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Abstract. Consider Sk =
Pk

j=1Xj, where Xk =
P1

j=0 cj�k�j, k � 1, with �j, �1 <

j <1, iid belonging to the domain attraction of a strictly stable law with index 0 < � � 2.
Under certain conditions on cj, it is known that for n = nH�n, 0 < H < 1, with �n slowly

varying, �1n S[nt] converges in distribution to a fractional stable motion. In addition, if f (y)

is such that
R �
jf (y)j+ jf (y)j2

�
dy < 1, then for �n such that �n ! 1 and �n

n
! 0 (in

particular �n = n),
�n
n

Pn
k=1 f

�
�n
n
Sk

�
converges in distribution to L01

R1
�1 f (y) dy, where

L01 is the local time of the fractional stable motion. In this paper we obtain further results,

motivated by asymptotic inference.

We obtain the convergence in distribution for �n
n

Pn
k=1 h

�
�n
n
Sk;

�n
n
Sk+r

�
, r � 1, as well

as for �n
n

Pn
k=1 f

�
�n
n
Sk

�
� (!k) and

�n
n

Pn
k=1 h

�
�n
n
Sk;

�n
n
Sk+r

�
� (!k)� (!k+r), r � 1, for

suitable f (x) and h (x; y) and for suitable � (!k), where !k =
Pk

j=�1 dk�j�j such that

(�j; �j) ;�1 < j < 1, are iid with E [�21] < 1 but possibly with E [�1] 6= 0. For h (x; y),
the limits are di�erent for the cases �n = n,

�n
n
! 0 and �n

n
!1.

If in addition
R1
�1 f (y) dy = 0, then when 1=3 < H < 1 (which cannot be relaxed),p

n
n

Pn
k=1 f(Sk) converges in distribution. Similarly but when possibly

R1
�1 f (y) dy 6= 0,

the same is true for
p

n
n

Pn
k=1 f(Sk)!k, where !k is as before but with E [�1] = 0.

All the above convergencies are also shown to hold jointly.

JEL Classi�cation: C22, C23
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1 INTRODUCTION
Consider a sequence �j;�1 < j <1, of iid random variables belonging to the domain

of attraction of a strictly stable law with index 0 < � � 2. We recall that this is equivalent
to the statement that for a suitable slowly varying function �n,

t 7�!
�
n1=��n

��1 [nt]X
j=1

�j
fdd
=) Z� (t) ; t > 0; (1)

where fZ�(t); t > 0g is an �-stable Levy motion, that is, has stationary independent

increments such that, for each 0 < t <1,

E[eiuZ�(t)] =

(
e�tjuj

�(1�i� sign(u) tan(��2 )) if � 6= 1
e�tjuj if � = 1

with j�j � 1. (Above and in the rest of the paper, the notation fdd
=) signi�es the conver-

gence in distribution of random processes in the sense of convergence in distribution of all

�nite dimensional distributions.) For the details of the above statement, see for instance

Ibragimov and Linnik (1965, Chapter 2, Section 6) or Bingham et al (1987, page 344).

Note that this de�nition of strict �-stability for the case � = 1 di�ers from the usual one in

that we take the skewness parameter � to be 0. When � = 2, Z2(t) becomes the Brownian

Motion with variance 2.

Now consider the linear process

Xk =
1X
j=0

cj�k�j; k � 1;

where �j, �1 < j < 1, are as earlier with index 0 < � � 2, and cj, j � 0, with c0 = 1,
are constants. Let

Sk =

kX
j=1

Xj:

Under suitable conditions (speci�ed in Section 2 below) on the constants cj it is known

that for a suitable H, 0 < H < 1, and for normalizing constants of the form

n = nH�n

with �n slowly varying, the process

1

n
S[nt]

fdd
=) ��;H(t);
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where the limit f��;H(t); t � 0g is a Linear Fractional Stable Motion (LFSM). It is de�ned
by

��;H(t) = a

Z 0

�1

n
(t� u)H�1=� � (�u)H�1=�

o
Z�(du) + a

Z t

0

(t� u)H�1=� Z�(du)

if H 6= 1=�, and
��;H(t) = Z�(t) if H = 1=�

where a is a non-zero constant and fZ�(t); t 2 Rg is an �-stable Levy motion, taken to be
Z�(t) as de�ned earlier for 0 < t <1, and for�1 < t < 0, it is taken to be Z�(t) = Z��(�t)
with fZ��(u); 0 < u <1g an independent copy of fZ�(u); 0 < u <1g. See Samorodnitsky
and Taqqu (1994) for the details of LFSM.

Note that when H = 1=�, the restriction 0 < H < 1 reduces to 1 < � � 2. When

� = 2, the LFSM reduces to the Fractional Brownian Motion.

Now let f (y) be a function such that
R �
jf (y)j+ jf (y)j2

�
dy < 1. Further let �n be

constants (here and throughout the rest of the paper) such that

�n !1 and
�n
n
! 0: (In particular one can take �n = n.)

Then, under certain further restriction on the distribution of �1, it is shown in Jeganathan

(2004, Theorems 2 and 3) that

�n
n

nX
k=1

f

�
�n
n
Sk

�
=) L01

Z 1

�1
f (y) dy;

where Lxt is the local time of the LFSM ��;H(t) at x upto the time t.

In this paper further results motivated by large sample inference in certain nonlinear

time series models are obtained. The �rst main result directly related to the preceding

convergence states that (Theorem 1 of Section 2) under suitable restrictions on the function

f (x; y), for any integer r � 1,

�n
n

nX
k=1

f

�
�n
n
Sk;

�n
n
Sk+r

�
=)

8>><>>:
L01
R1
�1E [f(x; x+ Sr)] dx if �n = n

L01
R1
�1 f (x; x) dx if �n

n
! 0

0 if �n
n
!1.

Next let �n � 1 be integers, possibly �n !1 as n!1 such that �n
n
! 0. De�ne

!k;�n =

kX
j=k��n+1

dk�j�j = �k + d1�k�1 + :::+ d�n�1�k��n+1, (2)
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where (�j; �j) ;�1 < j <1, are iid (�j are as before) and

1X
j=0

jdjjmax (1; jg (j)j) <1 where g (j) =

jX
i=0

ci. (3)

Then we show that the quantities

�n
n

nX
k=1

f

�
�n
n
Sk

�
� (!k;�n) and

�n
n

nX
k=1

f

�
�n
n
Sk;

�n
n
Sk+r

�
� (!k;�n)� (!k+r;�n) , r � 1,

(4)

converge in distribution with suitable limits, if � (x) is continuous and, for some q � 0,

j� (!k;�n)j � C + C j!k;�nj
q with E

�
�2q1
�
<1. (5)

We note that the preceding convergence holds also when !k;�n in (4) is replaced by
Pk

j=�1 dk�j�j

(Theorem 3) or more generally by a suitable multilinear sum, see the Remark 3 in Section

2 below.

The fourth main result (Theorem 4 in Section 2) includes in particular the result that

if for a function f (y) the restrictionsZ
jf (y)ji dy <1, i = 1; 2; 3; 4, (6)

Z 1

�1
jyf (y)j dy <1, (7)

Z 1

�1
f (y) dy = 0,

1

3
< H < 1

hold, then r
n
n

nX
k=1

f(Sk) =) W
q
bL01 (8)

where W has the standard normal distribution independent of the local time L01, and b is

a nonnegative constant having an explicit expression in terms of the distributions of Sk,

k � 1. We remark that the restriction 1
3
< H < 1 probably cannot be relaxed because

it cannot be relaxed in the continuous time version of (8), see Jeganathan (2006c). The

convergence (8) may be viewed as an analogue of the central limit theorem if the convergence

4



n
n

Pn
k=1 f (Sk) =) L01

R1
�1 f (y) dy is viewed as an analogue of the law of large numbers.

In obtaining (8), as well as the convergence (11) below, we shall further assume that

When � = 2, E [�1] = 0 and E
�
�21
�
<1. (9)

The convergence (8) is known for the random walk case Sk =
Pk

j=1 �j, see Borodin and

Ibragimov (1995, Theorem 3.3 of Chapter IV). For the symmetric Bernoulli random walk

case, it was originally discovered by Dobrushin (1955). But note however that many of

the structural simpli�cations available in the random walk case (for example the fact that

Sl+k�Sk is independent of Sk and has the same distribution as that of Sl) are not available
for the present case.

Next, let !k;�n be as in (2) but with

E [�1] = 0, E
�
�41
�
<1 and E [j�1�1j] <1. (10)

Then the �fth main result (Theorem 5, Section 2) will include the convergencer
n
n

nX
k=1

f(Sk)!k;�n =) W
q
b�L01 (11)

(and the same with !k;�n replaced by
Pk

j=�1 dk�j�j), where f(y) satis�es (6) and (7) but

now
R1
�1 f (y) dy = 0 need not hold, that is, possiblyZ 1

�1
f (y) dy 6= 0:

The constant b� in (11) will have the form similar to that of b in (8).

As far as we can determine, the convergence (11) has not been known previously, even

for the random walk situation Sk =
Pk

j=1 �j with !k;�n = �k.

Note that the requirement E [j�1�1j] < 1 in (10) implicitly requires certain moment

condition on �1. It is satis�ed when � = 2 because then E [�
2
1 ] < 1 (see (9); E [�21] < 1

already by assumption). It is also satis�ed, using Cauchy-Schwarz inequality, when

E
h
j�1j


�1

i
<1 for some 1 <  < � when 1 < � < 2:

The convergence results in Theorems 1 - 3 and 5, together with the joint convergence

with other quantities are needed in obtaining the asymptotic behavior of least squares or

similar estimators in certain nonlinear time series models (Jeganathan and Phillips (2008)).

The convergence results (8) and (11) are closely related in that the proof of (11) will use

similar ideas involved in (8), though unfortunately (11) is not directly deducible from (8).
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The plan of the paper is as follows. The required assumptions as well as the statements

of the main results are stated in Section 2. The next two sections 3 and 4 give the proof of

Theorems 1 - 3. In Section 5 it is noted that the convergencies (8) and (11) can be related

to a form of a martingale CLT. (Such a relationship to a martingale CLT is implicit in

Borodin and Ibragimov (1995) though the methods employed there are tied in many ways

to the iid structure of the random walk case Sk =
Pk

j=1 �j treated there.) The proof of the

Theorems 4 and 5 will then consists of the veri�cation of the conditions of this martingale

CLT, which veri�cation is done in Section 6, based on the earlier Theorems 1 - 2 together

with additional arguments. The Appendix (Section 7) contains the statement and the proof

of a version of martingale CLT used in Section 5 that may be of independent interest.

It is convenient to mention some of the notations here that will be used throughout

the paper. In addition to the
fdd
=) introduced earlier, the convergence in distribution of a

sequence of random variables or random vectors will be signi�ed as usual by =). As above,
Lxt will stand for the local time of the LFSM ��;H(t) at x upto the time t. Throughout

below we let

 (�) = E
�
ei��1

�
.

For any Borel measurable function f(y) with
R
jf(y)j dy < 1, bf (�) stands for its Fourier

transform, that is, bf (�) = Z ei�yf(y)dy.

Corresponding to the coe�cients cj in Xk =
P1

j=0 cj�k�j, we let

g(j) =

( Pj
i=0 ci if j � 0

0 if j < 0.

The normalizing constant bn = n1=��n (where �n is as in (1)) will be used exclusively in the

sense of (30) below. Similarly n will be used in the sense of (16) or (31) below.

Throughout the paper the notation C stands for a generic constant that may take dif-

ferent values at di�erent places of even the same expression in the same proof.

2 ASSUMPTIONS AND THE MAIN RESULTS
One of the following two mutually exclusive conditions will be imposed on the coe�cients

cj of the process Xk =
P1

j=0 cj�k�j, where recall that c0 = 1.

(A1) (The case H = 1=�, 0 < H < 1).

1X
j=0

jcjj <1 and
1X
j=0

cj 6= 0:
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In addition

sup
j�1

jjcjj <1. (12)

(A2) (The case H 6= 1=�, 0 < H < 1). cj = jH�1�1=�uj, with H 6= 1=�, 0 < H < 1,

where uj is slowly varying at in�nity, satisfying

1X
j=0

cj = 0 when H � 1=� < 0: (13)

In addition, there is an integer l0 > 0 and constants C1 and C2 such that

0 < C1 �
����ul+j1ul�j2

���� � C2 for all 0 � j1; j2 � [l=2] and l � l0. (14)

We note that the restriction (14) is automatically satis�ed if uj is monotone in j, because

of the assumption of uj being slowly varying. For instance if uj is nondecreasing, then

1 � ul+j1
ul�j2

� u2l
ul=2

when 0 � j1; j2 � [l=2], where u2l
ul=2

! 4 as l !1. (We do not know if the
monotonicity of uj can be assumed without loss of generality, in which case the restriction

(14) then holds automatically.)

Note that if (13) is violated, then the case cj = jH�1�1=�uj with H � 1=� < 0 comes

under (A1). Also it is implicit that uj 6= 0 for all su�ciently large j.
Remark 1. A motivation of the condition (A2) is what has been called a Fractional

ARIMA model with stable innovations, a detailed discussion of which can be found for

instance in Samorodnitsky and Taqqu (1994, Section 7.13, page 380). In a simplest case of

this model, Xk takes the form

Xk = (1�B)�d �k =
1X
j=0

cj (�d)Bj�k =
1X
j=0

cj (�d) �k�j (15)

where B is the back-shift operator B�i = �i�1. Here we have used the formal expansion

(1�B)�d =
P1

j=0 cj (�d)Bj, so that using Stirling's approximation,

cj (�d) =
� (j + d)

� (d) � (j + 1)
� 1

� (d)
jd�1 as j !1 if d 6= 0;�1; :::

where � (:) stands for the gamma function, and cj (�d) = 0 for j � d if d = 0;�1; :::.
Hence if we take H = d + 1

�
, the condition (A2) is satis�ed, including (13) because

H � 1
�
< 0 is the same as d < 0 and hence

1X
j=0

cj (�d) = (1� x)�d
���
x=1

= 0 (d < 0).
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In addition, when 0 < H < 1, the series (15) converges with probability one (see Samorod-

nitsky and Taqqu (1994, Theorem 7.13.1, page 381)). �

Now let

n =

8<:
�P1

j=0 cj

�
n1=��n if (A1) is satis�ed

nHun�n if (A2) is satis�ed,
(16)

where �n is as in (1) and un as in (A2). Then it is known that when (A2) is satis�ed, the

process �1n S[nt]
fdd
=) ��;H(t), H 6= 1=�, and similarly when 1 < � � 2 and (A1) is satis�ed,

�1n S[nt]
fdd
=) Z�(t). (See for instance Kasahara and Maejima (1988, Theorems 5.1, 5.2 and

5.3)), Astrauskas (1983) and Avram and Taqqu (1986).) In view of our convention that

��;1=�(t) = Z�(t) when 1 < � � 2, the preceding statements will be combined in the form

�1n S[nt]
fdd
=) ��;H(t);

with the understanding that when (A1) is satis�ed the limit is Z�(t) with 1 < � � 2.

To proceed further, de�ne the functions, corresponding to a given real valued function

h (y1; :::; yk) de�ned on Rk,

Mh;�(y1; :::; yk) = supfh(u1; :::; uk) : juj � yjj � �, j = 1; :::; kg
mh;�(y1; :::; yk) = inffh(u1; :::; uk) : juj � yjj � �, j = 1; :::; kg.

)
(17)

Throughout below, we shall employ the following classes of functions.

Class G1. This is the class consisting of all Borel measurable real valued functions f (x)
de�ned on R such that Z �

jf (x)j+ jf (x)j2
�
dx <1.

�
Class G2. This is the class consisting of all Borel measurable real valued functions f (x)

de�ned on R such thatZ �
Mjf j;�(x) +

�
Mjf j;�(x)

�2�
dx <1 for all � > 0

and Z
(Mf;�(x)�mf;�(x)) dx! 0 as � ! 0:

�
Class H1. This is the class consisting of all Borel measurable real valued functions

f (x1; :::; xk) de�ned on Rk such thatZ
jf(x1; :::; xk)ji dx0:::dxr <1, i = 1; 2,

Z �Z
jf(x1; :::; xk)j2 dxk

� 1
2

dx1:::dxk�1 <1.
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�
Class H2. This is the class consisting of all Borel measurable real valued functions

f (x1; :::; xk) de�ned on Rk such thatZ ��Mjf j;�(x1; :::; xk)
��i dx0:::dxr <1, i = 1; 2, Z �Z ��Mjf j;�(x1; :::; xk)

��2 dxk� 1
2

dx1:::dxk�1 <1

for all � > 0 andZ
(Mf;�(x1; :::; xk)�mf;�(x1; :::; xk)) dx! 0 as � ! 0:

�
We are now in a position to state the results. Throughout below, and without further

mentioning, the requirements (A1) and (A2) are assumed to hold. Also recall that the

constants �n are such that �n !1 and �n
n
! 0.

Theorem 1. (I). Assume that 0 < H < 1. Further assume thatZ ��E �ei��1���2 d� <1. (18)

Let the function f (x0; :::; xr) be in the class H1, and for the case
�n
n
! 0 assume in

addition that f (x0; :::; xr) is of the product form f (x0; :::; xr) = f0 (x0) :::fr (xr) with each

fj (x) in the class G1:Then for any 1 � i1 < ::: < ir,

�n
n

nX
l=1

f

�
�n
n
Sl;

�n
n
Sl+i1 ; :::;

�n
n
Sl+ir

�
=)

8>><>>:
L01
R
E [f (x; x+ Si1 ; :::; x+ Sir)] dx if �n = n

L01
R
f (x; x; :::; x) dx if �n

n
! 0

0 if �n
n
!1,

where the constants �n and the local time L
0
1 are as before.

(II). Assume 0 < H < 1. Suppose that the function f (x0; :::; xr) is in the class H2.

Then the preceding convergence holds also when (18) is relaxed to the Cram�er's condition

lim sup
j�j!1

��E �ei��1��� < 1 ( lim sup
j�j!1

��E �ei��1��� = 0 in the case �n
n
!1).

(19)

�
We note that for the case �n

n
! 0, the Statement (I) requires the product form

f (x0; :::; xr) = f0 (x0) :::fr (xr), which is not the case in Statement (II). Also note that

(19) is very much weaker than (18) but the Statement (II) assumes that f (x0; :::; xr) is in

the class H2, which is restrictive than the class H1, but is still reasonable for statistical

applications. In this sense Statement (II) is quite satisfactory.
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Note that, using Plancherel's theorem,Z 1

�1
E [f (x; x+ Si1 ; :::; x+ Sir)] dx =

1

2�

Z bf (��; �; :::; �)E he�i�(Si1+:::+Sir)i d�.
Remark 2. It can be seen from the proof of the Theorem 1 that it extends to the joint

convergence in distribution of 
�n
n

nX
l=1

fi

�
�n
n
Sl;

�n
n
Sl+i1 ; :::;

�n
n
Sl+ir

�
, i = 1; :::; q

!

when the functions fi (x0; :::; xr), i = 1; :::; q, satisfy the conditions of Theorem 1. The

same remark applies to Theorems 2 and 3 below. �
To state the next result, let

!k =
kX

j=�1
dk�j�j (coe�cients dj are as in (2)). (20)

Theorem 2. (I). Assume that 0 < H < 1 and that (18) holds. For the linear process

!l;�n as in (2) satisfying (3), let � (!l;�n) be as in (5) with � (x) continuous. Further assume

that the constants �n satisfy
�n
n
! 0:

Then, for any f0 (x) in the class G1,

�n
n

nX
l=1

f0

�
�n
n
Sl

�
� (!l;�n) =) L01E [� (!0)]

Z
f0 (x) dx, (21)

where !0 is as in (20). Further, for any f (x0; :::; xr) as in the Statement (I) of Theorem

1 and for any 1 � i1 < ::: < ir,

�n
n

nX
l=1

f

�
�n
n
Sl;

�n
n
Sl+i1 ; :::;

�n
n
Sl+ir

�
� (!l;�n)� (!l+i1;�n) :::� (!l+ir;�n)

=)

8>><>>:
L01

1
2�

R bf (��; �; :::; �)E h� (!0)� (!i1) :::� (!ir) e�i�(Si1+:::+Sir)i d� if �n = n

L01E [� (!0)� (!i1) :::� (!ir)]
1
2�

R bf (��; �; :::; �) d� if �n
n
! 0

0 if �n
n
!1.
(22)

(II). Assume 0 < H < 1. Suppose that (18) is relaxed to (19). Then (21) holds for any

f0 (x) in the class G2.
Further, for any f (x0; :::; xr) in the class H2 and for any 1 � i1 < ::: < ir, the conver-

gence (22) holds. �
Remark 3. Without going into the details we mention that Theorem 2 extends also,

as will become clear form its proof, to the case when � (!k;�n) is replaced by the multilinear

10



sum 
k;�n =
Pk

i1=k��n+1 :::
Pk

iq=k��n+1 dk�i1;:::;k�iq'
�
�1;i1 ; :::; �q;iq

�
for a suitable ', where

the vectors (�1;j; :::; �q;j), �1 < j < 1, are iid such that (assuming without loss of
generality that ' (x1; :::; xq) is symmetric) E

�
j' (�1;1; :::; �i�1;1; �i;i; :::; �q;q)j2

�
< 1 for all

2 � i � q + 1, and

kX
i1=k��n+1

:::
kX

iq=k��n+1

��di1;:::;iq ��max (1; jg (i1)j) :::max (1; jg (i1q)j) <1:

Without mentioning the detailed conditions, we note that the Theorem 2 holds also when

� (!k;�n) is replaced by � (
k;�n). The same remarks apply for the next Theorem 3 but

perhaps it would be better to leave the precise forms of the required conditions (as suggested

from the proof) to the speci�c situations at hand. �
The next result gives additional restrictions under which (21) and (22) hold even when

!l;�n and !l+r;�n in the left hand sides are replaced by !l and !l+r de�ned in (20). As will

become clear later, Theorem 3 will follow as direct a consequence of (21) and (22).

Theorem 3. In addition to the assumptions in either the Statement (I) or the State-

ment (II) of Theorem 2 above, assume that � (x) is p times di�erentiable for some p � 1
such that

���(p) (x)�� � C, E
h���(j) (!l;�n)��2i � C for 1 � j � p � 1 and E

�
j�1j2p

�
< 1.

Assume further that the constants �n satisfy the additional restriction

�n

1X
j=�n

d2j + E [�1]
p
�n

1X
j=�n

jdjj ! 0: (23)

Then the sum �n
n

Pn
l=1 f0

�
�n
n
Sl

�
� (!l) (where !l is as in (20)) also converges in distribution

to the same limit in (21).

The sum �n
n

Pn
l=1 f

�
�n
n
Sl;

�n
n
Sl+r

�
� (!l)� (!l+r) also converges in distribution to the

same limit in (22) under the stronger conditions E
h���(j) (!l;�n)��4i � C for 1 � j � p � 1

and E
h
j�1j4max(q;p)

i
< 1 (recall j� (x)j � C jxjq) and the other remaining conditions the

same as in Theorem 2. �
To state the next Theorems 4 and 5, we introduce

Class G3. This is the class consisting of all Borel measurable real valued functions f (x)
de�ned on R such that

R �
Mjf j;�(x)

�i
dx <1, i = 1; 2; 3; 4; for some � > 0 (whereMjf j;�(x)

is as in (17)) andZ
(Mf;�(x)�mf;�(x)) dx � C j�jd for some � > 0 and 0 < d � 1. (24)

�
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The requirement (9) is assumed to hold in addition, without further mentioning, in

Theorems 4 and 5 below.

Theorem 4. (I) Assume 1=3 < H < 1. In addition to (18) assume furtherZ
j�j3

��E �ei��1���p d� <1 for some p > 0. (25)

Let f (x) be Borel measurable such that (6), (7) andZ
f (y) dy = 0 (26)

hold. Further, let h (y) be in the class G1. Then 
1

n
S[nt];

n
n

nX
k=1

h (Sk) ;

r
n
n

nX
k=1

f (Sk)

!
fdd
=)

�
��;H(t); L

0
1

Z
h (y) dy;W

q
bL01

�
;

where L01 is the local time as before, W is standard normal independent of the process

��;H(t) and

0 � b =
1

2�

Z ��� bf (�)���2 1 + 2 1X
r=1

E
�
e�i�Sr

�!
d� <1.

(II) Assume 1=3 < H < 1. Further assume that (19) hold and that f (x) as above but

instead of (6) assume that it is in the class G3. Further, let h (y) be in the class G2.
Then also the convergence in distribution in the Statement (I) holds. �

We note that the requirements on the functions f (x) and h (x) in the Statement (II) are

stronger (though still mild) than those in the Statement (I) but the Statement (II) assumes

only the Cram�er's condition (19) (regarding the restrictions (18) and (25) of the statement

(I), see the Remark 4 below). Also note that the marginal convergence of n
n

Pn
k=1 h (Sk)

in the preceding statements are particular cases of those in Jeganathan (2004), see further

Proposition 14 in Section 4 below, from where it follows that they hold for all 0 < H < 1,

that is, the restriction 1=3 < H < 1 is not required. Further, in view of the next paragraph,

the restriction 1=3 < H < 1 in Theorem 4 cannot probably be relaxed.

See Jeganathan (2006c) for the continuous time analogues of Theorem 4, in the forms of

generalizations of the appropriate results in for instance Papanicolaou, Strook and Varad-

han (1977), Yor (1983) and Rosen (1991). Note that these generalizations do not follow

directly from Theorem 4. The reason is that in the method employed in the present paper

the central limit phenomenon is involved at two di�erent levels, one at the familiar level of

the partial sum Sk itself, but another at the level of the partial sum of f(Sk) themselves.

12



For later purposes we note that because
��E �ei��1��� � 1, (25) entailsZ ��E �ei��1���p d� <1. (27)

(This is also implied by (18) for p � 2.)
Remark 4, on the restrictions (18) and (25). Though these restrictions are not

involved in the Statement (II) of Theorem 4 (and Theorem 5 below), we now indicate that

from the point of view of statistical applications indicated earlier, they are not very restric-

tive. The restriction (18) entails that the Lebesgue density of the distribution of �1 exists

(Kawata (1972, Theorem 11.6.1)). If we denote this density by ' (x), then  (�) = b' (�)
(recall  (�) = E

�
ei��1

�
) and, by Plancherel's theorem,

R
j (�)j2 d� = 2�

R
j' (x)j2 dx.

Now suppose that the preceding density ' (x) has a distributional derivative '0 (x) such

that '0 (x) induces a �nite signed measure (which will in particular entail
R
j'0 (x)j dx <1

). Then it can be shown that b' (�) = ib'0 (�)��1 where b'0 (�) is the Fourier transform of

(the signed measure induced by) '0 (x). (This follows from standard facts about Fourier

transforms and distributional derivatives, see for instance Rudin (1991).) In this case, in

addition to (18), (25) holds for p = 5 and hence for all p � 5.
This is the case for instance when ' (x) is suitably piecewise di�erentiable. As a sim-

ple example suppose that ' (x) = 1
2
I[�1;1] (x), the density function of the random variable

uniformly distributed over the interval [�1; 1]. Then the corresponding distributional deriv-
ative '0 (x) = �1

2
(�1 (x)� ��1 (x)), where �a is the Dirac delta function. �

In addition to the condition (3), we need a further condition for the next Theorem 5:

1X
r=1

vuut 1

r

1X
j=r

jdjj2 <1 (coe�cients dj are as in(2)). (28)

This is not very restrictive. For instance, if jdjj � Cj�
3
2
+H , then

P1
j=r jdjj

2 � Cr�2+2H , so

that noting r = rH�r for a slowly varying �r, (28) will be of the form
P1

r=1

p
��1r r�2+H <

1.
Note that in the next result E [�1] = 0. Without going into the details we mention

that the linear sum !l;�n in the next result can be replaced by a suitable multilinear sum

mentioned in Remark 3 above when E [' (�1;1; :::; �i�1;1; �i;i; :::; �q;q)] = 0 for all 2 � i � q+1.

Theorem 5. In addition to the preceding requirement (28), suppose that all the as-

sumptions in either one of the Statements (I) or (II) of Theorem 4 hold, except that now

possibly Z
f (y) dy 6= 0.

13



Let the sequence !l;�n be as in (2) with �1 satisfying (10) (in particular E [�1] = 0 ) and

with the constants satisfying �n
n
! 0. Then 

1

n
S[nt];

n
n

nX
l=1

h (Sl) ;

r
n
n

nX
l=1

f (Sl)!l;�n

!
fdd
=)

�
��;H(t); L

0
1

Z
h (y) dy;W

q
b�L01

�
,

where

0 � b� =
1

2�

Z ��� bf (�)���2 E �!20�+ 2 1X
r=1

E
�
!0!re

�i�Sr
�!

d� <1.

The preceding convergence holds also, under the above same conditions, when the sump
n
n

Pn
l=1 f (Sl)!l;�n involved in the left hand side is replaced by

p
n
n

Pn
l=1 f (Sl)!l, where

!l is as in (20), provided �n satis�es the additional restriction

n

1X
j=�n

d2j ! 0.

�
The �nal statement in Theorem 5 follows from the convergence in the �rst part for

exactly the same reason that the Theorem 3 follows from the convergencies (21) and (22).

Note however that the above restriction n
P1

j=�n
d2j ! 0 is stronger than that in Theorem

3.

As noted earlier, Theorem 5 has not been known previously, even for the situation

Sk =
Pk

j=1 �j with !k;�n = �k. Its possible continuous time versions in some speci�c forms

have also been unknown.

3 SOME PRELIMINARIES
To begin with recall the fact that �1 belongs to the domain of attraction of a strictly

stable law with index 0 < � � 2, in the sense of Section 1 above, means in particular (see
Ibragimov and Linnik (1965, Theorem 2.6.5, page 85)) that, for all u in some neighborhood

of 0,

 (u) = E
�
eiu�1

�
=

(
e�juj

�G(juj)(1�i� sign(u) tan(��2 )) if � 6= 1
e�jujG(juj) if � = 1

with j�j � 1, where G(u) is slowly varying as u ! 0. In particular there are constants

� > 0 and d > 0 such that

j (u)j � e�djuj
�G(juj) for all juj � �. (29)

In addition, if one lets

b�1n = inf
�
u > 0 : u�G(u) = n�1

	
;

14



then b�n v nG(b�1n ) as n!1, and in (1) one can take �n v G
1
� (b�1n ), so that we henceforth

assume for convenience that �n in (1) and the above bn are such that

bn = n
1
�G

1
� (b�1n ) = n

1
� �n. (30)

See for instance Bingham et al (1987, page 344) for the details of these facts. Then note

that, (15) takes the form

n =

8<:
�P1

j=0 cj

�
bn if the condition (A1) is satis�ed

nH�
1
�unbn if the condition (A2) is satis�ed.

(31)

The following result is essentially well-known, and we supply its proof for completeness.

Lemma 6. Let � be as in (29) and bn be as in (30). Let �j be integers such that for

some integer j0 > 0 and a constant C > 0,

�j � Cj for all j � j0. (32)

Then for every 0 < c < � there is a constant a > 0 such that�� ��b�1j ����j � Ce�aj�j
c

for all j�j � �bj, j � 1.

Further, if the Cram�er's condition limsupj�j!1 j (�)j < 1 holds, then for every � > 0

there is a 0 < � < 1 such that

sup
j�j��bj

�� ��b�1j ����j = sup
j�j��

j (�)j�j � C�j for all j � 1.

Proof. According to (29),
�� ��b�1j ����j � e�d�j j�j

�b��j G(j�jb�1j ) for all j�j � �bj. There-

fore we �rst recall a bound for b��j G
�
j�j b�1j

�
for all su�ciently large j.

According to Potter's inequality (see Bingham et al (1987, Theorem 1.5.6, Statement

(ii), page 25), for every � > 0 there is a B > 0 such that jG(x)
G(y)

j � Bmaxf(x=y)�; (x=y)��g for

all x > 0; y > 0. In particular

���� G(b�1j )
G(j�jb�1j )

���� � Bmaxfj�j� ; j�j��g. Because maxfj�j� ; j�j��g =

j�j� if j�j � 1, it then follows from (30) that there is a j1 such that

b��j G
�
j�j b�1j

�
� B�1j�1 j�j�� for all j � j1 and j�j � 1.

Therefore, by (29), for every 0 < c < � there is a a > 0 such that�� ��b�1j ����j � e�d�j j�j
�b��j G(j�jb�1j ) � e�aj�j

c

for all 1 � j�j � �bj, j � j2

15



where j2 = max (j0; j1) (j0 as in (32)). On the other hand, if j � j2;�� ��b�1j ����j � 1 = eaj�bj j
c

e�aj�bj j
c �

�
max
j�j2

eaj�bj j
c

�
e�aj�j

c

for all j�j � �bj, j � j2.

Further, �� ��b�1j ����j � 1 = ee�1 � ee�j�j
c

if j�j � 1, j � 1.

Hence the proof of the �rst part follows from the preceding three inequalities.

Regarding the second part note that the Cram�er's condition involved is equivalent to

the statement that for every � > 0, there is a 0 < � = � (�) < 1 such that supj�j�� j (�)j �
� < 1. Hence the second statement follows, completing the proof of the lemma. �
The following consequences of Lemma 6 will be used below. First, for any � � 0,Z

fj�j��blg
j�j�

���� ��bl
�����[l=2] d� � C

Z
j�j� e�aj�jcd� � C,, l � 1, (33)

using the �rst part of Lemma 6.

Next let l0 be such that for some 0 <  < 1, [l=2]� p � [l] for all l � l0, where p is as

in (25). Then, for any � > 0 and 0 � � � 3, using the second part of Lemma 6 and using
(25) (when � = 0, only (27) is required),Z

fj�j>�blg
j�j�

���� ��bl
�����[l=2] d�

� C�l
Z
fj�j>�blg

j�j�
���� ��bl

�����p d� = C�lb1+�l

Z
j�j� j (�)jp d� � C�l�, l � l0, (34)

for some constant 0 < �� < 1.

We shall also need to use the next inequality, a direct consequence of H�older's inequality.

Lemma 7. For any functions 'i (u) : R
k ! R; i = 1; :::; q,Z qY

i=1

j'i (u)j du �
qY
i=1

�Z
j'i (u)jq du

� 1
q

, q � 1.

By replacing j'i (u)j by j` (u)j1=q j'i (u)j in this inequality, we also haveZ
j` (u)j

qY
i=1

j'i (u)j du �
qY
i=1

�Z
j` (u)j j'i (u)jq du

�1=q
, q � 1. (35)

We now state one consequence of this. First note that, when (A2) holds,

g (j) =

jX
s=0

cs � CjH�1=�uj, j !1.
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(Note that in the case H � 1=� < 0, the requirement
P1

j=0 cj = 0 (see (13)) is invoked

here.) Therefore the requirement (14) on uj holds for g (j) also, that is, there is an integer

l0 > 0 such that g (l) 6= 0 and constants C1 and C2 such that

0 < C1 �
����g(l + j1)

g(l � j2)

���� � C2 for all 0 � j1; j2 � [l=2]

for all l � l0. This also entails that, recalling that l = lH�1=�ulbl so that
l

bljg(q)j =
lH�1=�ul
jg(q)j ���� g(l)g(q)

���, there is an l0 and positive constants D1 and D2 such that

0 < D1 �
l

bl jg (q)j
� D2 for [l=2] � q < l, l � l0. (36)

Then, for � > 0 such that D�1
1 � = � with � as in the �rst part of Lemma 6, we have for

l � l0 and � � 0,Z
fj�j��blg

j�j�
lY

j=0

���� ��g (j)l
����� d� � Z

fj�j��blg
j�j�

lY
j=[l=2]+1

���� ��g (j)l
����� d�

�
lY

j=[l=2]+1

 Z
fj�j��blg

j�j�
���� ��g (j)l

�����l�[l=2] d�
! 1

l�[l=2]

by (35)

=
lY

j=[l=2]+1

 ���� l
g (j) bl

����1+� Zn��� l
g(j)bl

�
�����blo j�j

�

���� ��bl
�����l�[l=2] d�

! 1
l�[l=2]

� D1+�
2

Z
fj�j�D�1

1 �blg
j�j�

���� ��bl
�����l�[l=2] d� � C, l � l0, by (33) and (36). (37)

In the same way, using (34) when (25) holds, there is an l0 such that for every � > 0,

0 � � � 3,Z
fj�j>�blg

j�j�
l�1Y
j=0

���� �g (j) �l
����� d� � C

Z
fj�j>D�1

2 �blg
j�j�

���� ��bl
�����l�[l=2] d� � C�l, l � l0,

(38)

where 0 < � < 1.

In addition, noting that g (0) = 1 and j (�)j � 1, for any constants vl, wl, hl such that
min0�l�l0 jwlj > 0 and min0�l�l0 jvlj > 0, we have for 0 � l � l0

max
l�l0

�����
Z lY

q=0

���� �wl �

g (q)

����� ��� bf (vl�� hl)
��� d������

2

� max
l�l0

����Z ��� (wl�) bf (vl�� hl)
��� d�����2

� max
l�l0

1

jwlvlj

Z
j (�)j2 d�

Z ��� bf (�)���2 d� � C, (39)
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where we have used (18) and the fact
R ��� bf (�)���2 d� = 2� R jf (x)j2 dx <1. �

In the context of the Statements (II) of Theorems 1 - 5, under the Cram�er's condition

(19), we shall use a certain smoothing device. To state it, let � be a positive number and

K� be a probability measure on R satisfying

K�(fx : jxj � �g) = 1:

Then K�1 � ::: � K�k is a probability measure on Rk. Let h (x1; :::; xk) be real valued
functions on Rk such that Mjhj;� (x1; :::; xk) is integrable with respect to �. (Here Mh;�(x)

as well as mh;�(x) used below are as de�ned in (17).) Then clearly, for any �nite measure

! on Rk. LetZ
h (x1; :::; xk) d! (x1; :::; xk)

�
R
mh;� (x1; :::; xk) d (! � (K� � :::�K�)) (x1; :::; xk)

�
R
Mh;� (x1; :::; xk) d (! � (K� � :::�K�)) (x1; :::; xk) ,

(40)

where � stands for the convolution. The probability measure K� here will be chosen such

that its characteristic function cK� (�) satis�es���cK� (�)
��� � C expf�(�j�j)1=2g (41)

for all real �, where C is a constant (independent of �). This is possible in view of Bhat-

tacharya and Ranga Rao (1976, Corollary 10.4, page 88), where K� is used extensively as

a smoothing device.

Now, similar to (38), we have for every � > 0 and for l � l0,Z
fj�j>�blg

j�j�
l�1Y
j=0

���� �g (j) �l
����� ����cK�

�
�

l

����� d�
� C�l

lY
j=[l=2]+1

�Z
j�j�

����cK�

�
�

g (j) bl

����� d�� 1
l�[l=2]

� C�l
�
l
�

�1+�
, l � l0, (42)

where we have used (41), together with
��� l
g(j)bl

��� � D1 > 0, see (36). Note that (42) is true

for all l � 1 because the left hand side is bounded byZ
fj�j>�blg

j�j�
����cK�

�
�

l

����� d� � C

�
l
�

�1+�
� C��l0�l

�
l
�

�1+�
for 1 � l � l0:

(43)

Similarly, because in addition
���cK� (�)

��� � C and similar to (37) using (33), we also have,

for every � > 0,Z
fj�j��blg

j�j�
l�1Y
j=0

���� �g (j) �l
����� ���� bK�

�
�

l

����� d� � C l � 1. (44)
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It is important to note that (42) - (44) do not invoke the restrictions (18) and (25).

We next obtain some inequalities that will be used later on. For this purpose we note

that, using the condition (7), we have
��� bf (�1)� bf (�2)��� � C j�1 � �2j. Now (26) entails

that bf (0) = R1
�1 f (y) dy = 0. Hence

��� bf (�)��� � C j�j. We also have
��� bf (�)��� � C usingR

jf (y)j dy <1. Thus,��� bf (�)��� � Cmin (j�j ; 1) under (6), (7) and (26). (45)

Further, corresponding to Mf;�(x), though
R1
�1Mf;�(y)dy 6= 0, we have���cMf;�(�)� bf (�)��� � Z (Mf;�(x)� f(x)) dx � C j�jd under (24).

The preceding two inequalities imply���dMf;�(�)
��� � Cmin (j�j ; 1) + C j�jd under (6), (7), (24) and (26). (46)

To obtain further preliminaries, we next introduce a decomposition for Sk which will

be repeatedly used throughout below. Recall that

Sk =
0X

j=�1
(g(k � j)� g(�j))�j +

kX
j=1

g(k � j)�j;

where recall that g (j) =
Pj

s=0 cs. The indicated decomposition is

Sk = Sk;l + S�k;l, 1 � l � k, (47)

where

Sk;l =
0X

j=�1
(g(k � j)� g(�j))�j +

k�lX
j=1

g(k � j)�j

and

S�k;l =

kX
j=k�l+1

g(k � j)�j =

l�1X
q=0

g (q) �k�q:

Here it is important to note that

Sk;l and S
�
k;l are independent.

In addition note that the marginal distribution of S�k;l is the same as that of Tl =
Pl

i=1 g (l � i) �i.

The second part of the next Lemma 8 will be used only in Theorem 4, in which �n = n.
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Lemma 8. If either(18) and
��� bf (�)��� � C hold or (19) and max

����dMf;� (�)
��� , jdmf;� (�)j

�
�

C for all � > 0 hold, then����Ek ��nn f (Sk+l)
����� � C

l

n
�n

for all l � 1:

Further if
��� bf (�)��� � Cmin (j�j ; 1) hold and either (18) hold or (19) and (24) hold, then����Ek ��nn f (Sk+l)

����� � C
1

2l

�
n
�n

�2
for all l � 1:

Here recall that Ek, k � 1, stands for the conditional expectation given f�j; j � kg.
Proof. First assume that (18) holds. Then using (47) and noting f (y) = 1

2�

R
e�i�y bf (�) d�,

we have

f

�
�n
n
Sk+l

�
=
1

2�

Z
e�i�

�n
n
(Sk+l;l+S�k+l;l) bf (�) d�.

Therefore, because Sk+l;l and S
�
k+l;l are independent with Sk+l;l being a function of f�j; j � kg,����Ek ��nn f (Sk+l)
����� � C

l

n
�n

Z ���E he�i �l S�k+l;li��� ���� bf �n�n �l
����� d�

=
C

l

n
�n

Z ���� bf �n�n �l
����� l�1Y

q=0

���� �g (q)l �

����� d�, (48)

where we have used
���E he�i �l S�k+l;li��� = ���Ql�1

i=0  
�
�g(i)
l

����.
Now, in view of (37) - (39), we have

Z ���� bf �n�n �l
����� l�1Y

q=0

���� �g (q)l �

����� d� �
8>><>>:

C if
��� bf (�)��� � C

C
l

n
�n
+ C�l

� C
l

n
�n

if
��� bf (�)��� � Cmin (j�j ; 1)

using 0 < � < 1. This gives the lemma when (18) holds.

We next show that the preceding bound holds under (19) also. According to (40),����Ek ��nn f (Sk+l)
����� � max�����Ek �Mf;�

�
�n
n
(Sk+l + V�)

������ ; ����Ek �mf;�

�
�n
n
(Sk+l + V�)

�������
for all � > 0, where V� has the distribution K� (having the characteristic function (41))

and is independent of f�j;�1 < j <1g, in particular independent of Sk+l. The same
arguments above then give����Ek �Mf;�

�
�n
n
(Sk+l + V�)

������ � C

l

n
�n

Z ����dMf;�

�
n
�n

�

l

����� l�1Y
q=0

���� �g (q)l �

����� ����cK�

�
�

l

����� d�.
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In the case
���dMf;� (�)

��� � C, we have using (42) - (44),

Z ����dMf;�

�
n
�n

�

l

����� l�1Y
q=0

���� �g (q)l �

����� ����cK�

�
�

l

����� d� � C:

In the same way when
��� bf (�)��� � Cmin (j�j ; 1), using (46) we obtain the bound

Z ����dMf;�

�
n
�n

�

l

����� l�1Y
q=0

���� �g (q)l �

����� ����cK�

�
�

l

����� d� �
�
C

l

n
�n
+ C j�jd

��
1 + �l

l
�

�

� C

l

n
�n

by choosing � =

�
C

l

n
�n

� 1
d

.

The preceding bounds hold also when dmf;�

�
n
�n

�
l

�
is involved in place of dMf;�

�
n
�n

�
l

�
. �

The analogue of the second part of the preceding Lemma 8 for jEk [w (Sk+l; Sk+l+r)]j (for
the case �n = n) will be obtained later and used in the context of the proofs of Theorems

4 and 5.

Next, similar to the inequality in the �rst part of the preceding Lemma 8, we obtain

an inequality for
���Ek hw ��nnSk+l; �nnSk+l+r�i���. These inequalities will be used below, in

particular in the proofs of Theorems 1 and 2.

Recall that Sk+l = Sk+l;l + S�k+l;l and Sk+l+r = Sk+l+r;l+r + S�k+l+r;l+r, see (47). Here

(Sk+l;l; Sk+l+r;l+r) is a function of f�j; j � kg and is independent of
�
S�k+l;l; S

�
k+l+r;l+r

�
. In

addition, the distribution of
�
S�k+l;l; S

�
k+l+r;l+r

�
is the same as that of (Tl; Tl+r). (Recall

Tl =
Pl

j=1 g (l � j) �j.) Therefore, as in the proof of Lemma 8, we have����Ek �f ��nnSk+l; �nnSj+l+r
������ � Z ���E he�i�1 �nn Tl�i�2 �nn Tl+ri��� ��� bf (�1; �2)��� d�1d�2.

Here

�1Tl + �2Tl+r =
lX

j=1

(�1g (l � j) + �2g (l + r � j)) �j +
l+rX
j=l+1

�2g (l + r � j) �j;

where the �rst sum on the right hand side is independent of the second sum. Therefore

E
�
e�i�1Tl�i�2Tl+r

�
=

 
l�1Y
j=0

 (��1g(j)� �2g (r + j))

! 
r�1Y
j1=0

 (�g (j1)�2)
!
.

Substituting this above, using the notation

g (j; r) = g(j + r)� g(j)
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and making the transformation (�1 + �2; �2) 7�! (�1; �2), we obtain����Ek �f ��nnSk+l; �nnSj+l+r
������

�
Z  l�1Y

j=0

���� ���nn�1g(j)� �n
n
�2g (j; r)

�����
!

r�1Y
j1=0

���� ��g (j1) �nn�2
����� ��� bf (�1 � �2; �2)

��� d�2d�1
� 1

lr

�
n
�n

�2 Z 0@ l�1Y
j=[l=2]

���� ���1g(j)l
� �2
r
g (j; r)

�����
1A

�
r�1Y

j1=[r=2]

���� ��g (j1) �2r
����� ���� bf �n�n

�
�1
l
� �2
r

�
;
n
�n

�2
r

����� d�2d�1, (49)

where we have used the fact that
Ql�1
j=0 j (�)j �

Ql�1
j=[l=2] j (�)j. Making the transforma-

tions

�2 = �2 and �1 � �2
l
g(j)

1

r
g (j; r) = �1;

the last bound takes the form

1

lr

�
n
�n

�2 Z
R2

0@ l�1Y
j=[l=2]

���� ��1g(j)l

�����
1A r�1Y

j1=[r=2]

���� ��g (j1) �2r
�����

�
���� bf �n�n

�
�1
l
+
g (j; r)

rg(j)
�2 �

�2
r

�
;
n
�n

�2
r

����� d�1d�2. (50)

Here note that the right hand side is nonrandom.

We also have, in view of (4),

Ek

�
f

�
�n
n
Sk+l;

�n
n
Sk+l+r

��8<: � Ek

h
Mf;�

�
�n
n
Sk+l + V

(1)
� ; �n

n
Sk+l+r + V

(2)
�

�i
� Ek

h
mf;�

�
�n
n
Sk+l + V

(1)
� ; �n

n
Sk+l+r + V

(2)
�

�i
,
.

where V
(1)
� and V

(2)
� are independent random variables with the same distributions K�,

independent of (Tl; Tl+r). Hence the same bound (50) holds also when bf (�; �) involved
there is replaced by ���cK� (�)

��� ���cK� (�)
���max����dMf;� (�; �)

��� , jdmf;� (�; �)j
�
. (51)

From these bounds we now obtain the next Lemmas 9 and 10 for f (x0; x1). Note that

in the cases �n = n and
�n
n
! 1, the second inequality follows from the �rst but not in

the case �n
n
! 0. For the second inequality in the case �n

n
! 0 and under (18), we take

f (x0; x1) = f0 (x0) f1 (x1).
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Lemma 9. Let f (x0; x1) be such that either max
����dMf;� (�; �)

��� , jdmf;� (�; �)j
�
� C and

(19) hold or
��� bf (�; �)��� � C and (18) hold. Then

����Ek �f ��nnSk+l; �nnSk+l+r
������ � C

lr

�
n
�n

�2
for all l; r � 1.

Further (taking f (x0; x1) = f0 (x0) f1 (x1) for the case
�n
n
! 0 under (18)), for r � 1,����Ek �f ��nnSk+l; �nnSk+l+r

������ � C

l

n
�n

for all l � 1.

Proof. Consider the �rst inequality. For the case where (18) holds, it follows from (49)

and (50) using (37) - (39).

For the other case, as noted above the same bound (50) but with bf (�; �) replaced by
(51) holds. Because max

����dMf;� (�; �)
��� , jdmf;� (�; �)j

�
� C, the resulting bound is bounded

by

1

lr

�
n
�n

�2 Z 0@ l�1Y
j=[l=2]

���� ��1g(j)l

�����
1A r�1Y

j1=[r=2]

���� ��g (j1) �2r
�����

�
����cK�

�
n
�n

�
�1
l
+
g (j; r)

rg(j)
�2 �

�2
r

������ ����cK�

�
n
�n

�2
r

����� d�1d�2, (52)

where, following (42) - (44), we have when l � 1,Z ����cK�

�
n
�n

�
�1
l
+
g (j; r)

rg(j)
�2 �

�2
r

������ l�1Y
j=[l=2]

���� ��1g(j)l

����� d�1
� C + C�l

lY
j=[l=2]+1

�Z ����cK�

�
n
�n

�
�1
l
+
g (j; r)

rg(j)
�2 �

�2
r

������ d�1� 1
l�[l=2]

� C + C�l
l
�

�n
n
� C (by choosing � =

�n
n
) (53)

because (using (41))
R ���cK�

�
�1

g(j)bl
+ g(j;r)

rg(j)
�2 � �2

r

���� d�1 = R ���cK�

�
n
�n

�1
g(j)bl

���� d�1 � C l
�
�n
n
.

Hence (52) is bounded by

C

lr

�
n
�n

�2 Z
R

����cK�

�
�2
r

����� r�1Y
j1=[r=2]

���� ��g (j1) �2r
����� d�2 � C

lr

�
n
�n

�2
,

using arguments similar to the above. This completes the proof of the �rst part of the

lemma.
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Regarding the second part, as noted earlier it follows from the �rst for the cases �n = n

and �n
n
! 1. For the remaining case, �rst consider it under (18), so that by assumption

f (x0; x1) = f0 (x0) f1 (x1), and hence bf (�; �) = bf0 (�) bf1 (�). Using Qr�1
j1=[r=2]

j (�)j � 1

further, the bound (50) is bounded by

1

lr

�
n
�n

�2 Z l�1Y
j=[l=2]

���� ��1g(j)l

����� ���� bf0�n�n
�
�1
l
+
g (j; r)

rg(j)
�2 �

�2
r

�� bf1�n
�n

�2
r

����� d�1d�2.
(54)

Here we haveZ ���� bf0�n�n
�
�1
l
+
g (j; r)

rg(j)
�2 �

�2
r

�� bf1�n
�n

�2
r

����� d�2
=

�nr
n

Z ���� bf0�n�n �1l + g (j; r)

g(j)
�2 � �2

� bf1 (�2)���� d�2
� �nr

n

s��� bf1 (�2)���2 d�2 ����Z bf0�n
�n

�1
l
+
g (j; r)

g(j)
�2 � �2

�����2 d�2 � C
�nr
n

, (55)

where we use
���R bf0 � n�n �1l + g(j;r)

g(j)
�2 � �2

����2 d�2 = ���R bf0 (�2)���2 d�2. Substituting this in (54),
we see that the bound in (54) is bounded by 1

l

�
n
�n

� R �Ql�1
j=[l=2]

��� ��1g(j)l

����� d�1 � C
l

n
�n
.

This gives the second part under (18).

For the second part under (19), we use the same method above but with the role ofbf0 (�) bf1 (�) now played by cK� (�)cK� (�). This completes the proof. �

We next consider further generalizations of (49). Similar to (49), and in exactly the

same way as in (50), one obtains (recall g(j; r) = g(j + r)� g(j) )

(2�)3
����E �f ��nnSl; �nnSl+r; �nnSl+r+q

������ �
C

lrq

�
n
�n

�3 Z 0@ l�1Y
j1=[l=2]

���� ��1g(j1)l

�����
1A0@ r�1Y

j2=[r=2]

���� ��2g (j2)r

�����
1A q�1Y

j3=[q=2]

���� ��3g (j3)q

�����
�
���� bf �n�n

�
�1
l
� �2
r

�
;
n
�n

�
�2
r
� �3
q

�
;
n
�n

�3
q

����� d�1d�2d�3, (56)

where

�1 + �2
lg(j1; r)

rg(j1)
+ �3

lg(j1 + r; q)

qg(j1)
= �1, �2 + �3

rg(j2; q)

qg (j2)
= �2 and �3 = �3.
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In the same way we have

(2�)4
����E �f ��nnSl; �nnSl+r; �nnSl+r+q; �nnSl+r+q+s

������
� C

lrqs

�
n
�n

�4 Z l�1Y
j1=[l=2]

���� ��1g(j1)l

����� r�1Y
j2=[r=2]

���� ��2g (j2)r

�����
�

q�1Y
j3=[q=2]

���� ��3g (j3)q

����� s�1Y
j4=[s=2]

���� ��4g (j4)s

�����
�
���� bf �n�n

�
�1
l
� �2
r

�
;
n
�n

�
�2
r
� �3
q

�
;
n
�n

�
�3
q
� �4
s

�
;
n
�n

�4
s

����� d�1d�2d�3d�4.(57)
where

�1 + �2
lg(j1;r)
g(j1)r

+ �3
lg(j1+r;q)
g(j1)q

+ �4
lg(j1+r+q;s)

g(j1)s
= �1

�2 + �3
rg(j2;q)
g(j2)q

+ �4
rg(j2+q;s)
g(j2)s

= �2

�3 + �4
qg(j3;s)

g(j3)s
= �3, �4 = �4.

9>>=>>; (58)

As a consequence of (57), we obtain the next lemma, analogous to Lemma 9 for the

case f (x0; x1; x2; x3). As in Lemma 9 the second part follows from the �rst for the cases

�n = n and
�n
n
! 1. Also, for the second part in the case �n

n
! 0 and under (18), we

take f (x0; x1; x2; x3) = f0 (x0) f1 (x1) f0 (x2) f1 (x3).

Lemma 10. Let f (x0; x1; x2; x3) be such that either
��� bf (�0; �1; �2; �3)��� � C and (18)

hold or max
����dMf;� (�0; �1; �2; �3)

��� , ��[mw;� (�0; �1; �2; �3)
��� � C and (19) hold. Then

����E �f ��nnSl; �nnSl+r; �nnSl+r+q; �nnSl+r+q+s
������ � C

lrqs

�
n
�n

�4
for all l; r; q; s � 1.

Further (taking f (x0; x1; x2; x3) = f0 (x0) f1 (x1) f0 (x2) f1 (x3) for the case
�n
n
! 0 under

(18)), for each �xed r � 1 and s � 1,����E �f ��nnSl; �nnSl+r; �nnSl+r+q; �nnSl+r+q+s
������ � C

lq

�
n
�n

�2
for all l; q � 1.

Proof. The proof of the �rst part is obtained from (57) in exactly the same way the �rst

part of Lemma 9 was obtained from (50).

The proof of the second part is also similar to that of the second part of Lemma 9.

Under (18), we use (57) with bf (�0; �1; �2; �3) = bf0 (�0) bf1 (�1) bf2 (�2) bf3 (�3). Similar to
(55), we have

R ��� bf1 � n�n �4s���� ��� bf0 � n�n ��3q � �4
s

����� d�4 � C �ns
n
. Substituting this in (57),
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and using
Qr�1
j2=[r=2]

j (�)j � 1 and
Qs�1
j4=[s=2]

j (�)j � 1, (57) then gives the bound����E �f0��nnSl
�
f1

�
�n
n
Sl+r

�
f0

�
�n
n
Sl+r+q

�
f1

�
�n
n
Sl+r+q+s

������
� C

lqr

�
n
�n

�3 Z l�1Y
j1=[l=2]

���� ��1g(j1)l

����� q�1Y
j3=[q=2]

���� ��3g (j3)q

�����
�
���� bf0�n�n

�
�1
l
� �2
r

�� bf1�n
�n

�
�2
r
� �3
q

������ d�1d�2d�3.
Similar to (55), we further have

R ��� bf0 � n�n ��1l � �2
r

�� bf1 � n�n ��2r � �3
q

����� d�2 � C �nr
n
.

Substituting this in the right hand side of the above inequality we see that its left hand

side is bounded by

C

lq

�
n
�n

�2 Z l�1Y
j1=[l=2]

���� ��1g(j1)l

����� q�1Y
j3=[q=2]

���� ��3g (j3)q

����� d�1d�3 � C

lq

�
n
�n

�2
.

This proves the second part under (18).

Under (19), in the same way as in the proof of Lemma 9, the same method above is used,

with the role of bf0 (�0) bf1 (�1) bf2 (�2) bf3 (�3) being played by cK� (�0)cK� (�1)cK� (�2)cK� (�3),

completing the proof of the lemma. �

The inequalities in the preceding Lemmas 9 and 10 will help to deal with the sums of

the form
P
f (Sk) involved in Theorems 1 and 4. We next obtain similar inequalities that

will help to deal with the sums of the forms
P
f (Sk)� (!k;�) and

P
f (Sk)!k;� involved

respectively in Theorems 2 and 5. The main idea consists of reducing the situations to

essentially to those of Lemmas 8 - 10. We start with the analogue of Lemma 8.

Lemma 11. Let the linear process !l;� be as in (2) and (3). If the assumptions of the

�rst part of Lemma 8 hold with f replaced by jf j, and if � (!k;�) is as in (5), then

E

�����f ��nnSl
�
� (!k;�)

����� � C

l

n
�n

for all l � 1.

Further, if the assumptions of the second part of Lemma 8 hold, together with the condition

E [�1] = 0 and E [j�1�1j] <1, then����Ek ��nn f (Sk+l)!k+l;�
����� � C

2l

n
�n

for all l � � and for all � > 0.

Proof. Let us consider the �rst part for the case � (!k;�) = !k;� and then indicate that

essentially the same proof holds for the general case also. We have E
h���f ��nnSl�!l;����i �
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Pl
j=l��+1 jdl�jjE

h
j�jj
���f ��nnSl����i because !l;� =Pl

j=l��+1 dl�j�j. ConsiderE
h
j�jj
���f ��nnSl����i

where recall that
���f ��nnSk+l���� = 1

2�

R
e�i�

�n
n
Slcjf j (�) d�. Suppose that j � 0. Then (recall

Sl = Sl;l + S�l;l ) ���E hj�jj e�i��nn Sli��� = ���E hj�jj e�i��nn Sl;li��� ���E he�i��nn S�l;li��� ;
where

���E hj�jj e�i��nn Sl;li��� � C if E [j�jj] � C. Thus���E hj�jj e�i��nn Sli��� � C
���E he�i��nn S�l;li��� when j � 0.

In the same way (recall S�l;l =
Pl

i=1 g(l � i)�i )���E hj�jj e�i��nn Sli��� � C
���E he�i��nn Pl

i=1;i6=j g(l�i)�i
i��� when j > 0.

Therefore, using the same arguments of the �rst part of Lemma 8, we haveE
h����jf ��nnSl����i �

C
l

n
�n
. Thus

E

�����f ��nnSl
�
!l;�

����� � lX
j=l��+1

jdl�jj
����E ������jf ��nnSl

���������� � C

l

n
�n

1X
j=0

jdjj �
C

l

n
�n
,

establishing the �rst part of the lemma for the case � (!k;�) = !k;� .

For the general case when j� (!k;�)j � C j!k;� jq, q � 1, we have

E

�����f ��nnSl
�
� (!k;�)

����� � kX
i1=k��n+1

:::
kX

iq=k��n+1

jdk�i1j :::
��dk�iq ��E ��j�i1 j ::: ���iq ��� ����f ��nnSl

������ ,
and as can be seen easily that the bound obtained above for E

h����jf ��nnSl����i holds true
for E

h�
j�i1j :::

���iq ��� ���f ��nnSl����i also, so that the �rst part of lemma is proved.
For the second part, we have Ek

h
�n
n
f (Sk+l)!k+l;�

i
=
Pk+l

j=k+l��+1 dk+l�jEk

h
�jf

�
�n
n
Sk+l

�i
.

Because l � �, we have k + l � � + 1 > k and hence j > k. Hence, Sk+l;l and
�
�j; S

�
k+l;l

�
are independent in the identity Sk+l = Sk+l;l + S�k+l;l, so that, as in Lemma 8,����Ek ��jf ��nnSk+l

������ = 1

2�

Z ���E h�je�i��nn S�k+l;li��� ��� bf (�)��� d�.
Here, noting that S�k+l;l =

Pk+l
j=k+1 g(k + l � j)�j,���E h�je�i��nn S�k+l;li��� � ���E h�je�i��nn g(k+l�j)�ji��� ���E h�je�i��nn Pk+l

i=k+1;i6=j g(k+l�i)�i
i��� ,
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with ���E h�je�i��nn g(k+l�j)�ji��� � j�j �n
n
jg(k + l � j)j using E [�j] = 0, E [j�j�jj] <1.

Thus, using the same arguments of the second part of Lemma 8, but with the role of��� bf (�)��� � Cmin (j�j ; 1) now played by the preceding inequality and
��� bf (�)��� � C, we have���E h�jf ��nnSk+l�i��� � C 1

2l

n
�n
jg(k + l � j)j. Therefore����E ��jf ��nnSk+l

�
!k+l;�

����� �
k+lX

j=k+l��+1

jdk+l�jj
����E ��jf ��nnSk+l

������
� C

1

2l

n
�n

lX
j=l��+1

jdl�jj jg(l � j)j � C
1

2l

n
�n
, using (3).

This proves the second part, completing the proof of the lemma. �
Next, using the arguments of the proof of the �rst part of the preceding Lemma 11,

it is clear that the following statement holds, where note that the conditional expectation

Ek [:] of Lemma 9 is replaced by E [:].

Lemma 12. Let � (!k;�) is as in (5). Then under the same conditions in Lemmas 9

and 10, the bounds in Lemmas 9 hold true also when Ek

h
f
�
�n
n
Sk+l;

�n
n
Sk+l+r

�i
in the left

hand side is replaced by E
h
f
�
�n
n
Sl;

�n
n
Sl+r

�
� (!l;�)� (!l+r;�)

i
, and similarly the bounds in

Lemma 10 hold true when E
h
f
�
�n
n
Sl;

�n
n
Sl+r;

�n
n
Sl+r+q;

�n
n
Sl+r+q+s

�i
there is replaced by

E
h
f
�
�n
n
Sl;

�n
n
Sl+r;

�n
n
Sl+r+q;

�n
n
Sl+r+q+s

�
� (!l;�)� (!l+r;�)� (!l+r+q;�)� (!l+r+q+s;�)

i
4 PROOF OF THEOREMS 1 - 3
For simplicity we shall restrict to �n

n

Pn
l=1 f

�
�n
n
Sl;

�n
n
Sl+r

�
in Theorem 1. Then, letting

throughout below

nmk =

�
n
k

m

�
�
�
n
k � 1
m

�
and noting

Pn
l=1 f

�
�n
n
Sl;

�n
n
Sl+r

�
=
Pm

k=1

Pnmk
l=1 f

�
�n
n
S[n k�1m ]+l

; �n
n
S[n k�1m ]+l+r

�
, it is clear

that Theorem 1 follows from the next Propostion13.

Proposition 13. Let the function f (x0; x1) be as in Theorem 1. Assume that the

assumptions of Theorem 1 are satis�ed. Then, as n!1 �rst and then m!1,

�n
n

mX
k=1

nmkX
l=1

E[n k�1m ]

�
f

�
�n
n
S[n k�1m ]+l

;
�n
n
S[n k�1m ]+l+r

��

=)

8>><>>:
L01
R1
�1E [f0 (x) f1 (x+ Sr)] dx if �n = n

L01
R1
�1 f0 (x) f1 (x) dx if �n

n
! 0

0 if �n
n
!1.
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In addition, as n!1 �rst and then m!1,

E

"(
�n
n

mX
k=1

nmkX
l=1

f

�
�n
n
S[n k�1m ]+l

;
�n
n
S[n k�1m ]+l+r

�

��n
n

mX
k=1

nmkX
l=1

E[n k�1m ]

�
f

�
�n
n
S[n k�1m ]+l

;
�n
n
S[n k�1m ]+l+r

��)235 ! 0. (59)

The proof of the preceding result will contain the proof of the following result

Proposition 14. (I). Suppose that (18) holds and that the function h(x) is in the class

G1. Then, as n!1 �rst and then m!1,

�n
n

mX
k=1

nmkX
l=l0

E[n k�1m ]

�
h

�
�n
n
S[n k�1m ]+l

��
=) bh (0)L01

In addition, as n!1 �rst and then m!1,

E

24(�n
n

mX
k=1

nmkX
l=1

�
h

�
�n
n
S[n k�1m ]+l

�
� E[n k�1m ]

�
h

�
�n
n
S[n k�1m ]+l

���)235! 0,

and hence
�n
n

nX
l=1

h

�
�n
n
Sl

�
=) bh (0)L01 as n!1.

(II). Suppose that (19) holds and assume that h(x) is in the class G2.Then also all the
conclusions in the preceding Statement (I) hold.

Note that bh (0) = R h (x) dx. The conclusion �n
n

Pn
l=1 h

�
�n
n
Sl

�
=) bh (0)L01 in Propo-

sition 14 is already known, see Jeganathan (2004) but we shall need below the other con-

clusions for the case h (x) = f 2 (x). Note that for this case, by Plancherel's theorem,bh (0) = bf 2 (0) = R f 2 (x) dx = 1
2�

R ��� bf (�)���2 d�.
Similar to Theorem 1, the next Proposition 15 will give Theorem 3.

Proposition 15. Let the functions f0 (x0) and f (x0; x1) be as in Theorem 2. Assume

that the assumptions in the Statement (I) or those in the Statement (II) of Theorem 2 are

satis�ed. Then the conclusions of Proposition 14 hold also when f0

�
S[n k�1m ]+l

�
![n k�1m ]+l;�n

is involved in place of h
�
S[n k�1m ]+l

�
. Similarly, the conclusions of Propositions 13 hold when

f
�
S[n k�1m ]+l

; S[n k�1m ]+l+r

�
![n k�1m ]+l;�n

![n k�1m ]+l+r;�n
is involved in place of f

�
S[n k�1m ]+l

; S[n k�1m ]+l+r

�
.

We now proceed with the proofs of Proposition 13. The required modi�cations needed

for the proof of Proposition 15 will be described later on in this section. First we need to
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introduce some preliminaries. First recall from (47) that

S[n k�1m ]+q
= S[n k�1m ]+q;q

+

qX
j=1

g (q � j) �[n k�1m ]+j

where note that S[n k�1m ]+q;q
and

Pq
j=1 g (q � j) �[n k�1m ]+j

are functions of the respective col-

lections
�
�j : �1 < j �

�
nk�1

m

�	
and

�
�j : j >

�
nk�1

m

�	
, which collections are independent

of each other and do not depend on q. Further
nPl

j=1 g (l � j) �[n k�1m ]+j
; 1 < l � nmk

o
has

the same distribution as that of fTl; 1 < l � nmkg, where

Tl =
lX

j=1

g (l � j) �j.

Hence one can write

E[n k�1m ]

�
f

�
�n
n
S[n k�1m ]+l

;
�n
n
S[n k�1m ]+l+r

��
= E

�
f

�
y1 +

�n
n
Tl; y2 +

�n
n
Tl+r

��
(y1;y2)=

 
�n
n
S
[nk�1m ]+l;l

;�n
n
S
[nk�1m ]+l+r;l+r

! . (60)

Letting, for any 0 � �n < l (�n will also be allowed to tend to 1 appropriately),

T �nl =
l��nX
j=1

g(l � j)�j, T �nl;r =
l��nX
j=1

g(l + r � j)�j,

we have

Tl = T �nl +
lX

j=l��n+1

g(l � j)�j, Tl+r = T �nl;r +
l+rX

j=l��n+1

g(l + r � j)�j:

(Note that T �nl and T
�
nl;r depend on �n.) Hence, we have for any 0 � �n < l,

(2�)2E

�
f

�
y1 +

�n
n
Tl; y2 +

�n
n
Tl+r

��
=

Z
e�i�y1�i�y2E

h
e�i�

�n
n
Tl�i��nn Tl+r

i bw (�; �) d�d�
=

Z
e�i�y1�i�y2E

h
e�i(�+�)

�n
n
T �nl�i�

�n
n
(T �nl;r�T �nl)

i
E
h
e�i�

�n
n
(Tl�T �nl)�i�

�n
n
(Tl+r�T �nl;r)

i bf (�; �) d�d�
=

1

�n

Z
e�i

�
�n
y1�i�(y2�y1)E

�
e�i�

T�nl
n
�i��n

n
(T �nl�T �nl;r)

�
E
h
e�i

�
n
(Tl�T �nl)�i�

�n
n
(Tl+r�T �nl;r�Tl+T �nl)

i
� bf � �

�n
� �; �

�
d�d�. (61)
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Now (recall g(j) = 0 if j < 0 )

E
h
e�i

�
n
(Tl�T �nl)�i�(Tl+r�T �nl;r�Tl+T �nl)

i
= E

h
e�i

�
n
(Tl�T �nl)�i�

�n
n

Pl+r
j=l��n+1(g(l+r�j)�g(l�j))�j

i
= E

h
e�i

�
n
(Tl�T �nl)�i�

�n
n

Pl
j=l��n+1(cl+1�j+:::+cl+r�j)�j

i r�1Y
j=0

 

�
��n
n
g (j)�

�
,

where and throughout below we let

cj = 0 for j < 0:

Similarly

E

�
e�i�

T�nl
n
�i��n

n
(T �nl;r�T �nl)

�
=

l�1Y
j=�n

 

�
�g(j)

n
� �

�n
n
(cj+1 + :::+ cj+r)

�
.

Hence ����E �e�i�T�nln
�i��n

n
(T �nl�T �nl;r)

�
E
h
e�i

�
n
(Tl�T �nl)�i�

�n
n
(Tl+r�T �nl;r�Tl+T �nl)

i����
�

l�1Y
j=�n

���� ��g(j)n
� �

�n
n
(cj+1 + :::+ cj+r)

����� r�1Y
j1=0

���� ���nn g (j1)�
����� . (62)

With these preliminaries, we now consider the proof of Propositions 13 through a series

of steps. In order to state and prove the �rst step, we need the following result, which

describes the intent of the condition involved in the class H1.

Lemma 16. Let f(x0; :::; xr), r � 1, be such that
R �R

jf(x0; :::; xr)j2 dxr
� 1
2 dx0:::dxr�1 <

1. Then

sup
�0;:::�r�1;c

Z ��� bf(�0; :::�r�2; �r�1 + c�; �)
���2 d� � Z �Z jf(x0; :::; xr)j2 dxr

� 1
2

dx0:::dxr�1.

In particular for f(x0; x1) as in the Statement (I) of Theorem 1,

sup
c;�

Z ��� bf (�+ c�; �)
���2 d� � Z �Z jf (x; y)j2 dy

� 1
2

dx � C.

Proof. We have by de�nition

bf(�0; :::�r�2; �r�1 + c�; �)

=

Z
ei�0x0+:::+i�r�2xr�2+i(�r�1+c�)xr�1+i�xrf(x0; :::; xr)dx0:::dxr

=

Z
ei�xr

�Z
ei�0x0+:::+i�r�1xr�1f(x0; :::; xr�1; xr � cxr�1)dx0:::dxr�1

�
dxr.
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Then by Plancherel's theorem, for each �0; :::�r�1; c,Z ��� bf(�0; :::�r�2; �r�1 + c�; �)
���2 d�

=

Z ����Z ei�0x0+:::+i�r�1xr�1f(x0; :::; xr�1; xr � cxr�1)dx0:::dxr�1

����2 dxr
�

Z ����Z jf(x0; :::; xr�1; xr � cxr�1)j2 dxr
����1=2 dx0:::dxr�1

=

Z �Z
jf(x0; :::; xr�1; xr)j2 dxr

�1=2
dx0:::dxr�1,

where in obtaining the inequality we have used the generalized Minkowski inequality (see

for instance Folland (1984, page 186)). This proves the result. �

Below in Lemmas 17 and 18, recall that in the Statement (I) of Theorem 1 for the

case �n
n
! 0 it is assumed that the function f(x0; x1) is of the product form f(x0; x1) =

f0(x0)f1(x1).

Lemma 17. Let f(x0; x1) be as in Proposition 13, and assume that T
�
nl;r and T

�
nl (see

(61), de�ned previously, correspond to 2�n < [n�], 0 < � < 1. Then the next two statements

hold (recall Tl =
Pl

j=1 g (l � j) �j )

(I). Suppose that (18) holds. Let Rn (y1; y2; a; �) be the di�erence between

(2�)2
�n
n

nX
l=[n�]+1

E

�
f

�
y1 +

�n
n
Tl; y2 +

�n
n
Tl+r

��
(63)

and

1

n

nX
l=[n�]+1

Z
fj�j�a;j�j�ag

Un (�; �; y1; y2)E

�
e�i�

T�nl
n
�i��n

n
(T �nl;r�T �nl)

�

�E
h
e�i

�
n
(Tl�T �nl)�i�

�n
n
(Tl+1�T �nl;r�Tl+T �nl)

i bf � �

�n
� �; �

�
d�d� (64)

where

Un (�; �; y1; y2) = e�i
�
�n
y1�i�(y2�y1).

Then

lim
a!1

lim sup
n!1

�
sup
y1;y2

jRn (y1; y2; a; �)j
�
= 0 for each � > 0.

(II). Suppose that (19) holds (instead of (18)). Let V
(1)
� and V

(2)
� be independent ran-

dom variables with the same distributions K�, independent of (Tl; Tl+r). Consider (63) with

E
h
Mf;�

�
y1 +

�n
n
Tl + V

(1)
� ; y2 +

�n
n
Tl+r + V

(2)
�

�i
in place of E

h
f
�
y1 +

�n
n
Tl; y2 +

�n
n
Tl+r

�i
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and (64) with dMf;�

�
�
�n
� �; �

� cK�

�
�
�n
� �

� cK� (�) in place of bf � �
�n
� �; �

�
. Let Rn (y1; y2; a; �; �)

be the di�erence between these two. Then

lim
a!1

lim sup
n!1

�
sup
y1;y2

jRn (y1; y2; a; �; �)j
�
= 0 for each �, � > 0.

The same holds when mf;� is involved in place of Mf;�.

Proof. First consider the Statement (I) under (18). Note that (63) involves the

left hand side of the identity (61). Further when in (64) the
R
fj�j�a;j�j�ag is replaced byR

R2
, it reduces to that involving the right hand side of (61). Therefore the di�erence

Rn (y1; y2; a; �) in the Statement (I) of the lemma is simply the same as (64) but with the

integral
R
fj�j�a;j�j�ag replaced by the

R
fj�j�a;j�j�agc , where fj�j � a; j�j � agc stands for the

complement of fj�j � a; j�j � ag.
For notational simpli�cation, we treat the case r = 1. Then, using (62) and noting

that j (�)j � 1, jUn (�; �; y1; y2)j � C, and fj�j � a; j�j � agc � fj�j > a; j�j <1g [
fj�j � a; j�j > ag, we have

jRn (y1; y2; a; �)j

� 1

n

nX
l=[n�]+1

Z
fj�j>a;j�j<1g[fj�j�a;j�j>ag

���� ���nn�
� bf � �

�n
� �; �

����� l�1Y
j=�n

���� ��g(j)n
� �

�n
n
cj+1

����� d�d�.
Note that

Ql�1
j=�n

��� ��g(j)n
� ��n

n
cj+1

���� �Ql�1
j=[l=2]

��� ��g(j)n
� ��n

n
cj+1

���� because �n < [n�] =2 �
[l=2].

We �rst deal with the integral over fj�j > a; j�j <1g. Using (35),Z
fj�j>a;j�j<1g

������ 
�
��n
n
�

� bf � �

�n
� �; �

� l�1Y
j=[l=2]

 

�
�g(j)

n
� �

�n
n
cj+1

������� d�d�
�

l�1Y
j=[l=2]

N
1

l�[l=2]
1j � max

[l=2]�j�l�1
N1j,

where

N1j =

Z
fj�j>a;j�j<1g

���� ���nn�
� bf � �

�n
� �; �

����� ���� ��g(j)n
� �

�n
n
cj+1

�����l�[l=2] d�d�
=

n
jg(j)j bl

Z
fj�j>a;j�j<1g

���� ���nn�
� bf �n

�n

�

g(j)bl
� �+ �

cj+1
g(j)

; �

����� ���� ��bl
�����l�[l=2] d�d�,

making the change of variable �g(j)
n
���n

n
cj+1 7�! �

bl
. Here note that

R ��� � �bl����l�[l=2] d� � C

(see (33) and (34)) and n
jg(j)jbl � C n

l
using max[l=2]�j�l

l
jg(j)jbl � C (see (36)). Therefore,

N1j � CQn (a)
n
l
,
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where

Qn (a) = max
[n�]�j�n

sup
v

Z
fj�j>ag

���� ���nn�
� bf �v � �+ �

cj+1
g(j)

; �

����� d�.
Now note that Z

fj�j>ag

���� ���nn�
� bf �� � �+ �

cj+1
g(j)

; �

����� d�
�

vuutZ ���� bf �� � �+ �
cj+1
g(j)

; �

�����2 d�n�n
Z
fj�j>�n

n
ag
j (�)j2 d�

� C

 
n
�n

Z
fj�j>�n

n
ag
j (�)j2 d�

!1=2
, (65)

where in obtaining the last inequality we have used Lemma 16. In the case �n = n, the

factor n
�n

R
fj�j>�n

n
ag j (�)j

2 d� in the preceding bound reduces to
R
fj�j>ag j (�)j

2 d�! 0 as

a!1, and in the case �n
n
!1, it is bounded by n

�n

R
j (�)j2 d� � C n

�n
! 0 as n!1.

In the case �n
n
! 0 recall that under (18) we have f(x0; x1) = f0(x0)f1(x1), so thatbf (�; �) = bf0 (�) bf1 (�). Hence, using ��� ���n

n
�
���� � 1 and the Cauchy-Schwarz inequality,Z

fj�j>ag

���� ���nn�
� bf �� � �+ �

cj+1
g(j)

; �

����� d�
�

sZ ���� bf0�� � �+ �
cj+1
g(j)

�����2 d�Z
fj�j>ag

��� bf1 (�)���2 d�
� C

�Z
fj�j>ag

��� bf1 (�)���2 d��1=2 ! 0 as a!1, (66)

where we have used
R ��� bf0 �� � �+ �

cj+1
g(j)

����2 d� = g(j)
g(j)�cj+1

R ��� bf0 (�)���2 � C.

Thus

lim
a!1

lim sup
n!1

Qn (a) = 0 (67)

Now consider the integral over fj�j � a; j�j > ag. We have
Ql�1
j=�n

��� ��g(j)n
� �cj+1

���� �Q[n�]
j=[[n�]=2]

��� ��g(j)n
� �cj+1

���� because �n < [n�] =2 < l=2. Hence in the same way as earlier

the integral over fj�j � a; j�j > ag is bounded by max[[n�]=2]�j�[n�]N2j, where

N2j =

Z
fj�j�a;j�j>ag

���� ���nn�
� bf � �

�n
� �; �

����� ���� ��g(j)n
� �

�n
n
cj+1

�����l�[l=2] d�d�
� C

n
l
Q�n

Z
fj�j>dna��n

n
eng

���� � �

b[n�]

�����[n�]�[[n�]=2] d�
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with

en = ab[n�] max
[[n�]=2]�j�[n�]

jcj+1j and dn = min
[[n�]=2]�j�[n�]

n
jg(j)j b[n�]

and

Q�n = max
[[n�]=2]�j�[n�]

sup
�

Z ���� ���nn�
� bf �� � �+ �

cj+1
g(j)

; �

����� d�.
Similar to (65) and (66) (note that Q�n = Qn (0) except that Q

�
n involves max[[n�]=2]�j�[n�]

whereas Qn (a) involves max[n�]�j�n ), we have

sup
n
Q�n �

(
C if �n = n or

�n
n
! 0

C n
�n

if �n
n
!1.

.

Further note that dn � d > 0 for some d > 0 (see (36)). In addition en ! 0. To see

this, assume for simplicity that bn � n
1
� , and cj � jH�1�

1
� in the case of assumption (A2).

Noting that H � 1 � 1
�
< 0, we then have en � CnH�1. In the case of Assumption (A1),

we have jenj � Cn
1
�
�1 where 1

�
� 1 < 0 because 1 < � � 2.

Then, in the cases �n = n or
�n
n
! 0, there is an n0 such that

n
j�j > dna� �n

n
en

o
�

fj�j > dna� eng �
�
j�j > d

2
a
	
for all n � n0. Further, using (33) and (34)Z

fj�j>dna�eng

���� � �

b[n�]

�����[n�]�[[n�]=2] d� � C

Z
fj�j> d

2
ag
e�aj�j

c

d�+ C�[n�],

where 0 < � < 1.

Thus jRn (y1; y2; a; �)j is bounded by

C

 
Qn (a) +

Z
fj�j> d

2
ag
e�aj�j

c

d�+ C�[n�]

!
n
n

nX
l=1

1

l
in the cases �n = n or

�n
n
! 0,

and by

C

�
Qn (a) + C

n
�n

�
n
n

nX
l=1

1

l
in the case

�n
n
!1.

for all n � n0, which in view of (67) and the fact
n
n

Pn
l=1

1
l
� C, completes the proof of

the �rst statement.

For the Statement (II), the N1j for the present situation will be the same as earlier but

with bf (�; �) replaced by dMf;� (�; �)cK� (�)cK� (�). We also have
��� ���n

n
�
���� � 1. Hence

N1j � C
n
l

Z
fj�j>a;j�j<1g

����dMf;�

�
n
�n

�

g(j)bl
� �+ �

cj+1
g(j)

; �

�����
�
����cK�

�
n
�n

�

g(j)bl
� �+ �

cj+1
g(j)

� cK� (�)

���� ���� ��bl
�����l�[l=2] d�d�.
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In the right hand side, the integral over fj�j > a; j�j � bl�g, � > 0, is as in (33) bounded
by, using

���cK� (�)
��� � C and using Lemma 16,

sup
v
C

Z
fj�j>ag

����dMf;�

�
v � �+ �

cj+1
g(j)

; �

����� ���cK� (�)
��� d� � C

�Z
fj�j>ag

���cK� (�)
���2 d��1=2

The integral over fj�j > a; j�j > bl�g is as in (34) bounded by, for some 0 < � < 1,

C�l
Z ����cK�

�
n
�n

�

g(j)bl
� �+ �

cj+1
g(j)

� cK� (�)

���� d�d� � C�l
�ng(j)bl
n

� C�[n�]
�nl
n
, [n�] � j � n.

Thus,Mj � C n
l

�R
fj�j>ag

���cK� (�)
���2 d��1=2+C�[n�]� for all [n�] � j � n, for some 0 < �� < 1.

In the same way, theN2j for the present case is bounded by the same bound obtained earlier.

This proves the lemma. �

In the next lemma let

� (�) =

8>><>>:
E
�
ei�Sr

�
in the case �n = n

1 in the case �n
n
! 0

0 in the case �n
n
!1.

Lemma 18. Let Rn (y1; y2; a; �), � > 0, be the di�erence between

(2�)2
�n
n

nX
l=1

E

�
f

�
y1 +

�n
n
Tl; y2 +

�n
n
Tl+r

��
(68)

and

1

n

nX
l=[n�]

Z
fj�j�a;j�j�ag

Un (�; �; y1; y2)E
h
e�i

�
n
Tl
i
� (��) bf (��; �) d�d� (69)

where Un (�; �; y1; y2) = e�i
�
�n
y1�i�(y2�y1) as in Lemma 17. Then

lim
�!0

lim
a!1

lim sup
n!1

�
sup
y1;y2

jRn (y1; y2; a; �)j
�
= 0.

Similarly (2�)2 �n
n

Pn
l=1E

h
Mf;�

�
y1 +

�n
n
Tl + V

(1)
� ; y2 +

�n
n
Tl+r + V

(2)
�

�i
corresponding to

the Statement (II) of Lemma 17, has the same approximation given by (69) but withdMf;� (��; �)cK� (��)cK� (�) involved in place of bf (��; �).
The same holds for (2�)2 �n

n

Pn
l=1E

h
mf;�

�
y1 +

�n
n
Tl + V

(1)
� ; y2 +

�n
n
Tl+r + V

(2)
�

�i
.
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Proof. First consider the �rst statement under (18). Note that the same right hand

side bound in (49) holds for
���E hf �y1 + �n

n
Tl; y2 +

�n
n
Tl+r

�i��� also, and hence according to
Lemma 9 we have

���E hf �y1 + �n
n
Tl; y2 +

�n
n
Tl+r

�i��� � C
l

n
�n
. Hence

sup
y1;y2

�������nn
[n�]X
l=1

����E �f �y1 + �n
n
Tl; y2 +

�n
n
Tl+r

������
������ � C

n
n

[n�]X
l=1

1

l
.

Clearly this converges to 0 as n!1 �rst and then � ! 0.

Hence, in view of Lemma 17, letting R�n (y1; y2; a; �) for the di�erence between (68) and

(64),

lim
�!0

lim
a!1

lim sup
n!1

�
sup
y1;y2

jR�n (y1; y2; a; �)j
�
= 0.

Therefore, letting R��n (y1; y2; a; �) for the di�erence between (64) and (69), it is enough to

show that

lim sup
n!1

�
sup
y1;y2

jR��n (y1; y2; a; �)j
�
= 0 for each a; �. (70)

Note that without loss of generality, we can assume that �n, upon which T
�
nl;r and T

�
nl

of Lemma 17 depend, is such that �n ! 1 and �n
n
! 0. Then, because Tl � T �nl andP�n�1

s=0 g (s) �s have the same distribution,

sup
[n�]�l�n

P
�
�1n jTl � T �nlj > �

�
= P

 ������1n
�n�1X
s=0

g (s) �s

����� > �

!
! 0,

where we have used the fact that �1�n
P�n�1

s=0 g (s) �s converges in distribution and 
�1
n �n !

0. Hence

sup
j�j�a;j�j�a;[n�]�l�n

���E he�i �n (Tl�T �nl)�i��nn (Tl+1�T �nl;r�Tl+T �nl)i� E
h
e�i�

�n
n
(Tl+r�T �nl;r�Tl+T �nl)

i���! 0.

Now note that

E
h
e�i�

�n
n
(Tl+r�T �nl;r�Tl+T �nl)

i
=

�n+r�1Y
j=0

 

�
�
�
cj + :::+ cj�(r�1)

� �n
n
�

�
(71)

In the case �n = n, we then have, in view of

1Y
j=0

 
�
�
�
cj + :::+ cj�(r�1)

�
�
�
=  Sr (��)

and (with r being �xed) because �n !1,

sup
j�j�a

���E he�i�(Tl+r�T �nl;r�Tl+T �nl)i�  Sr (��)
���! 0.
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This also gives, for the case �n
n
! 0,

sup
j�j�a

���E he�i��nn (Tl+r�T �nl;r�Tl+T �nl)i� 1���! 0 if
�n
n
! 0.

In the case �n
n
! 1, let 0 � j0 < �n + r � 1 be such that cj0 + ::: + cj0�(r�1) 6= 0. Then,

noting that (18) entails  (�)! 0 as �!1,

sup
j�j�a

���E he�i��nn (Tl+r�T �nl;r�Tl+T �nl)i��� � sup
j�j�a

���� �� �cj0 + :::+ cj0�(r�1)
� �n
n
�

�����! 0.

(72)

Now
��T �nl;r � T �nl

�� = ���Pl�1
j=�n

(cj+1 + :::+ cj+r)�j

���. Let 0 < � < � be suitably close to �

such that
P1

j=�n
jcjj� ! 0. Then

sup
[n�]�l<1

P
���T �nl;r � T �nl

�� > "
�
= sup

[n�]�l<1
P

 �����
l�1X
j=�n

(cj+1 + :::+ cj+r)�j

����� > "

!

� Cr
1X

j=�n

jcjj� ! 0, (73)

where the inequality is obtained using for instance Avram and Taqqu (1986, Lemma 1,

Section 3, page 408)). Hence

sup
j�j�b;j�j�a;[n�]�l�n

����E �e�i�T�nln
�i��n

n
(T �nl;r�T �nl)

�
� E

h
e�i�

Tl
n

i����! 0 if either �n = n or
�n
n
! 0.

Hence (70) follows (in the case �n
n
! 1, note that � (��) = 0 in (69) so that (72) is

su�cient to imply (70)).

To obtain the second statement, in which (19) is assumed, we apply the Statement (II)

of Lemma 17. It is clear that the only place in the above proof that needs to be explained

is (72) for the case �n
n
!1 where the condition lim supj�j!1

��E �ei��1��� = 0, obtained as a
consequence of (18), is used. But this restriction is assumed as part of (19) when �n

n
!1,

see (19). This completes the proof of the Lemma. �
The preceding Lemma 17 leads to the next statement where we de�ne

S

�
k � 1
m

;
t

m

�
= c

Z 0

�1

(�
t

m
+
k � 1
m

� u

�H�1=�
� (�u)H�1=�

)
Z�(du)

+c

Z k�1
m

0

�
t

m
+
k � 1
m

� u

�H�1=�
Z�(du) (74)

and

T (t) =

Z t

0

(t� u)H�1=� Z�(du). (75)
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Note that

S

�
k � 1
m

; 0

�
= ��;H

�
k � 1
m

�
.

Lemma 19. For each integer m � 1,

�n
n

mX
k=1

nmkX
l=1

E[n k�1m ]

�
f

�
�n
n
S[n k�1m ]+l

;
�n
n
S[n k�1m ]+l+r

��
converges in distribution to�

1

2�

Z
� (��) bf (��; �) d�� 1

m1�H

mX
k=1

1

2�

Z 1

�1

Z 1

0

e�i�m
HS( k�1m ; t

m)E
�
e�i�T (t)

�
dtd�

where � (��) is as in Lemma 18 and S
�
k�1
m
; t
m

�
and T (t) are as above in (74) and (75).

The same holds for �n
n

Pm
k=1

Pnmk
l=1 E[n k�1m ]

h
Mf;�

�
�n
n
S[n k�1m ]+l

+ V
(1)
� ; �n

n
S[n k�1m ]+l+r

+ V
(2)
�

�i
but the limit will involve 1

2�

R
� (��) dMf;� (��; �) bK� (��) bK� (�) d� in place of

1
2�

R
� (��) bf (��; �) d�.

The same holds for mf;� also. Here V
(1)
� and V

(2)
� are as in Lemma 18.

Proof. We consider only the �rst statement because the proofs for the remaining

statements are the same. Also note that in the right hand side of (69) is equal to 0 for the

case �n
n
! 1 because � (��) = 0. Therefore we only need to consider the cases �n = n

and �n
n
! 0.

Because
nmk
nmk

n
n
� m1�H , it is enough to show that, for each m and k,

�n
n

nmkX
l=1

E[n k�1m ]

�
f

�
�n
n
S[n k�1m ]+l

;
�n
n
S[n k�1m ]+l+r

��
(76)

converges in distribution to�
1

2�

Z
� (��) bf (��; �) d�� 1

m

1

2�

Z 1

�1

Z 1

0

e�i�S(
k�1
m
; t
m)E

h
e�i�m

�HT (t)
i
dtd�,

(77)

where in obtaining the form of the limit we have used the transformation �mH 7�! �.

Let (y1; y2) be as in (60), that is

(y1; y2) =

�
�n
n
S[n k�1m ]+l;l

;
�n
n
S[n k�1m ]+l+r;l+r

�
. (78)

With this (y1; y2), let Rn (a; �) be the di�erence between (76) and

1

n (2�)2

nmkX
l=[n�]

Z
fj�j�a;j�j�ag

Un (�; �; y1; y2)E
h
e�i�

�1
n Tl
i
� (��) bf (��; �) d�d�,

(79)
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where recall that

Un (�; �; y1; y2) = e�i
�
�n
y1�i�(y2�y1).

It follows from Lemma 18 that, for each � > 0,

lim
�!0

lim
a!1

lim sup
n!1

P (jRn (a; �)j > �) = 0.

Therefore it is enough to show that (79) converges in distribution to (77) by taking the

limit as n!1 �rst, then a!1 and then � ! 0.

To obtain the limit as n!1, note that Un (�; �; y1; y2) above involves

y1
�n
=
1

n
S[n k�1m ]+l;l

and y2 � y1 =
�n
n

�
S[n k�1m ]+l+r;l+r

� S[n k�1m ]+l;l

�
:

We have

S[n k�1m ]+l+r;l+r
� S[n k�1m ]+l;l

=

[n k�1m ]X
j=�1

(cl+[n k�1m ]+1�j
+ ::+ cl+[n k�1m ]+r�j

)�j;

and hence, similar to (73), under either of the cases �n = n or
�n
n
! 0,

sup
an<l<1

P

�
�n
n

���S[n k�1m ]+l+r;l+r � S[n k�1m ]+l;l

��� > "

�
= sup

an<l<1
P

 
�n
n

�����
1X
i=l

(ci+1 + ::+ ci+r)�i

����� > "

!
! 0 for any an " 1:

Further, with Smk
�
t
m

�
and T (t) as de�ned in (74) and (75),�

�1n S[n k�1m ]+[nmkt];[nmkt]
; �1n T[nmkt]

�
fdd
=)

�
S

�
k � 1
m

;
t

m

�
;m�HT (t)

�
.

It then follows (though the preceding convergence is only
fdd
=) ), in the same way as in

Jeganathan (2004, Lemma 8), that (79) with (y1; y2) as in (78) converges in distribution to

1

(2�)2m

Z
fj�j�a;j�j�ag

�Z 1

�

e�i�S(
k�1
m
; t
m)E

h
e�i�m

�HT (t)
i
dt

�
� (��) bf (��; �) d�d�

for each a and � > 0.

Let � (a) be the di�erence between the preceding quantity and�
1

2m�

Z
� (��) bf (��; �) d�� 1

2�

Z 1

�1

Z 1

�

e�i�S(
k�1
m
; t
m)E

h
e�i�m

�HT (t)
i
dtd�.

(Here m, k and � are �xed.) We next show that � (a)! 0 as a!1.
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Noting that
���e�i�mHSmk( tm)

��� � 1, we have
m (2�)2�(a) �

�Z 1

�1

��� bf (��; �)��� j� (�)j d��Z 1

�

Z
fj�j>ag

���E he�i�m�HT (t)
i��� d�dt

+

�Z
fj�j>ag

��� bf (��; �)��� j� (�)j d��Z 1

�

Z 1

�1

���E he�i�m�HT (t)
i��� d�dt.

Now note thatZ
fj�j>ag

���E he�i�m�HT (t)
i��� d� � C

Z
fj�j>ag

e�cj�tHj
�

d� = Ct�H
Z
fj�j>atHg

e�cj�j
�

d�

� C��H
Z
fj�j>a�Hg

e�cj�j
�

d� = R (a) , say, if � � t � 1.

Hence

m (2�)2�(a) (2�)2�(a) � R (a)

Z 1

�1

��� bf (��; �)��� j� (�)j d�+R (0) Z
fj�j>ag

��� bf (��; �)��� j� (�)j d�,
where note that

R (a)! 0 as a!1 and R (0) <1:

In the case � (�) =  Sr (�) (the case �n = n), we have, noting j Sr (�)j � j (�)j,Z
fj�j>ag

��� bf (��; �)��� j (�)j d� �
sZ ��� bf (��; �)���2 d�Z

fj�j>ag
j (�)j2 d�

� C

sZ
fj�j>ag

j (�)j2 d� ! 0 as a!1,

where we have used
R ��� bf (��; �)���2 d� � C, see Lemma 16. In the case � (�) = 1 (the case

(18) holds and �n
n
! 0), we have

��� bf (��; �)��� = ��� bf0 (�)��� ��� bf1 (�)��� so thatZ
fj�j>ag

��� bf (��; �)��� j (�)j d� �
sZ ��� bf0 (�)���2 d�Z
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� C

sZ
fj�j>ag

��� bf1 (�)���2 d� ! 0 as a!1.

Thus � (a)! 0 as a!1.
Next note that����Z 1
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Z �

0

e�i�Smk(
t
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�HT (t)
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dtd�

���� � C

�Z �
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��Z 1
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�
� C�1�H

1�H
! 0 as � ! 0.
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This completes the proof of the �rst part of the lemma.

The proof of the second part is identical by allowing
��� bK� (��)

��� ��� bK� (�)
��� to play the role

of
��� bf (��; �)��� j (�)j above. �
To complete the proof of the �rst part of Propositions 13, we thus require

Lemma 20.

1

m1�H

mX
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Z 1

0

�
1

2�

Z 1

�1
e�i�m

HS( k�1m ; t
m)E

�
e�i�T (t)

�
d�

�
dt =) L01 as m!1.

Proof. We �rst show that

lim
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lim sup
m!1

Z �

0

1
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"�����
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�����
#
dt = 0.

(80)

To see this note that, in view of (74), S
�
k�1
m
; t
m

�
is �-stable with scale parameter �tmk such

that

�tmk � C

���� tm +
k � 1
m

����H .
(See Samorodnitsky and Taqqu (1994, page 345)). Hence
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"����� 1
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m
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�
m

k � 1
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e�cj�j

�
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because 1
m

Pm
k=2

�
m
k�1
�H � C. Here note that in the sum

Pm
k=2 the leading term corre-

sponding to k = 1 is left out, but for this we have, in the same way as above, noting

�tm1 � C
�� t
m

��H ,
E

����� 1

m1�H

Z 1

�1
e�i�m

HS(0; tm)d�

����� � C
t�H

m1�H .

Hence, noting further that
��E �e�i�T (t)��� � 1, the left hand side of (80) is bounded by

C

Z �

0

�
1 +

t�H

m1�H

�
dt = C

�
�1�H

m1�H + �

�
, for all m � 1, obtaining (80).

Now consider Z 1

�

1

m1�H
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�
1

2�

Z 1

�1
e�i�m

HS( k�1m ; t
m)E
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e�i�T (t)

�
d�

�
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=
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�

1

m1�H
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�
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t
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��
dt (81)
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where ht (y) � 0 is the density function of T (t), i.e.,

ht (y) =
1

2�

Z 1

�1
ei�y bht (�) d� where bht (�) = E

�
e�i�T (t)

�
:

Note that for each �xed t,
�
S
�
k�1
m
; t
m

�
; 0 � k � m

	
has the same structure as that of�

��;H
�
k
m

�
; 0 � k � m

	
. Hence Jeganathan (2004, Proposition 6) contains the fact that

the di�erence between the integrand 1
m1�H

Pm
k=1 ht

�
�mHS

�
k�1
m
; t
m

��
in (81) and

1

m1�H

mX
k=1

1p
2�

Z
ht

�
�mH

�
S

�
k � 1
m

;
t

m

�
+ "z

��
e�z

2=2dz (82)

converges to 0 in mean-square, as m ! 1 �rst and then " ! 0. In addition it is easy to

see that the arguments in Jeganathan (2004) also give that this mean-square convergence

uniformly over � � t � 1. (Note that this is a very speci�c case so that the steps in

Jeganathan (2004) will take a rather simple and direct form.)

Now, note that 1
m1�H

Pm
k=1

R
ht
�
�mH (y + "z)

�
e�z

2=2dz is su�ciently smooth in y (see

Jeganathan (2004, Lemma 7)). Hence, for each " > 0, it can be seen that (82) can be

approximated, as m!1, by

1

m1�H

mX
k=1

1p
2�

Z
ht

�
�mH

�
S

�
k � 1
m

; 0

�
+ "z

��
e�z

2=2dz

uniformly over � � t � 1, which in turn is approximated by 1
m1�H

Pm
k=1

1p
2�
ht
�
�mHS

�
k�1
m
; 0
��

as before as m!1 �rst and then "! 0.

Noting that S
�
k�1
m
; 0
�
= ��;H

�
k�1
m

�
, we thus have approximated (81) byZ 1

�

1

m1�H

mX
k=1

ht

�
�mH��;H

�
k � 1
m

��
dt;

which in turn is approximated as before, as m!1 �rst and then � ! 0, byZ 1

0

1

m1�H

mX
k=1

ht

�
�mH��;H

�
k � 1
m

��
dt

=
1

m1�H

mX
k=1

g

�
�mH��;H

�
k � 1
m

��
=)

�Z
g (y) dy

�
L01 = L01

where g (y) =
R 1
0
ht (y) dt. Note that

R
g (y) dy =

R 1
0

R
ht (y) dydt = 1 because

R
ht (y) dy =

1 for each t. In obtaining the preceding convergence we have used Jeganathan (2004,

Theorem 4). Note that
R
g2 (y) dy �

R 1
0

R
h2t (y) dydt � C

R 1
0
t�Hdt � C. This completes

the proof of the lemma. �
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Proof of Propositions 13. When (18) holds, the proof of the �rst part (weak con-

vergence part) follows directly from Lemma 20 and the �rst part of the lemma 19.

Regarding the proof under (19), we have (with V
(1)
� , V

(2)
� as in Lemma 17)

E[n k�1m ]

�
f

�
�n
n
S[n k�1m ]+l

;
�n
n
S[n k�1m ]+l+r

��
8<: � E[n k�1m ]

h
Mf;�

�
�n
n
S[n k�1m ]+l

+ V
(1)
� ; �n

n
S[n k�1m ]+l+r

+ V
(2)
�

�i
� E[n k�1m ]

h
mf;�

�
�n
n
S[n k�1m ]+l

+ V
(1)
� ; �n

n
S[n k�1m ]+l+r

+ V
(2)
�

�i .

Therefore, in view of the second part of the Lemma 18, it only remains to show thatR
� (��) dMf;� (��; �)cK� (��)cK� (�) d� !

R
� (��) bf (��; �) d� as � ! 0 and the same

for mf;�. To see this note that the left hand side is, for instance when � (�) =  Sr (�),

equal to 2�
R
E
h
Mf;�

�
x+ V

(1)
� ; x+ Sr + V

(2)
�

�i
dx, withZ

Mf;�

�
x+ V (1)

� ; x+ Sr + V (2)
�

�
dx �

Z
Mf;2� (x; x+ Sr) dx

�
Z
E
�
Mf;2�

�
x+ V (1)

a ; x+ Sr + V (2)
a

��
dx,

where a > 0 is �xed. Here the left most side converges to
R
f(x; x+Sr)dx as � ! 0 in view of

the fact that f(x; y) is the class G2, and the right most side to
R
E
h
f
�
x+ V

(1)
a ; x+ Sr + V

(2)
a

�i
dx

using in addition the fact that V
(1)
a , Sr and V

(2)
a are independent with V

(1)
a and V

(2)
a (and

hence Sr + V
(2)
a ) having bounded Lebesgue densities (a is �xed). The same holds forR

mf;�

�
x+ V

(1)
� ; x+ Sr + V

(2)
�

�
dx but reversing the inequalities. Hence, using a form of

a Lebesgue dominated convergence theorem, it follows thatZ
E
�
Mf;�

�
x+ V (1)

� ; x+ Sr + V (2)
�

��
dx!

Z
E [f (x; x+ Sr)] dx as � ! 0

and the same for
R
E
h
mf;�

�
x+ V

(1)
� ; x+ Sr + V

(2)
�

�i
dx. This gives the �rst part.

Regarding the proof of the second part, that is, (59), let

hn (x0; x1) = f

�
�n
n
x0;

�n
n
x1

�
.

Note that
Pnmk

l=1 hn

�
S[n k�1m ]+l

; S[n k�1m ]+l+r

�
�
Pnmk

l=1 E[n k�1m ]

h
hn

�
S[n k�1m ]+l

; S[n k�1m ]+l+r

�i
; 1 �

k � m, form an array of martingale di�erences, and hence the expected value in (59) is

bounded by�
�n
n

�2 mX
k=1

E

24 nmkX
l=1

hn

�
S[n k�1m ]+l

; S[n k�1m ]+l+r

�!235
�

�
�n
n

�2( nX
l=1

E
�
h2n (Sl; Sl+r)

�
+ 2

nX
l=1

nmkX
i=1

jE [hn (Sl; Sl+r)hn (Sl+i; Sl+r+i)]j
)
.(83)
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According to Lemma 9, we have E
h
h2n

�
�n
n
Sl;

�n
n
Sl+r

�i
= E

h
f 20

�
�n
n
Sl

�
f 21

�
�n
n
Sl+r

�i
�

C
l

�
n
�n

�
and hence using

Pn
l=1

1
l
� C n

n
, we have�

�n
n

�2 nX
l=1

E
�
h2n (Sl; Sl+r)

�
� C

�
�n
n

�2�
n
�n

�
n

n
= C

�n
n
! 0:

Similarly
���E hf ��nnSl; �nnSl+r� f ��nnSl+i; �nnSl+r+i�i��� � C

li

�
n
�n

�2
, according to Lemma

10. Using nmk � n
m
and nmk � nm

�H , max1�k�m
Pnmk

i=1
1
i
� C n

n

�
1
m

�1�H
, so thatPn

l=1

Pnmk
i=1

1
li

� C
�
1
m

�1�H � n
n

�2
. Hence�

�n
n

�2 nX
l=1

nmkX
i=1

jE [hn (Sl; Sl+r)hn (Sl+i; Sl+r+i)]j

� C

�
1

m

�1�H �
�n
n

�2�
n
�n

�2�
n

n

�2
= C

�
1

m

�1�H
.

This completes the proof. �
Proof of Proposition 14. Under (18), it is implicit in the proofs of Lemmas 17 and

18 that, for each m � 1, the di�erence between �n
n

Pm
k=1

Pnmk
l=1 E[n k�1m ]

h
h
�
�n
n
S[n k�1m ]+l

�i
and bh (0) 1

m1�H

mX
k=1

1

nmk2�

nmkX
l=[n�]

Z
fj�j�ag

e
�i��1nmkS[nk�1m ]+l;lE

h
e�i�n

�H
mk Tl

i
d�

converges to 0 in probability as n ! 1 �rst, then a ! 1 and then � ! 0, which in turn

converges in distribution to bh (0) 1
m1�H

Pm
k=1

1
2�

R1
�1
R 1
0
e�i�m

HS( k�1m ; t
m)E

�
e�i�T (t)

�
dtd�, see

Lemma 19. Hence, similar to the preceding proof of Propositions 13 the proof of the �rst

part under (18) follows by Lemma 20 and that of the second part follows in view of the

inequalities of the �rst parts of Lemmas 8 and 9. Similarly to the preceding proof of

Proposition 13, the proof under Cramer's condition in (19) also follows. �

We next present the proof of Proposition 15. The proof will consist of reducing the

situations to the framework of Propositions 13 and 14. We �rst obtain

Lemma 21. Assume that the integers �n are such that
�n
n
! 0, in addition to the

assumptions of Theorem 2. Then for each k = 1; :::;m,

�n
n

�nX
l=1

E

�����f0��nnS[n k�1m ]+l
�
�
�
![n k�1m ]+l;�n

������! 0 as n!1,

and

�n
n

�nX
l=1

E

�����f ��nnS[n k�1m ]+l; �nnS[n k�1m ]+l+r
�
�
�
![n k�1m ]+l;�n

�
�
�
![n k�1m ]+l+r;�n

������! 0.
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Proof. According to Lemma 12 (and taking into account the second part in Lemma

9), the left hand side of the second part of the lemma is bounded by C �n
n

P�n
l=1

n
�n

1
l
=

C n
n

P�n
l=1

1
l
� C n

n
�n
�n

because
P�n

l=1
1
l
� �n

�n
. We have C n

n
�n
�n

! 0 because �n
n
! 0. This

proves the second part, and note that the preceding arguments hold for the �rst part of

the lemma also, using the �rst part of Lemma 11. �

Proof of Proposition 15. We shall present the proof for the case � (!k;�n) = !k;�n

because all the arguments below hold when !k;�n is replaced by � (!k;�n).

First consider the counterpart of Proposition 14. In view of the �rst part of the preceding

Lemma 21, it is enough to consider �n
n

Pm
k=1

Pnmk
l=�n+1

f0

�
�n
n
S[n k�1m ]+l

�
![n k�1m ]+l;�n

, as n !
1 �rst and then m!1.
Recall that !l;�n =

Pl
j=l��n+1 dl�j�j. Also recall that Sj+l = Sj+l;�n + S�j+l;�n where

Sj+l;�n and S
�
j+l;�n

are independent. Hence, if j > �n, then for q < j � �n,
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�
f0

�
�n
n
Sj+l

�
!j+l;�n

�
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�
Ej��n

�
f0

�
�n
n
Sj+l

�
!j+l;�n

��
= Eq

�
h�n

�
�n
n
Sj+l;�n

��
,

where

h�n (x) = E

�
f0

�
x+

�n
n
S�j+l;�n

�
!j+l;�n

�
= E

�
!�n;�nf0

�
x+

�n
n
S��n;�n

��
.

Thus

E[n k�1m ]

�
f0

�
�n
n
S[n k�1m ]+l

�
![n k�1m ]+l;�n

�
= E[n k�1m ]

�
h�n

�
�n
n
S[n k�1m ]+l;�n

��
for l > �n.

(84)

We have ch�n (�) = bf0 (�)E h!�n;�ne�i��nn S��n;�ni .
In the case

��� bf0 (�)��� � C, it is clear that
���ch�n (�)��� � C, and in addition supj�j�M

���ch�n � �
�n

�
� ch�n (0)���!

0 for all M > 0 using the fact 1
n
S��n;�n

p! 0 because �n
n
! 0. Further note thatR

h�n (x) dx = E [!0;�n ]
R
f0 (x) dx = ch�n (0), where E [!0;�n ] ! E [!0]. Furthermore

S[n k�1m ]+l;�n
and S[n k�1m ]+l

have has the same structure in addition to having the same

limiting distributions. Hence in exactly the same way as in the �rst part of Proposition 13,

we have

�n
n

mX
k=1

nmkX
l=�n+1

E[n k�1m ]

�
f0

�
�n
n
S[n k�1m ]+l

�
![n k�1m ]+l;�n

�
=) L01E [!0]

1

2�

Z ��� bf0 (�)���2 d�.
Recall that the proof of the second part of Proposition 14 relied on the bounds of the

�rst parts of Lemmas 8 and 9. The same purpose is now served in the present context by
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the �rst part of Lemma 11 and the appropriate one in Lemma 12. Thus the counterpart

of Proposition 14 is proved. �
Now consider the counter part of Proposition 13. It is enough to consider, similar to

the preceding proof but now using the second part of Lemma 21,

�n
n

mX
k=1

nmkX
l=�n+1

E[n k�1m ]

�
f

�
�n
n
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;
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�
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�
, r � 1.

Let us �rst obtain a representation similar to (84). Because r is �xed, one can without

loss of generality assume that r � �n. Then for j > � we have
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�
f

�
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n
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�
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�
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f

�
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�
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n

�
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�
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�
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n
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n
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�
where

fr;� (x; y) = E

�
f

�
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�n
n
S��;� ; y +

�n
n
S��+r;r+�

�
!�;�!�+r;�

�
.

In particular, because
�
nk�1

m

�
<
�
nk�1

m

�
+ l � �n,

E[n k�1m ]

�
f

�
�n
n
S[n k�1m ]+l

;
�n
n
S[n k�1m ]+l+r

�
![n k�1m ]+l;�n

![n k�1m ]+l+r;�n

�
E[n k�1m ]

�
fr;�n

�
�n
n
S[n k�1m ]+l;�n

;
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��
. (85)

Here we have

dfr;�n (�; �) = bf (�; �)E h!�n;�n!�n+r;�ne�i��nn S��n;�n�i��nn S��n+r;�n+ri
= bf (�; �)E h!�n;�n!�n+r;�ne�i��nn P�n

j=1 g(�n�j)�j�i�
�n
n

P�n+r
j=1 g(�n+r�j)�j

i
= bf (�; �)E h!0;�n!r;�ne�i��nn P0

j=1��n g(�j)�j�i�
�n
n

Pr
j=1��n g(r�j)�j

i
. (86)

First consider the analogue of the �rst part of Proposition 13 for the sum of (85) (recall

that Proposition 13 involves the sum of E[n k�1m ]

h
h
�
S[n k�1m ]+l

; S[n k�1m ]+l+r

�i
). Note that

in the right hand side of (85), S[n k�1m ]+l;�n
has the same structure as that of S[n k�1m ]+l

, and

similarly S[n k�1m ]+l+r;�n+r
has the same structure as that of S[n k�1m ]+l+r

.

To be more speci�c, in the identities (60) and (61), the roles of Tl and Tl+r are now

respectively played by

l��nX
j=1

g (l � j) �j = T �nl+
l��nX

j=l��n+1

g(l�j)�j and
l��nX
j=1

g(l+r�j)�j = T �nl;r+
l��nX

j=l��n+1

g(l+r�j)�j;
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where note that the de�nition of T �nl and T
�
nl;r remain the same as involved in (61).

Further note that the sum that contributed the factor
Qr�1
j=0  

�
��n
n
g (j)�

�
in (62),

which in turn contributed the factor
��� ���n

n
�
���� in the �rst line of (65) (which was required

only for the Statement (I)), is now absorbed in dfr;�n (�; �), which has the factor, see (86),���E h!0;�n!r;�ne�i��nn P0
j=1��n g(�j)�j�i�

�n
n
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i���
�
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�
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p=r��n+1
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+
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� C

����� ���nn�
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It is clear that when the factor

��� ���n
n
�
���� in the �rst line of (65) is replaced by the

preceding quantity, the conclusion in (65) still holds. Taking the preceding observations

into account, the Lemma 17 holds true.

Now, to see that Lemma 18 also holds, note that the role of (71) is now taken byQ�n�1�r
j=�n

 
�
� (g(j + r)� g(j)) �n

n
�
�
= E

h
e�i�

�n
n
(
P��n
j=��n+1+r(g(r�j)�g(�j))�j)

i
. In view of

(86), we then have
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= bf (��; �)E h!0;�n!r;�ne�i��nn (Pr

j=��n+1+r(g(r�j)�g(�j))�j)
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.

Clearly, in the case �n
n
! 0, this converges to bf (��; �)E [!0!r], and in the case �n = n,

it converges to bf (��; �)E �!0!re�i�Sr�. In the case �n
n
!1 also, it converges to 0.

To see that this last claim is true, note that���E h!0;�n!r;�ne�i��nn (Pr
j=��n+1+r(g(r�j)�g(�j))�j)

i���
�
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�����! 0 as n!1 for each m,
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where we have used j (�)j ! 0 as � ! 1, which restriction follows from (18) (see (72))

and is also part of (19). Further limm!1 limn!1 jE [j!0;�n!r;�n � !0;m!r;mj]j = 0. Hence

the claim holds. This completes the proof of Proposition 15. �
Proof of the Theorem 3. This is obtained from Theorem 2. First, regarding the

�rst part, note that������nn
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Now according to Whittle's (1960) inequality, if E [j�1jp] <1 for p � 2, then for a constant
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Then, using the Taylor expansion of � (!l) around !l;�n , noting that !l � !l;�n and !l;�n

are independent and using the given conditions
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2� ! 0 if (23) holds. Further it follows from the �rst
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To obtain this last inequality, note that using (a+ b)2 � 2a2+2b2 and the Cauchy - Schwarz
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�
� C and E

�
j� (!l;�n)j

4� � C in

view of j� (!l+r)j � C j!l+rjq and the restriction E
h
j�1j4max(q;p)

i
< 1. Further, in the
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same way as above using Whittle's inequality, E
�
j� (!l)� � (!l;�n)j

4� � C
P1

j=�n
d2j +

C
�
E [�1]

P1
j=�n

jdjj
�2
and the same bound holds for E

�
j� (!l+r)� � (!l+r;�n)j

4�. This

completes the proof. �

5 REDUCTION OF THEOREMS 4 AND 5 TO A MARTIN-
GALE CLT
In this section we relate Theorems 4 and 5 to a martingale CLT. For this purpose,

corresponding to Theorem 4 de�ne, for each positive integer m,

�nmk =

r
n
n

[n k
m ]X

l=[n k�1m ]+1

f (Sl) , k � 1, (87)

Similarly, corresponding to Theorem 5 de�ne (with !l;�n as in (2))

��nmk =

r
n
n

[n k
m ]X

l=[n k�1m ]+�n+1

f (Sl)!l;�n ; R�nmk =

r
n
n

[n k�1m ]+�nX
l=[n k�1m ]+1

f (Sl)!l;�n , k � 1.
(88)

In these de�nitions we follow the usual convention that a sum is to be interpreted as 0 if it

is with respect to an empty index set. Note thatr
n
n

nX
l=1

f (Sl) =
mX
k=1

�nmk,

r
n
n

nX
l=1

f (Sl)!l;�n =
mX
k=1

(��nmk +R�nmk) .

(89)

We shall show in the next Section 6 that

lim
m!1

lim sup
n!1

P

"�����
mX
k=1

R�nmk

����� > �

#
= 0 for all � > 0, (90)

and therefore, the respective limiting behaviors of the sums in (89) will be the same as

those of
Pm

k=1 �nmk and
Pm

k=1 �
�
nmk.

In Sections 6 below we establish that the following facts hold (recall that El stands for

the conditional expectation given � (�j; j � l) ).

(R1) There is a nonrandom �(n;m) such that

mX
k=1

���E[n k�1m ] [�nmk]��� � �(n;m)! 0 as n!1, for each m.

(R2)

mX
k=1

E[n k�1m ]
�
�2nmk

�
=) bL01

as n!1 �rst and then m!1, where the constant b is as speci�ed in Theorem 4.
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Recall that the convergence in distribution of a sequence of distribution functions is

metrizable, for example by the L�evy distance (see for instance Lo�eve (1963, page 215)).

Then the preceding convergence means that the distribution of
Pm

k=1E[n k�1m ]
[�2nmk] con-

verges in such a metric to that of bL01 as n!1 �rst and then m!1.

(R3)

lim
m!1

lim sup
n!1

mX
k=1

E
�
�4nmk

�
= 0:

The next condition (R4) pertains only to the case � = 2. To state it de�ne

�nmk =
1p
n

[n k
m ]X

l=[n k�1m ]+1

�l: (91)

(R4) When � = 2 (in which case we have E [�1] = 0 and E [�
2
1 ] <1, see (9))

lim sup
n!1

P

"
mX
k=1

���E[n k�1m ] [�nmk�nmk]��� > "

#
= 0 for each m and " > 0.

� (R�1) - (R�4): In the case of Theorem 5, we shall verify the preceding conditions

with ��nmk in place of �nmk, in which case the corresponding conditions will be referred

to as (R�1), (R�2), (R�3) and (R�4).

Proposition 22. Suppose that the conditions (R1) - (R4) are veri�ed. Then the

convergence in distribution conclusion of Theorem 4 holds.

Similarly, if the conditions (R*1) - (R*4), together with (90), are veri�ed, then the

convergence in distribution conclusion of Theorem 5 holds.

The next Section 6 is devoted to the veri�cation of the conditions of this proposition.

The remaining part of this section is devoted to the proof of this proposition.

Note that the preceding conditions involve iterated limits in the sense that the limits

are taken as n ! 1 �rst and then m ! 1. To proceed further it is convenient to note
that they can be restated in an alternative form involving only the index n that goes to

1. For this purpose recall that if h (n;m) is a nonrandom function of n and m such that

lim
m!1

lim sup
n!1

jh (n;m)j = 0

then one can �nd a sequence mn " 1 such that

h (n;mn)! 0.
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If G (n;m) is random, then note that

lim
m!1

lim sup
n!1

P [jG (n;m)j � �] = 0 for all � > 0,

is equivalent to limm!1 lim supn!1E [min (jG (n;m)j ; 1)] = 0, and therefore, taking h (n;m) =
E [min (jG (n;m)j ; 1)], there is a sequence mn " 1 such that E [min (jG (n;mn)j ; 1)]! 0,

which is equivalent to

G (n;mn)
p! 0.

Thus (noting that the convergence in (R2) can be restated in terms of a suitable metric),

(R1) - (R4) entail that there is a sequence mn " 1 such that

mnX
k=1

���E[n k�1mn
] [�nmnk]

���+ mnX
k=1

E
�
�4nmnk

� p! 0, (92)

mnX
k=1

���E[n k�1mn
] [�nmnk�nmnk]

��� p! 0 (for � = 2) (93)

and

mnX
k=1

E[n k�1mn
]
�
�2nmnk

�
=) bL01 (94)

In the same way, the conditions (R�1) - (R�4) imply that (92) - (94) hold with �nmk replaced

by ��nmk.

We are now in a position to present the proof of the �rst part of Proposition 22. First,

for convenience, we let

�nk = �nmnk, �nk = �nmnk, k = 1; :::;mn.

Next, for the purpose of the proof, we

� extend the array �nk, 1 � k � mn, to all k � 1, by taking f�nk; k = mn + 1; :::g to be
an array of iid Gaussian

�
0; 1

mn

�
random variables, independent of f�j;�1 < j <1g.

Further, we use the notation Enl for the conditional expectation given the �-�eld

znl =

8<: �
�
�j; j �

h
n l
mn

i�
if �1 < l � mn

� (�j; j � n, and �nk;mn + 1 � k � l) if l > mn.

Explicitly,

Enl

h
:
i
= E

h
:
���znli .
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With this extension, (92) and (93) take the strengthened forms, for any 0 <  < 1,

[m1+
n ]X
k=1

jEn;k�1 [�nk]j
p! 0, (95)

[m1+
n ]X
k=1

E
�
�4nk
�
! 0, (96)

and

[m1+
n ]X
k=1

jEn;k�1 [�nk�nk]j
p! 0 (for � = 2). (97)

Now, de�ne the martingale di�erences

� 0nk = �nk � En;k�1 [�nk] ; k = 1; 2; ::::

with respect to the �-�elds znk; k = 1; 2; ::::It is easily seen, in view of (95), that

(96) and (97) hold with �nk replaced by �
0
nk. (98)

In addition, if we de�ne

Tn (q) =

qX
k=1

En;k�1

h
j� 0nkj

2
i
=

qX
k=1

�
En;k�1

�
�2nk
�
� (En;k�1 [�nk])2

	
,

then, in view of (94) and (95) and because �nk, k = mn + 1; ::: are iid Gaussian
�
0; 1

mn

�
,

for any s � 1,

Tn (smn) =) bL01 + s� 1, s � 1. (99)

Now for each �xed t > 0, de�ne

�n (t) = inf fq � 1 : Tn (q) � tg .

Note that

�n (t) = mn if t = Tn (mn) . (100)

We have

f�n (t) � lg = fTn (l) � tg 2 zn;l�1, l = 1; 2; :::;
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so that for each n and t > 0,

�n (t) is a stopping time with respect to the �-�elds zn;l�1; l = 1; 2; ::::

Note that for any positive integer J , we have using (99),

P

�
�n (t)

mn

> J

�
� P [Tn (Jmn) � t]! P

�
bL01 + J � 1 � t

�
= 0 if J > t+ 1.

(101)

We thus have shown, in view of (95) - (98), (101) and because mn " 1,

�n(t)X
k=1

En;k�1 [�nk]
p! 0, (102)

�n(t)X
k=1

En;k�1

h
j� 0nkj

4
i

p! 0 (103)

and

�n(t)X
k=1

En;k�1 [j� 0nk�nkj]
p! 0 (for � = 2) (104)

Further, because of (96), (98), (99) and (101),

En;�n(t)�1

h��� 0n;�n(t)��2i p! 0:

Hence, because

Tn (�n (t)) � t � Tn (�n (t)� 1) = Tn (�n (t))� En;�n(t)�1

h��� 0n;�n(t)��2i ;
Tn (�n (t))

p! t. (105)

Now let

Wn (t) =

( P�n(t)
k=1 �

0
nk if t > 0

0 if t � 0.
. (106)

Similarly, let W (t) be the Brownian motion for 0 � t < 1 and W (t) � 0 for t < 0. We
then have
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Lemma 23. Let W (t) be as above, and as before let Z� (t) be the �-stable motion.

Then, for 0 < � � 2 and for every integer l > 0,

t 7�!

0@ 1

n1=��n

[nt]X
j=�nl

�j;Wn (t)

1A fdd
=) (Z� (t)� Z� (�l) ;W (t)) , t 2 [�l;1) ,

where (�n as in (1)) and

the processes W (t) and Z� (t) are independent.

�
The proof of this Lemma is given below separately in the Appendix, Section 7.

We now come back to the proof of the �rst part of Proposition 22 (assuming that (R1)

- (R4) holds). Because Lemma 23 is true for every l > 0, it entails (keeping in mind the

conditions (A1) and (A2), see Kasahara and Maejima (1988))�
�1n S[nt];Wn (t)

� fdd
=) (��;H(t);W (t))

where the processesW (t) and ��;H(t) are independent. (Here in general the convergence of

�1n S[nt] in the Skorokhod space does not hold, see Astrauskas (1983)). Further, according

to the arguments given in the next Section 6 for the veri�cation of (R2) (see the Remark

immediately before the statement of Lemma 24), it follows that

Tn = Tn (mn) =
mnX
k=1

En;k�1

����� 0nk���2�
is approximated by a functional of the process �1n S[nt] such that Tn converges in distribution

if �1n S[nt]
fdd
=) ��;H(t). We then have�

�1n S[nt];Wn (t) ; Tn
� fdd
=)

�
��;H(t);W (t) ; bL01

�
. (107)

The next step is to obtain the convergence of
�
�1n S[nt];Wn (Tn)

�
from (107) (taking

into account further that the marginal process t 7�! Wn (t) will be tight, that is, uniformly

equicontinuous in probability, see below). To present the details, let, with q a positive

integer and J > 0,

0 = �q0 < �q1 < :::�q;q�1 < �qq = J

be such that

sup
1�i�q

j�qi � �q;i�1j ! 0 as q !1:
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De�ne

Tn;q;J =

(
�qi if �qi � Tn < �q;i+1, i = 0; 1; :::q � 1;
J if Tn � J:

Letting

T = bL01,

de�ne Tq;J analogously. Now, taking �q;q+1 =1,

fWn (Tn;q;J) � vg = [qi=0 fWn (�qi) � v; �qi � Tn < �q;i+1g

where fWn (�qi) � v; �qi � Tn < �q;i+1g are disjoint, and hence, for 0 � u1 � ::: � uk < 1
and for any reals aj; j = 1; :::; k,

P
�
Wn (Tn;q;J) � v; �1n S[nuj ] � aj; j = 1; :::; k

�
= P

�
[qi=0

�
Wn (�qi) � v; �qi � Tn < �q;i+1; 

�1
n S[nuj ] � aj; j = 1; :::; k

	�
=

qX
i=0

P
�
Wn (�qi) � v; �qi � Tn < �q;i+1; 

�1
n S[nuj ] � aj; j = 1; :::; k

�
.

One can assume without loss of generality that �q1; :::�qq are continuity points of T . Then

(107) together with the preceding identity entail that

P
�
Wn (Tn;q;J) � v; �1n S[nuj ] � aj; j = 1; :::; k

�
!

qX
i=0

P (W (�qi) � v; �qi � T < �q;i+1;��;H(uj) � aj; j = 1; :::; k)

= P (W (Tq;J) � v;��;H(uj) � aj; j = 1; :::; k) .

In other words, we have�
Wn (Tn;q;J) ; 

�1
n S[nt]

� fdd
=) (W (Tq;J);��;H(t)) .

(Note that Tq;J is a function of L
0
1, which, being a functional of ��;H(t), is independent of

W (t) by Lemma 23.) In addition, in view of (103) and (105), it is well known that the

marginal process Wn (t) satis�es the `tightness' property

lim
h!0

lim sup
n!1

P

"
sup

jt�sj�h;t;s2[0;M ]

jWn (t)�Wn (s)j > "

#
= 0

for all " > 0 and all M > 0. (Actually Wn (t) =) W (t) in the Skorkhod space D [0;M ]

with W (t) 2 C [0;M ] for every M > 0.) Hence

lim
J!1

lim
q!1

lim sup
n!1

P [jWn (Tn;q;J)�Wn (Tn)j > "] = 0:
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Similarly

lim
J!1

lim
q!1

P [jW (Tq;J)�W (T )j > "] = 0:

It follows that �
Wn (Tn) ; 

�1
n S[nt]

� fdd
=) (W (T );��;H(t)) :

Noting that �n (Tn) = mn (see (100)) so that Wn (Tn) =
Pmn

k=1 �nk, and in view of the

independence of the processesW (t) and ��;H(t) so that the distribution of (W (T );��;H(t))

is the same as that of
�
W
p
bL01;��;H(t)

�
where W is standard normal independent of the

process ��;H(t) (recall T = bL01 ), the preceding convergence takes the form 
mnX
k=1

�nk; 
�1
n S[nt]

!
fdd
=)

�
W
q
bL01;��;H(t)

�
(108)

(Recall that
Pmn

k=1 �nk =
p

n
n

Pn
k=1 f (Sk).) Further, it follows from the arguments of

the proof of Proposition 14 that n
n

Pn
k=1 h (Sk) occurring the statement of Theorem 1 is

approximated by a functional of the process �1n S[nt] such that the former converges in

distribution to L01
R
h (y) dy if �1n S[nt]

fdd
=) ��;H(t). Thus the convergence (108) holds

jointly with n
n

Pn
k=1 h (Sk). This completes the proof of the �rst part of Proposition 22.

The proof of the second part is identical to that of the �rst part. �

6 VERIFICATION OF (R1) - (R4) AND (R*1) - (R*4) OF SEC-
TION 5
Veri�cation of (R1) and (R*1): First consider (R1) corresponding to �nmk, de�ned

in (87). According to the second part of Lemma 8,
���E[n k�1m ] hf �S[n k�1m ]+l�i��� � C

2l
for all

l � 1, because (26) holds, see (45). Hence

���E[n k�1m ] [�nmk]��� �
r
n
n

[n k
m ]�[n

k�1
m ]X

l=1

���E[n k�1m ] hf �S[n k�1m ]+l�i��� � C

r
n
n

nX
l=1

1

2l
.

Here recall that n = nHun, where un is slowly varying.

Hence if 1=2 � H < 1, it is clear that
p

n
n

Pn
l=1

1
2l
! 0.

In the case 0 < H < 1=2, we have
Pn

l=1
1
2l
� C n

2n
, so thatr

n
n

nX
l=1

1

2l
� C

p
n

� 3
2

n = Cn�
3H�1
2 u

� 3
2

n :

Because 1=3 < H < 1, this converges to 0, and hence (R1) is veri�ed.

In the same way (R*2), which involves ��nmk de�ned in (88) (note that the sum ��nmk

involves f
�
S[n k�1m ]+l

�
![n k�1m ]+l;�n

for l > �n only), is veri�ed using the second part of Lemma

11. �
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Veri�cation of (R2) and (R*2): We �rst consider (R2) and then we shall indicate

the modi�cations required for (R*2). We have (recall that nmk =
�
n k
m

�
�
�
nk�1

m

�
)

E[n k�1m ]
�
�2nmk

�
=

n
n

nmkX
l=1

E[n k�1m ]

h
f 2
�
S[n k�1m ]+l

�i
+2

n
n

nmkX
l=1

nmk�lX
r=1

E[n k�1m ]

h
f
�
S[n k�1m ]+l

�
f
�
S[n k�1m ]+l+r

�i
.

Noting that (R2) involves
Pm

k=1E[n k�1m ]
[�2nmk], �rst observe that as a consequence of Propo-

sition 13 and the Remark 2 following Theorem 1, we have for each q � 1,

n
n

mX
k=1

nmkX
l=1

E[n k�1m ]

h
f 2
�
S[n k�1m ]+l

�i
+2

n
n

mX
k=1

nmkX
l=1

qX
r=1

E[n k�1m ]

h
f
�
S[n k�1m ]+l

�
f
�
S[n k�1m ]+l+r

�i
=) L01

1

2�

Z ��� bf (�)���2 1 + 2 qX
r=1

E
�
e�i�Sr

�!
d�

as n!1 �rst and then m!1.
The preceding conclusion holds also (except for the form of the limit), in view of Propo-

sition 15, when f
�
S[n k�1m ]+l

�
![n k�1m ]+l;�n

and f
�
S[n k�1m ]+l+r

�
![n k�1m ]+l+r;�n

are involved in

place of f
�
S[n k�1m ]+l

�
and f

�
S[n k�1m ]+l+r

�
.

Then clearly, (R2) is a consequence of the �rst parts of the next two Lemmas 24 and

25, that (R*2) is a consequence of the corresponding second parts.

Remark. Recall from Lemmas 18 and 19 of Section 4 that the left hand side of the pre-

ceding convergence was approximated by a continuous functional of the process 1
n
S[nt] and

then this functional was shown to convergence to right hand side of the preceding conver-

gence. Therefore in view of the next Lemma 24, the same facts hold for
Pm

k=1E[n k�1m ]
[�2nmk]

also, as n!1 �rst and then m!1. In addition according to the usual diagonal argu-
ments (see Section 5) one can obtain a sequencemn !1 such that the same approximation

and the convergence hold for
Pmn

k=1E[n k�1m ]
[�2nmk] as n ! 1. This fact has been used in

Section 5. �
Lemma 24. For each 1 � k � m,

max
1�k�m

n
n

nmkX
l=l0

nmkX
r=q

E
h���E[n k�1m ] hf �S[n k�1m ]+l� f �S[n k�1m ]+l+r�i���i! 0

as n!1 �rst and then q !1.
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The same conclusion holds also when f
�
S[n k�1m ]+l

�
![n k�1m ]+l;�n

f
�
S[n k�1m ]+l+r

�
![n k�1m ]+l+r;�n

is involved in place of f
�
S[n k�1m ]+l

�
f
�
S[n k�1m ]+l+r

�
.

The proof of Lemma 24 will be given later below because it, as well as the veri�cation

of (R3) and (R*3), require Lemma 26 below.

Lemma 25. Under the conditions of Theorem 4,

1X
r=1

Z ��E �e�i�Sr��� ��� bf (�)���2 d� <1.
In particular the quantity b de�ned in Theorem 4 is �nite.

In the same way, under the conditions of Theorem 5,

1X
r=1

Z ��E �!0!re�i�Sr��� ��� bf (�)���2 d� <1.
Proof. Consider the �rst part. We have

��E �e�i�Sr��� � ��E �e�i�S�r;r��� = ���Ql�1
j=0  (g (j)�)

���,
in view of (47). Also

R ��� bf (�)���2 d� <1. Hence it is enough to show that
1X
l=l0

Z �����
lY

j=0

 (g (j)�)

����� ��� bf (�)���2 d� =
1X
l=l0

1

l

Z �����
lY

j=0

 

�
g (j)

�

l

������
���� bf � �l

�����2 d� <1
(109)

a suitable l0. Because
��� bf � �l���� � C

��� �l ��� (see (45)), we have using (37) and (38) (with � = 0
and with the role of (27) now being played by

R ��� bf (�)���2 d� <1 ),

Z �����
l�1Y
j=0

 

�
g (j)

�

l

������
���� bf � �l

�����2 d� � C

2l
, l � l0,

for a suitable l0. Hence, (109) is bounded by C
P1

l=l0
1
3l
, where note that

P1
l=l0

1
3l
< 1

when the assumed restriction 3H > 1 holds. Hence the �rst part follows.

Regarding the second part, recall from (20) that !k =
Pk

j=�1 dk�j�j, so that

E
�
!0!re

�i�Sr
�
=

0X
q=�1

rX
p=�1

d�qdr�pE
�
�q�pe

�i�Sr
�
.

Suppose that p 6= q and p � 0 (q � 0 already). Then, noting that Sr = Sr;r + S�r;r with

(�q; �p; Sr;r) independent of S
�
r;r, we have��E ��q�pe�i�Sr��� � ��E ��q�pe�i�Sr;r��� ��E �e�i�S�r;r��� .
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Here, recalling Sr;r =
P0

s=�1(g(r� s)� g(�s))�s, and using E [�1] = 0 and E [j�1�1j] <1,��E ��q�pe�i�Sr;r��� �
��E ��qe�i�(g(r�q)�g(�q))�q��� ��E ��pe�i�(g(r�p)�g(�p))�p���

� j�j2 jg(r � q)� g(�q)j jg(r � p)� g(�p)j .

Thus, the preceding inequality playing the role of
��� bf (�)��� � C j�j, the same arguments of

the �rst part above then giveZ ��E ��q�pe�i�Sr��� ��� bf (�)���2 d� � C

3r
jg(r � q)� g(�q)j jg(r � p)� g(�p)j .

Similarly, for 0 < p � r we have��E ��q�pe�i�Sr��� � ��E ��qe�i�Sr;r��� ��E ��pe�i�g(r�p)�p��� ���E h�pe�i�Pr
j=1;6=p g(r�j)�j

i��� ;
and hence Z ��E ��q�pe�i�Sr��� ��� bf (�)���2 d� � C

3r
jg(r � q)� g(�q)j jg(r � p)j .

Thus
0X

q=�1

rX
p=�1;p6=q

jd�qj jdr�pj
Z ��E ��q�pe�i�Sr��� ��� bf (�)���2 d�

� C

3r

0X
q=�1

rX
p=�1

jd�qj jdr�pj (jg(r � q)j+ jg(�q)j) (jg(r � p)j+ jg(�p)j) .

Here
P0

q=�1 jd�qj jg(�q)j < 1 by (3), and
P0

q=�1 jd�qj jg(r � q)j =
P1

q=0 jdqj jg(r + q)j.
In the case H � 1

�
� 0,

P1
q=0 jdqj jg(r + q)j � C

P1
q=0 jdqj <1. In the case H � 1

�
> 0,

1X
q=0

jdqj jg(r + q)j =
rX
q=0

jdqj jg(r + q)j+
1X

q=r+1

jdqj jg(r + q)j

� jg(2r)j
1X
q=0

jdqj+
1X

q=r+1

jdqj jg(2q)j ,

so that
0X

q=�1

rX
p=�1;p 6=q

jd�qj jdr�qj
Z ��E ��q�pe�i�Sr��� ��� bf (�)���2 d� � C

3r
max (1; jg(r)j) .

Next, we have

0X
q=�1

jd�qj jdr�qj
Z ��E ��2qe�i�Sr��� ��� bf (�)���2 d�

� C

r

1X
q=0

jdqj jdr+qj � C

vuut 1X
q=0

jdqj2
!
1

r

1X
q=0

jdr+qj2 � C

vuut 1

r

1X
q=0

jdr+qj2.
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Thus, in view of the condition (28) and fact
P1

r=0
1
3r
< 1 when H > 1

3
, it only remains

to see that
P1

r=0
jg(r)j
3r

< 1 when H � 1
�
> 0. Assume for convenience that r � rH and

g (r) � CrH�1=2. Then jg(r)j
3r

� 1

r2H+
1
�
, where 2H+ 1

�
> 2

3
+ 1
2
> 1, and hence

P1
r=0

jg(r)j
3r

<1.
This completes the proof of the lemma. �

We next consider the

Veri�cation of (R4). Here recall that (R4) pertains only to the case � = 2 and hence

E [�1] = 0 and E [�
2
1 ] <1, see (9).

For notational convenience, we take r = rH and g (r) � CrH�1=2. Then (recall from

(91) that �nmk =
1p
n

P[n k
m ]

l=[n k�1m ]+1
�l )

�nmk�nmk = n�
1
2
� 1�H

2 (I1;nmk + I2;nmk + I3;nmk)

where

I1;nmk =

nmkX
l=1

nmkX
r=l+1

f
�
S[n k�1m ]+l

�
�[n k�1m ]+r

,

I2;nmk =

nmkX
l=1

nmkX
r=l+1

�[n k�1m ]+l
f
�
S[n k�1m ]+r

�
, I3;nmk =

nmkX
l=1

f
�
S[n k�1m ]+l

�
�[n k�1m ]+l

:

According to the �rst part of Lemma 11, we have E
h���f �S[n k�1m ]+l� �[n k�1m ]+l���i � C

lH
for

all l � 1, and hence

E
h
n�

1
2
� 1�H

2 jI3;nmkj
i
� Cn�

1
2n�

1�H
2

nX
l=1

1

lH
� Cn�

1
2n�

1�H
2 n1�H = Cn�

H
2 ,

and therefore ���E[n k�1m ] hn� 1
2
� 1�H

2 I3;nmk

i��� p! 0 for each m � 1. (110)

Clearly

E[n k�1m ]
[I1;nmk] = 0: (111)

To deal with I2;nmk we have (see (47)) S[n k�1m ]+r
= S[n k�1m ]+r;r

+S�
[n k�1m ]+r;r

, where recall

that S�
[n k�1m ]+r;r

=
Pr�1

q=0 g (q) �[n k�1m ]+r�q
and is independent of S[n k�1m ]+r;r

. We also have

f (Sr) =
1
2�

R
e�i�Sr bf (�) d�. Hence���E[n k�1m ] h�[n k�1m ]+lf �S[n k�1m ]+r�i���
� 1

2�

Z ���E h�le�i�Pr�1
q=0 g(q)�r�q

i��� ��� bf (�)��� d�
� 1

r

Z ���E h�1e�i �r g(r�l)�1i��� r�1Y
q=0;q 6=r�l

���� � �

r
g (q)

����� ���� bf � �

r

����� d�, (112)
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Now, because E [�1] = 0 and E [�
2
1 ] <1 ((R4) pertains only to the case � = 2),���E h�1e�i �r g(r�l)�1i��� = ���E h�1 �e�i �r g(r�l)�1 � 1�i��� � C

j�j
r
jg (r � l)j .

Further
��� bf � �

r

���� � C j�j
r
, see (45). Also

R Qr�1
q=0;q 6=r�l

��� � �
r
g (q)

���� d� � C by (37) - (39).

Hence ���E[n k�1m ] h�[n k�1m ]+lf �S[n k�1m ]+r�i��� � �3r jg (r � l)j (113)

Thus, noting that r = rH and
Pr�1

l=1 jg (r � l)j � CrH+1�1=2 because g (s) � CsH�1=2,

n�
1
2
� 1�H

2

���E[n k�1m ] [I2;nmk]��� = n�
1
2
� 1�H

2

�����
nmkX
l=1

nmkX
r=l+1

E[n k�1m ]

h
�l+[n k�1m ]

f
�
Sr+[n k�1m ]

�i�����
� Cn�

1
2
� 1�H

2

nmkX
r=1

r�1X
l=1

�3r jg (r � l)j

� Cn�
1
2
� 1�H

2 n�2H+
3
2 = Cn�

3H�1
2 . (114)

Because 3H � 1 > 0, this together with (110) and (111) complete the veri�cation of (R4)
in the situation of the Statement (I) of Theorem 1.

In the case of the situation of the Statement (II) of Theorem 4 also the bound (112)

holds except that the factor
��� bf � �

r

���� in the right hand side needs to be replaced by��� bK�

�
�
r

����max����dMf;�

�
�
r

���� , ���dmf;�

�
�
r

�����, see for instance the proof of the second part
of Lemma 8. Hence, using (46) as in the proof of the second part of Lemma 8, it is seen

that (R4) holds in the present situation also. This completes the veri�cation of (R4). �
We next consider the

Veri�cation of (R*4). Here the analogue of I3;nmk above is

I�3;nmk =

nmkX
l=1

f
�
S[n k�1m ]+l

�
w[n k�1m ]+l;�

�[n k�1m ]+l

=

[n k�1m ]+lX
j=[n k�1m ]+l��+1

d[n k�1m ]+l�j

nmkX
l=1

f
�
S[n k�1m ]+l

�
�j�[n k�1m ]+l

,

where we have used !q;� =
Pq

j=q��+1 dq�j�j. The same arguments of the �rst part of

Lemma 11 gives E
h���f �S[n k�1m ]+l� �j�[n k�1m ]+l���i � C

lH
for all l � 1, and therefore

E
���I�3;nmk��� � C

nX
l=1

1

lH

 
��1X
j=0

jdjj
!
� Cn1�H ,
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which is the same as the bound for E [jI3;nmkj] obtained above.
De�ning I�2;nmk analogous to I2;nmk above, we have

I�2;nmk =

nmkX
l=1

nmkX
r=l+1

[n k�1m ]+rX
j=[n k�1m ]+r��+1

�[n k�1m ]+l
f
�
S[n k�1m ]+r

�
�jd[n k�1m ]+r�j

.

Similar to (113), we have���E[n k�1m ] h�[n k�1m ]+lf �S[n k�1m ]+r� �ji��� � �3r jg (r � l)j
����g��nk � 1m

�
+ r � j

����� if j 6=
�
n
k � 1
m

�
+l.

Thus

nmkX
l=1

nmkX
r=l+1

[n k�1m ]+rX
j=[n k�1m ]+r��+1;j 6=[n

k�1
m ]+l

E
h����[n k�1m ]+lf �S[n k�1m ]+r� �j���i ���d[n k�1m ]+r�j���

�
nmkX
l=1

nmkX
r=l+1

�3r jg (r � l)j
[n k�1m ]+rX

j=[n k�1m ]+r��+1

����g��nk � 1m

�
+ r � j

����� ���d[n k�1m ]+r�j���
=

nmkX
l=1

nmkX
r=l+1

�3r jg (r � l)j
 
��1X
j=0

jg (j)j jdjj
!
�

nmkX
l=1

nmkX
r=l+1

�3r jg (r � l)j ,

which bound is the same as the one involved in (114). Regarding the remaining factor in

I�2;nmk, we have

nmkX
l=1

nmkX
r=l+1

E
h����[n k�1m ]+lf �S[n k�1m ]+r� �[n k�1m ]+l���i jdr�lj

� C

nmkX
l=1

nmkX
r=l+1

jdr�lj
rH

� C
nX
l=1

nX
r=1

jdrj
(r + l)H

� Cn1�H ,

which bound is the same as for E [jI3;nmkj] obtained above.
For I�1;nmk, the analogue of I1;nmk, we have E[n k�1m ]

�
I�1;nmk

�
= 0, for the same reason

E[n k�1m ]
[I1;nmk] = 0. This completes the proof of the veri�cation of (R*4). �

It remains to prove Lemma 24 and to verify (R3) and (R*3). For this purpose we need

the next Lemma 26, where and in the rest of the paper we let

g(j; r) = g(j + r)� g(j) = cj+1 + :::+ cj+r.

Lemma 26. Let g(j; r) be as above. Let # > 0 be such that

0 < # <

(
min

�
1�H;H;

�� 1
�
�H

�� ; 1
�

�
if H 6= 1

�

min
�
1� 1

�
; 1
�

�
if H = 1

�
.

(115)
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Then

sup
[l=2]�j�l;q�1;r�1

����bl g (j + q; r)

r

���� � Cl# for all 1 � l � n: (116)

Proof. First consider the case H 6= 1
�
, in which the requirement (A2) of Section 2

holds. Let � = #
3
so that (115) becomes

0 < 3� < min

�
1�H;H;

���� 1� �H

���� ; 1�
�
. (117)

Recall the Potter's inequality, mentioned in Lemma 6 of Section 3 above, that if G(x) is

slowly varying at 1, then there is a B > 0 such that
���G(x)G(y)

��� � Bmaxf(x=y)�; (x=y)��g for
all x > 0; y > 0. Therefore one can assume that���� ci

iH�1�
1
�

���� � Bi�,

���� g(i)
iH�

1
�

���� � Bi�,
br

r
1
�

� Br�,
rH

r
� Br�.

We in particular have

bl
r
� Cl

1
�
+�r�H+�. (118)

Further, noting H � 1� 1
�
+ � < 0 (see (117)), we have when j � [l=2],

jg (j + q; r)j = jcj+q+1 + ::+ cj+q+rj

� C
���(j + q + 1)H�1�

1
�
+� + :::+ (j + q + r)H�1�

1
�
+�
���

� Cr (j + q)H�1�
1
�
+� � Cr (min (l; q))H�1�

1
�
+� , j � [l=2] . (119)

Here, in obtaining the second inequality we have used j � [l=2] and H � 1� 1
�
+ � < 0.

Further, when H � 1
�
< 0 (in which case H � 1

�
+ � < 0, see (117)), we have

jg (j + q; r)j � jg(j + q)j+ jg(j + q + r)j

� C (j + q)H�
1
�
+� � C (min (l; q))H�

1
�
+� , j � [l=2] , (120)

and similarly when H � 1
�
> 0,

jg (j + q; r)j � C (j + q + r)H�
1
�
+�

�

8>>>><>>>>:

(
ClH�

1
�
+� if j � l, r � l

CrH�
1
�
+� if j � l, r > l

H � 1
�
> 0, q � l(

CqH�
1
�
+� if j � l, r � q

CrH�
1
�
+� if j � l, r > q

H � 1
�
> 0, q > l.

(121)
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First consider the situation

q � l:

Using (118) and (119) and noting 1�H � 2� > 0 (see (117)),����bl g (j + q; r)

r

���� � Cl
1
�
+�r�H+�rlH�1�

1
�
+� =

�r
l

�1�H�2�
r3� � Cl3�, if r � l, j � [l=2] .

In addition, using (120) and (121) and noting H � � > 0 and 1
�
� 2� > 0 (see (117)), we

have����bl g (j + q; r)

r

���� �
(
Cl

1
�
+�r�H+�lH�

1
�
+� = Cr�H+�lH��l3� � Cl3�, H � 1

�
< 0, r > l, j � l

Cl
1
�
+�r�H+�rH�

1
�
+� = Cr2��

1
� l

1
�
�2�l3� � Cl3�, H � 1

�
> 0, r > l, j � l.

Now consider

q > l.

From (119) we have,����bl g (j + q; r)

r

���� � Cl
1
�
+�r�H+�rqH�1�

1
�
+� =

�
r

q

�1�H+� �
l

q

� 1
�
�2�

l3� � Cl3�, if r � q, j � [l=2] .

When H � 1
�
< 0, r > q, we obtain from (120) that����bl g (j + q; r)

r

���� � Cl
1
�
+�r�H+�qH�

1
�
+� =

�q
r

�H�� � l
q

� 1
�
�2�

l3� � Cl3�.

When H � 1
�
> 0, r > q, we have from (121) that����bl g (j + q; r)

r

���� � Cl
1
�
+�r�H+�rH�

1
�
+� =

�
l

r

� 1
�
�2�

l3� � Cl3�

because 1
�
�2� > 0 (see (117)) and l < q < r. This completes the proof of the lemma when

H 6= 1
�
.

Now consider the case H = 1
�
. In this case, by (11), we have supi�1 jicij � C. In

addition supi�1 jg (i)j � C by (A1). Therefore, the inequalities (118) - (121) hold when

H = 1
�
, and hence the remaining arguments also hold with H = 1

�
. This completes the

proof of the lemma. �

Below we assume # of Lemma 26 satis�es (in addition to (115))

3H � 6# > 1. (122)

This is possible in view of the restriction 3H > 1.
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We are now in a position to proceed with the proof of Lemma 24 and the veri�cation

of (R3) and (R*3).

Proof of the �rst part of Lemma 24. First note that the bound in (50) holds for���E[n k�1m ] hw �S[n k�1m ]+l; S[n k�1m ]+l+r�i��� also, by taking k in the left hand side of (49) to be�
nk�1

m

�
.

We �rst consider the proof under (18). We need to apply the bound (50) with bf (�; �) =bf (�) bf (�). Recall that in the proof of the �rst part of Lemma 9, we used the fact that��� bf (�)��� � C. Now the fact
��� bf (�)��� � C j�j, which we now have in view of the condition (26),

see (45), will be crucially used. Here note that, for any # satisfying (115),����lg (j; r)rg(j)

���� = ���� l
blg(j)

���� ����blg (j; r)r

���� � Cl#, [l=2] � j � l, r � 1 (123)

by (36) and Lemma 26. Therefore, using
��� bf (�)��� � C j�j,���� bf � �l + g (j; r)

rg(j)
�� �

r

� bf � �
r

����� � C

�
j�j
l
+
j�j l#
l

+
j�j
r

�
j�j
r
.

Hence, in exactly the same manner as in the �rst part of Lemma 9 (when bf (�; �) =bf (�) bf (�) ), we have���E[n k�1m ] hf �S[n k�1m ]+l� f �S[n k�1m ]+l+r�i��� � C
1

lr

�
l#

l
+
1

r

�
1

r
l; r � 1.

(124)

Thus we need to show, under the restriction 1 < 3H, that

n
n

nX
l=1

nX
r=q

1

lr

�
l#

l
+
1

r

�
1

r
! 0 (125)

as n!1 �rst and then q !1. To see that this is true, take for convenience that

n = nH for all n � 1:

First note that, using the restriction 1 < 3H,

n
n

nX
l=1

nX
r=q

1

l3r
=

 
n
n

nX
l=1

1

l

!
nX
r=q

1

3r
� Cq1�3H ! 0 as q !1,

where we have used n
n

Pn
l=1

1
l
� C and

Pn
r=q

1
3r
=
Pn

r=q
1
r3H

� Cq1�3H . Next

nX
l=1

l#

2l
=

nX
l=1

1

l2H�#
�
(
C log n if 2H � # � 1
Cn1�2H+# if 2H � # < 1.
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Also, n
n
= nH�1. Hence

n
n

nX
l=1

nX
r=q

l#

2l 
2
r

� n
n

 
nX
l=1

l#

2l

!2
�
(
CnH�1 (log n)2 if 2H � # � 1
CnH�1+2�4H+2# = Cn1�3H+2# if 2H � # < 1

(126)

where note that 1 � 3H + 2# < 0 in view of (122) Thus (125) holds and hence the proof

of the �rst part of Lemma 24 is complete under the restriction (18).

Under the restriction (19), we use the same bound (50) but with bf (�; �) replaced by���dK�1 (�)
��� ���dK�2 (�)

���max����[Mf;�1 (�)
��� ���[Mf;�2 (�)

��� , ��[mf;�1 (�)
�� ��[mf;�2 (�)

��� ,
In this case, using the arguments in (53), together with (46), we haveZ

R

����[Mf;�1

�
�

l
+
g (j; r)

rg(j)
�� �

r

����� ����dK�1

�
�

l
+
g (j; r)

rg(j)
�� �

r

����� l�1Y
j=[l=2]

���� ��g(j)l

����� d�
� C

�
1

l
+
j�j l#
l

+
j�j
r

�
+ C j�1jd + C�l

l
�
.

The same holds when [Mf;�1 is replaced by [mf;�1 . Then the same arguments used in (53)

give ���E[n k�1m ] hf �S[n k�1m ]+l� f �S[n k�1m ]+l+r�i���
� C

lr

Z ��
1

l
+
j�j l#
l

+
j�j
r

�
+ C j�1jd + C�l

l
�

�
max

�����[Mf;�2

�
�

r

����� , ����[mf;�2

�
�

r

������

�
����dK�2

�
�

r

�����
0@ r�1Y
j1=[r=2]

���� ��g (j1) �r
�����
1A d�

� C

lr

�
l#

l
+
1

r
+ j�1jd + �l

l
�1

� 
1

r
+ j�2jd + �r

�
r
�2

�2!
.

By choosing �1 = 
� 1
d

l and �2 = 
� 1
d

r , and noting (recall 0 < � < 1) that �r
�
r
�2

�2
=

�r
2+ 2

d
r � C�1r and similarly �l l

�1
� C�1l , we see that the preceding bound reduces to

that in (124). This completes the proof of the �rst part of Lemma 24 (for the situation of

Theorem 4).

Proof of the second part of Lemma 24. The second part involves

f
�
S[n k�1m ]+l

�
w[n k�1m ]+l;�n

f
�
S[n k�1m ]+l+r

�
w[n k�1m ]+l+r;�n

=
lX

i=l��+1

rX
j=r��+1

dl�idr�jf
�
S[n k�1m ]+l

�
�[n k�1m ]+i

f
�
S[n k�1m ]+l+r

�
�[n k�1m ]+l+j

.
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Recall that l � �n, which entails that �[n k�1m ]+i
is independent of

�
�j; j �

�
nk�1

m

�	
for

i � l � �n + 1. Suppose in addition that r � �n. Then in the preceding identity l + j > i.

Then, similar to (49), we have (recall S�k;l =
Pl

j=1 g(l � j)�k+j )���E[n k�1m ] hf �S[n k�1m ]+l� �[n k�1m ]+if �S[n k�1m ]+l+r� �[n k�1m ]+l+ji���
�

Z ���E he�i�1Pl
q=1;q 6=i g(l�q)�q�i�2

Pl+r
p=1;p 6=l+j g(l+r�p)�p

i���
�
��E ��ie�i�1g(l�i)�i��� ���l+jE �e�i�2g(r�j)�l+j��� ��� bf (�1)��� ��� bf (�2)��� d�1d�2.

Here, using E [�1] = 0 and E [j�1�1j] <1,���E h�ie�i�1 �nn g(l�i)�ii��� � j�1j jg (l � i)j ,
����l+jE he�i�2 �nn g(r�j)�l+ji��� � j�2j jg (r � j)j .

Thus the role of
��� bf (�)��� � C j�j in the proof of the �rst part above is now played by the

preceding inequalities. Therefore in place of (124) we have���Ek hf �S[n k�1m ]+l� �[n k�1m ]+if �S[n k�1m ]+l+r� �[n k�1m ]+l+ji���
� C

1

lr

�
l#

l
+
1

r

�
1

r
jg (l � i)j jg (r � j)j if l � �n, r � �n:

This bound holds also when r < �n but l + j 6= i. Thus

lX
i=l��n+1

rX
j=r��n+1;l+j 6=i

jdl�ij jdr�jj
���Ek hf �S[n k�1m ]+l� �[n k�1m ]+if �S[n k�1m ]+l+r� �[n k�1m ]+l+ji���

� C
1

lr

�
l#

l
+
1

r

�
1

r

 1X
j=0

jdjj jg (j)j
!2
� C

1

lr

�
l#

l
+
1

r

�
1

r
,

which bound is the same as that in (124).

Next consider the sum
Pl

i=l��n+1
Pr

j=r��n+1 for r < �n but l + j = i, that is,

0X
j=r��n+1

jd�jj jdr�jj
���Ek hf �S[n k�1m ]+l� �[n k�1m ]+l+jf �S[n k�1m ]+l+r� �[n k�1m ]+l+ji���

� C
1

lr

0X
j=r��n+1

jd�jj jdr�jj � C
1

lr

vuut 1X
j=0

jdjj2
! 1X

j=0

jdr+jj2 � C
1

lr

vuut 1X
j=0

jdr+jj2.

Thus, combining the preceding two inequalities,���E[n k�1m ] hf �S[n k�1m ]+l�w[n k�1m ]+l;�nf �S[n k�1m ]+l+r�w[n k�1m ]+l+r;�ni���
� C

1

lr

�
l#

l
+
1

r

�
1

r
+ C

1

lr

vuut 1X
j=0

jdr+jj2 for all l � �n, r � 1. (127)
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Hence, in view of (125), it only remains to show that

n
n

nX
l=1

nX
r=q

1

lr

vuut 1X
j=0

jdr+jj2 � C

1X
r=q

1

r

vuut 1X
j=0

jdr+jj2 ! 0 as n!1 �rst and then q !1,

which is true by (28). This completes the proof of the second part of Lemma 24. �

We next verify (90).

Veri�cation of (90). This is essentially contained in the preceding proof of the second

part of Lemma 24. Recall that there the restriction l � �n was needed in obtaining the

inequality (127), because the left hand side involved the conditional expectation E[n k�1m ]
[:]

and it was required to ensure that �[n k�1m ]+i
is independent of

�
�j; j �

�
nk�1

m

�	
for i �

l��n+1, in order to obtain the right hand side bound in (127). When only the expectation
E [:] is involved in the left hand side, it is easily seen that the restriction l � �n is not

required, see the arguments of the proof of the second part of Lemma 25. In other words,���E hf �S[n k�1m ]+l�w[n k�1m ]+l;�nf �S[n k�1m ]+l+r�w[n k�1m ]+l+r;�ni��� is bounded above by the same
bound in the right hand side of (127), for all l � 1, r � 1. Thus, using this bound, it

follows in the same way as in the proof of the second part of Lemma 24 that

�n
�n

�nX
l=1

�nX
r=1

���E hf �S[n k�1m ]+l�w[n k�1m ]+l;�nf �S[n k�1m ]+l+r�w[n k�1m ]+l+r;�ni��� � C for all n � 1,

and hence

n
n

�nX
l=1

�nX
r=1

���E hf �S[n k�1m ]+l�w[n k�1m ]+l;�nf �S[n k�1m ]+l+r�w[n k�1m ]+l+r;�ni���! 0 because
�n
n
! 0.

We also have n
n

P�n
l=1E

����f �S[n k�1m ]+l�w[n k�1m ]+l;�n���2
�
! 0, using the �rst part of Lemma

11. Now note that E
�
jR�nmkj

2� is the sum of the preceding two quantities. Hence (90)

follows. �
Veri�cation of (R3) and (R*3) First consider (R3). We show that (recall nmk =�

n k
m

�
�
�
nk�1

m

�
)

E
�
�4nmk

�
� C

n!
+ C

0B@n
n

[n k
m ]X

l=[n k�1m ]+1

1

l

1CA n
n

nmkX
j=1

1

j

!
, for some ! > 0.

(128)

This will verify (R3), because then

mX
k=1

E
�
�4nmk

�
� Cm

n�
+ C

 
n
n

nX
l=1

1

l

! 
max
1�k�m

n
n

nmkX
j=1

1

j

!
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where n
n

Pn
l=1

1
l
� C and max1�k�m

n
n

Pnmk
j=1

1
j
� 1

1�H
�
1
m

�1�H
as n!1.

We shall show in detail that

�n
n

�2 [n k
m ]X

l=[n k�1m ]+1

nmkX
r=1

nmkX
q=1

��E �f (Sl) f (Sl+r) f 2 (Sl+r+q)��� (129)

and

�n
n

�2 [n k
m ]X

l=[n k�1m ]+1

nmkX
r=1

nmkX
q=1

nmkX
s=1

jE [f (Sl) f (Sl+r) f (Sl+r+q) f (Sl+r+q+s)]j (130)

are bounded by the right hand side of (128). The same can be similarly shown to be true for

the remaining analogues in the expansion of E [�4nmk] =
�
n
n

�2
E

"�P[n k
m ]

l=[n k�1m ]+1
f (Sl)

�4#
.

We shall use Lemma 26 in a manner similar to the proof of Lemmas 24 above. In addition,

we shall give the details of the veri�cation only for the situation of the Statement (I) of

Theorems 4 and 5. The corresponding situation of the Statement (II) can be similarly

veri�ed using the ideas in the earlier proof of Lemma 24.

According to (56), we have (noting
��� bf 2 (�)��� � C ),

(2�)3
��E �f (Sl) f (Sl+r) f 2 (Sl+r+q)���

� C

lrq

Z 0@ l�1Y
j1=[l=2]

���� ��1g(j1)l

�����
1A0@ r�1Y

j2=[r=2]

���� ��2g (j2)r

�����
1A

�

0@ q�1Y
j3=[q=2]

���� ��3g (j3)q

�����
1A ���� bf ��1l � �2

r

����� ���� bf ��2r � �3
q

����� d�1d�2d�3. (131)
where recall that (with g(j; r) = g(j + r) � g(j) ), �1 + �2

lg(j1;r)
rg(j1)

+ �3
lg(j1+r;q)
qg(j1)

= �1,

�2 + �3
rg(j2;q)
qg(j2)

= �2 and �3 = �3, see (56). Here note that, in the same way as in (123)

using (36) and Lemma 26, we have����rg(j2; q)qg (j2)

���� � Cr#,

����lg(j1; r)rg(j1)

���� � Cl#,

����lg(j1 + r; q)

qg(j1)

���� � Cl#

uniformly in the variables involved. (For instance, using (36) and Lemma 26,
���lg(j1+r;q)qg(j1)

��� =��� l
blg(j1)

��� ��� blg(j1+r;q)q

��� � Cl#, [l=2] � j1 � l, r; q � 1.) Therefore,���� bf ��1l � �2
r

����� ���� bf ��2r � �3
q

�����
�

�
1

l

�
j�1j+ j�2j l# + j�3j l#r# + j�3j l#

�
+
1

r

�
j�2j+ j�3j r#

��� 1
r

�
j�2j+ j�3j r#

�
+
j�3j
q

�
.
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Substituting this in (131), the right hand side in (131) is bounded by (in the same way as

in (124))

(2�)3
��E �f (Sl) f (Sl+r) f 2 (Sl+r+q)��� � C

lrq

�
l# + l#r#

l
+
r#

r

��
r#

r
+
1

q

�
(132)

Thus we need to consider

�n
n

�2 [n k
m ]X

l=[n k�1m ]+1

nmkX
r=1

nmkX
q=1

1

lrq

�
l# + l#r#

l
+
r#

r

��
r#

r
+
1

q

�
.

We have, similar to (126),

�n
n

�2 [n k
m ]X

l=[n k�1m ]+1

nmkX
r=1

nmkX
q=1

l#r#

2l 
2
rq

�
(
CnH�1 (log n)2 if 2H � # � 1
Cn1�3H+2# if 2H � # < 1.

Essentially the same holds for all other terms in (132) except for

�n
n

�2 [n k
m ]X

l=[n k�1m ]+1

nmkX
r=1

nmkX
q=1

r2#

l3rq
=

0B@�n
n

�2 [n k
m ]X

l=[n k�1m ]+1

nmkX
q=1

1

lq

1CA nmkX
r=1

r2#

3r

!
,

which is of the form of the bound in (128) because
Pnmk

r=1
r2#

3r
<1 in view of 3H � 2# > 1

(see (122)). Thus the bound in (128) holds for (129).

Next consider (130). The ideas involved are the same as those used for (129). In

obtaining (132) we used (56). Now we use (57), with �n = n and with f (x0; x1; x2; x3) =

f0 (x0) f1 (x1) f0 (x2) f1 (x3) (and �1, �2, �3 and �4 as in (58)). Then, in exactly the same

way as above, we see that, using
��� bf (�)��� � C j�j,

(2�)4 jE [f (Sl) f (Sl+r) f (Sl+r+q) f (Sl+r+q+s)]j

� C

lrqs

�
l# + l#r# + l#r#q#

l
+
r# + r#q#

r

��
r# + r#q#

r
+
q#

q

��
q#

q
+
1

s

�
1

s
.

Using this bound and using (122), it easy to see, in the same way as in (132), that the sum

(130) is bounded by the right hand side of (128). This completes the veri�cation of (R3).

Veri�cation of (R*3) is done similar to the proof of the second part of Lemma 24, using

the preceding ideas of the veri�cation of (R3) together with those in the proof of the second

part of Lemma 24. For this reason we omit the details. �

7 Appendix: A martingale CLT and the proof of Lemma 23
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We begin with the reduction of Lemma 23 to an explicit version of a martingale CLT.

First, for convenience, we extend the random variables � 0mnk
de�ned in Section 5 for 1 �

k <1 to all �1 < k <1 by taking

� 0nk = 0 for k � 0:

The random variables �nk, as well as the �-�eldsznk, for�1 < k <1, are as in Section
5. The stopping times �n (t) are also as in Section 5, in particular f�n (t) � kg 2 zn;k�1.
Recall that Wn (t) =

P�n(t)
k=1 �

0
nk for t > 0 and Wn (t) = 0 for t � 0.

First consider the case 0 < � < 2. We have
P[mnt]

k=�mn(l+1)
�nk =

1
n1=��n

P[n [mnt]mn
]

j=�nl �j.

Hence, using (1) and noting that l is an integer,

[mnt]X
k=�mn(l+1)

�nk �
1

n1=��n

[nt]X
j=�nl

�j =
1

n1=��n

[n [mnt]mn
]X

j=[n [mnt]mn
]

�j
p! 0. (t is �xed)

Therefore, letting

Zn (t) =

[mnt]X
k=�mn(l+1)

�nk,

we need to show that (Zn (t) ;Wn (t))
fdd
=) (Z� (t)� Z� (�l) ;W (t)) with Z� (t) and W (t)

independent, where Z� (t) is the stable process as before and fW (t) ; 0 � t <1g is a
standard Brownian motion (note that W (t) = 0 for t � 0). This means, for each �nite

t0 < t1 < ::: < tq�1 < tq < tq+1 < ::: < tq+r <1 with

t0 = �l and tq = 0,

and for reals u1; ::::uq+r, v1; :::; uq+r, we need to show that

q+rX
j=1

(uj (Zn (tj)� Zn (tj�1)) + vj (Wn (tj)�Wn (tj�1)))

=)
q+rX
j=1

(uj (Z (tj)� Z (tj�1)) + vj (W (tj)�W (tj�1))) , (133)

with Z� (t) and W (t) independent. Here it is important to note that the marginal conver-

gencies of
Pq+r

j=1 uj (Zn (tj)� Zn (tj�1)) and
Pq+r

j=1 vj (Wn (tj)�Wn (tj�1)) are well known.

The deeper part is that the limits Z� (t) and W (t) are independent.

First note that, by (1), Zn (t)
fdd
=) Z� (t)�Z� (�l). Also, for each n � 1, f�nk;�1 < k <1g

is an array of iid random variables. In addition, because mn

n
! 0,

sup
�mn(l+1)�k�[mnM ]

P [j�nkj > "] = P [j�n1j > "]! 0.
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Therefore, the following conditions (134) - (137) hold, where 	 (x) is the Levy measure

corresponding to the stable random variable Z� (1), 0 < � < 2, see Lo�eve (1963, Section

22.4, Central Convergence Criterion, page 311). (The detailed form of 	 (x) and of the

function A (�) in (136) below are not essential for what follows.)

For every s < t,

[mnt]X
k=[mns]+1

P [�nk � x] = ([mnt]� [mns])P [�n1 � x]! (t� s)	 (x) for all x < 0

(134)

and

[mnt]X
k=[mns]+1

P [�nk > x] = ([mnt]� [mns])P [�n1 > x]! (t� s)	 (x) for all x > 0,

(135)

for some � > 0, there is a constant A (�) such that

[mnt]X
k=[mns]+1

E
�
�nkIfj�nkj<�g

�
= ([mnt]� [mns])E

�
�n1Ifj�n1j<�g

�
! (t� s)A (�) ,

(136)

and

[mnt]X
k=[mns]+1

�
E
����2nk�� Ifjj�nkjj<"g�� �E ��nkIfj�nkj<"g��2�

= ([mnt]� [mns])
�
E
�
�2n1Ifj�n1j<"g

�
�
�
E
�
�n1Ifj�n1j<"g

��2�! 0 (137)

as n!1 �rst and then "! 0.

In addition, in view of (103) and according to (105), for any 0 < s < t, we have

�n(t)X
k=�n(s)

En;k�1

h
j� 0nkj

2 Ifj�0nkj>"g
i

p! 0 and

�n(t)X
k=�n(s)

En;k�1

h
j� 0nkj

2
i

p! t� s,

(138)

where we now use the notations Pk�1 [:] = P [ :jzn;k�1] and Ek�1 [:] = E [ :jzn;k�1] (instead
of Pn;k�1 [:] and En;k�1 [:] as in Section 5).

Note that the sums Zn (t) and Wn (t) involve respectively the time scales [mnt] and

�n (t). To proceed further we need to rewrite them as sums involving a common time scale,

which becomes possible because one of the time scales is the natural time scale [mnt]. For

this purpose, let

�n (tq+r+1) = max (�n (tq+r) , [mntq+r]) , �n (tq�1) = [nt0] . Also �n (tq) = 0 because tq = 0.
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De�ne, with the reals u1; ::::uq+r, v1; :::; uq+r as in (133),

Unk =

(
uj�nk if [ntj�1] < k � [ntj] ; j = 1; :::; q + r,

0 if [mntq+r] < k � �n (tq+r+1)

and (recall that � 0nk = 0 for k � 0 )

Vnk =

8>><>>:
0 if [nt0] < k � 0,

vj�
0
nk if �n (tj�1) < k � �n (tj) ; j = q + 1; :::; q + r,

0 if �n (tq+r) < k � �n (tq+r+1) .

Then, the left hand side of (133) takes the form

�n(tq+r+1)X
k=[nt0]

(Unk + Vnk) ,

where the array f(Unk; Vnk) ; [nt0] < k � �n (tq+r+1)g is now viewed as the array��
Un:�n(tj�1)+1; Vn:�n(tj�1)+1

�
; :::;

�
Un:�n(tj); Vn:�n(tj)

�
, j = q; :::; q + r + 1

	
adapted to the array

�
zmn:�n(tj�1)+1; :::;zmn:�n(tj), j = q; :::; q + r + 1

	
.

With these preliminaries, the main step in obtaining (133) will consist of verifying the

following conditions (139) - (142) from (134) - (138). With 	 (x) and A (�) as in (134) -

(136),

X
Pk�1 [Unk + Vnk � x]

p!
q+rX
j=0

(tj � tj�1)	

�
x

uj

�
for all x < 0 (139)

and X
Pk�1 [Unk + Vnk > x]

p!
q+rX
j=0

(tj � tj�1)	

�
x

uj

�
for all x > 0, (140)

X
Ek�1

�
(Unk + Vnk) IfjUnk+Vnkj<�g

� p!
q+rX
j=0

(tj � tj�1)A

�
�

uj

�
for some � > 0,

(141)

and, as n!1 �rst and then "! 0,X�
Ek�1

�
jUnk + Vnkj2 IfjUnk+Vnkj<"g

�
�
�
Ek�1

�
(Unk + Vnk) IfjUnk+Vnkj<"g

��2�
p!

q+rX
j=q+1

v2j (tj � tj�1) . (142)
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Above and below, we make the convention that the notation
P
stands for

P�n(tq+r+1)

k=[nt0]
,

unless otherwise speci�ed.

Now, we have

(a). (137) entails, as n!1 �rst and then "! 0,X�
Ek�1

�
jUnkj2 IfjUnkj<"g

�
�
�
Ek�1

�
UnkIfjUnkj<"g

��2�
=

q+rX
j=1

[ntj ]X
k=[ntj�1]

�
E
�
jul�nkj2 Ifjul�nkj<"g

�
�
�
E
�
ul�nkIfjul�nkj<"g

��2�! 0. (143)

(b). Similarly, (139) - (141) above with Unk + Vnk in the left hand side replaced by Unk

are implied respectively by (134) - (136).

(c). (138) impliesX
Ek�1

�
jVnkj2 IfjVnkj>"g

� p! 0 and
X

Ek�1
�
jVnkj2

� p!
q+rX
j=q+1

v2l (tl � tl�1) .

(144)

Theorem A. Assume that the preceding conditions (a) - (c) (each of them involve

either Unk's only or Vnk's only) are satis�ed. Then the conditions (139) - (142) involving

Unk + Vnk's are satis�ed.

As a consequence

E
�
eiw

P
(Unk+Vnk)

�
! e�

1
2
w2
Pq+r
j=q+1 v

2
l (tl�tl�1)E

h
eiw

Pq+r
l=1 ul(Z(tl)�Z(tl�1))

i
for all real w.

(145)

It is well known that (139) - (142) imply the convergence in distribution of
P
(Unk + Vnk)

to a suitable in�nitely divisible distribution determined by the limits in (139) - (142). We

in particular obtain (145), where the speci�ed form of the limit follows from the forms of

the limits in (139) - (142). See for instance Jeganathan (1983) for the details. Therefore it

only remains to obtain (139) - (142).`

Veri�cation of (139) - (142). First consider (139). Because Vnk = 0 for [nt0] < k � 0,
0X

k=[nt0]

Pk�1 [Unk + Vnk � x] =

0X
k=[nt0]

Pk�1 [Unk � x] =

qX
j=1

[ntj ]X
k=[ntj�1]

P [uj�nk � x]

!
qX
j=0

(tj � tj�1)	

�
x

uj

�
for all x < 0, (146)

using (134). Next, using the fact fUnk + Vnk � x; jVnkj � "g � fUnk � x+ "g, we have
�n(tq+r+1)X

k=1

Pk�1 [Unk + Vnk � x] �
�n(tq+r+1)X

k=1

Pk�1 [Unk � x+ "] +
X

Pk�1 [jVnkj > "] ,
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and similarly

�n(tq+r+1)X
k=1

Pk�1 [Unk + Vnk � x] �
�n(tq+r+1)X

k=1

Pk�1 [Unk � x� "]�
X

Pk�1 [jVnkj > "] .

Now note that, similar to (146),
P�n(tq+r+1)

k=1 Pk�1 [Unk � x+ "] is nonrandom and converges

to
Pr

j=0 (tq+j � tq+j�1)	
�
x+"
uq+j

�
if x + " < 0, using (134). The same holds when x � " is

involved in place of x + ". Thus, because 	
�
x�"
uq+j

�
! 	

�
x

uq+j

�
as "! 0, and taking into

account the �rst part in (144), we have

�n(tq+r+1)X
k=1

Pk�1 [Unk + Vnk � x]
p!

rX
j=0

(tq+j � tq+j�1)	

�
x

uq+j

�
if x < 0.

This together with (146) gives (139). In the same way (140) holds also.

To proceed further, we next obtainX
Ek�1

��
jVnkj+ V 2

nk

� �
IfjUnkj��g + IfjUnk+Vnkj��g

�� p! 0. (147)

To see that this is true, consider for instance, for all 0 < " < �
2
,

Ek�1
�
jVnkj2 IfjUnk+Vnkj��g

�
� Ek�1

�
jVnkj2 IfjUnkj>��";jVnkj�"g

�
+ Ek�1

�
jVnkj2 IfjVnkj>"g

�
� "2P

h
jUnkj >

�

2

i
+
1

"
Ek�1

�
jVnkj2 IfjVnkj>"g

�
,

where note that
P�n(tq+r+1)

k=1 P
�
jUnkj > �

2

�
is non random and is bounded by (134) and (135),

similar to (146). Thus, taking (144) into account further,
P��Ek�1 �jVnkj2 IfjUnk+Vnkj��g��� p!

0. In the same way the remaining parts in (147) are obtained.

In addition to (147), we also haveX
Ek�1

��
jUnkj+ U2nk

� ��IfjUnk+Vnkj<�g � IfjUnkj<�g��� p! 0. (148)

To see this, note
��IfjUnk+Vnkj<�g � IfjUnkj<�g�� � IfjUnk+Vnkj��;jUnkj<�g + IfjUnk+Vnkj<�;jUnkj��g.

We have

Ek�1
�
jUnkj IfjUnk+Vnkj��;jUnkj<�g

�
� �Pk�1 [jUnk + Vnkj � �; jUnkj < � ] ;

where

Pk�1 [jUnk + Vnkj � �; jUnkj < � ]

� Pk�1 [jUnk + Vnkj � �; jUnkj < � � "] + Pk�1 [� � " � jUnkj < � ]

� Pk�1 [jVnkj � "] + Pk�1 [� � " � jUnkj < � ] ,
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using fjUnk + Vnkj � �; jUnkj < � � "g � fjVnkj � "g. Here
P
Pk�1 [jVnkj > "] ! 0 by

(144). Further,
P
Pk�1 [� < jUnkj � � + "] is nonrandom and converges to 0 as n!1 �rst

and then "! 0, according to (134) and (135). Thus
P
Ek�1

�
jUnkj IfjUnk+Vnkj��;jUnkj<�g

� p!
0.

Similarly
P
Ek�1

�
(Unk + Vnk) IfjUnk+Vnkj<�;jUnkj��g

� p! 0, because we have already veri-

�ed (139) and (140). Hence, taking (147) into account,
P
Ek�1

�
jUnkj IfjUnk+Vnkj<�;jUnkj��g

� p!
0. Thus (148) holds.

Now consider (141). We have,
��Ek�1 �VnkIfjUnk+Vnkj<�g��� � Ek�1

�
jVnkj IfjUnk+Vnkj��g

�
because��Ek�1 �VnkIfjUnk+Vnkj<�g��� = ��Ek�1 �VnkIfjUnk+Vnkj��g��� , using Ek�1 [Vnk] = 0.
Hence, using (147), we have

P��Ek�1 �VnkIfjUnk+Vnkj<�g��� p! 0. Hence, taking (148) into

account further, (141) follows from (143).

It remains to obtain (142). For this purpose let

U�nk = Unk � Ek�1
�
UnkIfjUnk+Vnkj<"g

�
, V �

nk = Vnk � Ek�1
�
VnkIfjUnk+Vnkj<"g

�
.

Then the left hand side of (142) takes the formX
Ek�1

�
jU�nk + V �

nkj
2 IfjUnk+Vnkj<"g

�
. (149)

Consider X
Ek�1

�
jV �
nkj

2 IfjUnk+Vnkj<"g
�

=
X

Ek�1
�
jVnkj2 IfjUnk+Vnkj<"g

�
�
X�

Ek�1
�
VnkIfjUnk+Vnkj<"g

��2
, (150)

where, using (147),
P�

Ek�1
�
VnkIfjUnk+Vnkj<"g

��2
=
P�

Ek�1
�
VnkIfjUnk+Vnkj�"g

��2 p! 0 and

using (147) again
P
Ek�1

�
jVnkj2 IfjUnk+Vnkj�"g

� p! 0. ThusX
Ek�1

�
jV �
nkj

2 IfjUnk+Vnkj<"g
�
�
X

Ek�1
�
jVnkj2

� p! 0: (151)

Next considerX
Ek�1

�
jU�nkj

2 IfjUnk+Vnkj<"g
�
=
X

Ek�1
�
jUnkj2 IfjUnk+Vnkj<"g

�
�
X�

Ek�1
�
UnkIfjUnk+Vnkj<"g

��2
.

Here X����Ek�1 �UnkIfjUnk+Vnkj<�g��2 � �Ek�1 �UnkIfjUnkj<�g��2���
� max

k
Ek�1

�
jUnkj

�
IfjUnkj<�g + IfjUnk+Vnkj<�g

��X
Ek�1

�
jUnkj

��IfjUnk+Vnkj<�g � IfjUnkj<�g���
p! 0.
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Here,
p! 0 holds because of (148) and because Ek�1

�
jUnkj IfjUnk+Vnkj<�g

�
� Ek�1

�
jUnkj IfjUnkj<�g

�
+

op (1) using (148), and Ek�1
�
jUnkj IfjUnkj<�g

�
� � . Combining this with (148), we then see

that the di�erence between
P
Ek�1

�
jU�nkj

2 IfjUnk+Vnkj<"g
�
and the left hand side of (143)

converges to 0 in probability, and hence, by (143) again,X
Ek�1

�
jU�nkj

2 IfjUnk+Vnkj<"g
� p! 0 as n!1 �rst and then "! 0: (152)

Now, the di�erence between (149) and (150) is bounded byX
Ek�1

�
jU�nkj jU�nk + 2V �

nkj IfjUnk+Vnkj<"g
�

�
qX

Ek�1
�
jU�nkj

2 IfjUnk+Vnkj<"g
�qX

Ek�1
�
jU�nk + 2V �

nkj
2 IfjUnk+Vnkj<"g

� p! 0,

using (152) and (151) together with (144). This means, in view of (151), the di�erence

between (149) and
P
Ek�1

�
jVnkj2

�
converges to 0 in probability. Thus in view of the second

part of (144), (142) is veri�ed.

Now consider the case � = 2. In this case recall that E [�1] = 0 and E [�
2
1 ] < 1, see

(8). Therefore, taking �n �
q

2

E[�21]
in (1), we have maxk E [�

2
nk] = E [�2n1]! 0 and

[mnt]X
k=[mns]+1

E
�
�2nk
�
! (t� s) 2 for all s < t:

Further, by (1) for � = 2, Zn (t)
fdd
=) (Z2 (t)� Z2 (�l)), where recall that Z2 (t) is a

Brownian motion with variance 2. Therefore, because the Lindeberg condition is both

su�cient and necessary for the preceding normal convergence, we have

[mnt]X
k=[mns]+1

E
�
�2nkIfj�nkj�"g

�
! 0 for all s < t.

The above conditions (together with E [�n1] = 0 ) now replace (134) - (137). Taking into

account (104) and (144) further, it then follows, as can be easily seen, that

X
Ek�1

�
jUnk + Vnkj2

� p! 2

q+rX
j=1

u2j (tj � tj�1) +

q+rX
j=q+1

v2j (tj � tj�1)

and X
Ek�1

�
jUnk + Vnkj2 IfjUnk+Vnkj>"g

� p! 0 for all " > 0.

Therefore, taking into account Ek�1 [Unk + Vnk] = 0, (145) still holds, by applying a suitable

version of Martingale CLT for the sum
P
Unk+Vnk. This completes the proof of the Lemma

23.
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See Jeganathan (2006a) more general statements related to Theorem A and the preced-

ing convergence.
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