define the pseudo-metric ||h1 − h2|| for any h1, h2 ∈ Hos as

||h1 − h2|| ≡
√

E

[(
dm(X,h0)

dh
[h1 − h2]

)′
W (X)

(
dm(X, h0)

dh
[h1 − h2]

)]
.

Assumption 4.1. (local curvature) (i) Hos and Hosn are convex, m(X, h) is continuously

pathwise differentiable with respect to h ∈ Hos. There is a finite constant C > 0 such that

||h − h0|| ≤ C||h − h0||s for all h ∈ Hos; (ii) there are finite constants c1, c2 > 0 such that

||h − h0||2 ≤ c1E[‖m(X, h)‖2
W ] holds for all h ∈ Hosn; and c2E[‖m(X,Πnh0)‖2

W ] ≤ ||Πnh0 − h0||2.

Assumption 4.1(i) implies that the pseudo-metric ||h− h0|| is well-defined in Hos and is weaker

than ||h−h0||s. For example, let W (X) = I, then ||h−h0|| =
√

E[(E[h(Y2) − h0(Y2)|X])2] for the

NPIV model (2) and ||h − h0|| =
√

E[
(
E[fY1|Y2,X(h0(Y2)){h(Y2) − h0(Y2)}|X]

)2] for the NPQIV

model (3). Both are weaker than the root mean squared metric ||h−h0||s =
√

E [{h(Y2) − h0(Y2)}2]

and the sup-norm metric ||h − h0||s = supy |h(y) − h0(y)|. Assumption 4.1(ii) implies that the

weaker pseudo-metric ||h − h0|| is Lipschitz continuous with respect to the population criterion

function E[‖m(X, h)‖2
W ] for all h ∈ Hosn. It restricts local curvature of the criterion function, and

is automatically satisfied by linear problems (such as the NPIV model). Assumption 4.1 enables us

to obtain fast convergence rate of ||ĥ−h0|| even when the convergence rate in the strong metric ||·||s
could be very slow. Previously, AC used this insight to establish root-n asymptotic normality and

efficiency of their SMD estimator of finite dimensional parameter θ0 for the semi/nonparametric
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conditional moment restrictions E[ρ(Y, Xz; θ0, h0(·))|X] = 0. Here we shall use the same trick to

drive the nonparametric convergence rate of ||ĥ − h0||s.15

Before we establish the convergence rate under the strong metric || · ||s, we introduce two

measures of ill-posedness in a shrinking neighborhood of h0: the sieve modulus of continuity,

ωn(δ,Hosn), and the modulus of continuity, ω(δ,Hos), which are defined as

ωn(δ,Hosn) ≡ sup
h∈Hosn:||h−Πnh0||≤δ

||h − Πnh0||s, ω(δ,Hos) ≡ sup
h∈Hos:||h−h0||≤δ

||h − h0||s.

The definition of the modulus of continuity,16 ω(δ,Hos), does not depend on the choice of any

estimation method. Therefore, when ω(δ,Hos)
δ goes to infinity as δ goes to zero, we say the problem

of estimating h0 under || · ||s is locally ill-posed in rate.

The definition of the sieve modulus of continuity, ωn(δ,Hosn), is closely related to the notion

of the sieve measure of local ill-posedness, τn, defined as:

τn ≡ sup
h∈Hosn:||h−Πnh0||	=0

||h − Πnh0||s
||h − Πnh0||

.

We note that τn is a direct extension of BCK’s sieve measure of ill-posedness,

τn = sup
h∈Hn:||h−Πnh0||	=0

√
E [{h(Y2) − Πnh0(Y2)}2]√

E[{E[h(Y2) − Πnh0(Y2)|X]}2]
for the NPIV model (2),

to the general nonlinear nonparametric conditional moment model (4). By definition, the values of

ωn(δ,Hosn) and τn depend on the choice of the sieve space. Nevertheless, for any sieve space Hosn

and for any δ > 0, we have:

(i) ωn(δ,Hosn) ≤ τn × δ and ωn(δ,Hosn) ≤ ω(δ,Hos);

(ii) ωn(δ,Hosn) and τn increase as k(n) = dim(Hosn) increases;

(iii) lim supn→∞ ωn(δ,Hosn) = ω(δ,Hos) and lim supn→∞ τn = suph∈Hos:||h−h0||	=0
||h−h0||s
||h−h0|| =

ω(δ,Hos)
δ . In particular, the problem of estimating h0 under || · ||s is locally ill-posed in rate if and

only if lim supn→∞ τn = ∞.

These properties of the sieve modulus of continuity (ωn(δ,Hosn)) and the sieve measure of local

ill-posedness (τn) justify their use in convergence rate analysis.

We now present a general theorem on the convergence rates under a Banach norm || · ||s. Let

{δP,n}∞n=1 be a sequence of positive real values such that δP,n = O(1) and suph∈Hosn
|P̂n(h) −

P (h)| = Op(δP,n). Let {δ2
m,n}∞n=1 be a sequence of positive real values such that δ2

m,n = o(1)

and 1
n

∑n
i=1 ||m̂(Xi, h)||2

Ŵ
≥ const.E

[
||m(X,h)||2W

]
−Op(δ2

m,n) uniformly over Hosn. By definition

δ2
m,n ≤ δ̄2

m,n. In fact we have δ2
m,n = η0,n for most commonly used nonparametric estimators m̂().

15Recently, CCLN (2010) impose a stronger version of assumption 4.1 in local identification of h0, and provide
various sufficient conditions.

16Our definition of modulus of continuity is inspired by that of Nair, Pereverzev and Tautenhahn (2005) in their
study of a linear ill-posed inverse problem with deterministic noise and a known operator.
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For example, Lemma C.2 in the appendix shows that the series LS estimator m̂(X, h) defined in

(11) satisfies δ2
m,n = η0,n = max{Jn

n , b2
m,Jn

}, where Jn
n is the order of the variance and bm,Jn is the

order of the bias of the series LS estimator of m(·, h).

Theorem 4.1. Let ĥn be the PSMD estimator with λn ≥ 0, ηn = O(η0,n) and ||ĥn − h0||s = op(1).

Let h0 ∈ Hos, Πnh0 ∈ Hosn, assumptions 3.1, 3.2, 3.3 with η0,n = O(δ2
m,n), and 4.1 hold. Suppose

either condition (1) or (2) or (3) holds:

(1) max{δ2
m,n, λn} = δ2

m,n.

(2) max{δ2
m,n, λn} = δ2

m,n = O(λn) and P () is lower semicompact.

(3) max
{

δ2
m,n, λnδP,n, λn||ĥn − Πnh0||s

}
= Op(δ2

m,n) and there is a t0 ∈ H∗ with 〈t0, ·〉H∗,H a

bounded linear functional with respect to ||·||s such that λn {P (h) − P (Πnh0) − 〈t0, h − Πnh0〉H∗,H} ≥
0 for all h ∈ Hosn.

Then: ||ĥn − h0||s = Op (||h0 − Πnh0||s + ωn(max{δm,n, ||Πnh0 − h0||},Hosn)) .

Theorem 4.1 under condition (1) allows for slowly growing finite dimensional sieves without

a penalty (λn = 0) or with any flexible penalty satisfying λn = o
(
||Πnh0 − h0||2

)
; such cases

are loosely called the “sieve dominating case”. We note that condition (3) controls the linear

approximation of the penalty function around Πnh0, which is similar to assumption 3.4(i). It is

satisfied when the penalty P (h) is convex in Πnh0. Theorem 4.1 under conditions (2) or (3) allows

for an infinite dimensional sieve (k(n) = ∞) or large dimensional sieves (k(n)/n → const. > 0)

satisfying ||Πnh0 − h0||2 = o(λn); such cases are loosely called the “penalization dominating case”.

Theorem 4.1 under conditions (1) or (2) or (3) also allows for finite (but maybe large) dimensional

sieves (k(n)/n → const. ≥ 0) satisfying ||Πnh0 − h0||2 = O(λn); such cases are loosely called the

“sieve penalization balance case”.

Remark 4.1. (1) For PSMD estimators using finite dimensional sieves (k(n) < ∞), the conclusion

of Theorem 4.1 can be stated as:

||ĥn − h0||s = Op (||h0 − Πnh0||s + τn × max{δm,n, ||Πnh0 − h0||}) .

This result extends theorem 2 of BCK for the NPIV model (2) to the general model (4). It allows

for any sieve approximation error rates and other nonparametric estimators of m(X, h) (beyond

the series LS estimator (11)). It leads to convergence rates in any Banach norm || · ||s (besides the

rate in the root mean squared metric).

(2) For PSMD estimators using infinite dimensional sieves (k(n) = ∞), the conclusion of

Theorem 4.1 can be stated as: ||ĥn − h0||s = Op (ω(δm,n,Hos)).
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5 Convergence Rates in a Hilbert Norm

To apply the general convergence rate theorem 4.1, one needs to compute upper bounds on the sieve

approximation error ||h0−Πnh0||s, the sieve modulus of continuity ωn(δ,Hosn) (the sieve measure of

local ill-posedness τn), or the modulus of continuity ω(δ,Hos). In this section we provide sufficient

conditions to bound these terms, which then lead to more concrete convergence rate results.

Throughout this section, we assume that Hos (given in (15)) is an infinite dimensional subset of

a real-valued separable Hilbert space H with an inner product 〈·, ·〉s and the inner product induced

norm || · ||s. Let {qj}∞j=1 be a Riesz basis associated with the Hilbert space (H, || · ||s), that is, any

h ∈ H can be expressed as h =
∑

j〈h, qj〉sqj , and there are two finite constants c1, c2 > 0 such that

c1||h||2s ≤∑j |〈h, qj〉s|2 ≤ c2||h||2s for all h ∈ H. See the online supplemental material for examples

of commonly used function spaces and Riesz bases. For instance, if Hos is a subset of a Besov

space, then the wavelet basis is a Riesz basis {qj}∞j=1.

5.1 PSMD using slowly growing finite dimensional sieves

Assumption 5.1. (sieve approximation error) ||h0 −
∑k(n)

j=1 〈h0, qj〉sqj ||s = O({νk(n)}−α) for a

finite α > 0 and a positive sequence {νj}∞j=1 that strictly increases to ∞ as j → ∞.

Assumption 5.2. (sieve link condition) There are finite constants c, C > 0 and a continuous

increasing function ϕ : R+ → R+ such that: (i) ||h||2 ≥ c
∑∞

j=1 ϕ(ν−2
j )|〈h, qj〉s|2 for all h ∈ Hosn;

(ii) ||Πnh0 − h0||2 ≤ C
∑

j ϕ(ν−2
j )|〈Πnh0 − h0, qj〉s|2.

Assumption 5.1 is a very mild condition about the smoothness of h0 ∈ Hos, it suggests that Hn =

clsp{q1, ..., qk(n)} is a natural sieve to approximate h0. For example, if (H, ||·||s) = (L2([0, 1]d, leb), ||·
||L2(leb)) and h0 ∈ Wα

2 ([0, 1]d, leb), then assumption 5.1 is satisfied with spline, wavelet, power series

and Fourier series bases, and νk(n) = {k(n)}1/d. Assumption 5.2(i) relates the weak pseudo-metric

||h|| to the strong norm in a sieve shrinking neighborhood Hosn (of h0). It implies that the sieve

modulus of continuity ωn(δ,Hosn) is bounded above by const. × δ/
√

ϕ(ν−2
k(n)) and that the sieve

measure of (local) ill-posedness τn ≤ const./
√

ϕ(ν−2
k(n)) (see Lemma B.2). Assumption 5.2(ii) is the

so-called “stability condition” that is only required to hold in terms of the sieve approximation

error h0 − Πnh0. In their convergence rate study of the NPIV model (2), BCK and CR present

conditions that imply assumptions 5.2(i) and (ii). See subsection 5.3 below for further discussion.

Theorem 4.1 and Lemma B.2 together imply the following corollary for the convergence rate of

the PSMD estimator using a slowly growing finite dimensional sieve (i.e., k(n)/n → 0):

Corollary 5.1. Let ĥn be the PSMD estimator with λn ≥ 0, λn = o(1), and all the assumptions of

Theorem 4.1(1) hold. Let assumptions 5.1 and 5.2 hold with Hn = clsp{q1, ..., qk(n)} and k(n) < ∞.
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Let max{δ2
m,n, λn} = δ2

m,n = const. × k(n)
n = o(1). Then:

||ĥn − h0||s = Op

({
νk(n)

}−α +

√
k(n)

n × ϕ(ν−2
k(n))

)
= Op

({
νko(n)

}−α
)

where ko(n) is such that {νko(n)}−2α 
 ko(n)
n {ϕ(ν−2

ko(n))}−1.

(1) Mildly ill-posed case: if ϕ(τ) = τ ς for some ς ≥ 0 and νk 
 k1/d, then: ||ĥn − h0||s =

Op

(
n
− α

2(α+ς)+d

)
provided ko(n) 
 n

d
2(α+ς)+d .

(2) Severely ill-posed case: if ϕ(τ) = exp{−τ−ς/2} for some ς > 0 and νk 
 k1/d, then:

||ĥn − h0||s = Op

(
[ln(n)]−α/ς

)
provided ko(n) = c[ln(n)]d/ς for some c ∈ (0, 1).

Corollary 5.1 allows for both the sieve dominating case and the sieve penalization balance case.

To apply this corollary to obtain a convergence rate for ||ĥn − h0||s, we choose k(n) to balance

the sieve approximation error rate ({νk(n)}−α) and the model complexity (or roughly the standard

deviation) (
√

k(n)
n {ϕ(ν−2

k(n))}−1), and let max{δ2
m,n, λn} = δ2

m,n = const.× k(n)
n . For example, if the

PSMD estimator ĥn is computed using the series LS estimator m̂(X,h) defined in (11), one can let

δ2
m,n = η0,n = max{Jn

n , b2
m,Jn

} = Jn
n = const.× k(n)

n = o(1) (by Lemma C.2). This corollary extends

the rate results of BCK for the NPIV model (2) to the general model (4), allowing for more general

parameter space H and other nonparametric estimators of m(X, h).

5.2 PSMD using large or infinite dimensional sieves

Assumption 5.3. (approximation error over Hos) There exist finite constants M > 0, α > 0

and a strictly increasing positive sequence {νj}∞j=1 such that ||h −∑k
j=1〈h, qj〉sqj ||s ≤ M(νk+1)−α

for all h ∈ Hos.

Assumption 5.4. (link condition over Hos) There are finite constants c, C > 0 and a continuous

increasing function ϕ : R+ → R+ such that: (i) ||h||2 ≥ c
∑∞

j=1 ϕ(ν−2
j )|〈h, qj〉s|2 for all h ∈ Hos;

(ii) ||h − h0||2 ≤ C
∑∞

j=1 ϕ(ν−2
j )|〈h − h0, qj〉s|2 for all h ∈ Hos.

Assumption 5.3 obviously implies assumption 5.1. Assumption 5.3 is automatically satisfied if

either Hos ⊆ Hellipsoid ≡
{

h =
∑∞

j=1〈h, qj〉sqj :
∑∞

j=1 ν2α
j |〈h, qj〉s|2 ≤ M2

}
or Hos ⊆ Hhyperrec ≡{

h =
∑∞

j=1〈h, qj〉sqj : |〈h, qj〉s| ≤ M ′ν
−(α+ 1

2
)

j , infj νj/j > 0
}

. Both Hellipsoid and Hhyperrec are

smooth function classes that are widely used in nonparametric estimation. Given our defini-

tion of Hos in (15), assumption 5.3 is also satisfied if the penalty function is such that P (h) ≥∑∞
j=1 ν2α

j |〈h, qj〉s|2 for all h ∈ Hos. Assumptions 5.4(i) and (ii) obviously imply assumptions 5.2(i)

and (ii) respectively. Assumptions 5.3 and 5.4(i) together provide a upper bound on the modu-

lus of continuity ωn(δ,Hos) (see Lemma B.3). Various versions of assumptions 5.3 and 5.4 have

been imposed in the literature on minimax optimal rates for linear ill-posed inverse problems. See

subsection 5.3 below for further discussion.
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Theorem 4.1, Lemmas B.2 and B.3 together imply the following corollary for the convergence

rate of a PSMD estimator using large or infinite dimensional sieves with lower semicompact and/or

convex penalties. Let δ∗m,n denote the optimal convergence rate of m̂(·, h) − m(·, h) in the root

mean squared metric uniformly over Hosn. By definition δ∗2m,n ≤ δ2
m,n.

Corollary 5.2. Let ĥn be the PSMD estimator with λn > 0, λn = o(1), and all the assumptions

of Theorem 4.1(1) hold. Let assumptions 5.2(ii), 5.3 and 5.4(i) hold with Hn = clsp{q1, ..., qk(n)}
for k(n)/n → const. > 0 and ∞ ≥ k(n) ≥ k∗, where k∗ = k∗(δ∗m,n) is such that {νk∗}−2α 

δ∗2m,n{ϕ(ν−2

k∗ )}−1. Let either condition (2) of Theorem 4.1 hold with λn = O(δ∗2m,n), or condition (3)

of Theorem 4.1 hold with λn = O

(
δ∗m,n

√
ϕ(ν−2

k∗ )
)

. Then:

(1) ||ĥn − h0||s = Op

(
{νk∗}−α

)
= Op

(
δ∗m,n{ϕ(ν−2

k∗ )}− 1
2

)
;

thus ||ĥn−h0||s = Op

((
δ∗m,n

) α
α+ς

)
if ϕ(τ) = τ ς for some ς ≥ 0; and ||ĥn−h0||s = Op

(
[− ln(δ∗m,n)]−α/ς

)
if ϕ(τ) = exp{−τ−ς/2} for some ς > 0.

(2) If Hn = H (or k(n) = ∞), then assumption 5.2(ii) holds, and result (1) remains true.

5.2.1 PSMD with large dimensional sieves and a series LS estimator of m(X, h)

The next rate result is applicable to the PSMD estimator using a series LS estimator of m(X,h),

and hence δ∗2m,n = J∗
n
n 
 b2

m,J∗
n

where J∗
n is such that the variance part (J∗

n
n ) and the squared bias

part (b2
m,J∗

n
) are of the same order.

Corollary 5.3. Let ĥn be the PSMD estimator with λn > 0, λn = o(1), and m̂(X,h) be the series

LS estimator satisfying assumptions C.1 and C.2. Let assumption 5.4 and all the assumptions

of Theorem 4.1(2) hold with c2E[‖m(X, h)‖2
W ] ≤ ||h − h0||2 for all h ∈ Hos. Let either P (h) ≥∑∞

j=1 ν2α
j |〈h, qj〉s|2 for all h ∈ Hos or Hos ⊆ Hellipsoid. Let λn = O(J∗

n
n ), where J∗

n ≤ k(n) ≤ ∞ and

is such that J∗
n
n 
 b2

m,J∗
n
≤ const.{νJ∗

n
}−2αϕ(ν−2

J∗
n

). Then:

||ĥn − h0||s = Op

(
{νJ∗

n
}−α
)

= Op

(√
J∗

n

n × ϕ(ν−2
J∗

n
)

)
.

Thus, ||ĥn − h0||s = Op

(
n
− α

2(α+ς)+d

)
if ϕ(τ) = τ ς for some ς ≥ 0 and νk 
 k1/d; and ||ĥn − h0||s =

Op

(
[ln(n)]−α/ς

)
if ϕ(τ) = exp{−τ−ς/2} for some ς > 0 and νk 
 k1/d, J∗

n = c[ln(n)]d/ς for some

c ∈ (0, 1).

5.3 Further discussion

Given the results of the previous two subsections, it is clear that assumption 5.2 or its stronger ver-

sion 5.4 is important for the convergence rate of the PSMD estimator. Denote Th0 ≡
√

W (·)dm(·,h0)
dh :
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Hos ⊂ H → L2(fX), and T ∗
h0

as its adjoint (under the inner product, 〈·, ·〉 associated with the weak

metric || · ||). Then for all h ∈ Hos, we have ||h||2 ≡ ||Th0h||2L2(fX) = ||(T ∗
h0

Th0)
1/2h||2s. Hence as-

sumption 5.4 can be restated in terms of the operator T ∗
h0

Th0 : there is a positive increasing function

ϕ such that ||(T ∗
h0

Th0)
1/2h||2s 
∑∞

j=1 ϕ(ν−2
j )|〈h, qj〉s|2 for all h ∈ Hos. This assumption relates the

smoothness of the operator (T ∗
h0

Th0)
1/2 to the smoothness of the unknown function h0 ∈ Hos. As-

sumptions 5.4(i) and (ii) are respectively the reverse link condition and the link condition imposed

in CR in their study of the NPIV model (2). It is also assumed in Nair, Pereverzev and Tautenhahn

(2005) in their study of a linear ill-posed inverse problem with deterministic noise and a known

operator. In the following we mention some sufficient conditions for assumption 5.4.

A (nonlinear) operator A : H → L2(fX) is compact iff it is continuous and maps bounded sets

in H into relatively compact sets in L2(fX). Suppose that Th0 is a compact operator, which is

a mild condition (for example, Th0 is compact if
√

W (·)m(·, h) : H ⊆ H → L2(fX) is compact

and is Frechet differentiable at h0 ∈ Hos; see Zeidler (1985, proposition 7.33)).17 Then Th0 has a

singular value decomposition {μk;φ1k, φ0k}∞k=1, where {μk}∞k=1 are the singular numbers arranged

in non-increasing order (μk ≥ μk+1 ↘ 0), {φ1k()}∞k=1 and {φ0k(x)}∞k=1 are eigenfunctions of the

operators (T ∗
h0

Th0)
1/2 and (Th0T

∗
h0

)1/2 respectively (e.g., (T ∗
h0

Th0)
1/2φ1k = μkφ1k for all k). Suppose

that T ∗
h0

Th0 is non-singular (i.e., Th0 is injective), which is satisfied under the global identification

condition (assumption 3.1(i)(ii)) and c2E[‖m(X, h)‖2
W ] ≤ ||h − h0||2 for all h ∈ Hos. Then the

eigenfunction sequence {φ1k()}∞k=1 is an orthonormal basis (hence a Riesz basis) for Hos, and

||(T ∗
h0

Th0)
1/2h||2s =

∑∞
k=1 μ2

k|〈h, φ1k〉s|2 for all h ∈ Hos. Thus, assumption 5.4 is automatically

satisfied with qj = φ1j and ϕ(ν−2
j ) = μ2

j for all j. Following the proof of Lemma 1 in BCK, we can

show that the sieve measure of local ill-posedness τn = [μk(n)]−1 = [ϕ(ν−2
k(n))]

−1/2 and that the sieve

modulus of continuity ωn(δ,Hosn) = δτn = δ[μk(n)]−1.

In the numerical analysis literature on ill-posed inverse problems with known operators, it is

common to measure the smoothness of h0 ∈ Hos in terms of the spectral representation of T ∗
h0

Th0 .

The so-called “general source condition” assumes that there is a continuous increasing function ψ

with ψ(0) = 0 such that h0 ∈ Hsource ≡
{
h = ψ(T ∗

h0
Th0)v : v ∈ H, ||v||2s ≤ M2

}
for a finite constant

M , and the original “source condition” corresponds to the choice ψ(η) = η1/2 (see Engl, Hanke

and Neubauer (1996)). When Th0 is compact with a singular value system {μj ; φ1j , φ0j}∞j=1, this

general source condition becomes:

h0 ∈ Hsource =

⎧⎨⎩h =
∞∑

j=1

〈h, φ1j〉sφ1j :
∞∑

j=1

〈h, φ1j〉2s
ψ2(μ2

j )
≤ M2

⎫⎬⎭ , (16)

which is a particular Sobolev ellipsoid class of functions Hellipsoid. Therefore, the general source

condition implies our assumptions 5.4 and 5.3 by setting qj = φ1j , ϕ(ν−2
j ) = μ2

j and ψ(μ2
j ) = ν−α

j

17See Bissantz, et al (2007) for convergence rates of statistical linear ill-posed inverse problems via the Hilbert scale
(or general source condition) approach for possibly non-compact but known operators.
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for all j ≥ 1. Then ϕ(τ) = τ ς (mildly ill-posed case) is equivalent to ψ(η) = ηα/(2ς); ϕ(τ) =

exp{−τ−ς/2} (severely ill-posed case) is equivalent to ψ(η) = [− log(η)]−α/ς .

The above discussion and Corollaries 5.1 and 5.3 immediately imply the following rate results.

Remark 5.1. Let ĥn be the PSMD estimator with λn ≥ 0, λn = o(1), and all the assumptions of

Theorem 4.1(1) hold with c2E[‖m(X, h)‖2
W ] ≤ ||h−h0||2 for all h ∈ Hos. Let Th0 ≡

√
W (·)dm(·,h0)

dh :

Hos ⊂ H → L2(fX) be a compact operator with a singular value decomposition {μj ;φ1j , φ0j}∞j=1.

Let Hn = clsp{φ1j : j = 1, ..., k(n)} for k(n) ≤ ∞.

(1) (sieve dominating case) Let h0 ∈ Hsource. If max{δ2
m,n, λn} = δ2

m,n = const. × k(n)
n = o(1),

then:

||ĥn − h0||s = Op

(
ψ(μ2

k(n)+1) +

√
k(n)

n × μ2
k(n)

)
.

(2) (penalty dominating case) Let m̂(X, h) be the series LS estimator satisfying assumptions

C.1 and C.2. Let either P (h) ≥∑∞
j=1{ψ(μ2

j )}−2|〈h, φ1j〉s|2 for all h ∈ Hos or Hos ⊆ Hsource. Let

0 < λn = O(J∗
n
n ) = o(1), where J∗

n ≤ k(n) ≤ ∞ and is such that J∗
n
n 
 b2

m,J∗
n
≤ const.{ψ(μ2

J∗
n
)}−2μ2

J∗
n
.

Then:

||ĥn − h0||s = Op

(
ψ(μ2

J∗
n
)
)

= Op

(√
J∗

n

n × μ2
J∗

n

)
.

Note that applications of Corollaries 5.1 and 5.3 do not require knowledge of the singular value

decomposition {μj ;φ1j , φ0j}∞j=1 of the injective, compact derivative operator Th0 , but applications

of the rate results stated in Remark 5.1 do. In particular, Result (1) of Remark 5.1 is applicable

only when the eigenfunction sequence {φ1j : j = 1, ..., k(n)} is used as the sieve basis to construct

the PSMD estimator; Result (2) is applicable if the choice of penalty satisfies P (h0) < ∞ and

P (h) ≥∑∞
j=1{ψ(μ2

j )}−2|〈h, φ1j〉s|2 for all h ∈ Hos.

Remark 5.2. (1) Suppose that qj = φ1j (assumption 5.4 holds), ϕ(ν−2
j ) = μ2

j ≥ const.j−ς ,

ς > 1 (mildly ill-posed case), and Hos =
{

h =
∑∞

j=1〈h, φ1j〉sφ1j : |〈h, φ1j〉s| ≤ M ′j−(α+ 1
2
)
}
, α > 0

(assumption 5.3 holds), HH establish that their kernel based function space TR-MD estimator of

the NPIV model (2) achieves the minimax lower bound in the metric || · ||s = || · ||L2(fY2
) (for

2α + 1 > ς ≥ α); and HL extend their result to the NPQIV model (3) (for 2α > ς ≥ α > 1
2).

(2) For the NPIV model (2), under assumptions 5.3 and 5.4(ii), CR establish the minimax

lower bound in the metric || · ||s = || · ||L2(fY2
):

inf
h̃

sup
h∈Hos

Eh[||h̃ − h||2s] ≥ const.n−1
ko∑

j=1

[ϕ(ν−2
j )]−1 
 {νko}−2α

where ko = ko(n) is the largest integer such that: 1
n

∑ko
j=1{νj}2α[ϕ(ν−2

j )]−1 
 1. In addition,

suppose that assumption 5.4(i) holds, CR show that the BCK estimator ĥn, which is a PSMD

estimator using a slowly growing finite dimensional sieve and a series LS estimator of m(X, h),
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achieves this minimax lower bound in probability. The rates stated in Corollaries 5.1 and 5.3 for

the PSMD estimators of the general model (4) achieve the minimax lower bound of CR. Note that

our rate results allow for both mildly ill-posed and severely ill-posed cases.

6 Application to Nonparametric Additive Quantile IV Regression

In this section we present an application of the PSMD estimation of the nonparametric additive

quantile IV regression model:

Y3 = h01(Y1) + h02(Y2) + U, Pr(U ≤ 0|X) = γ, (17)

where h01, h02 are the unknown functions of interest, the conditional distribution of the error term

U given X is unspecified, except that FU |X(0) = γ for a known fixed γ ∈ (0, 1). To map into the

general model (4), we let Z = (Y ′, X ′)′, h = (h1, h2), ρ(Z, h) = 1{Y3 ≤ h1(Y1) + h2(Y2)} − γ and

m(X, h) = E[FY3|Y1,Y2,X(h1(Y1) + h2(Y2))|X] − γ.

For concreteness and illustration, we let the support of Y = (Y1, Y2, Y3)′ be Y = [0, 1]d× [0, 1]d×
R, and the support of X be X = [0, 1]dx with dx ≥ d ≥ 1. We estimate h0 = (h01, h02) ∈ H =

H1 ×H2 using the PSMD estimator ĥn given in (6), with Ŵ = W = I (identity), Hn = H1
n ×H2

n

being either a finite dimensional (dim(Hn) ≡ k(n) = k1(n)+k2(n) < ∞) or an infinite dimensional

(k(n) = ∞) linear sieve, and P̂n(h) = P (h) ≥ 0. The conditional mean function m(X,h) is

estimated by the series LS estimator m̂(X,h) defined in (11). To simplify presentation, we let

pJn(X) be a tensor-product linear sieve basis, which is the product of univariate linear sieves. For

example, let {φij : ij = 1, ..., Jj,n} denote a P-spline (polynomial spline), B-spline, wavelet, or

Fourier series basis for L2(Xj , leb.), with Xj a compact interval in R, 1 ≤ j ≤ dx. Then the tensor

product {∏dx
j=1 φij (Xj) : ij = 1, ..., Jj,n, j = 1, ..., dx} is a P-spline, B-spline, wavelet, Fourier series,

or power series basis for L2(X , leb.), with X = X1 × ... × Xdx . Clearly the number of terms in

the tensor-product sieve pJn(X) is given by Jn =
∏dx

j=1 Jj,n. See Newey (1997), Huang (1998) and

Chen (2007) for details about tensor-product linear sieves. We assume:

Condition 6.1. (i) {(Y ′
i , X ′

i)}n
i=1 is a random sample from a probability density fY,X on Y × X ,

and 0 < infx∈X fX(x) < supx∈X fX(x) < ∞; (ii) The smallest eigenvalue of E
[
pJn(X)pJn(X)′

]
is bounded away from zero uniformly in Jn; where pJn(X) is a tensor product P-spline, B-spline,

wavelet, cosine sieve with J2
n = o(n); (iii) E[FY3|Y1,Y2,X(h1(Y1) + h2(Y2))|X = ·] ∈ Λαm

c ([0, 1]dx)

with αm > 0 for all h ∈ HM0

k(n); (iv) fY3|(Y1,Y2,X)=(y1,y2,x)(y3) is continuous in (y3, y1, y2, x), and

supy3
fY3|Y1,Y2,X(y3) ≤ const. < ∞ for almost all Y1, Y2, X.

Condition 6.1(i)(ii)(iii) implies that the series LS estimator m̂(·, h) satisfies assumption 3.3 with

η0,n = δ2
m,n = max{Jn

n , J
−2αm/dx
n } and δ̄2

m,n = o(1) (by Lemma C.2). Condition 6.1(iv) implies that
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E{[m(X, h)]2} is continuous on (H, ‖·‖sup), ‖h‖sup = supy1
|h1(y1)| + supy2

|h2(y2)|, and provides

sufficient condition to bound E{[m(X, Πnh0)]2} (assumption 3.1(iv)).

In the following we denote h0(y1, y2) = h01(y1) + h02(y2), Δh(y1, y2) = h(y1, y2) − h0(y1, y2) =

Δh1(y1) + Δh2(y2), and for l = 1, 2,

Kl,h[Δhl](X) ≡ E

({∫ 1

0
fY3|Y1Y2X(h0(Y1, Y2) + tΔh(Y1, Y2))dt

}
Δhl(Yl)|X

)
.

Condition 6.2. (i) H = H1 × H2 with Hl = Λαl([0, 1]d) for αl > 0; (ii) for any h ∈ H,

Range(K1,h) ∩ Range(K2,h) = {0}; and Kl,h[Δhl](X) = 0 a.s.-X implies Δhl = 0 a.s.-Yl for

l = 1, 2; (iii) Hn = H1
n × H2

n, where Hl
n is a tensor product P-spline, B-spline, wavelet or cosine

series closed linear subspace of Hl for l = 1, 2.

Conditions 6.2(i) and (iii) specify the function space and the sieve space for h = (h1, h2) respec-

tively. Condition 6.2(ii) is a global identification condition (assumption 3.1(ii)), which extends the

identification condition for the NPQIV model (3) of CH to the nonparametric additive quantile IV

model (17). See CH, CIN and CCLN for sufficient conditions for identification.

Denote rm ≡ αm/dx and rl ≡ αl/d for l = 1, 2. The following consistency result is a simple

application of Theorem 3.2.

Proposition 6.1. For the model (17), let ĥn be the PSMD estimator with λn > 0, ηn = O(λn) =

o(1), and m̂(X, h) be the series LS estimator. Let conditions 6.1 and 6.2 hold, P (h) = ||h1||Λα1 +

||h2||Λα2 and max
{
[k1(n)]−2r1 , [k2(n)]−2r2 , Jn

n + J−2rm
n

}
= O (λn). Then:

sup
y1∈[0,1]d

∣∣∣ĥ1,n(y1) − h01(y1)
∣∣∣+ sup

y2∈[0,1]d

∣∣∣ĥ2,n(y2) − h02(y2)
∣∣∣ = op(1);

hence ||ĥ1,n − h01||L2(fY1
) + ||ĥ2,n − h02||L2(fY2

) = op(1); and P (ĥ1,n) + P (ĥ2,n) = Op(1).

We now turn to the calculation of the convergence rate of our PSMD estimator. For the model

(17), let ||h||2s = E{[h1(Y1)]2} + E{[h2(Y2)]2}, then ||h||2s ≤ ‖h‖2
sup for all h ∈ H. The above

consistency results immediately imply that ||ĥn − h0||s = oP (1). Let Hos = {h = (h1, h2) ∈ H :

‖h − h0‖sup = o(1), P (h) ≤ c}. For h = (h1, h2) ∈ Hos, and l = 1, 2, denote

Tl,0[hl − h0l](X) ≡ E
(
fY3|Y1,Y2,X(h01(Y1) + h02(Y2))[hl(Yl) − h0l(Yl)]|X

)
,

and

Th0 [h − h0](X) = T1,0[h1 − h01](X) + T2,0[h2 − h02](X).

Condition 6.3. (i) ||Th0 [h − h0]||L2(fX) 
 ||K1,h[h1 − h01] + K2,h[h2 − h02]||L2(fX) for all h =

(h1, h2) ∈ Hos∩Hn; Range(T1,0)∩Range(T2,0) = {0} and Tl,0[Δhl](X) = 0 a.s.-X implies Δhl = 0

a.s.-Yl for l = 1, 2; (ii) there is a continuous increasing function ϕ ≥ 0 such that

||Th0 [h − h0]||2L2(fX) 

∞∑

j=1

ϕ(j−2/d)
(
〈h1 − h01, q1,j〉2L2(fY1

) + 〈h2 − h02, q2,j〉2L2(fY2
)

)
for all h = (h1, h2) ∈ Hos ∩Hn.
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Condition 6.3(i) implies assumption 4.1 (local curvature), and Condition 6.3(ii) implies assump-

tion 5.2. Applying Corollary 5.1, we obtain the following convergence rate for the PSMD estimator

using slowly growing finite dimensional sieves. Denote α = min{α1, α2}.

Proposition 6.2. For the model (17), let all the conditions of Proposition 6.1 and condition 6.3

hold. Let α > d. If max{Jn
n , J−2rm

n , λn} = Jn
n = const. × k(n)

n = o(1), k(n) = k1(n) + k2(n) and

k1(n) 
 k2(n) → ∞. Then:

||ĥn − h0||s = Op

(
{k(n)}−α/d +

√
k(n)

n × ϕ([k(n)]−2/d)

)
.

Thus, ||ĥn − h0||s = Op

(
n
− α

2(α+ς)+d

)
if ϕ(τ) = τ ς for some ς ≥ 0 and k(n) 
 n

d
2(α+ς)+d ; and

||ĥn − h0||s = Op

(
[ln(n)]−α/ς

)
if ϕ(τ) = exp{−τ−ς/2} for some ς > 0 and k(n) = c[ln(n)]d/ς for

some c ∈ (0, 1).

When Y1 and Y2 are measurable functions of X, we have ϕ([k(n)]−2/d) = const. in Proposition

6.2. The resulting convergence rate ||ĥn − h0||s = Op

(
n− α

2α+d

)
coincides with the known optimal

rate for the additive quantile regression model: Y3 = h01(X1)+h02(X2)+U, Pr(U ≤ 0|X1, X2) = γ;

see, e.g., Horowitz and Lee (2005) and Horowitz and Mammen (2007). See the working paper

version (Chen and Pouzo, 2008) for additional consistency and convergence rate results, in which

the support of Y2 could be unbounded, h02 could belong to a function space H2 different from the

Holder space Λα2([0, 1]d), and P (h) could take other functional forms as well.

7 Simulation and Empirical Illustration

7.1 Monte Carlo Simulation

We report a small Monte Carlo (MC) study of PSMD estimation for the NPQIV model (3):

Y1 = h0(Y2) + U, Pr(U ≤ 0|X) = γ ∈ {0.25, 0.5, 0.75}.

The MC is designed to mimic the real data application in the next subsection as well as that in BCK.

First, we simulate (Y2, X̃) according to a bivariate Gaussian density whose mean and covariance

are set to the ones estimated from the UK Family Expenditure Survey Engel curve data set (see

BCK for details). Let X = Φ
(

X̃−μx

σx

)
and h0(y2) = Φ

(
y2−μ2

σ2

)
where Φ denotes the standard

normal cdf, and the means μx, μ2 and variances σx, σ2 are the estimated ones. Second, we generate

Y1 from Y1 = h0(Y2) + U , where U =
√

0.075[V − Φ−1
(
γ + 0.01{E[h0(Y2)|X̃] − h0(Y2)}

)
], with

V ∼ N(0, 1). The number of observations is set to n = 500. We have also tried to draw (Y2, X̃)

from the kernel density estimator using the BCK data set, and to draw U from other distributions

such as a Pareto distribution. The simulation results are very similar to the ones reported here.
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In this MC study and for the sake of concreteness, we estimate h0() using the PSMD estimator

ĥn given in (6), with m̂(X, h) being the series LS estimator (11) of m(X,h), Ŵ = W = I (identity),

and Hn being a finite dimensional (dim(Hn) ≡ k(n) < ∞) linear sieve. An example of a typical

finite dimensional sieve of dimension k(n) is a polynomial spline sieve, denoted as P-spline(q,r) with

q being the order of the polynomial and r being the number of knots, so k(n) = q(n) + r(n) + 1.

There are three kinds of smoothing parameters in the PSMD procedure (6): one (k(n)) for

the sieve approximation Hn, one (λn) for the penalization, and one (Jn) for the nonparametric LS

estimator of m̂(X, h). In the previous theoretical sections, we showed that we could obtain the

optimal rate in either the “sieve dominating case” (the case of choosing k(n) 
 Jn, k(n) < Jn

properly and letting λn = 0 or λn ↘ 0 fast), or the “sieve penalization balance case” (the case of

choosing k(n) 
 Jn, k(n) ≤ Jn and λn 
 Jn
n properly). In this MC study, we compare the finite

sample performance of these two cases.18

Figure 1 summarizes the results for three quantiles γ ∈ {0.25, 0.5, 0.75}, each with 500 Monte

Carlo repetitions. The first row corresponds to the “sieve dominating case” and the second row

the “sieve penalization balance case”. To compute the estimator ĥ, we use P-Spline(2,5) (hence

k(n) = 8) for Hn and λn = 0.003 in the “sieve dominating case”, and P-Spline(5,10) (hence

k(n) = 16) for Hn and λn = 0.006 in the “sieve penalization balance case”, and in both cases, we

use P-Spline(5,10) (hence Jn = 16) for m̂ and P̂n(h) = ||∇h||2L2(leb). We have also computed PSMD

estimators using Hermite polynomial sieves for Hn, Fourier basis, B-spline basis, Hermite basis for

m̂, and P̂n(h) = ||∇jh||L1(leb) or ||∇jh||L1(dμ̂) for j = 1 or 2. As long as the choices of k(n), λn

and Jn are similar to the ones reported here, the simulation results are similar; hence we do not

report them due to the lack of space. In Figure 1, each panel shows the true function (solid thick

line), the corresponding estimator (solid thin line, which is the pointwise average over the 500 MC

simulation), the Monte Carlo 95% confidence bands (dashed), and a sample realization of Y1 (that

is arbitrarily picked from the last MC iteration). Both estimators perform very well for all of the

quantiles. Nevertheless, we note that it is much faster to compute the “sieve dominating case”

procedure. For example, using a AMD Athlon 64 processor with 2.41 GHz and 384 MB of RAM,

the MC experiment (with 500 repetitions) written in FORTRAN took (approximately) 50 minutes

to finish for the “sieve dominating case”, whereas it took (approximately) 240 minutes to finish for

the “sieve penalization balance case”.

Table 1 shows the integrated square bias (I −BIAS2), the integrated variance (I − V AR) and

the integrated mean square error (I−MSE), which are computed using numerical integration over a

grid ranging from 2.5% and 97.5%. Here for simplicity we have only reported the estimated quantile

with γ = 0.5 and 250 MC replications. Figure 2 shows the corresponding estimated curves and
18In the working paper version (Chen and Pouzo, 2008) we analyzed a third case: the “penalization dominating

case” (the case of choosing λn ≥ Jn
n

properly and letting k(n) = ∞ or k(n) >> Jn and k(n)/n → const. > 0). It
was too time consuming to compute the MC results for this case and the results were not very stable either.
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MC 95% confidence bands. In Table 1, the rows with k(n) = 6, 8 belong to the “sieve dominating

case”; the rows with k(n) = 16 belong to the “sieve penalization balance case”. For this MC study,

the “sieve dominating case” (k(n) = 6, 8) perform well in terms of I −BIAS2 and I −V AR (hence

I − MSE), and are much more economical in terms of computational time. Within the “sieve

penalization balance case”(k(n) = 16), given the same λn the ones with derivative penalty perform

slightly better than the one with function level penalty.
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Figure 1: h0 (solid thick), ĥn (solid thin), MC confidence bands (dashed), a sample of Y1 (dots),
P̂ (h) = ||∇h||2L2 , 1st row: k(n) = 8, λn = 0.003, Jn = 16; 2nd row: k(n) = 16, λn = 0.006, Jn = 16.

Table 1: Simulation Results for γ = 0.5 quantile IV curve, 250 MC runs
(k(n), Jn) I − BIAS2 I − V AR I − MSE Pen λn time (in min.)

(6, 16) 0.00259 0.00349 0.00609 || · ||2L2 0.00001 23
(6, 16) 0.00256 0.00423 0.00680 ||∇2 · ||L1 0.00001 25
(6, 16) 0.00272 0.00401 0.00674 ||∇2 · ||2L2 0.00001 25
(8, 16) 0.00108 0.02626 0.02731 || · ||2L2 0.00010 43
(8, 16) 0.00131 0.01820 0.01954 ||∇2 · ||L1 0.00010 48
(8, 16) 0.00030 0.01853 0.01855 ||∇2 · ||2L2 0.00010 40
(16, 16) 0.00170 0.05464 0.05631 || · ||2L2 0.00050 82
(16, 16) 0.00378 0.02141 0.02520 ||∇2 · ||L1 0.00050 84
(16, 16) 0.00015 0.03704 0.03714 ||∇2 · ||2L2 0.00050 84
(16, 31) 0.00011 0.02801 0.02813 ||∇2 · ||2L2 0.00100 235
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Figure 2: Table 1 experiments. 1st row: k(n) = 6, λn = 0.00001, Jn = 16. 2nd row: k(n) = 8, λn =
0.0001, Jn = 16. 3nd row: k(n) = 16, λn = 0.0005, Jn = 16 .

7.2 Empirical Illustration

We apply the PSMD procedure to nonparametric quantile IV estimation of Engel curves using the

UK Family Expenditure Survey data. The model is

E[1{Y1i� ≤ h0�(Y2i)}|Xi] = γ ∈ (0, 1), � = 1, ..., 7,

where Y1i� is the budget share of household i on good � (in this application, 1 : food-out, 2 : food-in,

3 : alcohol, 4 : fares, 5 : fuel, 6 : leisure goods, and 7 : travel). Y2i is the log-total expenditure

of household i, which is endogenous, and Xi is the gross earnings of the head of household, which

is the instrumental variable. We work with the no kids sample that consists of 628 observations.

The same data set has been studied in BCK for the NPIV model (2).

As an illustration, we apply the PSMD procedure using a finite-dimensional polynomial spline

sieve to construct the sieve space Hn for h, with different types of penalty functions and Ŵ = W = I

(identity). We have also computed PSMD estimators with ||∇kh||j
Lj(dμ̂)

≡ n−1
∑n

i=1 |∇kh(Y2i)|j
for k = 1, 2 and j = 1, 2, and Hermite polynomial sieves, cosine sieves, polynomial splines sieves

for the series LS estimator m̂. All combinations yielded very similar results; hence we only present

figures for one “sieve dominating case”, using P-Spline(2,5) as Hn and P-Spline(5,10) for m̂ (hence

k(n) = 8, Jn = 16). Due to the lack of space, in Figure 3 we report the estimated quantile IV Engel

curves only for three different quantiles γ = {0.25, 0.50, 0.75} and for four goods that has been

considered in BCK.19 Figure 3 presents the estimated Engel curves using P̂n(h) = ||∇2h||2L2(dμ̂)

19The results on all seven goods are available upon request from the authors.
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with λn = 0.001 and P̂n(h) = ||∇2h||L1(dμ̂) with λn = 0.001 in the first and second rows; P̂n(h) =

||∇h||2L2(dμ̂) with λn = 0.001 (third row), and λn = 0.003 (fourth row); and P̂n(h) = ||∇h||2L2(leb)

with λn = 0.005 (fifth row). By inspection, we see that the overall estimated function shapes are

not very sensitive to the choices of λn and P̂n(h), which is again consistent with the theoretical

results for the PSMD estimator in the “sieve dominating case”.

5 5.5 6

0

0.1

0.2

food−in

5 5.5 6

0

0.1

0.2
fuel

5 5.5 6

0

0.1

0.2

leisure goods

5 5.5 6

0

0.1

0.2

travel

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

5 5.5 6

0

0.1

0.2

Figure 3: Engel curves for quantiles γ = 0.25 (dash), 0.50 (solid), 0.75 (dot-dash). k(n) = 8, Jn = 16
(all rows). P̂n(h) = ||∇2h||2L2(dμ̂) with λn = 0.001 (1st row); P̂n(h) = ||∇2h||L1(dμ̂) with λn = 0.001

(2nd row); P̂n(h) = ||∇h||2L2(dμ̂) with λn = 0.001 (3rd row), λn = 0.003 (4th row); P̂n(h) =
||∇h||2L2(leb) with λn = 0.005 (5th row).

8 Conclusion

In this paper, we propose the PSMD estimation of conditional moment restrictions containing

unknown functions of endogenous variables: E[ρ(Y,Xz ;h0(·))|X] = 0. The estimation problem

is a difficult nonlinear ill-posed inverse problem with an unknown operator. We establish the

30



consistency and the convergence rate of the PSMD estimator of h0(·), allowing for (i) a possibly

non-compact infinite dimensional function parameter space; (ii) possibly non-compact finite or

infinite dimensional sieve spaces with flexible penalty; (iii) possibly nonsmooth generalized residual

functions; (iv) any lower semicompact and/or convex penalty, or the SMD estimator with slowly

growing finite dimensional linear sieves without a penalty; and (v) mildly or severely ill-posed inverse

problems. Under relatively low-level sufficient conditions, we show that the convergence rate under

a Hilbert space norm coincide with the known minimax optimal rate for the NPIV model (2). We

illustrate the general theory with a nonparametric additive quantile IV regression. We also present

a simulation study and estimate a system of nonparametric quantile IV Engel curves using the UK

Family Expenditure Survey. These results indicate that PSMD estimators using slowly growing

finite dimensional sieves with small penalization parameter are easy to compute and perform well

in finite samples.

In Chen and Pouzo (2009a), we consider the general semi/nonparametric conditional moment

restrictions E[ρ(Y,Xz; θ0, h0(·))|X] = 0 when ρ(Y,Xz, θ, h(·)) may not be pointwise smooth in

(θ, h), and show that the PSMD estimator using slowly growing finite dimensional sieves can simul-

taneously achieve the root-n asymptotic normality of θ̂n−θ0 and the nonparametric optimal rate of

convergence for ĥn−h0. In Chen and Pouzo (2010), we provide inference and limiting distributions

of plug-in PSMD estimators of possibly irregular functionals of (θ0, h0).

A Additional Results for Consistency

We first present a general consistency lemma that is applicable to all approximate penalized sieve

extremum estimation problems, be they well-posed or ill-posed.

In the following we let (A, T ) be a Hausdorff topological space and BT (a) be a non-empty open

neighborhood (under T ) around a ∈ A ⊆ A. Let Pr∗ denote the outer measure associated with

Pr. Let op∗ and Op∗ respectively denote convergence in probability under Pr∗ and bounded in

probability under Pr∗.

Lemma A.1. Let α̂n be such that Q̂n(α̂n) ≤ infα∈Ak(n)
Q̂n(α) + Op∗(ηn), where {ηn}∞n=1 is a

positive real-valued sequence such that ηn = o(1). Let Qn() : A → [0,∞) be a sequence of non-

random measurable functions and the following conditions (A.1.1) - (A.1.4) hold:

(A.1.1) (i) 0 ≤ Qn(α0) = o(1); (ii) there is a positive function g0 (n, k,B) such that:

inf
α∈Ak:α/∈BT (α0)

Qn(α) ≥ g0 (n, k,B) > 0 for each n ≥ 1, k ≥ 1,

and lim infn→∞ g0 (n, k(n),B) ≥ 0 for all BT (α0).

(A.1.2) (i) A ⊆ A and (A, T ) is a Hausdorff topological space; (ii) Ak ⊆ Ak+1 ⊆ A for all

k ≥ 1, and there is a sequence {Πnα0 ∈ Ak(n)} such that Qn(Πnα0) = o(1).
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(A.1.3) Q̂n(α) is jointly measurable in the data {(Y ′
i , X ′

i)}n
i=1 and the parameter α ∈ Ak(n).

(A.1.4) (i) Q̂n(Πnα0) ≤ K0Qn(Πnα0) + Op∗(c0,n) for some c0,n = o(1) and a finite constant

K0 > 0; (ii) Q̂n(α) ≥ KQn(α)−Op∗(cn) uniformly over α ∈ Ak(n) for some cn = o(1) and a finite

constant K > 0; (iii) max
{
c0,n, cn, Qn(Πnα0), ηn

}
= o(g0 (n, k(n),B)) for all BT (α0).

Then: for all BT (α0), Pr∗ (α̂n /∈ BT (α0)) → 0 as n → ∞.

In the online supplemental material we present another consistency lemma for penalized sieve

extremum estimators, which is a special case of Lemma A.1, but is still general enough for most

applications.

We recall some standard definitions. A sequence {αj}∞j=1 in a Banach space (A, || · ||s) converges

weakly to α if and only if (iff) limj→∞〈v, αj〉A∗,A = 〈v, α〉A∗,A for all v ∈ A∗. A set A ⊆ A is weak

sequentially compact iff each sequence in A possesses a weakly convergent subsequence with limit

value in A. A set A ⊆ A is weak sequentially closed iff each weakly convergent sequence in A has

its limit value in A. A functional F : A ⊆ A → [−∞, +∞] is said to be weak sequentially lower

semicontinuous at α ∈ A iff F (α) ≤ lim infj→∞ F (αj) for each sequence {αj} in A that converges

weakly to α; is lower semicontinuous on (A, ‖·‖s) iff the set {α ∈ A : F (α) ≤ M} is closed under

|| · ||s for all M ∈ [0,∞).

Remark A.1. (1) Let (A, T ) be a Hausdorff topological space and Ak be non-empty for each k.

Condition (A.1.3) is satisfied and α̂n is measurable if one of the following two conditions holds:

(a) for each k ≥ 1, Ak is a compact subset of (A, T ), and for any data {Zi}n
i=1, Q̂n(α) is lower

semicontinuous (in the topology T ) on Ak. (b) for any data {Zi}n
i=1, the level set {α ∈ Ak :

Q̂n(α) ≤ r} is compact in (A, T ) for all r ∈ (−∞, +∞). See Zeidler (1985, theorem 38.B).

(2) Let (A, || · ||s) be a Banach space and Ak be non-empty for each k. Condition (A.1.3)

is satisfied and α̂n is measurable if one of the following three conditions holds: (a) Ak is a weak

sequentially compact subset of (A, ||·||s), and for any data {Zi}n
i=1, Q̂n(α) is weak sequentially lower

semicontinuous on Ak(n). (b) Ak is a bounded, and weak sequentially closed subset of a reflexive

Banach space (A, ||·||s), and for any data {Zi}n
i=1, Q̂n(α) is weak sequentially lower semicontinuous

on Ak(n). (c) Ak is a bounded, closed and convex subset of a reflexive Banach space (A, || · ||s), and

for any data {Zi}n
i=1, Q̂n(α) is convex and lower semicontinuous on Ak(n). Moreover, (c) implies

(b). See Zeidler (1985, proposition 38.12, theorem 38.A, corollary 38.8).

Give Remark A.1, in the rest of the paper we will assume that α̂n and our approximate PSMD

estimator ĥn defined in (6) are measurable.

Lemma A.2. Let ĥn be the (approximate) PSMD estimator (6). Then: ĥn ∈ Hn wpa1.

Further, let assumption 3.3(i) hold with ηn = O(η0,n).

(1) If assumption 3.2(b) and max
{
η0,n, E

[
||m(X, Πnh0)||2W

]}
= O(λn) hold, then P (ĥn) =

Op(1).
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(2) If assumption 3.2(c) and max
{
η0,n, E

[
||m(X, Πnh0)||2W

]}
= o(λn) hold, then P (ĥn) ≤

P (h0) + op(1) = Op(1).

Recall that HM0

k(n) ≡ {h ∈ Hk(n) : λnP (h) ≤ λnM0} for a large but finite M0 ≡ M0(ε) ∈ (0,∞)

such that Πnh0 ∈ HM0

k(n) and that for all ε > 0, Pr
(
ĥn /∈ HM0

k(n)

)
< ε for all sufficiently large n,

where the bound M0 ≡ M0(ε) in HM0

k(n) can depend on ε > 0 but not on n. Given assumptions 3.2

and 3.3(i) and Lemma A.2, such a M0 always exists. In the following we denote BT (h0) as any

open neighborhood in a topological space (H, T ) around h0.

Lemma A.3. Let ĥn be the (approximate) PSMD estimator with λn ≥ 0, ηn = O(η0,n) and assump-

tion 3.3 hold. Let assumption 3.1(iii) hold and the T −topology could be the norm || · ||s−topology

or weaker ones. Then, for all BT (h0) and all ε > 0,

(1) under assumption 3.2(b) and max{η0,n, E[||m(X, Πnh0)||2W ]} = O(λn),

Pr
(
ĥn /∈ BT (h0)

)
≤ Pr

⎛⎝ inf
h∈HM0

k(n)
:h/∈BT (h0)

{
cE
[
||m(X, h)||2W

]
+ λnP (h)

}
≤ Op

(
δ̄2
m,n

)
+ λnP (h0) + Op(λn)

⎞⎠+ ε

for all n sufficiently large, where the bound M0 ≡ M0(ε) in HM0

k(n) can depend on ε > 0.

(2) under assumption 3.2(c) and max{η0,n, E[||m(X, Πnh0)||2W ]} = o(λn),

Pr
(
ĥn /∈ BT (h0)

)
≤ Pr

⎛⎝ inf
h∈HM0

k(n)
:h/∈BT (h0)

{
cE
[
||m(X,h)||2W

]
+ λnP (h)

}
≤ Op

(
δ̄2
m,n

)
+ λnP (h0) + op(λn)

⎞⎠+ ε

for all n sufficiently large, where the bound M0 ≡ M0(ε) in HM0

k(n) can depend on ε > 0.

Identification via strictly convex penalty. When E[‖m(X,h)‖2
W ] is convex in h ∈ H (e.g.

the NPIV model), we can relax the global identification condition (assumption 3.1(ii)) by using a

strictly convex penalty function, that is, we can use a strictly convex penalty to select one h0 out

of the solution set M0 ≡ {h ∈ H : E[‖m(X, h)‖2
W ] = 0} uniquely.

Let MP
0 ≡ {h ∈ H : h = arg infh′∈M0 P (h′)} be the set of minimum penalization solutions.

Theorem A.1. Suppose that M0 is non-empty, P is strictly convex and lower semicontinuous on

(M0, ‖·‖s), and E
[
‖m(X,h)‖2

W

]
is convex and lower semicontinuous on (H, ‖·‖s).

(1) If assumptions 3.4(ii) holds, then: MP
0 = {h0} ⊆ M0.

(2) Let ĥn be the PSMD estimator with λn > 0, ηn = O(η0,n) and assumptions 3.1(i)(iii)(iv),

3.2(c), 3.3 and 3.4 hold. Suppose that for any k ≥ 1, Hk is convex, P (·) is convex and lower semi-

continuous on (Hk, ‖·‖s). If max{η0,n, E
[
||m(X, Πnh0)||2W

]
, δ̄2

m,n} = o (λn), then: ||ĥn − h0||s =

op(1), and P (ĥn) = P (h0) + op(1).
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B Lemmas for Convergence Rate

Lemma B.1. Suppose that all the conditions of Theorem 4.1(1) hold. Then:

(1) ||ĥn − Πnh0|| = Op

(
max{δm,n,

√
λnδP,n,

√
λn|P (ĥn) − P (Πnh0)|, ||Πnh0 − h0||}

)
.

(2) Under assumption 3.2(c), ||ĥn − Πnh0|| = Op

(
max{δm,n, o(

√
λn), ||Πnh0 − h0||}

)
.

(3) Under condition (3), ||ĥn−Πnh0|| = Op

(
max{δm,n,

√
λnδP,n,

√
λn||ĥn − Πnh0||s, ||Πnh0 − h0||}

)
.

Lemma B.2. Let Hn = clsp{q1, ..., qk(n)} and {qj}∞j=1 be a Riesz basis for (H, || · ||s).
(1) If assumption 5.2(i) holds, then: ωn(δ,Hosn) ≤ const.×δ/

√
ϕ(ν−2

k(n)) and τn ≤ const./
√

ϕ(ν−2
k(n)).

(2) If assumption 5.2(ii) holds, then: ||h0 − Πnh0|| ≤ const.
√

ϕ(ν−2
k(n))||h0 − Πnh0||s.

(3) If assumption 5.2(i)(ii) holds, then: ωn(||Πnh0 − h0||,Hosn) ≤ c||Πnh0 − h0||s.

Lemma B.3. Let assumptions 5.3 and 5.4(i) hold. Then: for small δ > 0, there is an integer

k∗ ≡ k∗(δ) ∈ (1,∞) such that δ2/ϕ(ν−2
k∗−1) < M2(νk∗)−2α and δ2/ϕ(ν−2

k∗ ) ≥ M2(νk∗)−2α; hence

(1) ω(δ,Hos) ≤ const. × δ/
√

ϕ(ν−2
k∗ ).

(2) ωn(δ,Hosn) ≤ const.×δ/
√

ϕ(ν−2
k

), with k ≡ min{k(n), k∗} ∈ (1,∞) and Hn = clsp{q1, ..., qk(n)}.

C Lemmas for Series LS estimator m̂() of m()

Under the following two mild assumptions, we show that the series LS estimator m̂(X, h) defined

in (11) satisfies assumption 3.3 with η0,n = δ2
m,n = max{Jn

n , b2
m,Jn

}, where Jn
n is the order of the

variance and bm,Jn is the order of the bias of the series LS estimator of m(·, h).

Assumption C.1. (i) {(Y ′
i , X ′

i)}n
i=1 is a random sample from the distribution of (Y ′, X ′); (ii)

X is a compact connected subset of Rdx with Lipschitz continuous boundary, and fX is bounded

and bounded away from zero over X ; (iii) max1≤j≤Jn E[|pj(X)|2] ≤ const.; the smallest eigenvalue

of E
[
pJn(X)pJn(X)′

]
is bounded away from zero for all Jn; (iv) either ξ2

nJn = o(n) with ξn ≡
supX∈X

∥∥pJn(X)
∥∥

I
, or Jn log(Jn) = o(n) for pJn(X) a polynomial spline sieve; (v) there are finite

constants K, K ′ > 0 such that KI ≤ W (x) ≤ K ′I for all x ∈ X ; Ŵ (X) is positive definite for

almost all X ∈ X ; supx∈X

∥∥∥Ŵ (x) − W (x)
∥∥∥

tr
= op(1).

Let N[](ε,Fn, ||.||L2(fZ)) be the L2(fZ)−covering number with bracketing of a class of functions

Fn. For j = 1, ..., Jn, denote Ojn ≡ {pj(·)ρ(·, h) : h ∈ HM0

k(n)} and Oojn ≡ {pj(·)ρ(·, h) : h ∈ Hosn}.
Denote

Cn(j) ≡
∫ 1

0

√
1 + log N[](w,Ojn, ||.||L2(fZ))dw, Con(j) ≡

∫ 1

0

√
1 + log N[](w,Oojn, ||.||L2(fZ))dw.

Assumption C.2. (i) There are a sequence of measurable functions {ρ̄n(Z)}∞n=1 and a finite con-

stant K > 0, such that sup
h∈HM0

k(n)

|ρ(Z, h)| ≤ ρ̄n(Z) and E[ρ̄n(Z)2|X] ≤ K; (ii) there is pJn(X)′π
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such that E{[m(X, h)−pJn(X)′π]2} = O(b2
m,Jn

) uniformly over h ∈ HM0

k(n); (iii) max1≤j≤Jn Cn(j) ≤
√

Cn < ∞ and Jn
n Cn = o(1); (iv) max1≤j≤Jn Con(j) ≤

√
C < ∞.

In assumption C.1, if pJn(X) is a spline, cosine/sine or wavelet sieve, then ξn 
 J
1/2
n ; see e.g.

Newey (1997) or Huang (1998). Assumption C.2(ii) is satisfied by typical smooth function classes

of {m(·, h) : h ∈ HM0

k(n)} and typical linear sieves pJn(X). For example, if {m(·, h) : h ∈ HM0

k(n)} is

a subset of a Hölder ball (denoted as Λαm
c (X )), then assumption C.2(ii) holds for tensor product

polynomial splines, wavelets or Fourier series sieves with bm,Jn = J−rm
n where rm = αm/dx.

The following remark is a special case of lemma 4.2(i) of Chen (2007), which is derived in the

proof of theorem 3 in Chen, Linton and van Keilegom (2003). Let DT denote the distance generated

by the topology T (on H) such that HM0

k(n) is totally bounded under DT .

Remark C.1. Suppose that there are finite constants κ ∈ (0, 1], K > 0 such that

max
1≤j≤Jn

E

⎡⎣[pj(X)]2 sup
h′∈HM0

k(n)
:DT (h′,h)≤δ

∣∣ρ(Z, h′) − ρ(Z, h)
∣∣2⎤⎦ ≤ K2δ2κ (18)

for all h ∈ HM0

k(n) and all positive value δ = o(1). Then:

(1) max1≤j≤Jn N[](ε,Ojn, ||.||L2(fZ)) ≤ N([ ε
2K ]1/κ,HM0

k(n), DT );

(2) Assumption C.2(iii) is satisfied with
∫ 1
0

√
1 + log N(w1/κ,HM0

k(n), DT )dw ≤
√

Cn and Jn
n Cn =

o(1);

(3) Assumption C.2(iv) is satisfied with
∫ 1
0

√
1 + log N(w1/κ,Hosn, DT )dw ≤

√
C < ∞.

Denote m̃ (X, h) ≡ pJn (X)′ (P ′P )−1 P ′m (h) and m (h) = (m (X1, h) , . . . , m (Xn, h))′.

Lemma C.1. Let m̂(., h) be the series LS estimator defined in (11) and assumption C.1 hold. (1)

If V ar[ρ(Z,Πnh0)|X] ≤ K then

1
n

n∑
i=1

||m̂(Xi, Πnh0) − m̃ (Xi,Πnh0) ||2Ŵ = Op

(
Jn

n

)
.

(2) If assumption C.2(i)(iii) holds, then:

sup
h∈HM0

k(n)

1
n

n∑
i=1

||m̂(Xi, h) − m̃ (Xi, h) ||2
Ŵ

= Op

(
Jn

n
Cn

)
= op(1).

(3) If assumption C.2(i)(iv) holds, then:

sup
h∈Hosn

1
n

n∑
i=1

||m̂(Xi, h) − m̃ (Xi, h) ||2
Ŵ

= Op

(
Jn

n

)
= op(1).
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Lemma C.2. Let m̂(., h) be the series LS estimator defined in (11) and assumption C.1 hold. (1)

If assumption C.2(i)(ii) holds at h = Πnh0, then, with η0,n = max{Jn
n , b2

m,Jn
},

cE
[
||m(X, Πnh0)||2W

]
− Op (η0,n) ≤ 1

n

n∑
i=1

||m̂(Xi, Πnh0)||2Ŵ ≤ c′E
[
||m(X, Πnh0)||2W

]
+ Op (η0,n) .

(2) If assumption C.2(i)(ii)(iii) holds, then there are finite constants K, K ′ > 0 such that, with

δ̄2
m,n = Jn

n Cn + b2
m,Jn

= o(1) and uniformly over h ∈ HM0

k(n),

KE
[
||m(X,h)||2W

]
− Op

(
δ̄2
m,n

)
≤ 1

n

n∑
i=1

||m̂(Xi, h)||2
Ŵ

≤ K ′E
[
||m(X,h)||2W

]
+ Op

(
δ̄2
m,n

)
.

(3) If assumption C.2(i)(ii)(iv) holds, then there are finite constants K, K ′ > 0 such that, with

δ2
m,n = η0,n = max{Jn

n , b2
m,Jn

} and uniformly over h ∈ Hosn,

KE
[
||m(X,h)||2W

]
− Op

(
δ2
m,n

)
≤ 1

n

n∑
i=1

||m̂(Xi, h)||2
Ŵ

≤ K ′E
[
||m(X,h)||2W

]
+ Op

(
δ2
m,n

)
.

The next lemma is of independent interest. It is a version of Lemma A.1(1) in Chen and Pouzo

(2009a), and our proof here corrects a typo in their proof. See Chen and Pouzo (2010) for a more

general version and its applications to derive the convergence rates and limiting distributions of

plug-in PSMD estimators of any functionals of h0 satisfying E[ρ(Y, Xz; h0(·))|X] = 0.

Let {δs,n}∞n=1 be a sequence of positive real values such that δs,n = o(1), and

Nos ≡ {h ∈ Hos : ||h − h0||s ≤ M0δs,n},

where M0 is a finite but large number such that ĥn ∈ Nos for large n, with probability greater than

1 − ε, for a small ε > 0.

Lemma C.3. Let m̂(., h) be the series LS estimator defined in (11) and assumption C.1 hold.

Suppose the following condition hold:

(C.3.1) (i) there are finite constants κ ∈ (0, 1], K > 0 such that

max
1≤j≤Jn

E

[
[pj(X)]2 sup

h′∈Nos:||h′−h||s≤δ

∣∣ρ(Z, h′) − ρ(Z, h)
∣∣2] ≤ K2δ2κ

for all h ∈ Nos and all positive value δ = o(1); (ii)
∫ 1
0

√
1 + log N(w1/κ,Nos, || · ||s)dw ≤

√
C < ∞.

Then: sup
Nos

1
n

n∑
i=1

‖m̂(Xi, h) − m̂(Xi, h0) − m̃(Xi, h)‖2
Ŵ

= OP

(
Jn

n
(δs,n)2κ

)
.
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Supplementary Material of “Estimation of Nonparametric Con-
ditional Moment Models With Possibly Nonsmooth Generalized
Residuals” by Xiaohong Chen and Demian Pouzo

In this document we first provide a brief summary of commonly used function spaces and sieve

spaces. We then provide mathematical proofs of all the theorems, corollaries, propositions and

lemmas that appear in the main text and the appendix.

A Brief Summary of Function Spaces and Sieves

Here we briefly summarize some definitions and properties of function spaces that are used in the

main text; see Edmunds and Triebel (1996) for details. Let S(Rd) be the Schwartz space of all

complex-valued, rapidly decreasing, infinitely differentiable functions on Rd. Let S∗(Rd) be the

space of all tempered distributions on Rd, which is the topological dual of S(Rd). For h ∈ S(Rd)

we let ĥ denote the Fourier transform of h (i.e., ĥ(ξ) = (2π)−d/2
∫
Rd exp{−iy′ξ}h(y)dy), and (g)∨

the inverse Fourier transform of g (i.e., (g)∨ (y) = (2π)−d/2
∫
Rd exp{iy′ξ}g(ξ)dξ). Let ϕ0 ∈ S(Rd)

be such that ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(x) = 0 if |x| ≥ 3/2. Let ϕ1(x) = ϕ0(x/2) − ϕ0(x) and

ϕk(x) = ϕ1(2−k+1x) for all integer k ≥ 1. Then the sequence {ϕk : k ≥ 0} forms a dyadic resolution

of unity (i.e., 1 =
∑∞

k=0 ϕk(x) for all x ∈ Rd). Let ν ∈ R and p, q ∈ (0,∞]. The Besov space

Bν
p,q

(
Rd
)

is the collection of all functions h ∈ S∗(Rd) such that ‖h‖Bν
p,q

is finite:

‖h‖Bν
p,q

≡

⎛⎝ ∞∑
j=0

{
2jν

∥∥∥∥(ϕj ĥ
)∨∥∥∥∥

Lp(leb)

}q
⎞⎠1/q

< ∞

(with the usual modification if q = ∞). Let ν ∈ R and p ∈ (0,∞), q ∈ (0,∞]. The F-space

Fν
p,q

(
Rd
)

is the collection of all functions h ∈ S∗(Rd) such that ‖h‖Fν
p,q

is finite:

‖h‖Fν
p,q

≡

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

{
2jν

∣∣∣∣(ϕj ĥ
)∨

(·)
∣∣∣∣}q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp(leb)

< ∞

(with the usual modification if q = ∞). For ν > 0, p, q ≥ 1, it is known that F−ν
p′,q′
(
Rd
)

(B−ν
p′,q′
(
Rd
)
)

is the dual space of Fν
p,q

(
Rd
)

(Bν
p,q

(
Rd
)
) with 1/p′ + 1/p = 1 and 1/q′ + 1/q = 1.

Let T ν
p,q

(
Rd
)

denote either Bν
p,q

(
Rd
)

or Fν
p,q

(
Rd
)
. Then T ν

p,q

(
Rd
)

gets larger with increasing q

(i.e., T ν
p,q1

(
Rd
)
⊆ T ν

p,q2

(
Rd
)

for q1 ≤ q2), gets larger with decreasing p (i.e., T ν
p1,q

(
Rd
)
⊆ T ν

p2,q

(
Rd
)

for p1 ≥ p2), and gets larger with decreasing ν (i.e., T ν1
p,q

(
Rd
)
⊆ T ν2

p,q

(
Rd
)

for ν1 ≥ ν2). Also,

T ν
p,q

(
Rd
)

becomes a Banach space when p, q ≥ 1. The spaces T ν
p,q

(
Rd
)

include many well-known

function spaces as special cases. For example, Lp(Rd, leb) = F0
p,2

(
Rd
)

for p ∈ (1,∞); the Hölder

space Λr(Rd) = Br
∞,∞
(
Rd
)

for any real-valued r > 0; the Hilbert-Sobolev space W k
2 (Rd) =

Bk
2,2

(
Rd
)

for integer k > 0; and the (fractional) Sobolev space W ν
p (Rd) = Fν

p,2

(
Rd
)

for any

1



ν ∈ R and p ∈ (1,∞), which has the equivalent norm ||h||W ν
p
≡
∥∥∥∥((1 + | · |2)ν/2ĥ(·)

)∨∥∥∥∥
Lp(leb)

< ∞

(note that for ν > 0, the norm ||h||W−ν
p

is a shrinkage in the Fourier domain).

Let T ν
p,q (Ω) be the corresponding space on an (arbitrary) bounded domain Ω in Rd. Then the

embedding of T ν1
p1,q1

(Ω) into T ν2
p2,q2

(Ω) is compact if ν1 − ν2 > d max
{
p−1
1 − p−1

2 , 0
}

, and −∞ <

ν2 < ν1 < ∞, 0 < q1, q2 ≤ ∞, 0 < p1, p2 ≤ ∞ (0 < p1, p2 < ∞ for Fν
p,q (Ω)).

We define “weighted” versions of the space T ν
p,q(Rd) as follows. Let w(·) = (1 + | · |2)ζ/2,

ζ ∈ R be a weight function and define ||h||T ν
p,q(Rd,w) = ||wh||T ν

p,q(Rd), that is, T ν
p,q(Rd, w) = {h :

||wh||T ν
p,q(Rd) < ∞}. Then the embedding of T ν1

p1,q1

(
Rd, w1

)
into T ν2

p2,q2

(
Rd, w2

)
is compact if and

only if ν1 − ν2 > d(p−1
1 − p−1

2 ), w2(x)/w1(x) → 0 as |x| → ∞, and −∞ < ν2 < ν1 < ∞,

0 < q1, q2 ≤ ∞, 0 < p1 ≤ p2 ≤ ∞ (0 < p1 ≤ p2 < ∞ for Fν
p,q (Ω)).

If H ⊆ H is a Besov space then a wavelet basis {ψj} is a natural choice of {qj}j to satisfy

assumption 5.1 in Section 5. A real-valued function ψ is called a “mother wavelet” of degree γ if

it satisfies: (a)
∫
R ykψ(y)dy = 0 for 0 ≤ k ≤ γ; (b) ψ and all its derivatives up to order γ decrease

rapidly as |y| → ∞; (c) {2k/2ψ(2ky− j) : k, j ∈ Z} forms a Riesz basis of L2(leb), that is, the linear

span of {2k/2ψ(2ky − j) : k, j ∈ Z} is dense in L2(leb) and∥∥∥∥∥∥
∞∑

k=−∞

∞∑
j=−∞

akj2k/2ψ(2ky − j)

∥∥∥∥∥∥
2

L2(R)



∞∑

k=−∞

∞∑
j=−∞

|akj |2

for all doubly bi-infinite square-summable sequence {akj : k, j ∈ Z}. A scaling function ϕ is called

a “father wavelet” of degree γ if it satisfies: (a’)
∫
R ϕ(y)dy = 1; (b’) ϕ and all its derivatives up

to order γ decrease rapidly as |y| → ∞; (c’) {ϕ(y − j) : j ∈ Z} forms a Riesz basis for a closed

subspace of L2(leb).

Some examples of sieves:

Orthogonal wavelets. Given an integer γ > 0, there exist a father wavelet ϕ of degree γ and

a mother wavelet ψ of degree γ, both compactly supported, such that for any integer k0 ≥ 0, any

function h in L2(leb) has the following wavelet γ− regular multiresolution expansion:

h(y) =
∞∑

j=−∞
ak0jϕk0j(y) +

∞∑
k=k0

∞∑
j=−∞

bkjψkj(y), y ∈ R,

where {ϕk0j , j ∈ Z;ψkj , k ≥ k0, j ∈ Z} is an orthonormal basis of L2(leb); see Meyer (1992, theorem

3.3). For an integer Kn > k0, we consider the finite-dimensional linear space spanned by this wavelet

basis of order γ:

hn(y) = ψkn(y)′Π =
2Kn−1∑

j=0

πKn,jϕKn,j(y), k(n) = 2Kn .

Cardinal B-spline wavelets of order γ:

hn(y) = ψkn(y)′Π =
Kn∑
k=0

∑
j∈Kn

πkj2k/2Bγ(2ky − j), k(n) = 2Kn + 1, (SM.1)
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where Bγ(·) is the cardinal B-spline of order γ,

Bγ(y) =
1

(γ − 1)!

γ∑
i=0

(−1)i

(
γ
i

)
[max (0, y − i)]γ−1 .

Polynomial splines of order qn:

hn(y) = ψkn(y)′Π =
qn∑

j=0

πj(y)j +
rn∑

k=1

πqn+k (y − νk)
qn
+ , k(n) = qn + rn + 1, (SM.2)

where (y − ν)q
+ = max{(y − ν)q, 0} and {νk}k=1,...,rn are the knots. In the empirical application,

for any given number of knots value rn, the knots {νk}k=1,...,rn are simply chosen as the empirical

quantiles of the data.

Hermite polynomials of order k(n) − 1:

hn(y) = ψkn(y)′Π =
kn−1∑
j=0

πj(y − ν1)j exp
{
−(y − ν1)2

2ν2
2

}
, (SM.3)

where ν1 and ν2
2 can be chosen as the sample mean and variance of the data.

Consistency: Proof of Theorems

Proof of Theorem 3.1: Under the assumption that E [m(X, h)′W (X)m(X, h)] is lower semi-

continuous on finite dimensional closed and bounded sieve spaces Hk, we have that for all ε > 0

and each fixed k ≥ 1,

g (k, ε) ≡ inf
h∈HM0

k :||h−h0||s≥ε

E
[
‖m(X, h)‖2

W

]
≥ min

h∈Hk:||h−h0||s≥ε
E
[
‖m(X,h)‖2

W

]
exists, and is strictly positive (under assumption 3.1(i)(ii)). Moreover, for fixed k, g (k, ε) increases

as ε increases. For any fixed ε > 0, g (k, ε) decreases as k increases, and g (k, ε) could go to zero as

k goes to infinity. Following the proof of Lemma A.3(1) with T = || · ||s topology, HM0

k(n) ⊆ Hk(n),

λnP (h) ≥ 0 and ηn = O(η0,n), we have: for all ε > 0 and n sufficiently large,

Pr
(
||ĥn − h0||s ≥ ε

)
≤ Pr

(
||ĥn − h0||s ≥ ε, ĥn ∈ HM0

k(n)

)
+ ε

≤ Pr

(
inf

h∈HM0
k(n)

:||h−h0||s≥ε

{
cE
[
||m(X,h)||2W

]
+ λnP (h)

}
≤ c′E[||m(X, Πnh0)||2W ] + Op (η0,n) + Op

(
δ̄2
m,n

)
+ λnP (h0) + Op(λn)

)
+ ε

≤ Pr

(
inf

h∈HM0
k(n)

:||h−h0||s≥ε

{
cE
[
||m(X, h)||2W

]}
≤ c′E[||m(X, Πnh0)||2W ] + Op (η0,n) + Op

(
δ̄2
m,n

)
+ λnP (h0) + Op(λn)

)
+ ε

≤ Pr
(
g(k(n), ε) ≤ Op

(
max{δ̄2

m,n, η0,n, E(‖m(X, Πnh0)‖2
W ), λn}

))
+ ε

3



which goes to zero under max{δ̄2
m,n, η0,n, E(‖m(X, Πnh0)‖2

W ), λn} = o (g(k(n), ε)). Thus ||ĥn −
h0||s = op(1). Q.E.D.

Proof of Theorem 3.2: Under the assumptions that E [m(X,h)′W (X)m(X, h)] is lower

semicontinuous and P (h) is lower semicompact on (H, || · ||s), we have that for all ε > 0,

g (ε) ≡ min
h∈HM :||h−h0||s≥ε

E
[
m(X,h)′W (X)m(X, h)

]
exists (by theorem 38.B in Zeidler (1985)) and is strictly positive (under assumption 3.1(i)(ii)) for

HM = {h ∈ H : P (h) ≤ M} with some large but finite M ≥ M0. By Lemma A.3(1) with T = || · ||s
topology, HM0

k(n) ⊆ HM , λn > 0, P (h) ≥ 0, ηn = O(η0,n) and max{η0,n, E[||m(X, Πnh0)||2W ]} =

O(λn), we have: for all ε > 0 and n sufficiently large,

Pr
(
||ĥn − h0||s ≥ ε

)
≤ Pr

(
||ĥn − h0||s ≥ ε, ĥn ∈ HM0

k(n)

)
+ ε

≤ Pr

⎛⎝ inf
h∈HM0

k(n)
:||h−h0||s≥ε

{
cE
[
||m(X, h)||2W

]
+ λnP (h)

}
≤ Op

(
δ̄2
m,n

)
+ λnP (h0) + Op(λn)

⎞⎠+ ε

≤ Pr
(

inf
h∈HM :||h−h0||s≥ε

E
[
||m(X, h)||2W

]
≤ Op

(
δ̄2
m,n

)
+ λnP (h0) + Op(λn)

)
+ ε

≤ Pr
(
g(ε) ≤ Op

(
max{δ̄2

m,n, λn}
))

+ ε

which goes to zero under max{δ̄2
m,n, λn} = o (1). Thus ||ĥn − h0||s = op(1). Q.E.D.

Proof of Theorem 3.3: We divide the proof in two steps; first we show consistency under

the weak topology; second we establish consistency under the strong norm.

Step 1 We can establish consistency in the weak topology by applying Lemma A.1, either

verifying its conditions or following its proof directly. Under stated conditions, ĥn ∈ Hk(n) with

probability approaching one. By Lemma A.2(2) with max{η0,n, E[||m(X, Πnh0)||2W ]} = o(λn) and

ηn = O(η0,n), we have P (ĥn) − P (h0) ≤ op(1), thus we can focus on the set {h ∈ Hk(n) : P (h) ≤
M0} = HM0

k(n) for all n large enough. Let Bw(h0) denote any open neighborhood (in the weak topol-

ogy) around h0, and Bc
w(h0) its complement (under the weak topology) in H. By Lemma A.3(2) with

BT (h0) = Bw(h0), λnP (h) ≥ 0, HM0

k(n) ⊆ H, ηn = O(η0,n), and max{η0,n, E[||m(X,Πnh0)||2W ]} =

o(λn), we have: for all non-empty open ball Bw(h0), all ε > 0 and n sufficiently large,

Pr
(
ĥn /∈ Bw(h0)

)
≤ Pr

(
ĥn /∈ Bw(h0), ĥ ∈ HM0

k(n)

)
+ ε

≤ Pr

⎛⎝ inf
HM0

k(n)
:h/∈Bw(h0)

{
cE[||m(X, h)||2W ] + λnP (h)

}
≤ Op

(
δ̄2
m,n

)
+ λnP (h0) + o(λn)

⎞⎠+ ε

≤ Pr
(

inf
H:h/∈Bw(h0)

E[||m(X,h)||2W ] ≤ Op

(
max{δ̄2

m,n, λn}
))

+ ε.
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Let E
[
‖m(X, h)‖2

W

]
be weak sequentially lower semicontinuous on H. Since H ∩ Bc

w(h0) is

weakly compact (weakly closed and bounded), by assumption 3.4(ii) and theorem 38.A in Zeidler

(1985), there exists h∗(B) ∈ H∩Bc
w(h0) such that infH:h/∈Bw(h0) E[||m(X, h)||2W ] = E[||m(X,h∗(B))||2W ].

It must hold that g(B) ≡ E[||m(X, h∗(B))||2W ] > 0; otherwise, by assumption 3.1(i)(ii) ||h∗(B) −
h0||s = 0. But, if this is the case, then for any t ∈ H∗ we have |〈t, h∗(B) − h0〉H∗,H| ≤ const. ×
||h∗(B) − h0||s = 0, a contradiction to the fact that h∗(B) /∈ Bw(h0). Thus

Pr
(
ĥn /∈ Bw(h0), ĥn ∈ HM0

k(n)

)
≤ Pr

(
E[||m(X, h∗(B))||2W ] ≤ Op

(
max{δ̄2

m,n, λn}
))

,

which goes to zero since max{δ̄2
m,n, λn} = o(1). Hence Pr

(
ĥn /∈ Bw(h0)

)
→ 0.

Step 2 Consistency under the weak topology implies that 〈t0, ĥn − h0〉H∗,H = op(1). By

assumption 3.4(i), P (ĥn) − P (h0) ≥ 〈t0, ĥn − h0〉H∗,H + g(||ĥn − h0||s). Lemma A.2(2) implies

that P (ĥn) − P (h0) ≤ op(1) under max{η0,n, E[||m(X, Πnh0)||2W ]} = o(λn), ηn = O(η0,n). Thus

g(||ĥn−h0||s) = op(1), and ||ĥn−h0||s = op(1) by our assumption over g(.). This, 〈t0, ĥn−h0〉H∗,H =

op(1) and assumption 3.4(i) imply that P (ĥn) − P (h0) ≥ op(1). But P (ĥn) ≤ P (h0) + op(1) by

Lemma A.2(2). Thus P (ĥn) − P (h0) = op(1).

Verification of Remark 3.2 Claim (1) follows from proposition 38.7 of Zeidler (1985). Claim

(2) follows from corollary 41.9 of Zeidler (1985). For Claim (3), the fact that
√

W (·)m(·, h) : H →
L2(fX) is compact and Frechet differentiable imply that its Frechet derivative is also a compact

operator; see Zeidler (1985, proposition 7.33). This and the chain rule imply that the functional

E
[
||m(X, ·)||2W

]
: H → [0,∞) is Frechet differentiable and its Frechet derivative is compact on

H. Hence E
[
||m(X, h)||2W

]
has a compact Gateaux derivative on H, and by Claim (2), is weak

sequentially lower semicontinuous on H. Q.E.D.

Proof of Theorem A.1: For result (1), we first show that the set of minimum penalization

solution, MP
0 , is not empty. Since E

[
||m(X, h)||2W

]
is convex and lower semicontinuous in h ∈ H

and H is a convex, closed and bounded subset of a reflexive Banach space (assumption 3.4(ii)),

by proposition 38.15 of Zeidler (1985), M0 is convex, closed and bounded (and non-empty). Since

P (.) is convex and lower semi-continuous on M0, applying proposition 38.15 of Zeidler (1985), we

have that the set MP
0 is non-empty, convex, closed and bounded subset of M0. Next, we show

uniqueness of the minimum penalization solution. Suppose that there exist h1, h0 ∈ MP
0 such that

||h1 −h0||s > 0. Since MP
0 is a subset of M0, and M0 is convex, h′ = λh1 +(1−λ)h0 ∈ M0. Since

P (.) is strictly convex on M0 (in || · ||s), thus P (h′) < P (h0), but this is a contradiction since h0

is a minimum penalization solution. Thus we established result (1).

For result (2), first, as already shown earlier, ĥn ∈ Hk(n) with probability approaching one. We

now show its consistency under the weak topology. To establish this, we adapt Step 1 in the proof

of Theorem 3.3 to the case where assumption 3.1(ii) (identification) may not hold, but h0 is the

minimum penalization solution. Let Bw(h0) denote any open neighborhood (in the weak topology)
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around h0, and Bc
w(h0) denote its complement (under the weak topology) in H. By Lemma A.2(2),

P (ĥn) = Op(1). By Lemma A.3(2) with BT (h0) = Bw(h0), HM0

k(n) ⊆ Hk(n), ηn = O(η0,n) and

max{δ̄2
m,n, η0,n, E

[
||m(X, Πnh0)||2W

]
} = o (λn), we have: for all non-empty open ball Bw(h0),

Pr
(
ĥn /∈ Bw(h0), ĥn ∈ HM0

k(n)

)
≤ Pr

⎛⎝ inf
HM0

k(n)
:h/∈Bw(h0)

{
cE[||m(X,h)||2W ] + λnP (h)

}
≤ λnP (h0) + op (λn)

⎞⎠
≤ Pr

(
inf

Hk(n):h/∈Bw(h0)

{
cE[||m(X,h)||2W ] + λnP (h)

}
≤ λnP (h0) + op (λn)

)
.

By assumptions 3.4(ii) and 3.1(iii), Hk(n) is weakly sequentially compact. Since Bc
w(h0) is

closed under the weak topology, the set Hk(n) ∩ Bc
w(h0) is weakly sequentially compact. By as-

sumption 3.4(ii) and the assumption that E
[
||m(X,h)||2W

]
is convex and lower semicontinuous

on H, cE[||m(X,h)||2W ] + λnP (h) is weakly sequentially lower semicontinuous on Hk(n). Thus

g(k(n), ε, λn) ≡ infHk(n)∩Bc
w(h0)

{
cE[||m(X,h)||2W ] + λnP (h)

}
≥ 0 exists, and we denote its mini-

mizer as hn(ε) ∈ Hk(n) ∩ Bc
w(h0). Hence, with max{δ̄2

m,n, η0,n, E
[
||m(X, Πnh0)||2W

]
} = o (λn) and

λn > 0, we have:

Pr
(
ĥn /∈ Bw(h0), ĥn ∈ HM0

k(n)

)
≤ Pr

(
cE[||m(X,hn(ε))||2W ] + λnP (hn(ε)) ≤ λnP (h0) + op (λn)

)
= Pr

(
g(k(n), ε, λn) − λnP (h0)

λn
≤ op(1)

)
.

If lim infn E[||m(X,hn(ε))||2W ] = const. > 0 then Pr
(
ĥn /∈ Bw(h0), ĥn ∈ HM0

k(n)

)
→ 0 trivially. So

we assume lim infn E[||m(X,hn(ε))||2W ] = const. = 0. Since H ∩ Bc
w(h0) is weakly compact, there

exists a subsequence {hnk
(ε)}k that converges (weakly) to h∞(ε) ∈ H ∩ Bc

w(h0). By weakly lower

semicontinuity of E
[
||m(X, h)||2W

]
on H, h∞(ε) ∈ M0. By definition of h0 and the assumption

that P (h) is strictly convex in h ∈ M0, it must be that P (h∞(ε)) − P (h0) ≥ const. > 0 by result

(1). Note that this is true for any convergent subsequence. Therefore, we have established that

lim inf
n

g(k(n), ε, λn) − λnP (h0)
λn

≥ const. > 0,

thus Pr
(
ĥn /∈ Bw(h0), ĥn ∈ HM0

k(n)

)
→ 0. Hence, by similar calculations to those in Lemma A.3(2),

for any ε > 0 and sufficiently large n, Pr
(
ĥn /∈ Bw(h0)

)
≤ Pr

(
ĥn /∈ Bw(h0), ĥn ∈ HM0

k(n)

)
+ ε ≤ 2ε.

Given the consistency under the weak topology, assumption 3.4(i) and Lemma A.2(2), we obtain

||ĥn − h0||s = op(1) and P (ĥn) − P (h0) = op(1) by following Step 2 in the proof of Theorem 3.3.

Q.E.D.
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Consistency: Proofs of Lemmas

Proof of Lemma A.1: By definition of the infimum, α̂n always exists, and α̂n ∈ Ak(n) with

outer probability approaching one (α̂n may not be measurable). Note that conditions (A.1.1)(ii),

(A.1.2)(ii) and (A.1.4)(iii) imply that there is a sequence {Πnα0 ∈ Ak(n) ∩BT (α0)} for all BT (α0).

It follows that for all BT (α0),

Pr∗
(
α̂n ∈ Ak(n), α̂n /∈ BT (α0)

)
≤ Pr∗

(
inf

α∈Ak(n):α/∈BT (α0)
Q̂n (α) ≤ Q̂n (Πnα0) + Op∗(ηn)

)

≤ Pr∗
(

inf
α∈Ak(n):α/∈BT (α0)

{
KQn (α) − Op∗(cn)

}
≤ K0Qn(Πnα0) + Op∗(c0,n) + Op∗(ηn)

)

≤ Pr∗
(

inf
α∈Ak(n):α/∈BT (α0)

Qn (α) ≤ Op∗
(
max

{
cn, c0,n, Qn(Πnα0), ηn

}))
≤ Pr∗

(
g0 (n, k(n),B) ≤ Op∗

(
max

{
cn, c0,n, Qn(Πnα0), ηn

}))
by condition (A.1.1)(ii),

which goes to 0 by condition (A.1.4)(iii). Q.E.D.

Next we present another consistency lemma for penalized sieve extremum estimators, which is

a special case of Lemma A.1, but is general enough and easily applicable in most applications.

Lemma SM.1. Let α̂n be such that Q̂n(α̂n) ≤ infα∈Ak(n)
Q̂n(α) + Op(ηn) with ηn = o(1). Let

Qn() : A → (−∞,∞) be a sequence of non-random measurable functions and following conditions

(SM.1.1) - (SM.1.4) hold:

(SM.1.1) (i) −∞ < Qn(α0) < ∞; (ii) there is a positive function g0 (n, k, ε) such that:

inf
α∈Ak:||α−α0||s≥ε

Qn(α) − Qn(α0) ≥ g0 (n, k, ε) > 0 for each n ≥ 1, k ≥ 1, ε > 0,

and lim infn→∞ g0 (n, k(n), ε) ≥ 0 for all ε > 0.

(SM.1.2) (i) A ⊆ A and (A, || · ||s) is a metric space; (ii) Ak ⊆ Ak+1 ⊆ A for all k ≥ 1, and

there exists a sequence Πnα0 ∈ Ak(n) such that Qn(Πnα0) − Qn(α0) = o(1).

(SM.1.3) (i) Q̂n(α) is a measurable function of the data {(Yi, Xi)}n
i=1 for all α ∈ Ak(n); (ii) α̂n

is well-defined and measurable.

(SM.1.4) Let ĉn ≡ supα∈Ak(n)

∣∣∣Q̂n(α) − Qn(α)
∣∣∣ = op(1).

max
{
ĉn, ηn,

∣∣Qn(Πnα0) − Qn (α0)
∣∣}

g0 (n, k(n), ε)
= op(1) for all ε > 0.

Then: ||α̂n − α0||s = op(1).

Proof of Lemma SM.1: Under condition (SM.1.3)(ii) α̂n is well-defined and measurable.

Note that conditions (SM.1.1)(ii), (SM.1.2)(ii) and (SM.1.4) imply that there exists a sequence
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Πnα0 ∈ Ak(n) such that ||Πnα0 − α0||s = o(1). It follows that for any ε > 0,

Pr (‖α̂n − α0‖s > ε)

≤ Pr

(
inf

α∈Ak(n):||α−α0||s≥ε
Q̂n (α) ≤ Q̂n (Πnα0) + Op(ηn)

)

≤ Pr

(
inf

α∈Ak(n):||α−α0||s≥ε

{
Qn (α) −

∣∣∣Q̂n (α) − Qn (α)
∣∣∣}≤Qn (Πnα0) +

∣∣∣Q̂n (Πnα0) − Qn (Πnα0)
∣∣∣+Op(ηn)

)

≤ Pr

(
inf

α∈Ak(n):||α−α0||s≥ε
Qn (α) ≤ 2ĉn + Qn(Πnα0) + Op(ηn)

)

= Pr

(
inf

α∈Ak(n):||α−α0||s≥ε
Qn (α) − Qn (α0) ≤ 2ĉn + Qn(Πnα0) − Qn (α0) + Op(ηn)

)
≤ Pr

(
g0 (n, k(n), ε) ≤ 2ĉn +

∣∣Qn(Πnα0) − Qn (α0)
∣∣+ Op(ηn)

)
which goes to 0 by condition (SM.1.4). Q.E.D.

Proof of Lemma A.2: We first show that ĥn ∈ Hn wpa1. The infimum infHn Q̂n(h) exists

wpa1, and hence for any ε > 0, there is a sequence, (hj,n(ε))j ⊆ Hn such that Q̂n(hj,n(ε)) ≤
infHn Q̂n(h) + ε wpa1. Let ĥn ≡ hn,n(ηn) and then such a choice satisfies ĥn ∈ Hn wpa1.

Next, by definition of ĥn, we have for any λn > 0,

λnP̂n(ĥn) ≤ 1
n

n∑
i=1

||m̂(Xi, ĥn)||2
Ŵ

+ λnP̂n(ĥn) ≤ 1
n

n∑
i=1

||m̂(Xi, Πnh0)||2Ŵ + λnP̂n(Πnh0) + Op(ηn),

and

λn{P (ĥn) − P (h0)} + λn{P̂n(ĥn) − P (ĥn)}

≤ 1
n

n∑
i=1

||m̂(Xi, Πnh0)||2Ŵ + λn{P̂n(Πnh0) − P (Πnh0)} + λn{P (Πnh0) − P (h0)} + Op(ηn).

Thus

λn{P (ĥn) − P (h0)}

≤ 1
n

n∑
i=1

||m̂(Xi,Πnh0)||2Ŵ + 2λn sup
h∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+ λn |P (Πnh0) − P (h0)| + Op(ηn)

≤ Op

(
η0,n + E[||m(X, Πnh0)||2W ]

)
+ 2λn sup

h∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+ λn |P (Πnh0) − P (h0)|

where the last inequality is due to assumption 3.3(i) and ηn = O(η0,n). Therefore, for all M > 0,

Pr
(
P (ĥn) − P (h0) > M

)
= Pr

(
λn{P (ĥn) − P (h0)} > λnM

)
≤ Pr

(
Op

(
η0,n + E[||m(X, Πnh0)||2W ]

)
+ 2λn sup

h∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+ λn |P (Πnh0) − P (h0)| > λnM

)
.
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(1) Under assumption 3.2(b), λn suph∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+λn |P (Πnh0) − P (h0)| = Op(λn), we

have:

Pr
(
P (ĥn) − P (h0) > M

)
≤ Pr

(
Op

(
max

{
η0,n + E[||m(X, Πnh0)||2W ], λn

})
> λnM

)
≤ Pr

(
Op(

η0,n + E[||m(X, Πnh0)||2W ]
λn

) + Op(1) > M

)
which, under max{η0,n, E[||m(X, Πnh0)||2W ]} = O(λn), goes to zero as M → ∞. Thus P (ĥn) −
P (h0) = Op(1). Since 0 ≤ P (h0) < ∞ we have: P (ĥn) = Op(1).

(2) Under assumption 3.2(c), λn suph∈Hn

∣∣∣P̂n(h) − P (h)
∣∣∣+ λn |P (Πnh0) − P (h0)| = op(λn), we

have:

Pr
(
P (ĥn) − P (h0) > M

)
≤ Pr

(
Op(

η0,n + E[||m(X, Πnh0)||2W ]
λn

) + op(1) > M

)
which, under max{η0,n, E[||m(X, Πnh0)||2W ]} = o(λn), goes to zero for all M > 0. Thus P (ĥn) −
P (h0) ≤ op(1). Q.E.D.

Proof of Lemma A.3: It suffices to consider λnP () > 0 only. By the fact that Pr(A) ≤
Pr(A ∩ B) + Pr(Bc) for any measurable sets A and B, we have:

Pr
(
ĥn /∈ BT (h0)

)
≤ Pr

(
ĥn /∈ BT (h0), P (ĥn) ≤ M0

)
+ Pr

(
P (ĥn) > M0

)
.

For any ε > 0, choose M0 ≡ M0(ε) such that Pr
(
P (ĥn) > M0

)
< ε for sufficiently large n. Note

that such a M0 always exists by Lemma A.2. Thus, we can focus on the set HM0

k(n) ≡ {h ∈ Hk(n) :

λnP (h) ≤ λnM0} and bound Pr
(
ĥn /∈ BT (h0), P (ĥn) ≤ M0

)
.

By definition of ĥn and Πnh0, assumptions 3.3 and 3.1(iii) and ηn = O(η0,n), we have: for all

BT (h0),

Pr
(
ĥn /∈ BT (h0), ĥn ∈ HM0

k(n)

)
≤ Pr

⎛⎝ inf
h∈HM0

k(n)
:h/∈BT (h0)

{ 1
n

∑n
i=1 ||m̂(Xi, h)||2

Ŵ
+ λnP̂ (h)}

≤ 1
n

∑n
i=1 ||m̂(Xi, Πnh0)||2

Ŵ
+ λnP̂ (Πnh0) + Op(ηn)

⎞⎠
≤ Pr

(
inf

h∈HM0
k(n)

:h/∈BT (h0)
{cE
[
||m(X, h)||2W

]
+ λnP̂ (h)}

≤ c′E
[
||m(X, Πnh0)||2W

]
+ Op(δ̄2

m,n) + λnP̂ (Πnh0) + Op(η0,n)

)
.

By assumption 3.2(b), we have: λn suph∈Hn
|P̂ (h) − P (h)| = Op(λn) and λn|P (Πnh0) − P (h0)| =

O(λn). Thus, with max{η0,n, E[||m(X, Πnh0)||2W ]} = O(λn), for all BT (h0),

Pr
(
ĥn /∈ BT (h0), ĥn ∈ HM0

k(n)

)
≤ Pr

⎛⎝ inf
h∈HM0

k(n)
:h/∈BT (h0)

{
cE
[
||m(X,h)||2W

]
+ λnP (h)

}
≤ Op

(
δ̄2
m,n

)
+ λnP (h0) + Op(λn)

⎞⎠ .
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By assumption 3.2(c), we have: λn suph∈Hn
|P̂ (h) − P (h)| = op(λn) and λn|P (Πnh0) − P (h0)| =

o(λn) for λn > 0. Thus, with max{η0,n, E[||m(X, Πnh0)||2W ]} = o(λn), for all BT (h0),

Pr
(
ĥn /∈ BT (h0), ĥn ∈ HM0

k(n)

)
≤ Pr

⎛⎝ inf
h∈HM0

k(n)
:h/∈BT (h0)

{
cE
[
||m(X, h)||2W

]
+ λnP (h)

}
≤ Op

(
δ̄2
m,n

)
+ λnP (h0) + op(λn)

⎞⎠ .

Hence we obtain results (1) and (2). Q.E.D.

Convergence Rate: Proofs of Theorems

Proof of Theorem 4.1: Directly follows from Lemma B.1 and the definition of ωn(δ,Hosn).

Q.E.D.

Proof of Corollary 5.1: Directly follows from Theorem 4.1 and Lemma B.2. Q.E.D.

Proof of Corollary 5.2: Directly follows from Theorem 4.1 and Lemmas B.2 and B.3.

Q.E.D.

Proof of Corollary 5.3: By Theorem 4.1, Lemma B.2 and Lemma B.3(2), Results of

Corollary 5.2 are obviously true. We now specialize Corollary 5.2 to the PSMD estimator using a

series LS estimator m̂(X,h). For this case we have δ∗2m,n = J∗
n
n 
 b2

m,J∗
n
.

By assumption 5.4(ii) and the condition that either P (h) ≥∑∞
j=1 ν2α

j |〈h, qj〉s|2 for all h ∈ Hos

or Hos ⊆ Hellipsoid, we have: for all h ∈ Hos,

c2E[m(X, h)′W (X)m(X,h)] ≤ ||h − h0||2 ≤ const.
∞∑

j=1

{ϕ(ν−2
j )}〈h − h0, qj〉2s.

On the other hand, the choice of penalty and the definition of Hos imply that
∑

j ν2α
j 〈h−h0, qj〉2s ≤

const. for all h ∈ Hos. Denote ηj = {ϕ(ν−2
j )}〈h − h0, qj〉2s. Then

∑
j ν2α

j {ϕ(ν−2
j )}−1ηj ≤ M .

Therefore, the class {g ∈ L2(X , || · ||L2(fX)) : g(·) =
√

W (·)m(·, h), h ∈ Hos} is embedded in the

ellipsoid {g ∈ L2(X , ||·||L2(fX)) : ||g||2L2(fX) =
∑

j ηj , and
∑

j ν2α
j {ϕ(ν−2

j )}−1ηj ≤ M}. By invoking

the results of Yang and Barron (1999), it follows that the Jn-th approximation error rate of this

ellipsoid satisfies b2
m,Jn

≤ const.ν−2α
Jn

{ϕ(ν−2
Jn

)}. Hence δ∗2m,n = J∗
n
n 
 b2

m,J∗
n
≤ const.ν−2α

J∗
n

{ϕ(ν−2
J∗

n
)},

and ||ĥ − h0||s = Op

(
ν−α

J∗
n

)
= Op

(√
J∗

n
n {ϕ(ν−2

J∗
n

)}−1
)
. Q.E.D
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Convergence Rate: Proofs of Lemmas

Proof of Lemma B.1: Let r2
n = max{δ2

m,n, λnδP,n, ||Πnh0−h0||2, λn|P (Πnh0)−P (ĥn)|} = op(1).

Since ĥn ∈ Hosn with probability approaching one, we have: for all M > 1,

Pr

(
||ĥn − h0||

rn
≥ M

)

≤ Pr

(
inf{h∈Hosn:||h−h0||≥Mrn}{ 1

n

∑n
i=1 ||m̂(Xi, h)||2

Ŵ
+ λnP̂n(h)}

≤ 1
n

∑n
i=1 ||m̂(Xi,Πnh0)||2

Ŵ
+ λnP̂n(Πnh0) + Op(ηn)

)

≤ Pr

(
inf{h∈Hosn:||h−h0||≥Mrn}{ 1

n

∑n
i=1 ||m̂(Xi, h)||2

Ŵ
+ λnP (h)}

≤ 1
n

∑n
i=1 ||m̂(Xi, Πnh0)||2

Ŵ
+ λnP (Πnh0) + 2λnδP,n + Op(ηn)

)
,

where the last inequality is due to suph∈Hosn
|P̂n(h)−P (h)| = Op(δP,n) = Op(1). By assumption 3.3

with η0,n = O(δ2
m,n), ηn = O(η0,n) and definitions of Hosn and δ2

m,n, there are two finite constants

c, c0 > 0 such that:

cE
(
||m(X, ĥn)||2W

)
+λnP (ĥn) ≤ Op(δ2

m,n+λnδP,n)+c0E
(
||m(X,Πnh0)||2W

)
+λnP (Πnh0) (SM.4)

which implies

cE
(
||m(X, ĥn)||2W

)
≤ Op(δ2

m,n + λnδP,n) + c0E
(
||m(X, Πnh0)||2W

)
+ λn|P (Πnh0) − P (ĥn)|.

This, ||ĥn − h0||s = op(1) and assumption 4.1 imply that

Pr

(
||ĥn − h0||

rn
≥ M

)
≤ Pr

(
M2r2

n ≤ Op

(
max

{
δ2
m,n, λnδP,n, ||Πnh0 − h0||2, λn|P (Πnh0) − P (ĥn)|

}))
,

which, given our choice of rn, goes to zero as M → ∞; hence ||ĥn − h0|| = Op(rn).

By definition of Hosn (or under assumption 3.2(a)(b)), λn|P (Πnh0) − P (ĥn)| = Op(λn) and

δP,n = Op(1); hence Result (1) follows.

Under assumption 3.2(c), λn|P (Πnh0) − P (ĥn)| = op(λn) and δP,n = op(1); hence Result (2)

follows.

For Result (3), using the same argument as that for Results (1)(2), inequality (SM.4) still holds.

By condition (3) of Theorem 4.1, λn

(
P (ĥn) − P (Πnh0)

)
≥ λn〈t0, ĥn − Πnh0〉H∗,H. Thus

cE
(
||m(X, ĥn)||2W

)
+ λn〈t0, ĥn − Πnh0〉H∗,H ≤ Op(δ2

m,n + λnδP,n) + c0E
(
||m(X, Πnh0)||2W

)
,

hence

cE
(
||m(X, ĥn)||2W

)
≤ Op(δ2

m,n + λnδP,n) + c0E
(
||m(X,Πnh0)||2W

)
+ const.λn||ĥn − Πnh0||s.
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By assumption 4.1, Lemma B.1(3) follows by choosing r2
n = max{δ2

m,n, λnδP,n, ||Πnh0−h0||2, λn||ĥn−
Πnh0||s} = op(1). Q.E.D.

Proof of Lemma B.2: To simplify notation we denote bj = ϕ(ν−2
j ). Result (1) follows directly

from the definition of ωn(δ,Hosn), as well as the fact that {qj}∞j=1 is a Riesz basis, and hence for

any h ∈ Hosn, there is a finite constant c1 > 0 such that

c1||h||2s ≤
∑

j≤k(n)

|〈h, qj〉s|2 ≤ ( max
j≤k(n)

b−1
j )

∑
j≤k(n)

bj |〈h, qj〉s|2 ≤ 1
cbk(n)

||h||2,

where the last inequality is due to assumption 5.2(i) and {bj} non-increasing. Similarly, assumption

5.2(ii) implies result (2) since

c2||h0 − Πnh0||2s ≥
∑

j>k(n)

|〈h0 − Πnh0, qj〉s|2

≥ c( min
j>k(n)

b−1
j )

∑
j>k(n)

bj |〈h0 − Πnh0, qj〉s|2 ≥ c′

bk(n)
||h0 − Πnh0||2

for some finite positive constants c2, c and c′. Result (3) directly follows from results (1) and (2).

Q.E.D.

Proof of Lemma B.3: Denote bj = ϕ(ν−2
j ). For any h ∈ Hos with ||h||2 ≤ O(δ2), and for any

k ≥ 1, assumptions 5.3 and 5.4(i) imply that there are finite positive constants c1 and c such that:

c1||h||2s ≤
∑
j≤k

〈h, qj〉2s +
∑
j>k

〈h, qj〉2s

≤ (max
j≤k

b−1
j )
∑

j

bj〈h, qj〉2s + M2(νk+1)−2α ≤ 1
c
b−1
k δ2 + M2(νk+1)−2α.

Given that M > 0 is a fixed finite number and δ is small, we can assume M2(ν2)−2α > 1
c δ

2/b1.

Since {bj} is non-increasing and {νj}∞j=1 is strictly increasing in j ≥ 1, we have: there is a k∗ ≡
k∗(δ) ∈ (1,∞) such that

δ2

bk∗−1
< cM2(νk∗)−2α and

δ2

bk∗
≥ cM2(νk∗)−2α ≥ cM2(νk∗+1)−2α,

and

ω(δ,Hos) ≡ sup
h∈Hos:||h−h0||≤δ

||h − h0||s ≤ const.
δ√
bk∗

thus Result (1) holds. Result (2) follows from Lemma B.2 and Result (1). Q.E.D

Proofs of Lemmas for Series LS estimation of m()

Denote m̃ (X, h) ≡ pJn (X)′ (P ′P )−1 P ′m (h) and m (h) = (m (X1, h) , . . . ,m (Xn, h))′.
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Lemma SM.2. Let assumptions C.1 and C.2(i) hold. Then: there are finite constants c, c′ > 0

such that, wpa1,

cEX

[
||m̃ (X, h) ||2W

]
≤ 1

n

n∑
i=1

||m̃ (Xi, h) ||2
Ŵ

≤ c′EX

[
||m̃ (X,h) ||2W

]
uniformly in h ∈ HM0

k(n).

Proof of Lemma SM.2: Denote 〈g, g〉n,X ≡ 1
n

∑n
i=1 g(Xi)g(Xi) and 〈g, g〉X ≡ EX [g(X)g(X)],

where g(X) and g(X) are square integrable functions of X. We want to show that for all t > 0,

lim
n→∞

Pr

⎛⎝ sup
h∈HP

k(n)

∣∣∣∣〈m̃(·, h), m̃(·, h)〉n,X − 〈m̃(·, h), m̃(·, h)〉X
〈m̃(·, h), m̃(·, h)〉X

∣∣∣∣ > t

⎞⎠ = 0 (SM.5)

Let Gn ≡ {g : g(x) =
∑Jn

k=1 πkpk(x); πk ∈ R, supx |g(x)| < ∞}. By construction m̃(X, h) =

arg ming∈Gn n−1
∑n

i=1 ||m(Xi, h) − g(Xi)||2I ; so m̃(X, h) ∈ Gn and

sup
h∈HP

k(n)

∣∣∣∣〈m̃(·, h), m̃(·, h)〉n,X − 〈m̃(·, h), m̃(·, h)〉X
〈m̃(·, h), m̃(·, h)〉X

∣∣∣∣ ≤ sup
g∈Gn:||g||X=1

|〈g, g〉n,X − 〈g, g〉X | .

Define An ≡ supg∈Gn

supx |g(x)|√
E[(g(X))2]

. Then, under assumption C.1(i)(ii)(iii) and the definition of Gn,

we have An 
 ξn. Thus, by assumption C.1(iv), lemma 4 of Huang (1998) for general linear sieves

{pk}Jn
k=1 and Corollary 3 of Huang (2003) for polynomial spline sieves, equation (SM.5) holds. So

with t = 0.5, we obtain that uniformly over h ∈ HM0

k(n),

0.5EX

[
||m̃(X,h)||2I

]
≤ 1

n

n∑
i=1

||m̃(Xi, h)||2I ≤ 2EX

[
||m̃(X, h)||2I

]
.

expect for an event wpa0. By assumption C.1(v), there are finite constants K, K ′ > 0 such that

KI ≤ W (X) ≤ K ′I for almost all X. Thus, K||m̃(X, h)||2I ≤ ||m̃(X, h)||2W ≤ K ′||m̃(X, h)||2I for

almost all X. Also by assumption C.1(v), uniformly over h ∈ Hk(n),

||m̃(X, h)||2
Ŵ

= m̃(X, h)′{Ŵ (X) − W (X) + W (X)}m̃(X,h)

≤ sup
x∈X

|Ŵ (x) − W (x)| × ||m̃(X,h)||2I + ||m̃(X, h)||2W ≤ (K ′ + op(1))||m̃(X,h)||2I .

Similarly,

||m̃(X, h)||2
Ŵ

≥ (K − op(1))||m̃(X, h)||2I .

Note that for n large, min{K ′,K} ± op(1) > 0. Therefore, uniformly over h ∈ HM0

k(n),

const × EX

[
||m̃(X, h)||2W

]
≤ 1

n

n∑
i=1

||m̃(Xi, h)||2
Ŵ

≤ const′ × EX

[
||m̃(X,h)||2W

]
except for a set wpa0. Q.E.D.

Proof of Lemma C.1: By assumption C.1(i)(v) it suffices to establish the results for W = I.

Result (1) directly follows from our assumption C.1 and Lemma A.1 Part (C) of Ai and Chen (2003).
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Result (3) can be established in the same way as that of Result (2). For Result (2), let ε(Z, h) ≡
ρ(Z, h) − m(X, h) and ε(h) ≡ (ε(Z1, h), ..., ε(Zn, h))′. For any symmetric and positive matrix Ω

(d× d), we have the spectral decomposition Ω = UΛU ′ where Λ = diag{λ1, ..., λd} with λi > 0 and

UU ′ = Id. Denote λmin(Ω) as the smallest eigenvalue of the matrix Ω. By definition we have:

sup
h∈HM0

k(n)

1
n

n∑
i=1

||m̂(Xi, h) − m̃ (Xi, h) ||2I

= sup
h∈HM0

k(n)

1
n

n∑
i=1

Tr{pJn(Xi)′(P ′P )−1P ′ε(h)ε(h)′P (P ′P )−1pJn(Xi)}

= sup
h∈HM0

k(n)

1
n

n∑
i=1

Tr{ε(h)′P (P ′P )−1pJn(Xi)pJn(Xi)′(P ′P )−1P ′ε(h)}

= sup
h∈HM0

k(n)

1
n

Tr{ε(h)′P (P ′P )−1
n∑

i=1

{pJn(Xi)pJn(Xi)′}(P ′P )−1P ′ε(h)}

= sup
h∈HM0

k(n)

1
n

Tr{ε(h)′P (P ′P )−1P ′ε(h)} = sup
h∈HM0

k(n)

1
n2

Tr{ε(h)′P (P ′P/n)−1P ′ε(h)}

≤ (λmin(P ′P/n))−1 × sup
HM0

k(n)

1
n2

Tr{ε(h)′PP ′ε(h)}.

Note that

ε(h)′PP ′ε(h) =
Jn∑
j=1

(∣∣∣∣∣
n∑

i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
)2

.

Let rn = Jn
n Cn. We have for all M ≥ 1,

Pr

⎛⎝ sup
h∈HM0

k(n)

1
n

n∑
i=1

||m̂(Xi, h) − m̃ (Xi, h) ||2I > Mrn

⎞⎠
≤ Pr

⎛⎝(λmin(P ′P/n))−1 sup
h∈HM0

k(n)

Jn∑
j=1

(∣∣∣∣∣ 1n
n∑

i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
)2

> Mrn

⎞⎠
≤ Pr

⎛⎝(λmin(P ′P/n))−1
Jn∑
j=1

⎛⎝ sup
h∈HM0

k(n)

∣∣∣∣∣ 1n
n∑

i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎞⎠2

> Mrn

⎞⎠ .

Following Newey (1997, p. 162) and under assumption C.1(i)(ii)(iii)(iv), we have: (λmin(P ′P/n))−1 =

Op(1). Thus, to bound Pr
(

supHM0
k(n)

n−1
∑n

i=1 ||m̂(Xi, h) − m̃(Xi, h)||2I > Mrn

)
, it suffices to bound

14



the probability

Pr

⎛⎝ Jn∑
j=1

⎛⎝ sup
h∈HM0

k(n)

∣∣∣∣∣ 1n
n∑

i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎞⎠2

> Mrn

⎞⎠
≤ 1

Mrn
EZn

⎡⎣ Jn∑
j=1

⎛⎝ sup
h∈HM0

k(n)

∣∣∣∣∣ 1n
n∑

i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎞⎠2⎤⎦

≤ Jn

nrnM
max

1≤j≤Jn

EZn

⎡⎣⎛⎝ sup
h∈HM0

k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎞⎠2⎤⎦ ,

where the first inequality is by Markov inequality, and EZn(·) denotes the expectation with respect

to Zn ≡ (Z1, ..., Zn). By Theorem 2.14.5 in Van der Vaart and Wellner (VdV-W, 1996) (also see

Pollard, 1990), we have:

max
1≤j≤Jn

EZn

⎡⎣⎛⎝ sup
h∈HM0

k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎞⎠2⎤⎦

≤ max
1≤j≤Jn

⎛⎝EZn

⎡⎣ sup
h∈HM0

k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎤⎦+
√

E[|pj(X)ρ̄n(Z)|2]

⎞⎠2

.

By assumption C.2(i) and max1≤j≤Jn E[|pj(X)|2] ≤ const., we have

max
1≤j≤Jn

E[|pj(X)ρ̄n(Z)|2] ≤ const. < ∞.

By Theorem 2.14.2 in VdV-W (1996), we have (up to some constant)

max
1≤j≤Jn

EZn

⎡⎣ sup
h∈HM0

k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎤⎦

≤ max
1≤j≤Jn

{√
E[|pj(X)ρ̄n(Z)|2]

∫ 1

0

√
1 + log N[](wK, Ejn, ||.||L2(fZ))dw

}
≤K max

1≤j≤Jn

∫ 1

0

√
1 + log N[](wK, Ejn, ||.||L2(fZ))dw,

where Ejn ≡ {pj(·)ε(·, h) : h ∈ HM0

k(n)}. Note that for any h, h′ ∈ HM0

k(n), we have:

|pj(X)(ε(Z, h) − ε(Z, h′))| ≤ |pj(X)|{|ρ(Z, h) − ρ(Z, h′)| + |E[ρ(Z, h)|X] − E[ρ(Z, h′)|X]|},

and

|pj(X)||E[ρ(Z, h)|X] − E[ρ(Z, h′)|X]| ≤ |pj(X)|E[|ρ(Z, h) − ρ(Z, h′)||X].

Recall that Ojn ≡ {pj(·)ρ(·, h) : h ∈ HM0

k(n)} and that max1≤j≤Jn

∫ 1
0

√
1 + log N[](wK,Ojn, ||.||L2(fZ))dw ≤

√
Cn < ∞ by assumption C.2(iii). We have: max1≤j≤Jn

∫ 1
0

√
1 + log N[](wK, Ejn, ||.||L2(fZ))dw ≤
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const.
√

Cn < ∞ and hence

max
1≤j≤Jn

EZn

⎡⎣ sup
h∈HM0

k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎤⎦ ≤ const. ×

√
Cn

It then follows

Jn

nrnM
max

1≤j≤Jn

EZn

⎡⎣⎛⎝ sup
h∈HM0

k(n)

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)ε(Zi, h)

∣∣∣∣∣
⎞⎠2⎤⎦ ≤ const. × JnCn

nrnM
,

so rn = Jn
n Cn and letting M → ∞, the desired result follows. Q.E.D.

Proof of Lemma C.2: The proofs of Results (1) and (3) are the same as that of Result (2).

For Result (2), by the fact (a − b)2 + b2 ≥ 1
2a2, we have that uniformly over h ∈ Hk(n),

1
n

n∑
i=1

||m̂(Xi, h)||2
Ŵ

≥ 1
2

1
n

n∑
i=1

||m̃(Xi, h)||2
Ŵ

− 1
n

n∑
i=1

||m̂(Xi, h) − m̃(Xi, h)||2
Ŵ

.

By Lemma SM.2, there is a finite constant c > 0 such that, wpa1 and uniformly over h ∈ HM0

k(n),

1
n

n∑
i=1

||m̂(Xi, h)||2
Ŵ

≥ c

2
EX [||m̃(X, h)||2W ] − 1

n

n∑
i=1

||m̂(Xi, h) − m̃(Xi, h)||2
Ŵ

≥ c

4
EX [||m(X,h)||2W ] −

(
c

2
EX [||m(X, h) − m̃(X, h)||2W ] +

1
n

n∑
i=1

||m̂(Xi, h) − m̃(Xi, h)||2
Ŵ

)

≥ KEX [||m(X,h)||2W ] − Op

(
b2
m,Jn

+
Jn

n
Cn

)
,

where the second inequality is due to the fact (a− b)2 + b2 ≥ 1
2a2, and the last inequality is due to

lemma C.1, assumption C.2(ii) and c
4 ≡ K > 0.

Similarly, by the fact (a + b)2 ≤ 2a2 + 2b2, we have that uniformly over h ∈ Hk(n),

1
n

n∑
i=1

||m̂(Xi, h)||2
Ŵ

≤ 2
1
n

n∑
i=1

||m̃(Xi, h)||2
Ŵ

+ 2
1
n

n∑
i=1

||m̂(Xi, h) − m̃(Xi, h)||2
Ŵ

.

By Lemma SM.2, there is a finite constant c′ > 0 such that, wpa1 and uniformly over h ∈ HM0

k(n),

1
n

n∑
i=1

||m̂(Xi, h)||2
Ŵ

≤ 2c′EX [||m̃(X, h)||2W ] + 2
1
n

n∑
i=1

||m̂(Xi, h) − m̃(Xi, h)||2
Ŵ

≤ 4c′EX [||m(X,h)||2W ] +

(
4c′EX [||m̃(X, h) − m(X,h)||2W ] +

2
n

n∑
i=1

||m̂(Xi, h) − m̃(Xi, h)||2
Ŵ

)

≤ K ′EX [||m(X,h)||2W ] + Op

(
b2
m,Jn

+
Jn

n
Cn

)
,
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where the second inequality is again due to the fact (a + b)2 ≤ 2a2 + 2b2, and the last inequality is

due to lemma C.1, assumption C.2(ii) and 4c′ ≡ K ′ < ∞. Q.E.D.

Proof of Lemma C.3: By assumption C.1(i)(v) it suffices to establish the results for W = I.

Using the same notations and following the steps as in the proof of Lemma C.1, we obtain:

sup
h∈Nos

1
n

n∑
i=1

‖m̂(Xi, h) − m̂(Xi, h0) − m̃(Xi, h)‖2
I

= sup
h∈Nos

1
n2

Tr{[ε(h) − ε(h0)]′P (P ′P/n)−1P ′[ε(h) − ε(h0)]}

≤ (λmin(P ′P/n))−1 × sup
h∈Nos

1
n2

Tr{[ε(h) − ε(h0)]′PP ′[ε(h) − ε(h0)]}

= (λmin(P ′P/n))−1 × sup
h∈Nos

1
n2

Jn∑
j=1

(∣∣∣∣∣
n∑

i=1

pj(Xi)[ε(Zi, h) − ε(Zi, h0)]

∣∣∣∣∣
)2

.

Let rn = Jn
n (δs,n)2κ. For all M ≥ 1, to bound

Pr

(
sup

h∈Nos

1
n

n∑
i=1

‖m̂(Xi, h) − m̂(Xi, h0) − m̃(Xi, h)‖2
I > Mrn

)
,

it suffices to bound the probability

Pr

⎛⎝ Jn∑
j=1

(
sup

h∈Nos

∣∣∣∣∣ 1n
n∑

i=1

pj(Xi)[ε(Zi, h) − ε(Zi, h0)]

∣∣∣∣∣
)2

> Mrn

⎞⎠
≤ Jn

nrnM
max

1≤j≤Jn

EZn

⎡⎣( sup
h∈Nos

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)[ε(Zi, h) − ε(Zi, h0)]

∣∣∣∣∣
)2
⎤⎦ .

Let Δε(Zi, h) ≡ ε(Zi, h) − ε(Zi, h0). By Theorem 2.14.5 in Van der Vaart and Wellner (VdV-W,

1996), we have

max
1≤j≤Jn

EZn

⎡⎣( sup
h∈Nos

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)Δε(Zi, h)

∣∣∣∣∣
)2
⎤⎦

≤ max
1≤j≤Jn

(
EZn

[
sup

h∈Nos

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)Δε(Zi, h)

∣∣∣∣∣
]

+
√

E[ sup
h∈Nos

|pj(X)Δε(Z, h)|2]
)2

.

By Jensen’s inequality,

E

[
sup

h∈Nos

|pj(X){m(X,h) − m(X, h0)}|2
]
≤ E

[
sup

h∈Nos

|pj(X){ρ(Z, h) − ρ(Z, h0)}|2
]

.

Hence

max
1≤j≤Jn

√
E

[
sup

h∈Nos

|pj(X)Δε(Z, h)|2
]
≤ max

1≤j≤Jn

√
2E

[
sup

h∈Nos

|pj(X){ρ(Z, h) − ρ(Z, h0)}|2
]
≤ const.×(δs,n)κ
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by condition (C.3.1)(i).

By Theorem 2.14.2 in VdV-W (1996), Remark C.1 and condition (C.3.1)(i)(ii), we have (up to

some constant),

max
1≤j≤Jn

EZn

[
sup

h∈Nos

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)Δε(Zi, h)

∣∣∣∣∣
]

≤ max
1≤j≤Jn

{
(δs,n)κ

∫ 1

0

√
1 + log N[](w(δs,n)κ, {pj(·)Δε(·, h) : h ∈ Nos}, ||.||L2(fZ))dw

}
≤(δs,n)κ

∫ 1

0

√
1 + log N(w1/κ,Nos, ||.||s)dw ≤ const. × (δs,n)κ.

Hence

max
1≤j≤Jn

EZn

⎡⎣( sup
h∈Nos

∣∣∣∣∣ 1√
n

n∑
i=1

pj(Xi)Δε(Zi, h)

∣∣∣∣∣
)2
⎤⎦ = O((δs,n)2κ).

The desired result follows. Q.E.D.

Application: Proofs of Propositions

Proof of Proposition 6.1: We obtain the result by verifying that all the assumptions of

Theorem 3.2 (lower semicompact penalty) are satisfied with Ŵ = W = I.

First, assumption 3.1(i) is trivially satisfied with W = I. For any h ∈ H we denote h(y1, y2) =

h1(y1) + h2(y2), Δh(y1, y2) = h(y1, y2)− h0(y1, y2) = Δh1(y1) + Δh2(y2), Δhl(yl) = hl(yl)− h0l(yl)

for l = 1, 2. By the mean value theorem, condition 6.1(iv) and the definitions of Kl,h[Δhl](X), we

have:

m(X, h) − m(X, h0)

= E[FY3|Y1,Y2,X(h1(Y1) + h2(Y2)) − FY3|Y1,Y2,X(h01(Y1) + h02(Y2))|X]

= E

({∫ 1

0
fY3|Y1,Y2,X(h0(Y1, Y2) + tΔh(Y1, Y2))dt

}
[Δh1(Y1) + Δh2(Y2)]|X

)
(SM.6)

= K1,h[Δh1](X) + K2,h[Δh2](X).

Therefore, for any h ∈ H such that m(X, h)−m(X,h0) = 0 almost surely X, under condition 6.2(ii),

we have: K1,h[Δh1](X) = 0, K2,h[Δh2](X) = 0 almost surely X, which implies Δhl = 0 almost

surely Yl for l = 1, 2 (by condition 6.2(ii)). Thus, the identification assumption 3.1(ii) holds. Given

our choices of H, Hn (condition 6.2(i)(iii)), and ‖h‖s = ‖h‖sup = supy1
|h1(y1)|+supy2

|h2(y2)|, the

sieve space Hn is closed, and we have for h0 ∈ H, there is Πnh0 ∈ Hn such that

‖h0 − Πnh0‖s = ‖h0 − Πnh0‖sup ≤ c{k1(n)}−r1 + c′{k2(n)}−r2 = o(1), with rl = αl/d,

thus assumption 3.1(iii) holds. For any h ∈ H with Δh(y1, y2) = Δh1(y1) + Δh2(y2), Δhl(yl) =
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hl(yl) − h0l(yl), l = 1, 2, equation (SM.6) implies that

|m(X, h) − m(X,h0)|

≤ E

(
sup

t∈[0,1]
fY3|Y1,Y2,X(h0(Y1, Y2) + tΔh(Y1, Y2))|X

)[
sup
y1

|Δh1(y1)| + sup
y2

|Δh2(y2)|
]

.

Since m(X,h0) = 0 and by condition 6.1(iv), we have

E[|m(X,h)|2] = E[|m(X, h) − m(X,h0)|2]

≤ E

[(
sup

t∈[0,1]
fY3|Y1,Y2,X(h0(Y1, Y2) + tΔh(Y1, Y2))|X

)]2

(‖h − h0‖s)
2

≤ const. × [‖h − h0‖s]
2 .

This and ‖Πnh0 − h0‖s = o(1) imply

E[|m(X, Πnh0)|2] ≤ const. ‖Πnh0 − h0‖2
s ≤ c{k1(n)}−2r1 + c′{k2(n)}−2r2 = o(1),

hence assumption 3.1(iv) holds. Assumption 3.2(b) directly follows from our choice of P̂ () = P ().

Next, condition 6.1(i)(ii) and Ŵ = W = I imply that assumption C.1 holds. Assump-

tion C.2(i) follows trivially with ρ̄n(Z) ≡ 1 since suph∈H |ρ(Z, h)| ≤ 1. Condition 6.1(ii)(iii)

implies that assumption C.2(ii) holds with b2
m,Jn

= J−2rm
n . Thus Lemma C.2 result (1) is ap-

plicable and assumption 3.3(i) is satisfied with η0,n = Jn
n + J−2rm

n . This, E([m(X, Πnh0)]2) =

O
(
max

[
{k1(n)}−2r1 , {k2(n)}−2r2

])
, and max

[
{k1(n)}−2r1 , {k2(n)}−2r2 , Jn

n + J−2rm
n

]
= O(λn) to-

gether imply that Lemma A.2(1) holds. Moreover, it follows by our choice of penalty that P (Πnh0) =

O(1) and P (ĥn) = Op(1). By our choice of sieves space, it follows that log N(w1/2,HM0

k(n), ||.||L∞) ≤
min
{

1
2k(n) log(1/w), const.(1/w)d/2α

}
where α ≡ min{α1, α1} > 0 (and const. can depend on M0,

but not n); see, e.g., Chen (2007) and Chen, Linton and van Keilegom (2003). Following the verifi-

cations of examples 1 and 2 in Chen, Linton and van Keilegom (2003), we have that condition (18)

in Remark C.1 holds with κ = 1/2. Hence, by Remark C.1 (with κ = 1/2), we have assumption

C.2(iii) is satisfied with either Cn ≤ const. × k(n) if α ≤ d or Cn = const. < ∞ if α > d. By

Lemma C.2 result (2) and the fact that Jnk(n)
n = o(1), it follows δ̄2

m,n = o(1) and hence assumption

3.3(ii) holds.

By the mean value theorem and condition 6.1(iv), we have: for all h, h′ ∈ H,

|m(X, h) − m(X,h′)|

≤ E

(
sup

t∈[0,1]
fY3|Y1,Y2,X(h′(Y1, Y2) + t{h − h′}(Y1, Y2))|X

)[
sup
y1

∣∣h1(y1) − h′
1(y1)

∣∣+ sup
y2

∣∣h2(y2) − h′
2(y2)

∣∣] .

This, condition 6.1(iv), and supx∈X ,h∈H |m(x, h)| ≤ 1 imply that

E[|m(X, h)|2] − E[|m(X,h′)|2] ≤ 2E
(
|m(X, h) − m(X,h′)|

)
≤ const. ×

∥∥h − h′∥∥
s
.
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Thus E[|m(X, h)|2] is continuous on (H, ‖·‖s). We have that for any M < ∞, the embedding of the

set {h ∈ H : P (h) = ||h1||Λα1 + ||h2||Λα2 ≤ M} into H is compact under the norm ‖·‖s = || · ||sup;

hence P (·) is lower semicompact.

The condition max
[
{k1(n)}−2r1 , {k2(n)}−2r2 , Jn

n + J−2rm
n

]
= O(λn) and Theorem 3.2 now imply

the desired consistency results. Q.E.D.

Proof of Proposition 6.2: We obtain the results by verifying that all the assumptions of

Corollary 5.1 are satisfied.

We first show that δm,n = Jn
n +b2

m,Jn
. Similar to the proof of Lemma 6.1, log N(w1/2,Hosn, ||.||L∞) ≤

min
{

1
2k(n) log(1/w), const.(1/w)d/2α

}
where α ≡ min{α1, α1} > d. By Remark C.1 (with κ =

1/2), we have that assumption C.2(iv) is satisfied with C < ∞. Thus Lemma C.2 result (3) is

applicable and yields δ2
m,n = Jn

n + J−2rm
n = o(1).

Assumptions 3.1, 3.2 and 3.3 (with η0,n = δ2
m,n = Jn

n + J−2rm
n ) are already verified in the

proof of Proposition 6.1. Given the choice of the norm ||h||s, assumption 5.1 is satisfied with

‖h0 − Πnh0‖s = O ({k(n)}−r) with r = α/d. Condition 6.3(ii) implies assumption 5.2. It remains

to verify assumption 4.1. By condition 6.1(iv) we have

dm(X, h0)
dh

[h − h0] = Th0 [h − h0]

= E{fY3|Y1,Y2,X(h01(Y1) + h02(Y2))[h1(Y1) − h01(Y1) + h2(Y2) − h02(Y2)]|X},

‖h − h0‖2 = E

(
dm(X, h0)

dh
[h − h0]

)2

≤ const. ‖h − h0‖2
s ;

hence assumption 4.1(i) holds. Since

m(X, h) − m(X,h0) = K1,h[h1 − h01](X) + K2,h[h2 − h02](X),

condition 6.3(i) implies assumption 4.1(ii). The results now follow from Corollary 5.1. Q.E.D.
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