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Abstract
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and additive, with geometrically decaying coefficients of habit formation. Our
axiomatization introduces a revealed preference theory of weaning a decision-maker
from her habits using the device of compensation. We characterize linear habit
formation in terms of the ability to wean using uniquely determined compensating
streams. Moreover, we distinguish between habits that are responsive to weaning
and those that are persistent, develop a simple choice-theoretic measure of the rate of
habit decay, and demonstrate how to recover the entire sequence of habit formation
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1 Introduction

Is an individual’s valuation for a good affected by its frequency of consumption? Will

someone who is accustomed to certain levels of comfort and quality come to expect and

demand the same? And is an increase in consumption always preferable, even if the increase

is only temporary?

The common thread binding these questions is that not one can be properly addressed in

the standard intertemporally separable model of choice. Consequently, the literature in such

varied fields as macroeconomics, finance, and labor economics has seen a surge in models

incorporating intertemporal nonseparability through habit formation. By presuming a

correlation between an individual’s prior consumption levels (her intrinsic habit) and her

felicity from present and future consumption, such models have had success in accounting

for notable phenomena that more traditional theory has been unable to explain.1

The literature on habit formation has, however, faced at least two difficulties. First,

it has been unable to come to a consensus on a single model of habits, and in some cases

the predictions of the most commonly utilized models disagree (Wendner (2003)).2 Second,

since a more flexible preference improves the ability to explain data, models of habit forma-

tion - along with other models employing exotic preferences - are vulnerable to the critique

that they are “an excuse for free parameters” (Backus, Routledge & Zin (2004)). Related to

these two critiques is the scarcity of theoretical work examining the underpinnings of habit

forming preferences. By clarifying the implications for choice behavior, such work would

help illuminate why one utility representation of habit formation might be more inherently

reasonable than another; or why the commonly used incarnations of habit formation are

reasonable at all. We contribute to the literature in that theoretical vein.

1Variations of the model of intrinsic linear habit formation we axiomatize have shed light on data
indicating individuals are far more averse to risk than expected (e.g., Constantinides (1990) on the equity
premium); suggested why consumption growth is connected strongly to income, but only weakly to interest
rates (see Boldrin, Christiano & Fisher (2001) for a real business cycles model with habit formation
and intersectoral inflexibilities); and explained the consumption contractions seen before exchange rate
stabilization programs collapse (Uribe (2002)).

2While intrinsic linear habit formation is the most commonly used model, some models posit habits that
are nonlinear, extrinsic (the “catching up with the Joneses” effect of Abel (1990)), or enter the discount
factor (Shi & Epstein (1993)). Chen & Ludvigson (2004) use formal estimation to argue that habits are
intrinsic and nonlinear. One common nonlinear model specifies a linear habit aggregator that divides
consumption in the felicity (Carroll, Overland & Weil (2000)); Wendner (2003) criticized this model for its
counterintuitive implications for consumption growth.
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1.1 Intrinsic linear habits

In this paper we formulate a theory of history dependent intertemporal choice using the

device of compensating a decision-maker (DM) for giving up her habits. In particular, we

provide a revealed preference theory of weaning a DM from her habits using compensating

streams that are analogous to drug cessation aids such as the nicotine patch. Our represen-

tative DM is described by a family of continuous preference relations that govern her choice

behavior at every history. She is dynamically consistent given her consumption history, can

be weaned from her habits using weakly decreasing streams of compensation, and satis-

fies novel separability and monotonicity axioms that are appropriate for time-nonseparable

preferences. Though our DM is fully rational, her history dependent behavior violates the

axioms of Koopmans (1960), upon which the standard theory of discounted utility rests.

Instead, our compensation-based theory lays the foundation for the model of linear habit

formation, in which a DM evaluates consumption at each point in time with respect to a

reference point that is generated linearly from her consumption history. We denote the set

of possible infinite consumption streams of some good by C and the set of possible infinite

consumption histories of that good by H.3 A consumption stream c ∈ C is written as

c = (c0, c1, c2 . . .), with ct denoting the prescribed consumption level t periods from today;

while a history h ∈ H is written as h = (. . . , h3, h2, h1), with hk denoting the consumption

level k periods ago. We refer to a consumption history as a habit. For the case of scalar

consumption, the model of linear habit formation specifies that for each habit h ∈ H the

DM evaluates the stream c ∈ C using the utility function Uh : C → R given by

Uh(c) =
∞∑

t=0

δtu
(
ct − ϕ(h, c0, c1, . . . , ct−1)

)
, δ ∈ (0, 1)

The felicity u : R → R is continuous and is often assumed to be monotonic. The habit

aggregator ϕ : H → R is a strictly increasing linear functional with geometrically decaying

habit formation coefficients {λk}k≥1 that sum to no more than one. That is, for each h ∈ H,

ϕ(h) =
∑∞

k=1 λkhk, where each λk ∈ (0, 1) and λk+1

λk
≤ 1 − λ1. If the DM initially has the

habit h ∈ H and chooses to consume the stream c ∈ C, then after t periods her habit will

be (h, c0, c1, . . . , ct−1). The value ϕ(h, c0, c1, . . . , ct−1) serves as the reference point against

3The history and consumption spaces are formalized in Section 2.
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which the DM evaluates her period-t consumption level ct, and is often referred to as the

habit stock.

A number of variations of this model are prevalent in the literature. We provide foun-

dations for this general formulation, which has an infinite sequence of habit formation

coefficients, as well as for some common tractable variants that impose special restrictions

on the {λk}k≥1. Our approach also generalizes to a multidimensional version that can ac-

commodate multiple habit-forming and non-habit forming goods. While our main theorem

axiomatizes the case in which the felicity u(·) is monotonic, as is often assumed in applied

work, a corollary relaxes the monotonicity assumption to allow for the possibility that the

habit-forming good is harmful. The theorems we present are explicitly stated for the case

of infinite histories, but readily accommodate bounded histories as well as histories that are

finite but grow unboundedly.4 Moreover, the representation may be easily generalized to

one of risky choice over consumption streams, in which the DM cares about the correlation

in lotteries. The results we provide shed light on the defining characteristics of linear habit

formation, clarify the differences among nested specifications of the model, and provide

various measures of habit-forming tendencies.

1.2 Compensating the DM to induce habit-free behavior

Our main axiom of choice behavior, Habit Compensation (HC), attempts to capture the

essence of linear habit formation. This axiom clarifies how the DM’s indifference curves

change for different habits and provides a means to elicit her endogenously changing refer-

ence points from choice behavior. The axiom is composed of three parts, of which the first

two play central roles.

Axiom HC(i), Weaning, offers a revealed-preference definition of weaning that builds on

the notion underlying such drug cessation aids as the nicotine patch. The nicotine patch

weans a smoker from her habit by providing a fading stream of nicotine that satisfies her

cravings. When wearing the patch, the smoker behaves as if she were a nonsmoker. We

allow for “patches” that help a DM with a habit h behave as if she had a lower habit

h′.5 That is, the patch may reduce her habit but not necessarily eliminate it. A DM is

4Models with finite but unboundedly growing consumption histories may be seen as applications of our
infinite history representation with a constant initial habit (. . . , q, q).

5By this we mean h ≥ h′, i.e. hk ≥ h′k for every k, with at least one strict inequality.
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weaned from her habit h to a lower habit h′ if, when endowed with some appropriate weakly

decreasing stream of consumption dh′,h at habit h, her choice behavior at habit h is the

same as her behavior at habit h′. We call the stream of consumption dh′,h a compensating

stream.

Axiom HC(i) asserts that the DM can be weaned in this manner. More formally, the

axiom asserts the existence and uniqueness of a compensating stream dh′,h for each pair of

habits h ≥ h′. Our representation theorem shows that the restriction that the compensating

streams are unique corresponds to a mild condition on the DM’s felicity that is nearly

always satisfied. Moreover, our results show that the compensating streams are determined

independently of the DM’s felicity and discount factor. Therefore, Axiom HC(i) describes

a choice behavior that isolates the effect of the habit formation coefficients. In fact, we

suggest a choice experiment from which the DM’s entire sequence of habit coefficients can

be recovered without regard to her exact felicity, discount factor, or consumption history,

thereby offering a response to the “free parameters” critique of the model of linear habit

formation.

Axiom HC(ii), Compensated Separability, ensures that with appropriate compensation,

the choice between two streams is independent of future considerations, as long as the

continuation path is the same in both. To illustrate, imagine that today is Saturday and

that our DM is a smoker planning to reduce her cigarette consumption as soon as the

weekend is over. Suppose that she will receive a nicotine patch on Monday, which she

plans to use to cut down to x cigarettes a day.6 In the meanwhile, she has one pack of

cigarettes languishing in her pocket and must decide what to do with it. One option is to

smoke the entire pack today and abstain tomorrow; another is to smoke half the pack today

and half tomorrow. How should she compare these two options? If the smoker is assured

of receiving the appropriate patch in each case on Monday, then Axiom HC(ii) implies that

her choice is independent of x (i.e., she can focus on this weekend’s consumption when

deciding).

This axiom is trivially satisfied by the standard model of discounted utility a la Koop-

mans (1960), since a DM with time-separable preferences does not require any compensa-

6Without complicating this story using our multidimensional model of habits, we cannot explain the
smoker’s reasons for cutting down. This exercise simply asks her to compare streams in which she smokes
various amounts over the weekend and then cuts down using a patch.
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tion: the “compensating streams” in that model would be identically zero. Axiom HC(ii)

may be seen as an appropriate generalization of separability for time-nonseparable prefer-

ences. However, it is not a typical separability condition because our task is quite different

than that of Koopmans, whose representative DM satisfies time-separability on the actual

consumption space. In contrast, our DM satisfies time-separablity only on an endogenously

generated auxiliary space composed of streams of the form (c0 − ϕ(h), c1 − ϕ(h, c0), c2 −
ϕ(h, c0, c1), . . .).

7 The techniques we develop suggest a means to elicit subjective refer-

ence points from choice behavior and derive discounted utility representations on spaces

endogenously defined by these reference points.

1.3 A new monotonicity axiom

Most theories of choice assume monotonic preferences, in which the DM is better off when-

ever consumption in any period is increased. We claim this is too strong an assumption if

the DM’s preferences are time-nonseparable. For example, suppose a content individual of

modest means is briefly permitted to live luxuriously, but must then return to her humble

lifestyle. Would her welfare be increased, or might the experience of luxury render the

return to her former circumstances unbearable? The answer may depend on the individual

in question. We propose a weakened monotonicity axiom, Gains Monotonicity (GM), that

accommodates either possibility.

Since increasing only a finite number of elements in a consumption stream may reduce

future enjoyment of that stream, we refer to a “gain” as a uniform increase in every period’s

consumption from some point forward. Our Axiom GM says that the individual’s welfare is

unambiguously increased if she is permitted to keep her newfound increase in consumption

indefinitely. We prove that Axiom GM ensures that the felicity in the model of linear habit

formation is monotonic, and argue that it is consistent with experiments indicating that

individuals favor increasing streams.8

Gains Monotonicity is relevant to cases in which the consumption good is a desirable

one, as is typically assumed in the applied literature on habit formation. We suggest

7Axiom HC(ii) has the flavor of a separability axiom but does not translate directly to a separability
condition on the auxiliary space. We prove using HC(i) and the surjectivity of a certain mapping that
HC(ii) implies the separability conditions of Gorman (1968) on the auxiliary space.

8Refer to Camerer& Loewenstein (2004) for a comprehensive survey of such results.
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a weakening of this axiom, Gains Sensitivity (GS), that is applicable when the good in

question can be harmful when consumed excessively relative to past consumption (e.g, as

in the case of alcohol) or in our model of multidimensional habit formation (due to potential

contemporaneous inseparabilities). Replacing Gains Monotonicity with Gains Sensitivity

relaxes the monotonicity requirements on the DM’s felicity but leaves our representation

theorems otherwise unchanged.

1.4 Overview of results

Section 4 offers our main representation theorem, which characterizes linear habit formation

in terms of the ability to wean a DM using uniquely determined compensating streams. The

result implies that the habit formation coefficients and compensating streams are unique

for nearly all applications of linear habit formation. In fact, Section 5 demonstrates how

to recover the DM’s entire sequence of habit formation coefficients directly from observed

choice behavior, without regard to her felicity, discount factor, or consumption history.

We introduce various measures of habit formation. Section 6 considers the DM’s rate of

habit decay in a common version of the model where the habit aggregator satisfies an au-

toregressive law of motion. There we provide an additional axiom, Immediate Equilibration

(IE), that describes a simple choice experiment which simultaneously generates the autore-

gressive structure and calibrates the DM’s habit decay parameter in that model. Section

7 distinguishes between models of linear habit formation in which habits are responsive to

weaning and those in which habits are persistent. Responsive habits are those from which

the DM may be weaned efficiently, using a finite amount of compensation; in contrast, per-

sistent habits require a constant level of compensation (e.g., some heroin addicts require a

steady dose of methadone for the rest of their lives). We show that the distinction between

these two types of habits corresponds to a simple difference in modeling that can markedly

affect choice behavior.

We also consider several generalizations of our results. Section 8 extends our theory to

a multidimensional model of habit formation, in which the DM forms independent linear

habits over a subset of the commodity space. Such a model can be used to understand

multiple addictions and addiction cycles. Section 9 extends our representation to risky

consumption streams and argues that by reinterpreting the commodity space, our axioma-
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tization also provides foundations for a model of habits in which the DM forms habits over

rates of consumption growth (i.e., the argument of the felicity is log-linear).

1.5 Connections to the literature

This paper is related to a growing theoretical literature on intrinsic and dynamically consis-

tent habit formation, beginning with the seminal papers by Iannaccone (1986) and Becker

& Murphy (1988) on rational addiction. These papers offered the first models in which

individuals might rationally choose to experiment with addictive substances, even though

they know this may lead them on a path to addiction.

Rustichini & Siconolfi (2005) also offer an axiomatization of dynamically consistent

habit formation over consumption streams. Unlike this paper, they axiomatize a model of

(recursive) habit formation that does not offer a particular structure for the utility or form

of habit aggregation; and in general, their axioms have a very different flavor from our own.

Other work on dynamically consistent habit formation includes Gul & Pesendorfer (2007),

who consider preferences over opportunity sets of streams of consumption, rather than

over the streams themselves; their decision-makers have difficulties with self-control and

may prefer to restrict their options. Other approaches to habit formation include decision-

makers who are myopic (Pollak (1970)), discount rates that depend on prior consumption

(Shi & Epstein (1993)), and habits that are extrinsic (e.g., Abel (1990) and Campbell &

Cochrane (1999)).

The type of preference in which we are interested falls under the rubric of intrinsic

reference dependence. A well-known member of this class of preferences is loss aversion,

discussed in Tversky & Kahneman (1991) in the context of riskless choice. The salient

feature of loss aversion is that the disutility from losses is more acute than utility from

gains. While the classical representation of loss aversion is not dynamically consistent,

our representation can easily accommodate a dynamically consistent version in which the

felicity takes the well-known “S”-shaped form.

A dynamically inconsistent foundation for a special case of loss aversion is offered by

Shalev (1997).9 Another model incorporating loss aversion is suggested by Loewenstein &

Prelec (1992); that model combines hyperbolic discounting with a specially curved utility

9Shalev’s model is not dynamically consistent because it is based on the model of Gilboa (1989), which
relaxes Savage’s sure-thing principle.
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function over gains and losses. Both models attempt to account for experimentally observed

departures from discounted utility. These anomalies of intertemporal choice, summarized

in the survey of Camerer & Loewenstein (2004), include evidence suggesting that different

discount rates are applied to gains and losses; that the discount rate for losses appears lower

than that for gains; and that individuals get more disutility from postponing consumption

than they get utility from speeding it up. However, the time-nonseparable representation

which we axiomatize can also account for such phenomena; as Camerer and Loewenstein

note, “these effects are consistent with stable, uniform, time discounting once one measures

discount rates with a more realistic utility function.”

Finally, our analysis contributes to the choice-theoretic literature on reference depen-

dence, particularly to the static model of Neilson (2006). That paper offers axiomatic

foundations for a model in which the DM chooses a bundle, the first component of which

serves as the reference point against which the other components are evaluated. Neil-

son approaches the problem by using an axiom that identifies the first component of the

bundle as the reference point. By contrast, our approach does not assume a particular

reference point but derives an infinite sequence of endogenously changing reference points

that are weighted averages of historical consumption. Our reference points are extracted

using a sequence of functional equations generated from the dynamics of the problem. Our

method allows us to link an entire family of history dependent preferences in a dynamically

consistent manner.

2 The framework

We consider a sophisticated DM who has preferences over streams of consumption. For-

mally, suppose that the DM faces an infinite-horizon decision problem in which a single

habit forming good is consumed in every period t ∈ N = {0, 1, 2, . . .} from the same set

Q = R+.10 The choice q ∈ Q may be interpreted as a choice of either quantity or quality

of the consumption good, with higher q corresponding to a higher level. We will use q ∈ Q

to refer to a generic one-period consumption level.

The DM’s preferences are stationary (i.e., they do not depend on calendar time). How-

ever, they do depend on her consumption history, her habit. The set of possible habits is

10To streamline the presentation we leave the extension Q = Rn
+ (n ≥ 1) to Section 8.
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time-invariant and given by the space of bounded streams

H = {h ∈ ×1
k=∞Q | sup

k
hk < ∞ }.

Each habit h ∈ H is an infinite stream denoting prior consumption and is written as

h = (. . . , h3, h2, h1), where hk denotes the consumption level of the DM k periods ago. We

endow the space H with the sup metric ρH(h, h′) = supk |hk − h′k|.
At any point in time, the DM’s preferences under habit h ∈ H are given by ºh and are

defined on the set of bounded consumption streams

C = {c ∈ ×∞t=0Q | sup
t

ct < ∞ }.

A choice c = (c0, c1, c2, . . .) ∈ C is an infinite consumption stream; ct is the consumption

level prescribed for t periods after the date at which the DM makes her choice, which is

interpreted as the current date. We consider C as a metric subspace of ×∞t=0Q endowed

with the product metric ρC(c, c′) =
∑∞

t=0
1
2t

|ct−c′t|
1+|ct−c′t| . Since ×∞t=0Q endowed with ρC is a

topologically separable metric space, so is C when viewed as a metric subspace.11

The DM is cognizant that her future tastes will be influenced by her consumption

history. Starting from any initial habit h ∈ H, consuming the stream c ∈ C results in

the date-t habit (h, c0, c1, . . . , ct−1). Therefore, DM’s preferences may undergo an infinite

succession of changes endogenously induced from her choice of consumption stream. Each

resulting preference is a member of the family º= {ºh}h∈H .

Our setup explicitly presumes histories are infinite because this assumption is commonly

invoked in the literature. Alternatively, one could assume that the DM’s preferences are

affected only by her last K ≥ 3 consumption levels.12 The notation in our analysis would

remain the same so long as current and future habits are truncated after K components;

that is, (h, c0) would denote the habit (hK−1, . . . , h2, h1, c0).

11Ensuring that C is separable in this manner allows us to concentrate on the structural elements of habit
formation. Alternatively we could impose separability directly as in Rustichini & Siconolfi (2005). Ble-
ichrodt, Rohde & Wakker (2007) is representative of a literature that concentrates on relaxing assumptions
about the consumption space, including separability.

12K ≥ 3 is required only for the proof of time-additivity.
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2.1 Useful notation

Here we collect some notation that will be used throughout the paper. We reserve the

variable k ∈ N = {1, 2, 3, . . .} to signify a period of previous consumption and the variable

t ∈ {0, 1, 2, . . .} to signify a period of impending consumption. When the stream c is

consumed under habit h, the resulting date-t habit (h, c0, c1, . . . , ct−1) is denoted by h(t) as

long as this is unambiguous. At times it will be convenient to let hq denote the habit (h, q)

which forms after consuming q under habit h. The notation c + c′ or h + h′ refers to usual

vector addition. As is customary, tc denotes (ct, ct+1, ct+2, . . .) and ct denotes (c0, c1, . . . , ct).

If c′ ∈ C we write (ct, t+1c+c′) to denote (c0, c1, . . . , ct, ct+1+c′0, ct+2+c′1, . . .). For α ∈ R we

use the similar notation αt to signify the t-period repetition (α, α, . . . , α) and (ct, t+1c + α)

to compactly denote (c0, c1, . . . , ct, ct+1 +α, ct+2 +α, . . .) whenever the resulting stream is in

C. The zero habit (. . . , 0, 0) will typically be denoted by ~0. Finally, by convention h ≥ h′

(or c ≥ c′) means hk ≥ h′k for all k (or ct ≥ c′t for all t), with at least one strict inequality.

3 The main axioms

This section presents axioms of choice behavior that are necessary and sufficient for repre-

senting each ºh by a utility function Uh : C → R of the form

Uh(c) =
∞∑

t=0

δtu
(
ct −

∞∑

k=1

λkh
(t)
k

)
, (1)

where δ ∈ (0, 1); each λk ∈ (0, 1) and λk+1

λk
≤ 1−λ1 for k ≥ 1; and u : R → R is continuous

and monotonic.13 The following axioms are imposed for all h ∈ H.

3.1 Rational choice

The first three axioms are familiar in the theory of rational choice over consumption streams.

First, the DM’s choices are derived from a preference relation.

Axiom PR (Preference Relation) ºh is a complete and transitive binary relation.

The DM’s preferences are also required to be continuous. As usual, Âh denotes the

asymmetric part of ºh.

13See Theorem 4.1 for a precise description of the monotonicity and “acyclicity” of u(·).
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Axiom C (Continuity) For all c ∈ C, {c′ : c′ Âh c} and {c′ : c Âh c′} are open.

These axioms ensure a continuous utility representation on our separable space.

Proposition 3.1. There exists a continuous utility representation of ºh.

We further assume that the DM’s preferences are dynamically consistent in a history

dependent manner, in the sense that given the relevant histories, she will not change her

mind tomorrow about the consumption stream she chooses today.

Axiom DC (Dynamic Consistency) For any q ∈ Q and c, c′ ∈ C, (q, c) ºh (q, c′) if and

only if c ºhq c′.

Dynamic consistency helps ensure that dynamic programming techniques can be used to

solve the DM’s choice problem, and that the DM’s welfare can be analyzed unambiguously.

If dynamic consistency is violated it becomes more difficult to interpret the DM’s choices

for the future (her future self may wish to change plans midstream) as well as discuss

the welfare implications of her choices (the welfare of her present self may come at the

expense of future selves, and vice versa). Without dynamic consistency, the DM’s choice

must be modeled through an equilibrium concept rather than as a decision problem.14

Moreover, as noted in Section 1.5, the axiom is able to accommodate a number of observed

time-discounting anomalies.

3.2 A weakening of monotonicity

Individuals are often assumed to have monotonic preferences over consumption streams;

that is, the DM is assumed to be better off whenever consumption in any period is increased.

This seemingly innocuous assumption comes into question when the DM’s preferences are

time-nonseparable. When consuming a stream c, one may imagine that the DM experiences

a feeling of gain in a particular period t if ct − ct−1 > 0, or more generally, if period-t

consumption is larger than some composite of prior consumption levels. However, if only

a finite number of elements in a consumption stream are increased then the DM may face

disappointment (or at least a reduction in enjoyment) when the increase ends. The short-

14This is the multi-selves approach of Strotz (1955). A related equilibrium notion is studied in Köszegi
& Rabin (2006b)’s model of dynamic reference dependence (which extends the static model in Köszegi &
Rabin (2006a)). There, the utility over sequences of consumption and beliefs is technically consistent but
beliefs are forced to be determined rationally in a personal equilibrium.
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term benefit from the temporary consumption increase might not suffice to overcome the

long-term loss.

Therefore, this paper refers to a “gain” more specifically as a uniform increase in all

consumption from some point forward. For any α ∈ R and t, we refer to a stream (ct, t+1c+

α) as a gain over c when α > 0 and a loss relative to c when α < 0. Formally, we impose

the following weakened monotonicity axiom.

Axiom GM (Gains Monotonicity) If c ∈ C and α > 0, then c + α Âh c.

GM says that the DM is happy with an increase in her future consumption so long as

the increase is applied to every period; that is, raising q will raise her utility so long as it

doesn’t affect future gains and losses in consumption across successive periods. It is easy

to see that if the preference relation satisfies GM and DC, then it satisfies the following

strengthened version of Gains Monotonicity, which corresponds exactly to the notion of a

gain as we have defined it.

Axiom GM* If c, c′ ∈ C and c = (c′t, t+1c′ + α) for some t and α > 0, then c Âh c′.

To provide an alternate characterization, consider the following definition.

Definition 3.2. Let c, c′ ∈ C be two consumption streams with c ≥ c′.We say that c >GD c′,

or c gains-dominates c′, if c has larger period-to-period gains and smaller period-to-period

losses: that is, ct − ct−1 ≥ c′t − c′t−1 ∀ t ≥ 1.

That is, increasing the gains from any point forward in a consumption stream without

increasing the losses leads to a gains-dominating consumption stream. Observe that a

stream will gains-dominate another if and only if the difference between the two streams

is positive and increasing. The following proposition, proved in the Appendix, asserts

that a continuous preference relation satisfies GM* if and only if the preference respects

gains-domination.15

Proposition 3.3 (Respect of gains-domination). A preference relation continuous in the

product topology satisfies GM* if and only if it respects gains-domination; that is, for any

c, c′ ∈ C, c >GD c′ implies that c Â c′.

15As an aside, compare GM* with the weaker constant-tail monotonicity axiom of Shalev (1997), which
says (restricted to deterministic streams) that if a stream constantly gives q from time t onwards, then
raising q to some q′ > q from t onwards improves the stream. This is equivalent to the statement that
a weakly increasing (decreasing) consumption stream is at least as good (bad) as getting its worst (best)
element constantly.
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While Proposition 3.3 offers a natural argument for Axiom GM, there may be cases

in which the axiom lacks normative appeal. This may be because of the nature of the

good itself (e.g., an individual may feel ill from consuming alcohol excessively relative

to past consumption), or due to the presence of contemporaneous interactions between

consumption goods, such as in the multidimensional formulation we later offer. Therefore,

we offer the following weakening.

Axiom GS (Gains Sensitivity) There exist c ∈ C and α > 0 such that c + α 6∼h c.

Replacing Gains Monotonicity with Gains Sensitivity in our representation theorems

allows us to drop the monotonicity requirement on the DM’s felicity.

3.3 Compensation

We now introduce our main structural axiom of habit formation, Habit Compensation

(HC). To present the axiom we define the set of ordered pairs of consumption histories

H = {(h′, h) ∈ H × H | h′ ≤ h} and introduce one further piece of terminology. For any

k, we say that habits (h′, h) ∈ H agree on k if hk = h′k. Similarly, we say that the habits

(h′, h) ∈ H agree on a subset of indices K ⊂ {1, 2, . . .} if they agree on each k ∈ K. Axiom

HC provides a revealed preference theory of weaning a DM from her habits; formally, it

says the following.

Axiom HC (Habit Compensation) There is a collection {dh′,h}(h′,h)∈H of strictly positive

streams such that

(i) (Weaning). Each dh′,h is weakly decreasing and uniquely satisfies

c ºh′ c′ iff c + dh′,h ºh c′ + dh′,h ∀ c, c′ ∈ C.

(ii) (Compensated Separability). For any c, ĉ ∈ C, t ≥ 0 and h′ ≤ hct, hĉt,

(ct, dh′,hct

) ºh (ĉt, dh′,hĉt

) iff (ct, c̄ + dh′,hct

) ºh (ĉt, c̄ + dh′,hĉt

) ∀ c̄ ∈ C.

(iii) (Independence of Irrelevant Habits). For any k̂, (h′, h) ∈ H that agree on k̂, and

q ∈ Q, if ĥ′k =





h′k k 6= k̂

q k = k̂
and ĥk =





hk k 6= k̂

q k = k̂
then dh′,h = dĥ′,ĥ.

13



For every ordered pair of histories (h′, h) ∈ H, Axiom HC(i) posits the existence of

a unique compensating stream dh′,h that induces a DM with habit h to behave as if she

had habit h′. A compensating stream serves as an endowment of the habit-forming good

that is provided only at the higher habit. It is analogous to a nicotine patch that weans a

smoker from her addiction; however, we generalize the underlying notion by permitting the

smoker’s habit to be either reduced or eliminated, depending on the patch used. Axiom

HC(ii) considers the effect of compensation applied midstream and may be viewed as a

generalization of separability for time-nonseparable preferences. According to HC(ii), if

the DM is appropriately compensated starting in period t, then her choice between two

streams depends only on the consumption levels they provide prior to t, as long as those

streams agree on their continuation path. That is, the future is “separable.” Axiom HC(iii)

ensures that if (h′, h) ∈ H agree on some k, then the compensation required to wean the

DM from h to h′ is independent of the period-k habit level. In other words, elements of

habits that remain unchanged are irrelevant to the weaning process.

c0

d1
h′,h

Uh′

Uh

2
c

2d
h ,h′

c1

d0
h ,h′

d0
h ,h′

d1
h ,h′

Figure 1: An h′-indifference curve over (c0, c1), fixing 2c, is translated under HC(i)

As illustrated in Figure 1, HC(i) establishes that the indifference curves for habit h′

are translated up by the strictly positive stream dh′,h into indifference curves for habit h.16

16There is a feature of the two indifference curves in Figure 1 that may not be immediately apparent
from the axiom: they correspond to the same utility, and in fact to the same felicity in every period. The
indifference curves that provide the DM with the same utility under each habit never cross; note that in
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The fact that dh′,h is weakly decreasing formalizes the manner in which higher habits lead

to greater “impatience” for consumption: the DM must immediately consume the highest

levels of her promised compensation in order to make the same choices that she would have

made at a lower habit. This stipulation corresponds directly to the geometric decay of the

habit formation coefficients.

Note that the ability to wean the DM hinges critically on the linearity of habit formation.

If the argument of her felicity were nonlinear, the DM’s “compensating stream” would

have to be adjusted to reflect each consumption choice she makes. Hence the order of the

quantifiers in Axiom HC(i) is critical for linearity.

To clarify the role of Axiom HC(iii), let us consider a variation of linear habit formation

where it is violated.

Example 3.4. Choose a felicity u : R → R, a discount factor δ ∈ (0, 1), and any strictly

positive sequence {λk}k≥1 satisfying λk+1

λk
≤ 1 − λ1 for all k. Endow each h ∈ H with the

sequence of habit coefficients {λk,h}k≥1 given by λk,h = λk
α+lim supk′ hk′
β+lim supk′ hk′

, where β > α > 0.

For each h ∈ H define Uh : C → R by

Uh(c) =
∞∑

t=0

δtu
(
ct −

∞∑

k=1

λk,hh
(t)
k

)

Then the family of utilities {Uh}h∈H satisfies HC(i) and (ii), but violates HC(iii).17

Example 3.4 demonstrates that Axiom HC(iii) is directly responsible for the homogene-

ity of the habit formation coefficients across consumption histories but is not necessary

for linearity. Moreover, the habit formation coefficients in the example can only depend

on the tail behavior of the consumption history; otherwise, Axioms HC(i) and DC would

be violated. Similarly, note that we may also generate linearity without Axiom DC. An

alternative model where the DM has preferences represented by linear habit formation

with naive hyperbolic time discounting would satisfy all of our axioms except DC. Even

stationarity plays a minimal role: we could replace the felicity in the representation with a

non-stationary variant ut(·) without violating HC or GM.

These examples correctly suggest that the compensating streams are constructed only

from the habit formation coefficients, and are entirely independent of the DM’s felicity and

Figure 1 one indifference curve is behind the other.
17The felicity should be acyclic (see Section 4) to ensure that compensation is unique.
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discount factor. Therefore, there is an important sense in which Axioms HC(i) and HC(iii)

differ from Axiom HC(ii). Axiom HC(ii) is a generalized separability axiom and does not

provide a particular structure for the compensating streams. While Axioms HC(i) and

HC(iii) directly generate the habit formation coefficients, Axioms HC(ii) and DC together

generate the manner in which the DM aggregates her utility over time. The compensating

streams would still exist and satisfy Axiom HC(iii) even in a variation of our model of

linear habit formation where utility is not time-additive. However, Axiom HC(ii) would be

violated.

Finally, we require two additional technical conditions on the DM’s initial level of com-

pensation. These conditions concern the strength of the DM’s memory and rule out de-

generate representations of the preferences we seek. First, we require that the initial com-

pensation needed for a habit goes to zero as that habit becomes more distant in memory:

i.e., for any habit h ∈ H we have limt→∞ d
~0,h0t

0 = 0. In counterpoint, the second condition

states that for any fixed prior date of consumption, we can find two habits that differ widely

enough on that date to generate any initial level of compensation: i.e., for any q > 0 and k,

there exist (h′, h) ∈ H that agree on N \ {k} and satisfy dh′,h
0 = q. The first condition is re-

quired only for histories of infinite length: it rules out an undesirable term inside the utility

that depends only on tail elements of the habit. The second condition rules out degenerate

solutions of a critical functional equation.18 We say the DM’s memory is non-degenerate if

these two conditions hold.

Axiom NDM (Non-Degenerate Memory) The DM’s memory is non-degenerate.

4 The main representation theorem

We now present our main theorem, which offers a precise characterization of the preferences

that satisfy our axioms of habit formation. The representation obtained is a dynamically

consistent and additive model of intrinsic linear habit formation that has featured promi-

nently in the applied literature. The model permits any choice of felicity, subject to a minor

acyclicity condition that will soon be explained.

18A very weak technical assumption, which we discuss in the Appendix, would also suffice.
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Theorem 4.1 (Main representation theorem). The family of preferences º satisfies Axioms

PR, C, DC, GM, HC, and NDM if and only if each ºh can be represented by

Uh(c) =
∞∑

t=0

δtu
(
ct −

∞∑

k=1

λkh
(t)
k

)
∀ c ∈ C, (2)

where δ ∈ (0, 1); the habit formation coefficients {λk}k≥1 are unique and satisfy

λk ∈ (0, 1) and
λk+1

λk

≤ 1− λ1 for all k ≥ 1; (3)

and the felicity u : R → R satisfies the following conditions:

(i) Continuous, weakly increasing, unique up to positive affine transformation

(ii) If
∑∞

k=1 λk < 1 then u(·) increases strictly on (0,∞) and is not “quasi-cyclic”19

(iii) If
∑∞

k=1 λk = 1 then there exists 0 < a ≤ ∞ such that u(·) increases strictly either on

(−a,∞) or (−∞, a) and is not “cyclic.”

The discount factor δ, coefficients {λk}, and felicity u(·) are independent of h.

The proof, which is outlined in Section 4.1, is given in Appendices B (sufficiency) and

C (necessity). As can be seen from the proof, the monotonicity requirements on u(·) can

be dropped by weakening Axiom GM to GS. The representation theorem is otherwise

unchanged (in particular, the acyclicity conditions remain).

Corollary 4.2 (Main representation theorem, non-monotonic felicity). The family of pref-

erence relations º satisfies Axioms PR, C, DC, GS, HC, and NDM if and only if each ºh

can be represented as in Theorem 4.1 but without the monotonicity requirements on u(·) in

assertions (i)-(iii).

An important implication of these two results is that the compensating sequences are

unique for nearly all economic applications of linear habit formation. Moreover, we will

soon see that they are determined independently of the DM’s exact felicity and discount

factor. The proof of the theorem shows that compensation is uniquely determined if an

appropriate acyclicity condition holds. Once we explain the meaning of this condition, it

will be evident that it essentially never binds in practice.

19The definitions of the terms quasi-cyclic and cyclic follow the theorem.
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Definition 4.3. A function u : R → R is cyclic if there are α ∈ R and γ > 0 such that

u(x + γ) = u(x) + α for all x ∈ R. A function u: R → R is quasi-cyclic if there are α ∈ R

and β, γ > 0 such that u(x + γ) = βu(x) + α for all x ∈ R.20

(a) (b) (c)

Figure 2: Violations of acyclicity. (a) β = 1; (b) β > 1; (c) β = 1 and affine.

Some cyclic and quasi-cyclic functions are illustrated in Figure 2. In light of Definition

4.3, the class of felicities permitted by the representation contains nearly all felicities used

in models of habit formation. Unless it is affine, a quasi-cyclic function cannot be both

smooth and concave. Furthermore, even a non-concave felicity such as the well-known S-

shaped function of prospect theory cannot be quasi-cyclic; indeed, quasi-cyclic functions

cannot have a finite (and non-zero) number of kinks. Finally, while affine functions are

technically cyclic, they are not particularly well-suited to models of linear habit formation

since choice behavior would be observationally equivalent to that in a model without habit

formation.

4.1 Roadmap to the proof

The proof of Theorem 4.1 is constructive. In this section we offer a roadmap to a few of

the main steps of the construction. Before doing so, let us gain insight into the proof by

examining why Axiom HC(i) is implied by the utility representation.

Consider a DM whose family of preferences º may be represented as in Theorem 4.1

and choose any ordered pair of habits (h′, h) ∈ H. The DM’s utility from a stream c ∈ C

under these two habits will differ in that her period-t felicity is given by u
(
ct−ϕ(h′, ct−1)

)

under h′, while it is given by u
(
ct − ϕ(h, ct−1)

)
under h. However, observe that we may

20Notice that a cyclic function is quasi-cyclic with β = 1.
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reformulate the former by adding and subtracting ϕ(h, ct−1):

u
(
ct − ϕ(h′, ct−1)

)
= u

(
ct + [ϕ(h, ct−1)− ϕ(h′, ct−1)]− ϕ(h, ct−1)

)
. (4)

Since the habit aggregator ϕ(·) is a strictly increasing linear functional, the bracketed term

ϕ(h, ct−1)− ϕ(h′, ct−1) is strictly positive and given by ϕ
(
h− h′, 0t

)
.

Our observation in (4) aids in the construction of the compensating streams. Indeed,

let us generate the compensating stream dh′,h. In period 0, we provide the DM with the

amount dh′,h
0 = ϕ(h − h′); as seen from (4), the DM’s period-0 felicity from consuming

c0 + dh′,h
0 under habit h is the same as her period-0 felicity from consuming c0 under habit

h′. In the following period, we must take into account that we have compensated the DM

using the habit forming good; that is, we must compensate for the compensation. The

period-0 consumption level that corresponds to habit h in (4) is c0 + dh′,h
0 . Using linearity,

we may then define dh′,h
1 = ϕ

(
h − h′, ϕ(h − h′)

)
. Continuing in this manner, we find a

stream dh′,h that weans the DM from habit h to habit h′ and has the recursive structure

dh′,h =
(
ϕ(h−h′), ϕ

(
h−h′, ϕ(h−h′)

)
, ϕ

(
h−h′, ϕ(h−h′), ϕ(h−h′, ϕ(h−h′))

)
, . . .

)
. (5)

In light of (5), it is evident that our constructive proof should define the habit aggregator

ϕ(h) by d
~0,h
0 . Therefore, the first task at hand is to prove that d

~0,h
0 will have the desired

linear structure under our axioms.

Constructing the linear habit aggregator ϕ : H → R+

The utility representation given in Theorem 4.1 stipulates that the desired habit aggregator

ϕ(·) satisfies three properties: (i) there exist functions ϕk : Q → R+ such that for each

h ∈ H, ϕ(·) can be written in the additive form ϕ(h) =
∑∞

k=1 ϕk(hk); (ii) each ϕk(·) is

strictly increasing and linear, i.e. ϕk(q) = λkq for some λk > 0; and (iii) the sequence

{λk}k≥1 decays at least geometrically fast and sums to no more than one: λk+1

λk
≤ 1− λ1.

Lemmas B.2-B.3 demonstrate that Axiom HC(i) is the key axiom generating the un-

derlying additivity of ϕ(·). Recall that the compensating stream is consumed as a fixed

supplement to regular consumption, akin to the manner in which a nicotine patch is ad-

ministered. This patch-like structure permits each dh′,h to be written as an infinite sum of

19



successive one-step transitions from h′ to h, where only one element is changed at a time.

Axiom HC(iii) ensures that the order in which the successive one-step compensations occur

is unimportant; but each one-step compensation may still depend on the entire initial habit

level h′. Within the additive structure generated by Axiom HC(i), however, we prove that

a one-step compensation is genuinely independent of all elements left unchanged. Thus,

we may denote the compensation for changing the k-th element of a habit from 0 to q as

dk,0,q without any loss of generality. Given the first part of Axiom NDM, which rules out

an undesirable limiting term that depends on the tail elements of the habits, we may write

d
~0,h =

∑∞
k=1 dk,0,hk . Hence we naturally define each ϕk(·) by ϕk(q) = dk,0,q

0 for q > 0 and

ϕk(0) = 0.

Axiom HC(i) posits the existence of compensating streams; to determine their actual

form we utilize the dynamics of the problem. In Lemmas B.5-B.7 we use Axiom HC(i)

in conjunction with DC and HC(iii) to manipulate the compensating sequences dk,0,q and

show that each ϕk(·) satisfies the functional equation

ϕk(ϕk(q) + q′) = ϕk(ϕk(q)) + ϕk(q
′) ∀ q, q′ ∈ Q. (6)

Equation (6) is a restricted Cauchy equation that is complicated by the fact that the

domain on which it holds is endogenous; as a consequence, the solution of this functional

equation has not been fully characterized.21 One known result is that of Jarczyk (1991),

which states that a continuous function ϕk : [0,∞) → [0,∞) solving (6) must take the

form ϕk(q) = λkq for some λk > 0. However, we may only conclude that ϕk(·) is almost

everywhere continuous using Axiom HC(i). The second part of Axiom NDM ensures that

the range of each ϕk(·) is the entire domain Q; reparametrization then reduces (6) to the

simple Cauchy equation, for which almost everywhere continuity suffices to ensure linearity.

In Lemma B.11 we suggest replacing the second component of Axiom NDM with a very

weak alternative condition that can be shown to rule out discontinuities of ϕk(·) on sets of

measure zero, thereby permitting us to directly apply the theorem of Jarczyk.

Let us examine the properties of these coefficients {λk}k≥1. Recall that the compen-

sation required to the wean the DM is weakly decreasing. Lemma B.13 shows that the

21A function f : R → R satisfies the Cauchy functional equation on some domain X if for every x′, x ∈ X,
f(x′ + x) = f(x′) + f(x).
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“fading” nature of compensation corresponds directly to the geometric decay of the habit

formation coefficients. The critical result used to prove this is Lemma B.12, which re-

cursively characterizes compensation by td
~0,h = d

~0,hd
~0,h
0 d

~0,h
1 ···d~0,h

t−1 . In light of the definition

d
~0,h
0 = ϕ(h), this implies that d

~0,h
1 = ϕ(hϕ(h)), d

~0,h
2 = ϕ(hϕ(h)ϕ(hϕ(h))), etc. Earlier

we obtained this characterization from the desired representation; Lemma B.12 obtains it

directly from the axioms.

Construction of an auxiliary space and preference relation

Using the ϕ(·) just constructed, define the transformation g : H × C → ×∞i=0R by

g(h, c) = (c0 − ϕ(h), c1 − ϕ(hc0), c2 − ϕ(hc0c1), . . .)

Let C∗ = g(H × C) and C∗
h = g({h}, C) be the image and projected images of g,

respectively.22 C∗ is the set of all habit-adjusted consumption streams and C∗
h is the set of

all h-adjusted consumption streams.

From here on we will be working solely in this auxiliary space C∗, rather than in the

actual consumption space C. To understand the structure of C∗ we must examine the

properties of g(·, ·). We prove in Lemma B.17 that g(·, ·) is continuous and that g(h, ·)
is a homeomorphism into C∗

h for each h ∈ H. However, g(·, ·) itself fails to be invertible

because it violates injectivity. Because each c∗ ∈ C∗ is generated from some h ∈ H and

c ∈ C, there is a “natural inverse” given by the inverse of g(h, ·),

g−1(h, c∗) = (c∗0+ϕ(h), c∗1+ϕ(h, c∗0+ϕ(h)), c∗2+ϕ
(
h, c∗0+ϕ(h), c∗1+ϕ(h, c∗0+ϕ(h))

)
, . . .) (7)

which maps h-adjusted consumption back to regular consumption. The difficulty is that a

single c∗ may belong to infinitely many sets C∗
h. In fact, Lemma B.18 uses Axiom HC(i) to

show that the projection sets are nested: C∗
h′ ⊆ C∗

h for all h′ ≤ h.

This failure of injectivity plays an important role in the analysis. First, it permits

us to prove in Lemma B.19 that C∗ is a separable space. Separability will be needed to

obtain a utility representation for a continuous preference that we will construct on C∗.

To that end, we define an auxiliary relation º∗ on C∗ × C∗ by c ºh c′ if and only if

22We endow the space ×∞i=0R with the product topology; metrize H × C by ρH×C((h, c), (h′, c′)) =
ρH(h, h′) + ρC(c, c′); and consider C∗ as a metric subspace of ×∞i=0R.
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g(h, c) º∗ g(h, c′). This says that the DM prefers the stream c to c′ at habit h if and only

if she ranks the corresponding habit-adjusted consumption streams likewise. Although º∗
is defined through every h, our notation is independent of h. How do we know that º∗
is well-defined, i.e., how can we rule out a situation where the DM prefers the h-adjusted

consumption stream corresponding to c in one case and the h′-adjusted consumption stream

corresponding to c′ in the other?

The proof of this result, given in Lemma B.20, offers insight into the workings of en-

dogenously defined auxiliary relations. In essence, º∗ is well-defined due to the ability to

(i) write C∗ as a countable union of overlapping projections and (ii) use the compensating

streams to maneuver between the various habits from which º∗ may be derived without

affecting the preference. To see this, observe that we may rewrite the definition of º∗ as

c∗ º∗ ċ∗ if and only if c∗, ċ∗ ∈ C∗
h and g−1(h, c∗) ºh g−1(h, ċ∗) for some h ∈ H. Suppose there

are h, h′ and c∗, ċ∗ ∈ C∗
h, C

∗
h′ with g−1(h, c∗) ºh g−1(h, ċ∗) and g−1(h′, ċ∗) Âh′ g−1(h′, c∗).

Take h̄ ≥ h′, h. By nestedness, c∗, ċ∗ ∈ C ∗̄
h
. By HC(i),

g−1(h, c∗) + dh,h̄ ºh̄ g−1(h, ċ∗) + dh,h̄ and g−1(h′, ċ∗) + dh′,h̄ Âh̄ g−1(h′, c∗) + dh′,h̄ (8)

But we can show that g−1(h, c∗) + dh,h̄ and g−1(h′, c∗) + dh′,h̄ are both equal to g−1(h̄, c∗)

(and similarly for ċ∗), implying that (8) consists of the contradictory statements a º b and

b Â a. Henceº∗ is well-defined. The other properties required to obtain a continuous utility

representation forº∗ (completeness, transitivity, and continuity) also hinge on Axiom HC(i)

and are proved in Lemma B.21.

Obtaining additivity on the auxiliary space

While the DM’s preferences are neither additively separable, monotonic, nor dynamically

consistent in a manner independent of history, we can prove that the auxiliary preference

relation º∗ does satisfy these properties.

While additive separability conditions are normally defined on the consumption set

itself, our additive separability conditions must hold for the endogenously defined preference

º∗ on the endogenously defined space C∗. Due to the transformation between the two

spaces, a known separability condition in C∗ would translate directly into an unintelligible

condition in C. Consequently we impose a simplified condition on C, Axiom HC(ii), which
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has the flavor of a separability axiom. Given our other axioms, we can show that Axiom

HC(ii) implies the separability conditions of Gorman (1968, Theorem 1) in the auxiliary

space.23

Gorman reformulates the standard conditions for additive separability.24 His condi-

tions assert that the set of separable indices is closed under unions, intersections, and

differences given certain restrictions on the preference and its domain. In combination

with our prior results, Lemmas B.22 and B.27 will ensure that Gorman’s restrictions

are not violated. Using Gorman’s theorem and the dynamic consistency of º∗ (shown

in Lemma B.23), the conditions of Koopmans (1960) will hold on the auxiliary space if

(c∗t, c̄∗) º∗ (ĉ∗t, c̄∗) iff (c∗t, ¯̄c∗) º∗ (ĉ∗t, ¯̄c∗) for any t ≥ 0 and c∗, ĉ∗, c̄∗, ¯̄c∗ ∈ C∗ such that

(c∗t, c̄∗), (ĉ∗t, c̄∗), (c∗t, ¯̄c∗), (ĉ∗t, ¯̄c∗) ∈ C∗.

We must show these conditions hold on the entire space C∗. However, they do not

correspond directly to Axiom HC(ii) using the “natural inverse” given in (7). Instead, to

ensure that HC(ii) implies Gorman’s conditions hold on all of C∗ we must prove that the

“compensated consumption” map ξt : H × C → C∗ given by

ξt(h, c) = g
(
h, (ct−1, tc + dh0t,hct−1

)
)

is surjective. Here the failure of g(·, ·) to be injective once again plays the central role.

Previously, we noted that C∗
h′ ⊆ C∗

h for h ≥ h′. To show that the map ξt is surjective we

must understand how the projection sets C∗
h and C∗

h′ may overlap even when h′, h cannot

be ordered. The requisite proofs are given in Lemmas B.24-B.26.

5 Recovering the habit formation coefficients

In this section we demonstrate how to use a single compensating stream to recover a

DM’s entire sequence of habit formation coefficients, regardless of her particular felicity,

discount factor, or consumption history. In doing so we offer a partial response to the

“free parameters” critique as it applies to the model of linear habit formation. While

23The only other paper of which we are aware that applies Gorman-type conditions to infinite streams
in order to obtain a discounted utility representation is Bleichrodt, Rohde & Wakker (2007), which is
unrelated to habit formation.

24See Fishburn (1970) for an excellent discussion of the standard additivity theories.
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the indifference curves of a DM can determine her utility only up to a strictly increasing

transformation, they uniquely determine the entire sequence {λk}k≥1 of habit formation

coefficients for a DM satisfying our axioms.

Proposition 5.1 (Independent recovery). The DM’s entire sequence of habit formation

coefficients {λk}k≥1 can be recovered directly from observed choice behavior. In particular,

{λk}k≥1 may be found using a single compensating stream, without knowledge of the DM’s

felicity, discount factor, or consumption history.

The habit formation coefficients may be recovered without regard to the DM’s felicity

or discount factor because the compensating streams are constructs only of the arguments

of the DM’s utility over streams - not of the utility itself. Moreover, the same choice

experiment may be applied regardless of the DM’s initial habit.

To see this, suppose that the DM has some arbitrary habit h̃ ∈ H. Choose any strictly

positive q ∈ Q and let h′ = h̃0 and h = h̃q.25 Using dynamic consistency, the choice

experiment required to find the compensating stream dh′,h, in which only the most recent

consumption memory is affected, takes a simple form. The compensating stream dh′,h is

the unique d ∈ C satisfying

(0, c) ºh̃ (0, c′) if and only if (q, c + d) ºh̃ (q, c′ + d) for all c′, c ∈ C (9)

Under our axioms, the compensating stream dh′,h depends only on h− h′; consequently

the choice experiment (9) delivers the same compensating stream regardless of the initial

habit h̃. Recall that the proof of Theorem 4.1 demonstrates that for any (h′, h) ∈ H the

compensating stream dh′,h is characterized recursively by

dh′,h =
(
ϕ(h−h′), ϕ

(
h−h′, ϕ(h−h′)

)
, ϕ

(
h−h′, ϕ(h−h′), ϕ(h−h′, ϕ(h−h′))

)
, . . .

)
(10)

Since dh′,h is determined independently of the felicity and discount factor, the task of

recovering the entire sequence of habit formation coefficients {λk}k≥1 may now be easily

accomplished. Given the linearity of ϕ(·) and the recursive characterization (10), knowing

the compensating stream dh′,h means that the entire sequence {λk}k≥1 can be determined

25The choice of 0 is arbitrary and could be replaced by any date-0 consumption level q′ ∈ Q with q′ < q.
In the triangular linear system that follows q must then be replaced by (q − q′).
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straightforwardly from the triangular linear system

dh′,h
0 = λ1q

dh′,h
1 = λ2q + λ1d

h′,h
0

dh′,h
2 = λ3q + λ2d

h′,h
0 + λ1d

h′,h
1

dh′,h
3 = λ4q + λ3d

h′,h
0 + λ2d

h′,h
1 + λ1d

h′,h
2

...

6 The autoregressive model and habit decay

We now examine the rate at which habits fade as they become more distant in time,

i.e. the rate at which the DM’s habit stock decays. As seen in Appendix D, the utility

representation in Theorem 4.1 contains too many parameters to offer a succinct measure

of habit decay. To that end, we use a frequently invoked autoregressive specification of

the habit aggregator to facilitate such a characterization. According to that model, there

exist α, β > 0 with α + β ≤ 1 such that the habit aggregator satisfies the autoregressive

law of motion ϕ(hq) = αϕ(h) + βq for all h ∈ H and q ∈ Q.26 In this section we examine

the implications of this simplification for choice behavior. Specifically, we show that the

autoregressive structure of the habit aggregator corresponds to an additional axiom that

can calibrate the habit decay parameter α in that model.

6.1 A simple choice experiment

Let us consider a DM facing two possible scenarios, A and B, each of which determine

today’s consumption level only. In scenario A the DM has a very high level of consumption

today, whereas in scenario B she has a very low level of consumption today. The DM’s

preferences tomorrow will differ based on how much she consumes today. We would like

to know whether the single consumption level determined by these two scenarios has an

irreversible effect on the DM’s behavior. That is, if the DM were to consume very little

for some time after scenario A and very much for some time after scenario B, could the

26This model appears in Boldrin, Christiano & Fisher (1997) in our discrete time form and in Constan-
tinides (1990) and Schroder & Skiadas (2002) in the continuous time version.
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opposing effects from consumption cancel so that her preferences following each scenario

eventually coincide? The next axiom describes a choice behavior for which such equilibra-

tion is possible.

Axiom IE (Immediate Equilibration) For all c0, ĉ0 ∈ Q, there exist c1, ĉ1 ∈ Q such that

for all c̄, ¯̄c ∈ C, (c0, c1, c̄) ºh (c0, c1, ¯̄c) if and only if (ĉ0, ĉ1, c̄) ºh (ĉ0, ĉ1, ¯̄c).

In light of dynamic consistency, Axiom IE implies that ºhc0c1 and ºhĉ0ĉ1 describe the

same preferences. Therefore, the axiom says that we can undo by tomorrow the effect of a

difference in consumption today.

We would like to use Axiom IE to provide a comparative measure of habit decay. Let

us fix any period-0 consumption levels ĉ0 > c0 and consider the corresponding period-1

consumption levels ĉ1, c1 that are given by Axiom IE. Intuitively, if the DM’s habits decay

slowly then the effects of prior consumption linger strongly, so c1 will have to be quite large

and ĉ1 will have to be quite small in order to offset the initial difference. More formally,

for fixed ĉ0 > c0 one would expect that the difference c1 − ĉ1 in the period-1 consumption

levels required by Axiom IE should be larger for those DM’s whose habits decay more

slowly. This intuition is confirmed by the following representation theorem, which reveals

that Axiom IE implies habits decay at the constant rate c1−ĉ1
ĉ0−c0

.

Theorem 6.1 (Autoregressive habit formation). The family of preference relations º sat-

isfies Axioms PR, C, DC, GM, HC, NDM and IE if and only if each ºh can be represented

by Uh(c) =
∑∞

t=0 δtu
(
ct − ϕ(h(t))

)
as in Theorem 4.1 and in addition there exist α, β > 0

with α+β ≤ 1 such that the habit aggregator ϕ(·) satisfies the autoregressive law of motion

ϕ(hq) = αϕ(h) + βq ∀ h ∈ H, q ∈ Q. (11)

Moreover, using the values c0, c1, ĉ0, ĉ1 for any h from Axiom IE, α is given by

α =
c1 − ĉ1

ĉ0 − c0

. (12)

Remark 6.2. For finite histories of length K ≥ 3, the habit aggregator cannot be written

in the form (11) but the result of Theorem 6.1 is unchanged: the ratio of successive habit

formation coefficients λk+1

λk
is constant and given by c1−ĉ1

ĉ0−c0
.

Theorem 6.1 reveals that the autoregressive model corresponds precisely to the choice
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behavior of Axiom IE, and that the choice experiment provided directly calibrates the

parameter α. The proof of this theorem appears in the Appendix.27

Observe that the choice experiment in Axiom IE immediately recovers the single pa-

rameter λ in the geometric coefficients model, where the aggregator satisfies the law of

motion ϕ(hq) = (1 − λ)ϕ(h) + λq ∀ h ∈ H and q ∈ Q. By the result in Theorem 6.1 we

know that the DM must also satisfy Axiom IE and that

λ = 1− c1 − ĉ1

ĉ0 − c0

, (13)

where the values c0, c1, ĉ0, ĉ1 are found from Axiom IE and are independent of h.

Finally, observe that the autoregressive model has two free parameters, α and β, and

that the effect of a prior difference in consumption can be undone in one period. The

proof of Theorem 2 actually suggests a more general result. It can similarly be shown that

a generalization of the autoregressive model that has n free parameters corresponds to a

generalized n− 1 period version of equilibration in which it takes n− 1 periods to undo the

effect of a single difference in consumption.

7 Persistent versus responsive habits

We now return to the general setting of linear habit formation and suggest a universal

characterization of the DM’s habit-forming tendencies. We distinguish between two types

of preferences that satisfy our axioms, those whose habits are responsive to weaning and

those whose habits are persistent.

Recall that Axiom HC sheds light on how the preferences of the DM transform as she

goes from a lower habit h′ to a higher habit h: the indifference curves for the preference ºh′

are translated up by dh′,h into indifference curves for ºh. Stated differently, dh′,h measures

the distance between the indifference curves of ºh′ and ºh. Whether the DM can be

weaned easily using a small and quickly fading stream of compensation, or must be weaned

using possibly high levels of consumption that fade slowly - or never at all - will determine

27Axiom GM may be relaxed to GS with the obvious relaxation of monotonicity. Also, consider the
following alternative to IE: ∀ h, ∃ q ∈ Q s.t. for all c̄, ¯̄c ∈ C, c̄ ºh ¯̄c iff (q, c̄) ºh (q, ¯̄c). It can be shown by
that this axiom may replace Axiom IE in our axiomatization of the autoregressive model. However this
alternative axiom does not provide a means to calibrate the parameter α.
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how profoundly consumption affects her preferences. In particular, we can characterize the

DM’s habit-forming tendencies by whether or not the total amount of compensation she

requires over time is finite.

Definition 7.1. The DM is responsive to weaning if she can always be weaned using a

finite amount of compensation; that is, for every (h′, h) ∈ H, the total amount
∑∞

t=0 dh′,h
t

is finite. The DM has persistent habits if she can never be weaned using a finite amount of

compensation; that is, for every (h′, h) ∈ H,
∑∞

t=0 dh′,h
t = ∞.

A responsive DM would respond well to a “packaged” drug cessation aid such as the

nicotine patch; but if she has persistent habits, no finite number of nicotine patches will

cure her of her habit. Note that our definition requires that a DM’s total compensation is

always finite or always infinite for every pair of habits (h′, h) ∈ H. But what about a DM

who requires a finite amount of total compensation for some pairs of habits, and an infinite

amount for others? We show in the following proposition that such a DM cannot exist.

Furthermore, we show that the compensation required by a persistent DM not only sums

to infinity, but remains forever constant. A similar phenomenon may be seen in heroin

addicts weaned using the drug methadone: while the vast majority of methadone patients

eventually taper their use, some patients receive a steady dose of the drug for the rest of

their lives (Bertschy (1995)).

Proposition 7.2 (The dichotomy). Suppose the DM’s preference º satisfies Axioms PR,

C, DC, GS, HC, and NDM. Then the following statements hold.28

(i) The DM’s habits must be either responsive or persistent.

(ii) Her habits are responsive to weaning if and only if
∑∞

k=1 λk < 1.

(iii) Her habits are persistent if and only if each compensating stream is constant.

Because her total compensation is finite, the compensating streams of a responsive DM

must tend to zero. In contrast, the compensation of a persistent DM never decreases.

Since a DM who satisfies our axioms has persistent habits if and only if the ratio
λk+1

λk
= 1−λ1 for every k, persistent habits correspond directly to the model of linear habit

formation with geometric coefficients, in which there exists λ ∈ (0, 1) such that the habit

28The proof follows from Lemmas B.15-B.16 in the Appendix.
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aggregator ϕ(·) satisfies the law of motion ϕ(hq) = (1−λ)ϕ(h)+λq for all h ∈ H and q ∈ Q.

In comparison, consider the more general autoregressive model of linear habit formation

axiomatized in Theorem 6.1, which specifies that there exist α, β > 0 with α + β ≤ 1

such that the habit aggregator satisfies ϕ(hq) = αϕ(h) + βq for all h ∈ H and q ∈ Q.

While it collapses to the geometric coefficients model when α + β = 1, the autoregressive

model provides an additional degree of freedom that accommodates responsive habits when

α + β < 1. As the DM’s habit-forming tendencies are quite different under responsive and

persistent habits, the choice of α + β in this commonly used model should be made with

care.

In order to understand how choice behavior differs under responsive and persistent

habits, the following proposition examines the rate at which compensation fades when

habits are responsive. In light of the translation of indifference curves depicted in Figure

1, the result demonstrates how sharply choice behavior may differ at different habits when

the sum
∑∞

k=1 λk is exactly one or very slightly below one, ceteris paribus. In contrast to

the case of persistent habits, the compensating streams of a DM with responsive habits

decrease at least geometrically fast within finite time; and when h > h′, the decrease is

immediate.

Proposition 7.3 (Geometric decay of compensation). Let the DM’s preference º satisfy

PR, C, DC, GS, HC, and NDM. Suppose her habits are responsive, i.e. for some k∗ the

ratio
λk∗+1

λk∗
< 1 − λ1. Let ε = 1 − λ1 − λk∗+1

λk∗
. Then compensation decreases at least at a

geometric rate29 for all t > k∗: for any (h′, h) ∈ H,

inf
k

{λk+1

λk

}
+ λ1 ≤ dh′,h

t

dh′,h
t−1

≤ 1− ελk∗ < 1.

Moreover, if h > h′ then compensation immediately begins to strictly decrease (at least at

a geometric rate if supk

{λk+1

λk

}
< 1− λ1).

Proposition 7.3 suggests that persistent habits are a knife-edge case in terms of their

implied behavior. As seen from the upper bound 1−ελk∗ on the rate of decrease for t > k∗,

if
∑∞

k=1 λk = 1 − γ then behavior sharply deviates from that of a persistent DM if most

of the γ decrease can be attributed to a drop in
λk∗+1

λk∗
for a small value of k∗. In such a

29When infk

{λk+1
λk

}
is strictly positive compensation decreases at an exactly geometric rate.
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case, compensation decreases rapidly very early and the translation of the indifference map

between two habits (h′, h) ∈ H is much milder than it would be if habits were persistent.

It may be best to think of persistent habits as a limiting case of a sequence of responsive

habits {λn
k}k≥1, for each of which

∑∞
k=1 λn

k = 1 − γn < 1 and where each γn is attributed

to a drop in a more distant ratio of habit coefficients.

Finally, we examine the different welfare effects of persistent and responsive habits

by considering the DM’s valuation for streams that provide at least some subsistence level

q > 0 in every period. To fix ideas, suppose that whenever the argument of the DM’s felicity

is negative she suffers a feeling of loss relative to her accustomed level of consumption;

conversely, whenever the argument of the felicity is positive she derives some enjoyment

from the stream. Can there be an initial habit so high and a consumption stream so

“disappointing” that the DM suffers every period? The following proposition shows that

the model of linear habit formation implies a certain “resilience of spirit” in eventually

overcoming losses. However, while a DM with responsive habits will always “appreciate”

a consumption stream that is bounded away from zero, the same cannot be said of a DM

with persistent habits, who may be more “fastidious.”30

Proposition 7.4. Suppose that the DM’s preference º satisfies Axioms PR, C, DC, GS,

HC, and NDM. Then,

(i) (Resilience). For any γ < 0, there does not exist a stream c ∈ C and a habit h ∈ H

such that ct − ϕ(hct−1) ≤ γ for every t.

(ii) (Fastidiousness). If the DM’s habits are persistent, then for any q > 0 there is a habit

h ∈ H and stream c ∈ C with c ≥ (q, q, . . .) such that ct − ϕ(hct−1) ≤ 0 for every t.

(iii) (Appreciativeness). If the DM’s habits are responsive, then for any q > 0 there does

not exist a habit h ∈ H and a stream c ∈ C with c ≥ (q, q, . . .) such that ct−ϕ(hct−1) ≤
0 for every t.

Proposition 7.4 implies that a DM who satisfies our axioms will ultimately overcome

any level of loss, but a consumption stream offering at least some subsistence level q > 0

30We also note a related result that has implications for the use of felicities satisfying the Inada condition
limx→0 u′(x) = ∞ when habits are persistent. Indeed, when

∑∞
k=1 λk = 1 there cannot exist a stream c ∈ C

and habit h ∈ H such that habit-adjusted consumption ct−ϕ(hct−1) is always strictly positive and bounded
away from zero.
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may not be appreciated by a DM with persistent habits. While a persistent DM may never

derive any enjoyment from such a stream, iterated application of Proposition 7.4 implies

that a responsive DM will derive enjoyment from it infinitely often. As seen in Appendix

C.1, Proposition 7.4 is the root of the different monotonicity requirements for responsive

and persistent habits.31

8 Multidimensional habit formation

In this section we extend our analysis to a multidimensional framework that can accommo-

date models of addiction. Moreover, as noted in Deaton (1987), a multidimensional model

of habit formation of the type we axiomatize can explain observed patterns of consumption

that are irreconcilable with the standard life-cycle model of consumer behavior (e.g., excess

sensitivity of consumption to income).

The commodity space is now Q = Rn
+, n ≥ 1. To fix ideas, we interpret q ∈ Q as

a bundle of goods and permit the DM to form habits over only a subset of these goods.

Suppose that n ≥ 2 and that the DM only forms habits over goods {1, 2, . . . , M}, where

1 ≤ M ≤ n. For any m ≤ n and q ∈ Q, qm will correspond to the consumption level of the

m-th good in the bundle q. We let Qm = {q ∈ Q | qm̂ = 0 ∀ m̂ 6= m} be the set of bundles

offering good m only.

In order to simplify the notation we include all goods in the DM’s consumption his-

tory, with the understanding that her preferences are independent of her past consump-

tion of the non-habit forming goods. The set of consumption histories is given by H =

{h ∈ ×1
k=∞Q | supm≤n,k≥1 hm.k < ∞ }, where hm.k denotes her consumption of the m-

th good k periods ago. For any h ∈ H, hm = (. . . , hm.2, hm.1) denotes the restriction of

the history to the m-th good. The set of consumption streams is given by C = {c ∈
×∞t=0Q | supm≤n,t≥0 cm.t < ∞}, where cm.t denotes the consumption of good m in period t

and cm is the stream (cm.0, cm.1, . . .). We define the set Cm = {c ∈ C | cm̂.t = 0 ∀ m̂ 6=
m, t ≥ 0 } to be the set of consumption streams offering good m only.

As before, h(t) = hct−1 is the date-t consumption history that results from consuming

the stream c given the initial habit h. The restriction of h(t) to the m-th good is denoted

31The assertions in Proposition 7.4 follow from the proofs of Lemmas B.31, B.33 and C.1. We note the
result is independent of Axiom GM, though the interpretation presumes some monotonicity.
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h
(t)
m . The set H of ordered pairs of habits is defined as before, with a slight modification

of the notion of habits agreeing. We say the pair (h′, h) agree on a date k and a good m

if hm.k = h′m.k. We say (h′, h) agree on a date k if for every m, (h′, h) agree on k and m.

Finally, for each (h′, h) ∈ H it will be convenient to define the set

C(h′, h) = {c ∈ C | for all t ≥ 0 and m ≤ n, cm.t > 0 iff m ≤ M and hm 6= h′m}.

This is the set of streams where the consumption of the m-th good is strictly positive if

and only if it is a habit-forming good for which the good-specific histories differ.

Let us now consider the extension of our axioms to the multidimensional case. Using

the newly defined notation, only the statements of Axioms GS, HC, and NDM must be

modified. In particular, we need only impose Gains Sensitivity for a single habit-forming

good. That is, for some good m ≤ M there must be a uniform increase in consumption

that leaves the DM either strictly better or strictly worse.

Axiom GS¦ There exist c ∈ C, m ≤ M , and α ∈ Qm such that c + α 6∼h c.

Axiom HC requires modification of parts (i) and (iii). First, a compensating stream is

positive only along habit-forming dimensions from which the DM is being weaned. More-

over, we need only require uniqueness of compensating streams that wean the DM from

a single habit-forming good. Next, HC(iii) takes on a dual meaning: in addition to com-

pensation satisfying the same condition as before along each good, the axiom posits that

compensation is independent across goods.

Axiom HC¦ There is a collection {dh′,h}(h′,h)∈H of streams such that

(i) (Weaning). Each dh′,h ∈ C(h′, h), is weakly decreasing, and satisfies

c ºh′ c′ iff c + dh′,h ºh c′ + dh′,h∀ c, c′ ∈ C; (14)

and if dh′,h ∈ Cm for some m ≤ M then it uniquely satisfies (14) in Cm.

(ii) (Compensated Separability). For any c, ĉ ∈ C, t ≥ 0 and h′ ≤ hct, hĉt,

(ct, dh′,hct

) ºh (ĉt, dh′,hĉt

) iff (ct, c̄ + dh′,hct

) ºh (ĉt, c̄ + dh′,hĉt

) ∀ c̄ ∈ C.
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(iii) (Independence of Irrelevant Habits). Take any k̂, m̂ ≥ 1 and qm̂. If the pairs of

habits (h′, h), (ĥ′, ĥ) ∈ H agree on k̂, m̂ and satisfy ĥ′m̂.k =





h′m̂.k k 6= k̂

qm̂ k = k̂
and

ĥm̂.k =





hm̂.k k 6= k̂

qm̂ k = k̂
for all k, then dh′,h

m̂ = dĥ′,ĥ
m̂ .

Observe that while the statement of HC(ii) has not changed, it has become a hybrid

separability condition that accommodates both the habit-forming and non-habit forming

dimensions of consumption.

Next, we impose Axiom NDM only along the habit-forming dimensions.

Axiom NDM¦(i) For any m ≤ M and h ∈ H, limt→∞ d
~0,h0t

m.0 = 0; (ii) For any m ≤ M ,

qm > 0 and k, there exist (h′, h) ∈ H agreeing on N \ {k} with dh′,h
m.0 = qm.

Before presenting the multidimensional representation, we redefine the notions of cyclic-

ity and quasi-cyclicity. For any function u : Rn → R and any x ∈ Rn, define the restriction

um,x : R → R by um,x(·) = u(x1, . . . , xm−1, ·, xm+1, . . . , xn). Then, u is quasi-cyclic in the

m-th good if there exists x ∈ Rn such that the restriction um,x is quasi-cyclic; similarly, u

is cyclic in the m-th good if there is x ∈ Rn such that the restriction um,x is cyclic.

Given this reformulation of the framework, we have the following extension of our main

representation theorem to the multidimensional setting, in which the DM forms indepen-

dent linear habits over the first M goods.

Theorem 8.1 (Multidimensional habit formation). The family of preference relations º
satisfies Axioms PR, C, DC, GS¦, HC¦, and NDM¦ if and only if each ºh can be represented

by

Uh(c) =
∞∑

t=0

δtu
(
c1.t − ϕ1(h

(t)), . . . , cM.t − ϕM(h(t)), cM+1.t, cM+2.t, . . . , cn.t

)
, (15)

with δ ∈ (0, 1). For each good m ≤ M the habit aggregator ϕm : H → R is given by

ϕm(h) =
∞∑

k=1

λm.khm.k,
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where the coefficients {λm.k}k≥1 ∈ R for the m-th good are unique and satisfy

λm.k ∈ (0, 1) and
λm.k+1

λm.k

≤ 1− λm.1 for all k ≥ 1. (16)

The felicity u : Rn → R is continuous, unique up to positive affine transformation, and

satisfies the following acyclicity conditions: for each m ≤ M , u(·) is not quasi-cyclic in the

m-th good if
∑∞

k=1 λm.k < 1 and is not cyclic in the m-th good if
∑∞

k=1 λm.k = 1.32

If there are exactly two habit-forming goods and one regular consumption good, our

model is a special linear case of that in Palacios-Huerta (2003), which demonstrates the

existence of addiction cycles in a model of multiple independent habits.33

9 Extensions

In this paper we have provided theoretical foundations for intrinsic linear habit formation

by introducing the device of compensating a DM for giving up her habits. We have also

offered separability and monotonicity axioms appropriate for nonseparable preferences. In

addition to accommodating consumption histories of various lengths and clarifying the

differences between nested specifications of the model, our axiomatic approach is flexible

enough to accommodate other incarnations of habit formation. We conclude by briefly

discussing some of these extensions.

First, suppose that the DM instead cares about, and forms habits over, the rate of

growth of her consumption over time. Formally, assume that consumption is bounded be-

low by some small ε > 0 and that the DM forms habits over the logarithms of her past

consumption levels, (. . . , log h2, log h1), rather than over her actual consumption history.

Similarly, suppose that her preferences are defined over streams of logarithms of consump-

tion (log c0, log c1, . . .). Consider our axioms in this new setting. For example, in Axiom

HC(i), the DM would have to be compensated in terms of rates of consumption growth

rather than using consumption itself. In terms of the implications of GM, one stream would

gains-dominate another if its period-to-period growth rate is larger. Applying our main

representation theorem we would obtain a utility representation of habit formation where

32The proof is similar to that of Theorem 4.1.
33In contrast, cycles in Becker & Murphy (1988) require one dimension to have two stocks.
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the DM cares about the ratio of her current consumption level to a geometric average of

her prior consumption levels. That is, she behaves as if her history dependent utility over

actual consumption is given by Uh(c) =
∑∞

t=0 δtu
(

ct

ϕ(h(t))

)
, where ϕ(h) =

∏∞
k=1 hλk

k and the

habit formation coefficients {λk}k≥1 satisfy the same conditions as before.34

Moreover, our general approach can potentially be extended to axiomatize other models

of non-linear habit formation. If the definition of weaning is generalized so that compen-

sation may depend on the choice set, then the critical assumption generating linearity is

relaxed. One may then presumably generate other models of habit formation by placing the

appropriate axioms on compensation and modifying our techniques to obtain a discounted

utility representation on the relevant auxiliary space.

Finally, while this paper has addressed riskless choice, our approach can be immedi-

ately generalized to expected utility by imposing the von Neumann-Morganstern axioms

on lotteries and our axioms on the degenerate lotteries. The prototypical example used to

illustrate the failings of expected discounted utility is that DM would be indifferent between

a lottery that offers a .5-probability of (100, 100, . . .) and a .5-probability of (0, 0, . . .), and

another lottery that offers a .5-probability of getting each 0 or 100, independently in every

period. Under expected linear habit formation, the DM is not indifferent between these

lotteries because they affect her consumption path; she cares about the correlation in the

lottery because she is maximizing the expectation of a time-nonseparable utility. Models of

habit formation with expected utility offer some separation between risk aversion and the

intertemporal elasticity of substitution, thereby avoiding an important pitfall of expected

discounted utility.35

34Such a model is proposed by Kozicki & Tinsley (2002) and is particularly appealing in light of Wendner
(2003), which shows the counterintuitive implications of a common model in which the argument of the
felicity is current consumption divided by a linear habit stock.

35For example, see Constantinides (1990) or Boldrin, Christiano & Fisher (1997).
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Appendix

A Proof of Proposition 3.3

Let the preference º̇ be continuous in the product topology. If º̇ respects gains-domination

then it clearly satisfies GM*. To show the converse, suppose that c gains-dominates c′ and

that the preference satisfies GM*. By rearranging the inequality in the definition of gains-

domination, we see that ct − c′t ≥ ct−1 − c′t−1 for every t ≥ 1; i.e., the gap between c and

c′ is widening (since c ≥ c′). Let t1 = min{t : ct > c′t} and α1 = ct1 − c′t1 . Define c1 by

c1
t = c′t + α1 ∀ t ≥ t1 and c1

t = c′t otherwise. Note that c1 Â̇ c′ by gains-monotonicity*. For

n ≥ 2, inductively define tn = min{t : ct > cn−1
t }. So long as tn < ∞, let αn = ctn − cn−1

tn

and define cn by cn
t = cn−1

t + αn ∀ t ≥ tn and cn
t = cn−1 ∀ t < tn. By GM*, cn º̇ cn−1 ∀

n ≥ 2 and so by transitivity, cn Â̇ c1 Â̇ c′. Note that gains-domination implies tn > tn−1,

and by construction, cn
t = ct ∀ t ≤ tn. Hence limn→∞ cn = c in the product topology.

Continuity of º̇ in the product topology then guarantees the desired result c º̇ c1 Â̇ c′.

B Proof of sufficiency in Theorem 4.1

In this section of the Appendix we prove that the axioms PR, C, DC, GM, HC, and NDM

imply the desired representation. The axioms PR, C, DC, HC, GS and NDM are implicit

in all hypotheses, and we make it clear in the statement of the lemmas when GM is invoked

to clarify why Corollary 4.2 follows.

Results about the sequences dh′,h

Here we establish that each dh′,h may be written as an infinite sum of independent one-step

transitions, and begin proving that each such summand will satisfy a particular functional

equation. Because we will ultimately show that dh′,h = d
~0,h−h′ , we save on notation by

using dh whenever d
~0,h is intended.

Lemma B.1. For each h′ there is no nonzero c̄ ∈ C such that c + c̄ ºh′ c′ + c̄ iff c ºh′ c′

for all c, c′ ∈ C. Consequently we may define dh,h = (0, 0, . . .).
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Proof. If there were, then for any h ≥ h′ both c̄ + dh′,h and dh′,h would compensate from h′

to h, violating uniqueness.

The next lemma provides a useful “triangle equality.”

Lemma B.2. (The Triangle Equality) Let h′′ ≥ h′ ≥ h. Then dh,h′′ = dh,h′ + dh′,h′′.

Proof. By application of Weaning, c ºh c′ iff c + dh,h′ ºh′ c′ + dh,h′ . Using Weaning again,

c + dh,h′ ºh′ c′ + dh,h′ iff c + dh,h′ + dh′,h′′ ºh′′ c′ + dh,h′ + dh′,h′′ . Therefore, c ºh c′ iff

c + dh,h′ + dh′,h′′ ºh′′ c′ + dh,h′ + dh′,h′′ for arbitrary c, c′ ∈ C and so dh,h′ + dh′,h′′ plays the

role of dh,h′′ .36 The result follows by uniqueness of dh,h′′ .

The following connects compensating for one memory and for an entire habit.

Lemma B.3. Let h0 = h′ and for every k inductively define hk by hk
k = hk and hk

i = hk−1
i

for all i 6= k. Then, for any (h′, h) ∈ H, dh′,h =
∑∞

k=1 dhk−1,hk
. Moreover, dhk−1,hk

depends

only on the tuple (k, h′k, hk).

Remark B.4. Lemma B.3 implies that we may write dk,h′k,hk instead of dhk−1,hk
, since the

compensation is independent of the values of h′ and h on N\{k}. Indeed, dk,q′,q will denote

any transition between any two habit vectors in which only the k-th element is changed from

q′ to q. We also define one other piece of notation: for any h ∈ H, q ∈ Q and k ∈ N, the

habit hk,q ∈ H is defined by hk,q
k = q and hk,q

t = ht for every t 6= k.

Proof. We prove the lemma in three steps: (1) for any (h′, h) ∈ H, we may write dh′,h =
∑∞

k=1 dhk−1,hk
+ limK→∞ dhK ,h, where the final term is (0, 0, . . .) if h′, h are eventually iden-

tical; (2) each dhk−1,hk
is independent of the values of h′ and h on N \ {k}; and (3)

limK→∞ dhK ,h = (0, 0, . . .).

(i) Using iterated application of the triangle equality from Lemma B.2, observe that for

habits (h′, h) ∈ H that eventually agree (WLOG, suppose they agree on {t, t+1, . . .})
we have dh′,h =

∑t
k=1 dhk−1,hk

. Now consider arbitrary (h′, h) ∈ H. For any K ∈ N
and any c, c′ ∈ C, c ºh′ c′ iff c +

∑K
k=1 dhk−1,hk ºhK c′ +

∑K
k=1 dhk−1,hk

. But again by

Weaning in Axiom HC, c+
∑K

k=1 dhk−1,hk ºhK c′+
∑K

k=1 dhk−1,hk
iff c+

∑K
k=1 dhk−1,hk

+

dhK ,h ºh c′+
∑K

k=1 dhk−1,hk
+dhK ,h. Therefore, for arbitrary K, dh′,h =

∑K
k=1 dhk−1,hk

+

dhK ,h. Taking the limit over K, dh′,h =
∑∞

k=1 dhk−1,hk
+ limK→∞ dhK ,h.

36While in the intermediate step Axiom HC does not explicitly guarantee that dh′,h′′ uniquely satisfies
c + dh,h′ ºh′ c′ + dh,h′ iff c + dh,h′ + dh′,h′′ ºh′′ c′ + dh,h′ + dh′,h′′ , it suffices that the equivalence hold.
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(ii) We now show that each dhk−1,hk
is independent of the values of h′ and h on N \ {k}.

In fact, we will show that for arbitrary q′ ≤ q and (h, h̄) ∈ H,

dhk,q′ ,hk,q

= dh̄k,q′ ,h̄k,q

if and only if dhk,q ,h̄k,q

= dhk,q′ ,h̄k,q′
. (17)

To see this, use Lemma B.2 to write dhk,q′ ,h̄k,q
= dhk,q′ ,h̄k,q′

+ dh̄k,q′ ,h̄k,q
as well as

dhk,q′ ,h̄k,q
= dhk,q′ ,hk,q

+ dhk,q,h̄k,q
. Combining these two expressions,

dhk,q′ ,h̄k,q′ − dhk,q,h̄k,q

= dhk,q′ ,hk,q − dh̄k,q′ ,h̄k,q

.

This proves the claim (17). Note that dhk,q′ ,hk,q
= dh̄k,q′ ,h̄k,q

holds by Axiom HC(iii).

Consider arbitrary h′ ≤ h and k, and recall the definition of hk. Since hk and hk+1

agree on N \ {k}, (17) implies that dhk,hk+1
= d

~0k,h′k ,~0k,hk . Hence dhk−1,hk
depends only

on (k, h′k, hk), as claimed.

(iii) Now we show that limK→∞ dhK ,h = (0, 0, . . .). Since the habits hK and h agree on

{1, 2, . . . , K}, iterated application of Axiom HC(iii) implies that for each K, dhK ,h =

dh′0K ,h0K
. But by the triangle equality, dh′,h is decreasing in h′. Hence dh′0K ,h0K ≤

d
~0,h0K

. Therefore,

(0, 0, . . .) ≤ lim
K→∞

dhK ,h = lim
K→∞

dh′0K ,h0K ≤ lim
K→∞

d
~0,h0K

= (0, 0, . . .),

where the last equality is due to Axiom NDM and dh′,h decreasing in h′.

Next we use dynamic consistency in conjunction with compensation.

Lemma B.5. For any q, q̂ ∈ Q and k,

d
~0k,q,(~0k,q̂ ,q+d

~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 ) = d(~0k,q̂ ,d
~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 ) = kd
~0k,q̂

. (18)

Proof. Consider any c, c′ ∈ C such that (c0, c1, . . . , ck−1) and (c′0, c
′
1, . . . , c

′
k−1) are both

equal to (q, 0, 0, . . . , 0). According to Weaning,

c º~0 c′ iff c + d
~0k,q̂ º~0k,q̂ c′ + d

~0k,q̂

. (19)
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Applying DC to the RHS of (19),

c + d
~0k,q̂ º~0k,q̂ c′ + d

~0k,q̂

iff kc + kd
~0k,q̂ º

(~0k,q̂ ,q+d
~0k,q̂
0 ,d

~0k,q̂
1 ,...,d

~0k,q̂
k−1 )

kc′ + kd
~0k,q̂

. (20)

But again by DC, this time applied to the LHS of (19),

c º~0 c′ iff kc º~0k,q
kc′. (21)

Combining expressions (20) and (21) using (19),

kc º~0k,q
kc′ iff kc + kd

~0k,q̂ º
(~0k,q̂ ,q+d

~0k,q̂
0 ,d

~0k,q̂
1 ,...,d

~0k,q̂
k−1 )

kc′ + kd
~0k,q̂

. (22)

Since both have a q in the k-th place, ~0k,q ≤ (~0k,q̂, q + d
~0k,q̂

0 , d
~0k,q̂

1 , . . . , d
~0k,q̂

k−1). As kc and kc′

are arbitrary, kd
~0k,q̂

= d
~0k,q ,(~0k,q̂ ,q+d

~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 ). In particular, the choice of c, c′ (which

depended on q) does not affect d
~0k,q̂

. This means kd
~0k,q̂

= d(~0k,q̂ ,d
~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 ) as well,

giving the desired conclusion.

Lemma B.6. For any q, q̂ ∈ Q and k, we have

d
~0k,q ,~0k,q+d

~0k,q̂

0

0 = d
~0k,d

~0k,q̂

0

0 . (23)

Proof. By Lemma B.5,

d
~0k,q ,(~0k,q̂ ,q+d

~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 ) = d(~0k,q̂ ,d
~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 ). (24)

for any q, q̂ ∈ Q. Using Lemma B.2,

d
~0k,q,(~0k,q̂ ,q+d

~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 )

0 = d
~0k,q,~0k,q+d

~0k,q̂

0

0 + d
~0k,q+d

~0k,q̂

0 ,(~0k,q̂ ,q+d
~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 )

0 . (25)

Similarly,

d
(~0k,q̂ ,d

~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 )

0 = d
~0k,d

~0k,q̂

0

0 + d
~0k,d

~0k,q̂

0 ,(~0k,q̂ ,d
~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 )

0 . (26)

Because of Lemma B.3 and the fact that dk,q,q = (0, 0, . . .),

d
~0k,q+d

~0k,q̂

0 ,(~0k,q̂ ,q+d
~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 )

0 = d
~0k,d

~0k,q̂

0 ,(~0k,q̂ ,d
~0k,q̂

0 ,d
~0k,q̂

1 ,...,d
~0k,q̂

k−1 )

0 . (27)
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Setting equations (25) and (26) equal using (24) and canceling the parts corresponding to

(27) gives the desired result.

Construction of the habit aggregator

We now use the prior results to derive a sequence of functional equations and define the

habit aggregator ϕ : H → R as an infinite sum of linear functions. We develop properties

of the aggregator, including geometric bounds on the habit formation coefficients and a

recursive representation of compensation.

For each k define ϕk : Q → R by ϕk(q) = d
~0k,q

0 if q > 0 and ϕk(0) = 0. We naturally

define ϕ : H → R by ϕ(h) = dh
0 =

∑∞
k=1 ϕk(hk).

Lemma B.7. For each k and q, q̂ ∈ Q,

d
~0k,q+d

~0k,q̂

0

0 = d
~0k,q

0 + d
~0k,d

~0k,q̂

0

0 . (28)

Consequently, each ϕk(·) is additive on its image, i.e., for every k,

ϕk(ϕk(q) + q′) = ϕk(ϕk(q)) + ϕk(q
′) ∀ q, q′ ∈ Q. (29)

Proof. To see (28), observe that d
~0k,q+d

~0k,q̂

0

0 = d
~0k,q

0 + d
~0k,q ,~0k,q+d

~0k,q̂

0

0 by Lemma B.2 and that

d
~0k,q ,~0k,q+d

~0k,q̂

0

0 = d
~0k,d

~0k,q̂

0

0 by Lemma B.6. Then (29) follows by construction.

Remark B.8. Equation (29) is a complex functional equation, the solution of which has

not yet been completely characterized. A theorem of W. Jarczyk (proved in Jarczyk (1991,

pp. 52-61)) asserts that continuous solutions of (29) must be affine. Lemma B.11 examines

a weak technical condition which ensures continuity of ϕk(·). But first we show how Ax-

iom NDM reduces the functional equation (29) to a simple nonnegativity-restricted Cauchy

equation that can be solved.37

Lemma B.9. ϕk(q) = λkq for some λk > 0 and ∀ q ∈ Q; and dh′,h = d
~0,h−h′ for every

(h′, h) ∈ H.

37A function f : R+ → R+ satisfies a non-negativity restricted Cauchy equation if for every x, y ∈ R+,
f(x + y) = f(x) + f(y).
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Remark B.10. Since this lemma proves ϕk is linear, we may reduce the number of argu-

ments of dh′,h and apply ϕ(·): i.e., ϕ(h− h′) = dh−h′ = dh′,h.

Proof. By Axiom NDM and construction, ϕk(·) is onto Q. Hence (29) is identical to the non-

negativity restricted Cauchy equation under the reparametrization q′′ = ϕk(q
′). We know

ϕk(·) is strictly monotone; in combination with Axiom NDM, this implies continuity. Then

we know from Aczel & Dhombres (1989, Corollary 9) that ϕk is a strictly increasing and

affine function. To see the second result, note for each q′, q ∈ Q and k, dk,q′,q = dk,0,q−dk,0,q′ .

But ϕk(q) = dk,0,q is linear, so dk,q′,q = dk,0,q−q′ . The result follows immediately from the

additive characterization of dh′,h.

We now consider an alternative condition forcing continuity of dk,0,q given that it satisfies

the functional equation (29). The condition says that the set

{ε > 0 | lim
n→∞

dk,ε,qn 6= dk,ε,q}

has Lebesgue measure zero for every q > 0 and {qn} ∈ Q with limn→∞ qn = q. We call this

condition (∗). It differs from the condition that dk,ε,q is almost everywhere continuous in q

for any fixed ε, which is implied by monotonicity in q.

Lemma B.11. Suppose condition (∗) is satisfied. Let the sequence {qn}n∈N be in Q

and let limn→∞ qn = q. Then, for any k, limn→∞ dk,0,qn
= dk,0,q for every q > 0 and

limn→∞ dk,0,qn
= (0, 0, . . .) for q = 0.

Proof. The triangle equality in Lemma B.2 shows that dh′,h is monotonic in each argument

and therefore almost everywhere continuous in each. We wish to rule out discontinuities

on a set of measure zero. Consider some q > 0. We prove that if {q̂n} ∈ Q is s.t.

limn→∞ q̂n = q̂ where 0 < q̂ < q, then limn→∞ dk,q̂n,q = dk,q̂,q, since dk,q̂n,q = dk,0,q − dk,0,q̂n
.

Suppose instead that limn→∞ dk,q̂n,q 6= dk,q̂,q and choose q̄ > q. Then dk,q̂n,q̄ = dk,q̂n,q + dq,q̄

implies limn→∞ dk,q̂n,q̄ 6= dk,q̂,q̄ for every q̄ > q. Take {q̄n} with q̄n ≤ q̄ and limn→∞ q̄n =

q̄. For some such q̄, large n, and ε < q̂, dk,q̂n,q̄ = dk,q̂n,q̄n
+ dq̄n,q̄ so limn→∞ dk,q̂n,q̄ =

limn→∞ dk,q̂n,q̄n
= limn→∞ dk,ε,q̄n − limn→∞ dk,ε,q̂n

. By limn→∞ dk,q̂n,q̄ 6= dk,q̂,q̄ = dk,ε,q̄ − dk,ε,q̂

then limn→∞ dk,ε,q̄n 6= dk,ε,q̄. This is so for a set of ε’s of nonzero measure, violating condition

(∗). Hence limn→∞ dk,0,qn
= dk,0,q if q > 0. Now consider the case q̂ = 0 and limn→∞ q̂n = q̂.

Suppose by contradiction that limq̃→0 dk,0,q̃
0 = ε > 0 (if ε = 0 then the stream is identically
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zero since it is decreasing). By the functional equation (28), d
~0k,q+d

~0k,q̃

0

0 = d
~0k,q

0 + d
~0k,d

~0k,q̃

0

0 .

Using our prior result for q̂ > 0 and taking q̃ → 0 on both sides, dk,0,q+ε
0 = dk,0,q

0 + dk,0,ε
0 .

Since ε > 0, take q → 0 on both sides, giving limq→0 dk,0,q
0 = 0 < ε. This contradicts the

definition of ε.

The following lemma develops a recursive representation of compensation.

Lemma B.12. For any t ≥ 0 and h ∈ H, tdh = dhdh
0dh

1 ···dh
t−1; so in particular, dh

t =

ϕ(hdh
0d

h
1 · · · dh

t−1).

Proof. By strong induction. Clearly the lemma is true for t = 0: dh = dh. Assume it

is true for every t smaller than some t̂ that tdh = dhdh
0dh

1 ···dh
t−1 . This implies that t̂+1dh =

1d
hdh

0dh
1 ···dh

t̂−1 . By the inductive hypothesis, and using hdh
0d

h
1 · · · dh

t̂−1
as the habit vector,

1d
hdh

0dh
1 ···dh

t̂−1 = d
hdh

0dh
1 ···dh

t̂−1
d

hdh
0 dh

1 ···dh
t̂−1

0 .

Once more by the inductive hypothesis, dh
t̂

= d
hdh

0dh
1 ···dh

t̂−1

0 . Therefore, t̂+1dh is equal to

dhdh
0dh

1 ···dh
t̂ as desired.

Lemma B.12 implies dh
1 = ϕ(hϕ(h)), dh

2 = ϕ(hϕ(h)ϕ(hϕ(h))), etc. We also use this

lemma to prove the geometric decay of the λ’s.

Lemma B.13. Every dk,q,q′ is decreasing if and only if λ1 ∈ (0, 1) and

λk+1

λk

≤ 1− λ1 ∀ k ≥ 1. (30)

We remark that (30) clearly implies that
∑∞

k=1 λk ≤ 1. Note that the geometric bounds

are found from each dk,q,q′ and do not require the first part of Axiom NDM.

Proof. Lemmas B.3, B.9 and B.12 together prove that each dk,q′,q
t may be written

dk,q′,q
t = (q − q′)λt+k +

t−1∑
i=0

dk,q′,q
i λt−i. (31)

Therefore, for t ≥ 1,

dk,q′,q
t−1 − dk,q′,q

t =
t−2∑
i=0

dk,q′,q
i λt−i−1 + λt−1+k(q − q′)−

t−1∑
i=0

dk,q′,q
i λt−i − λt+k(q − q′). (32)
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When t = 1, only the term (λk − λkλ1 − λk+1)(q − q′) remains in (32) for each k. Hence,

the condition (30) holds if and only if dk,q′,q
0 ≥ dk,q′,q

1 for every k. Note that this also has

the effect of implying λ1 < 1, since λk > 0 for every k by Lemma B.9. Now, we show that

(30) guarantees that dk,q′,q
t−1 ≥ dk,q′,q

t for every t. Indeed, rearranging (32) and plugging in

from (31), we obtain

dk,q′,q
t−1 − dk,q′,q

t =
t−2∑
i=0

dk,q′,q
i [λt−i−1 − λt−i] + (q − q′)[λt−1+k − λt+k]− λ1d

k,q′,q
t−1

=
t−2∑
i=0

dk,q′,q
i [λt−i−1(1− λ1)− λt−i] + (q − q′)[λt−1+k(1− λ1)− λt+k]

≥ 0,

where the nonnegativity follows from condition (30).

Lemma B.14. For any h ∈ H and t,
(
infk{λk+1

λk
})t ≤ ϕ(h0t) ≤ (

supk{λk+1

λk
})t

ϕ(h), with

strict inequality holding for the upper bound if there exists k such that λk+1

λk
< 1 − λ1 and

hk 6= 0.

Proof. This follows from observing that ϕ(h0t) =
∑∞

k=t+1
λk

λk−t
λk−thk−t.

We next demonstrate that the compensating sequences are either constant or tend to

zero asymptotically (so fast they are infinitely summable), depending on whether
∑∞

k=1 λk =

1 or
∑∞

k=1 λk < 1, respectively.

Lemma B.15. For any h ≥ 0, limt→∞
dh

t

dh
t−1

< 1 if
∑∞

k=1 λk < 1. In particular, if for some

ε > 0 there is k∗ such that
λk∗+1

λk∗
= 1− λ1 − ε then limt→∞

dh
t

dh
t−1

≤ 1− ελk∗. Consequently,

if
∑∞

k=1 λk < 1 then for any h,
∑∞

t=1 dh
t < ∞ and limt→∞ dh

t = 0.

Proof. Let ε = 1 − λ1 − λk∗+1

λk∗
and xt,k∗ =





dh
t−1−k∗ if t > k∗

hk∗+1−t if t ≤ k∗
Using the recursive

construction of Lemma B.12 and the previous lemma,

dh
t

dh
t−1

=
ϕ(hdh

0 · · · dh
t−1)

dh
t−1

=
ϕ(hdh

0 · · · dh
t−20) + λ1d

h
t−1

dh
t−1

≤ (1− λ1)d
h
t−1 − εxt,k∗λk∗ + λ1d

h
t−1

dh
t−1

,
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with equality if k∗ is the unique k such that λk+1

λk
< 1 − λ1. Because we know that

dh
t−1−k∗ ≥ dh

t−1 for every t > k∗,

dh
t

dh
t−1

≤ (1− λ1)d
h
t−1 − εdh

t−1−k∗λk∗ + λ1d
h
t−1

dh
t−1

= (1− λ1)− ε
dh

t−1−k∗

dh
t−1

λk∗ + λ1 ≤ 1− ελk∗ .

Finally, the compensating streams are constant when
∑∞

k=1 λk = 1, as claimed.

Lemma B.16. If
∑∞

k=1 λk = 1 (i.e., λi+1

λi
= 1 − λ1 ∀ i), then every compensating stream

dh′,h is constant.

Proof. It is easily checked for this case that given any h ∈ H and q ∈ Q, we have ϕ(hq) =

(1 − λ1)ϕ(h) + λ1q. Therefore ϕ(hϕ(h)) = ϕ(h). The claim easily follows from induction

and the recursive characterization in Lemma B.12.

Construction of the continuous preference relation º∗

In this subsection we show that Axiom HC permits the construction of a continuous map

g from H × C into an auxiliary space C∗. We also develops critical properties of g that

allow us to construct a well-defined continuous preference relation on C∗ which preserves

the original preference.

We endow the space ×∞i=0R with the product topology and define the transformation

g : H × C → ×∞i=0R by g(h, c) = (c0 − ϕ(h), c1 − ϕ(hc0), c2 − ϕ(hc0c1), . . .). Let C∗ =

g(H × C) and C∗
h = g({h} × C), for any h ∈ H, be the image and projected image under

g, respectively. We shall consider C∗ to be a metric subspace of ×∞t=0R, implying that C∗

is a metric space in its own right. As a reminder, the spaces H and C are metrized by the

sup metric ρH(h, h′) = supk |hk − h′k| and the product metric ρC(c, c′) =
∑∞

t=0
1
2t

|ct−c′t|
1+|ct−c′t|

respectively. We will naturally metrize H×C by ρH×C((h, c), (h′, c′)) = ρH(h, h′)+ρC(c, c′).

Using these metrics it is not difficult to see, as the ensuing lemma asserts, that g(·, ·)
is jointly continuous in all arguments and that once one fixes an h ∈ H the map g(h, ·) :

C → C∗
h is a homeomorphism (that is, it is continuous and also has a continuous inverse).

The continuity in h is a direct consequence of the use of the sup metric on the space H

and would fail if the product metric were used instead.38

38To see this, we can show that ϕ(·) is discontinuous at ~0 under the product metric. Take any ε > 0 and
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Lemma B.17. g(·, ·) is a continuous mapping; moreover, for any given h ∈ H, g(h, ·) is

a homeomorphism into C∗
h.

Proof. The map is continuous in the topology if every component is. Linearity of ϕ implies

that the t-th component can be written as ct−ϕ(h0t)−∑t
k=1 λkct−k; as only there is only

a finite sum of elements of c in each component, the map is continuous with respect to C.

Using the sup metric it is clear that ϕ(·) is continuous with respect to H. The desired joint

continuity is evident under the respective metrics. Finally, for any h ∈ H we can directly

exhibit the inverse g−1(h, ·) : C∗
h → C. It is the mapping given by the clearly continuous

map

g−1(h, c∗) = (c∗0+ϕ(h), c∗1+ϕ(h, c∗0+ϕ(h)), c∗2+ϕ
(
h, c∗0+ϕ(h), c∗1+ϕ(h, c∗0+ϕ(h))

)
, . . .), (33)

We will often take advantage of the next result characterizing the sets C∗
h.

Lemma B.18. C∗
h′ ⊆ C∗

h for any (h′, h) ∈ H.

Proof. To show that the C∗
h are an increasing sequence, take (c0 − ϕ(h′), c1 − ϕ(h′c0), c2 −

ϕ(h′c0c1), . . .) ∈ C∗
h′ , so that (c0, c1, c2, . . .) ∈ C. Consider any (h′, h) ∈ H. It is clear that

c + dh′,h ∈ C. By Lemma B.12 we know that dh′,h = dh−h′ = (ϕ(h − h′), ϕ(h − h′, ϕ(h′ −
h)), . . .). Moreover, ϕ is affine by Lemma B.9. Using the additivity of ϕ,

(c0+ϕ(h− h′)− ϕ(h), c1 + ϕ(h− h′, ϕ(h− h′))− ϕ(h, c0 + ϕ(h− h′)), . . .)

= (c0 + ϕ(h− h′ − h), c1 + ϕ(h− h′ − h, ϕ(h− h′)− c0 − ϕ(h− h′)), . . .)

= (c0 − ϕ(h′), c1 − ϕ(h′c0), c2 − ϕ(h′c0c1), . . .) ∈ C∗
h.

We would like to know that C∗ is separable, connected and convex. Since H and C are

each connected, so is H ×C; so C∗ is certainly connected, being the continuous image of a

connected space. We cannot directly use the well-known result that the continuous image

for j ∈ N define hj by hj
k =

{
0 k 6= j
ε

λj
k = j . Each hj ∈ H since it is bounded, and hj satisfies ϕ(hj) = ε > 0.

Yet hj goes to ~0 in the product metric.
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of a separable space is separable, since H is not separable under the sup metric; and if we

were to make H separable by endowing it with the product topology instead, then g would

not be continuous with respect to h.

Lemma B.19. C∗ is separable, connected and convex.

Proof. We have already shown connectedness. To see separability, construct the sequence

{hn}n∈Z by hn = (. . . , n, n, n). By Lemma B.18, C∗ =
⋃

n∈ZC∗
hn . Since each g(hn, ·) is

continuous, each C∗
hn is the continuous image of a separable space and therefore separable.

Letting C̃∗
hn denote the countable dense subset of each C∗

hn , we offer
⋃

n∈Z C̃∗
hn as a countable

dense subset of C∗. Finally, to see that C∗ is convex, note that the transformation g(·, ·) is

linear and that C and H are convex.

We define a binary relation º∗ on C∗ × C∗ by

g(h, c) º∗ g(h, ċ) iff c ºh ċ. (34)

Lemma B.20. The relation º∗ is well-defined.

Proof. To see that º∗ is well-defined, note that we may alternatively write (34) as c∗ º∗ ċ∗

if and only if

(c∗0 + ϕ(h), c∗1 + ϕ(h, c∗0 + ϕ(h)), . . .) ºh (ċ∗0 + ϕ(h), ċ∗1 + ϕ(h, ċ∗0 + ϕ(h)), . . .) (35)

for some h ∈ H such that c∗, ċ∗ ∈ C∗
h. Suppose by contradiction that for some h′ 6= h such

that c∗, ċ∗ ∈ C∗
h′ ,

(ċ∗0 + ϕ(h′), ċ∗1 + ϕ(h′, ċ∗0 + ϕ(h′)), . . .) Âh′ (c∗0 + ϕ(h′), c∗1 + ϕ(h′, c∗0 + ϕ(h′)), . . .). (36)

Take any h̄ ≥ h, h′. Since the C∗
ĥ

are nested by Lemma B.18, c∗, ċ∗ ∈ C ∗̄
h
. By application

of Weaning to the RHS of (35) and Lemma B.12,

(c∗0 + ϕ(h) + ϕ(h̄− h), c∗1 + ϕ(h, c∗0 + ϕ(h)) + ϕ(h̄− h, ϕ(h̄− h)), . . .) ºh̄

(ċ∗0 + ϕ(h) + ϕ(h̄− h), ċ∗1 + ϕ(h, ċ∗0 + ϕ(h)) + ϕ(h̄− h, ϕ(h̄− h)), . . .).
(37)
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Using the affine nature of ϕ, (37) is equivalent to

(c∗0 + ϕ(h̄), c∗1 + ϕ(h̄, c∗0 + ϕ(h̄)), . . .) ºh̄ (ċ∗0 + ϕ(h̄), ċ∗1 + ϕ(h̄, ċ∗0 + ϕ(h̄)), . . .). (38)

Similarly, by applying Weaning to (36) we see that (36) holds if and only if

(ċ∗0 + ϕ(h̄), ċ∗1 + ϕ(h̄, ċ∗0 + ϕ(h̄)), . . .) Âh̄ (c∗0 + ϕ(h̄), c∗1 + ϕ(h̄, c∗0 + ϕ(h̄)), . . .),

contradicting (38). Therefore º∗ is well-defined.

Now that º∗ is well-defined, we show that it is a continuous preference relation.

Lemma B.21. º∗ is a continuous preference relation.

Proof. The C∗
h′ are nested by Lemma B.18. Thus for any c∗, ċ∗, ĉ∗ ∈ C∗, there is h ∈ H

large enough so that c∗, ċ∗, ĉ∗ ∈ C∗
h. Hence º∗ inherits completeness and transitivity over

{c∗, ċ∗, ĉ∗} from ºh. As c∗, ċ∗, ĉ∗ ∈ C∗ were arbitrary, º∗ is a preference relation.

To prove that º∗ is continuous in the product topology, we will show that the weak

upper contour sets are closed; the argument for the weak lower contour sets is identical.

Consider any sequence of streams {c∗n}n∈Z ∈ C∗ converging to some c∗ ∈ C∗ and suppose

that there is some ĉ∗ ∈ C∗ such that c∗n º∗ ĉ∗ for all n. Take any h and c such that

g(h, c) = c∗. By Lemma B.17, g is continuous: for any ε-ball Y ⊂ C∗ around c∗ there is a

δ-ball X ⊂ H×C around (h, c) such that g(X) ⊂ Y . Because the sequence {c∗n} converges

to c∗ there is a subsequence {c∗m} ∈ Y also converging to c∗. By our use of the sup metric

on H we know that any (h′, c′) ∈ X must satisfy h′ ≤ h + (δ, δ, . . .). Then Lemma B.18

ensures that for every m, c∗m ∈ C∗
h+(...,δ,δ). Take h̄ ≥ h + (. . . , δ, δ) and large enough that

ĉ∗ ∈ C ∗̄
h
. This permits us to compare all of the corresponding streams in C under ºh̄.

Indeed, using g−1(h̄, ·) as defined in (33), take c̄m = g−1(h̄, c∗m) for each m, c̄ = g−1(h̄, c∗),

and ˆ̄c = g−1(h̄, ĉ∗). Using the hypothesis and the definition of º∗ we know that c̄m ºh̄
ˆ̄c for

every m. Lemma B.17 asserts that g−1(h̄, ·) is continuous, so c̄m converges to c̄. Since ºh̄ is

continuous by Axiom C, we know c̄ ºh̄
ˆ̄c. This proves the desired result that c∗ º∗ ĉ∗.

Because º∗ is a continuous preference relation and C∗ is separable, we note for future

reference that the argument for Proposition 3.1 shows that º∗ has a continuous represen-

tation U∗ : C∗ → R.
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We now show that º∗ exhibits strict preference over some pair of streams that differ

only by a single element. The proof relies on Gains Sensitivity.

Lemma B.22. There exist q∗, q̂∗ ∈ R, c∗ ∈ C∗, and t ∈ N such that (c∗t−1, q∗, t+1c∗) Â∗
(c∗t−1, q̂∗, t+1c∗).

Proof. Let α > 0, h ∈ H, and c ∈ C be such that c + α 6∼h c. We make the following

observation: since the compensating streams are (weakly) decreasing and for each α > 0,

d
~0α
0 < α, we can write any positive constant stream as a staggered sum of streams of the

form (α, d
~0α). Formally, for any α > 0 we can find a sequence of times t1 < t2 < · · · and

positive numbers α > α1 > α2 > · · · such that the stream (α, α, . . .) can be written as

the consumption stream created by (α, d
~0α) starting at time 0, plus the stream (α1, d

~0α1
)

starting at time t1, plus the stream (α2, d
~0α2

) starting at time t2, etc. Now, let us suppose

by contradiction that ∀ q∗, q̂∗ ∈ R, c∗ ∈ C∗, and t ∈ N, (c∗t−1, q∗, t+1c∗) ∼∗ (c∗t−1, q̂∗, t+1c∗).

Let g(h, c) = c∗ where h, c are given as initally stated. Then (c∗t−1, c∗t + α, t+1c∗) ∼∗ c∗ by

hypothesis. By definition, this means that g−1(h, (c∗t−1, c∗t + α, t+1c∗)) ∼h g−1(h, (c∗)), or

(ct−1, ct + α, t+1c + d
~0α) ∼h c. In light of our initial observation, iterative application of

the indifference for α1, α2, . . . and product continuity, this implies that c + (α, α, . . .) ∼h c,

violating Gains Sensitivity.

Separability conditions for º∗

We now prove a stronger version of stationarity than given in Koopmans (1960).

Lemma B.23. For any c∗, ċ∗ ∈ C∗ with c∗0 = ċ∗0, (c∗0,
1c∗) º∗ (c∗0,

1ċ∗) iff 1c∗ º∗ 1ċ∗.

Proof. To see this, note that (c∗0,
1c∗) º∗ (c∗0,

1ċ∗) iff

(c∗0 + ϕ(h), c∗1 + ϕ(h, c∗0 + ϕ(h)), . . .) ºh (c∗0 + ϕ(h), ċ∗1 + ϕ(h, c∗0 + ϕ(h)), . . .) (39)

for some h ∈ H such that c∗, ċ∗ ∈ C∗
h. Since c∗ ∈ C∗

h, c∗0 + ϕ(h) ∈ Q. Because ºh satisfies

the dynamic consistency axiom DC, the relation in (39) holds iff

(c∗1+ϕ(h, c∗0 + ϕ(h)), c∗2 + ϕ
(
h, c∗0 + ϕ(h), c∗1 + ϕ(h, c∗0 + ϕ(h))

)
, . . .)

ºh(c∗0+ϕ(h)) (ċ∗1 + ϕ(h, c∗0 + ϕ(h)), ċ∗2 + ϕ
(
h, c∗0 + ϕ(h), ċ∗1 + ϕ(h, c∗0 + ϕ(h))

)
, . . .).

48



This means by definition that 1c∗ º∗ 1ċ∗.

We now prove that Compensated Separability suffices for the required additive separa-

bility conditions to hold; we must show that a certain mapping from C into C∗ is surjective,

so that the needed conditions apply for all elements of C∗.

Recall Lemma B.18, which showed that the C∗
h′ are nested. In this case we need an

orthogonal result, that even though ĥ0t+1 6≥ hct it is possible that ĥ is sufficiently large to

ensure that C∗
hct ⊆ C∗

ĥ0t+1 (we remind the reader that ct ∈ Qt+1).

Lemma B.24. For any h ∈ H, t ≥ 0 and (c0, c1, . . . , ct) ∈ Qt+1, there exists ĥ ∈ H large

enough that C∗
hct ⊆ C∗

ĥ0t+1.

Proof. Since ϕ is linear and strictly increasing in each component, we may choose ĥ > h

such that

ϕ(ĥ0t+1)− ϕ(hct) ≥
t∑

s=0

(1− λ1)
s+1cs. (40)

We will now show that we can find ĉ ∈ C such that the claim of the lemma is true. Indeed,

choose any c∗ ∈ C∗
hct . Then, there is a ċ ∈ C such that g(hct, ċ) = c∗. For it to also be true

that c∗ ∈ C∗
ĥ0t+1 it must be that for some ĉ ∈ C,

ĉs − ϕ(ĥ0t+1ĉs−1) = c∗s = ċs − ϕ(hctċs−1) ∀s ≥ 0, (41)

where c−1, ċ−1 are ignored for the case s = 0. We claim that we can construct ĉ by using

(41) to recursively define ĉs = ϕ(ĥ0t+1ĉs−1) + ċs − ϕ(hctċs−1) for every s ≥ 0.

We need only show that ĉ ∈ C to complete the proof. To do this we must show two

things: first, that ĉ is nonnegative, and second, that ĉ remains bounded.

(i) ĉ is nonnegative: it will suffice to show that ĉ ≥ ċ. For s = 0 it is clearly true that

ĉ0 ≥ ċ0, since we have chosen ϕ(ĥ0t+1) − ϕ(hct) ≥ 0 in (40). We will proceed by

strong induction, assuming that ĉŝ−1 ≥ ċŝ−1 for every ŝ ≤ s for some s. From (41),

to prove that ĉs ≥ ċs it must be shown that ϕ(ĥ0t+1ĉs−1) − ϕ(hctċs−1) ≥ 0. In fact,

using the linearity of ϕ, the fact that ĥ ≥ h, and the inductive hypothesis, observe
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that

ϕ(ĥ0t+1ĉs−1)− ϕ(hctċs−1) = ϕ
(
(ĥ− h)0t+s+1

)
+ ϕ

(
~0(ĉ1 − ċ1) · · · (ĉs−1 − ċs−1)

)
+

ϕ
(
~0(ĉ0 − ċ0)0

s−1
)− ϕ(~0ct0s)

≥ ϕ
(
~0(ĉ0 − ċ0)0

s−1
)− ϕ(~0ct0s)

= ϕ
(
~0
(
ϕ(ĥ0t+1)− ϕ(hct)

)
0s−1

)
− ϕ(~0ct0s)

≥ λs

t∑
i=0

(1− λ1)
i+1ci −

t∑
i=0

λs+1+ici

=
t∑

i=0

ci[λs(1− λ1)
i+1 − λs+1+i]

≥ 0,

(42)

where the first inequality comes from the nonnegativity of ϕ; the equality comes from

plugging in for ĉ0− ċ0 from (41); the second inequality comes from (40) and the linear

representation for ϕ in Lemma B.9; and the last inequality comes from the result in

Lemma B.13 that λs+1+i

λs
≤ (1− λ1)

i+1.

(ii) ĉ remains bounded: since ċ ∈ C it is bounded, so it will suffice to show that the

difference between ĉ and ċ is bounded. Let us denote by y the quantity ϕ
(
(ĥ −

h)0t+2
)

+ ϕ
(
~0(ĉ0 − ċ0)0

)
. By construction, for every s ≥ 1, ĉs − ċs is equal to the

sum on the RHS of the first equality in (42). By the fading nature of compensation,

all terms but ϕ
(
~0(ĉ1 − ċ1) · · · (ĉs − ċs)

)
converge to 0 as s tends to infinity. In fact,

for any h and t, ϕ(h0t) ≤ (1 − λ1)
tϕ(h) by Lemma B.14. Consequently, the sum

ϕ
(
(ĥ−h)0t+s+1

)
+ϕ

(
~0(ĉ0−ċ0)0

s−1
)

is no bigger than (1−λ1)
s−1y for any s. Let us drop

the negative term −ϕ(~0ct0s) in (42) to obtain an upper bound. By the definition of y,

we see that ĉ1− ċ1 ≤ y. We claim that for all s ≥ 1, ĉs− ċs ≤ y. The proof proceeds by

strong induction. Using the inductive hypothesis, ĉs− ċs ≤ y(1−λ1)
s−1 + y

∑s−1
k=1 λs.

But
∑s−1

k=1 λs ≤ λ1

∑s−2
k=0(1 − λ1)

k = 1 − (1 − λ1)
s−1, so we see that ĉs − ċs ≤ y as

claimed.

This completes the proof of the lemma.
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For each t, define the “compensated consumption” map ξt : H × C → C∗ by

ξt(h, c) = g
(
h, (ct−1, tc + dh0t,hct−1

)
)
. (43)

We will wish to show that each ξt can “hit” every c∗ ∈ C∗ with the appropriate choices of

h and c; namely,

Lemma B.25. Each ξt is surjective.

Proof. Fix any c∗ ∈ C∗ and t ≥ 1. By definition, we already know that there is some h ∈ H

and c ∈ C such that g(h, c) = c∗. That is, for every s, cs − ϕ(hc0c1 . . . cs−1) = c∗s. Let us

fix this h and c.

We wish to show that there exist ĥ ∈ H and ĉ ∈ C such that ξt(ĥ, ĉ) = c∗, i.e.

( ĉ0−ϕ(ĥ), ĉ1−ϕ(ĥĉ0), . . . , ĉt−1−ϕ(ĥĉ0 . . . ĉt−2), ĉt−ϕ(ĥ0t), ĉt+1−ϕ(ĥ0tĉt), . . . ) = c∗. (44)

Because c∗ ∈ C∗
h, tc∗ ∈ C∗

hct−1 . Equation (44) suggests that we must show that tc∗ ∈ C∗
ĥ0t

for some ĥ ∈ H. This is accomplished by Lemma B.24, which provides a c̄ and ĥ > h

s.t. g(ĥ0t, c̄) = tc∗. Moreover, since ĥ > h, c∗ ∈ C∗
ĥ
. Therefore, there exists ¯̄c ∈ C such

that g(ĥ, ¯̄c) = c∗ and in particular, g(ĥ, ¯̄c)t−1 = c∗t−1. Setting ĉ = (¯̄ct−1, tc̄), we have

ξt(ĥ, ĉ) = c∗.

We shall now demonstrate that additive separability is satisfied.

Lemma B.26. º∗ satisfies the following separability conditions:

(i) Take any c∗, ĉ∗ ∈ C∗ with c∗0 = ĉ∗0. Then, for any c̄∗0 s.t. (c̄∗0,
1c∗), (c̄∗0,

1ĉ∗) ∈ C∗,

(c∗0,
1c∗) º∗ (c∗0,

1ĉ∗) iff (c̄∗0,
1c∗) º∗ (c̄∗0,

1ĉ∗). (45)

(ii) For any t ≥ 0 and c∗, ĉ∗, c̄∗, ¯̄c∗ ∈ C∗ s.t. (c∗t, c̄∗), (ĉ∗t, c̄∗), (c∗t, ¯̄c∗), (ĉ∗t, ¯̄c∗) ∈ C∗,

(c∗t, c̄∗) º∗ (ĉ∗t, c̄∗) iff (c∗t, ¯̄c∗) º∗ (ĉ∗t, ¯̄c∗). (46)

Proof. The proof of condition (i) follows directly from stationarity of º∗, proved in Lemma

B.23. The remainder of the proof deals with condition (ii).
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Find h large enough so that (c∗t, c̄∗), (ĉ∗t, c̄∗), (c∗t, ¯̄c∗), (ĉ∗t, ¯̄c∗) ∈ C∗
h. Hence, there exist

c̃, ˜̃c, ċ, c̈ such that g(h, c̃) = (c∗t, c̄∗), g(h, ˜̃c) = (ĉ∗t, c̄∗), g(h, ċ) = (c∗t, ¯̄c∗), and g(h, c̈) =

(ĉ∗t, ¯̄c∗). Moreover, we must have c̃t = ċt and ˜̃ct = c̈t.

By Lemma B.25, ξt is surjective. We claim that there are ĥ and c, ĉ, c̄, ¯̄c ∈ C so that

ξt(ĥ, (ct, c̄)) = (c∗t, c̄∗), ξt(ĥ, (ĉt, c̄)) = (ĉ∗t, c̄∗),

ξt(ĥ, (ct, ¯̄c)) = (c∗t, ¯̄c∗), ξt(ĥ, (ĉt, ¯̄c)) = (ĉ∗t, ¯̄c∗).
(47)

Recalling the construction in Lemma B.24, choose ĥ > h large enough so that

ϕ(ĥ0t+1) ≥ max
{ t∑

s=0

(1− λ1)
s+1c̃s + ϕ(hc̃t),

t∑
s=0

(1− λ1)
s+1˜̃cs + ϕ(h˜̃ct)

}
.

Now that we have an ĥ that will work uniformly for these four streams in C∗, note again

from the construction in Lemma B.24 that the required continuation streams depend only

on c̃t = ċt and ˜̃ct = c̈t. Therefore, c̄ and ¯̄c may be constructed as desired in (47). From

the construction at the end of Lemma B.25 and the fact that ĥ has been chosen to work

uniformly, c and ĉ may be chosen to satisfy (47).

Consequently, using (47), the desired result (46) holds if and only if

ξt(ĥ, (ct, c̄)) º∗ ξt(ĥ, (ĉt, c̄)) iff ξt(ĥ, (ct, ¯̄c)) º∗ ξt(ĥ, (ĉt, ¯̄c)),

which, using the definitions of ξt in (43) and º∗, holds if and only if

(ct−1, c̄ + dh0t,hct−1

) ºĥ (ĉt−1, c̄ + dh0t,hĉt−1

) if and only if

(ct−1, ¯̄c + dh0t,hct−1

) ºĥ (ĉt−1, ¯̄c + dh0t,hĉt−1

).

But this is immediately true by Compensated Separability.

For each subset of indices K ⊂ N, we will define the projection correspondences ιK :

C∗ Ã ×i∈KR by ιK(Ĉ∗) = {x ×i∈K R | ∃ c∗ ∈ Ĉ∗ s.t. c∗|K = x }, where c∗|K denotes the

restriction of the stream c∗ to the indices in K (e.g., c∗|{3,4} = (c∗3, c
∗
4)). For any t ≥ 0 we

will use C∗
t and tC∗ to denote the projected spaces ι{t}(C∗) and ι{t,t+1,...}(C∗), respectively.

Since g(·, ·) is continuous the projected image C∗
t is connected for every t. Moreover each

52



C∗
t is separable. It is evident by the arbitrariness of histories used to construct these spaces

that for any t, tC∗ = C∗.

Lemma B.27. Choose some t and ĉ∗ ∈ tC∗, and take c∗s ∈ C∗
s for every 0 ≤ s ≤ t. Then

(c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗) ∈ C∗.

Proof. Pick ĥ ∈ H and ĉ ∈ C such that ĉ∗ ∈ C∗
ĥĉt , and let c̃∗t = g(ĥ, ĉ)|{0,1,...,t}. Choose

any ε ≥ max{0, max0≤i≤t
c̃∗i−c∗i∑∞
k=i+1 λk

} and set h = ĥ + (. . . , ε, ε). Recall the inverse func-

tion g−1(h, ·), which takes an element of C∗ and returns an element of C. We do not

yet know that (c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗) ∈ C∗, but we demonstrate that applying the transfor-

mation used in g−1(h, ·) to (c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗) returns a nonnegative stream. Let us take

ct = g−1(h, (c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗))|{0,1,...,t}. Since the C∗
h′ are nested and h ≥ ĥ, it will suffice

to prove that ct ≥ ĉt, for then ĉ∗ ∈ C∗
hct and there is a c̄ ∈ C such that g(h, (ct, c̄)) =

(c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗). Using the transformation, ct ≥ ĉt if and only if c∗0 + ϕ(h) ≥ c̃∗0 + ϕ(ĥ),

c∗1 + ϕ(hc0) ≥ c̃∗1 + ϕ(ĥĉ0), up through c∗t + ϕ(hc0 . . . ct−1) ≥ c̃∗t + ϕ(ĥĉ0 . . . ĉt−1). But this

can be seen through forward induction by using the choice of ε, definition of h, and the

fact that ϕ is linear and increasing in each component.

The previous discussion has proved that C∗ = C∗
1 × C∗

2 × C∗
3 × C∗ and that º∗ is

continuous and sensitive (stationarity then implies essentiality of all periods). Hence C∗ is

a product of separable and connected topological spaces. Suppose we could also show that

for any c∗, ĉ∗ ∈ C∗,

(c∗0, c
∗
1, c

∗
2,

3c∗) º∗ (c∗0, ĉ
∗
1, ĉ

∗
2,

3ĉ∗) iff (ĉ∗0, c
∗
1, c

∗
2,

3c∗) º∗ (ĉ∗0, ĉ
∗
1, ĉ

∗
2,

3ĉ∗),

(c∗0, c
∗
1, c

∗
2,

3c∗) º∗ (ĉ∗0, c
∗
1, ĉ

∗
2,

3ĉ∗) iff (c∗0, ĉ
∗
1, c

∗
2,

3c∗) º∗ (ĉ∗0, ĉ
∗
1, ĉ

∗
2,

3ĉ∗),

(c∗0, c
∗
1, c

∗
2,

3c∗) º∗ (ĉ∗0, ĉ
∗
1, c

∗
2,

3ĉ∗) iff (c∗0, c
∗
1, ĉ

∗
2,

3c∗) º∗ (ĉ∗0, ĉ
∗
1, ĉ

∗
2,

3ĉ∗), and

(c∗0, c
∗
1, c

∗
2,

3c∗) º∗ (ĉ∗0, ĉ
∗
1, ĉ

∗
2,

3c∗) iff (c∗0, c
∗
1, c

∗
2,

3ĉ∗) º∗ (ĉ∗0, ĉ
∗
1, ĉ

∗
2,

3ĉ∗).

(48)

Then, for the case n = 4, we would be able to apply Debreu’s well-known theorem on

additive separability for n ≥ 3 (see Fishburn (1970, Theorem 5.5) to conclude that there

exist u0, u1, u2 : R → R and U3 : C∗ → R (all continuous and unique up to a similar

positive linear transformation) such that c∗ º∗ ĉ∗ iff u0(c
∗
0) + u1(c

∗
1) + u2(c

∗
2) + U3(

3c∗) ≥
u0(ĉ

∗
0) + u1(ĉ

∗
1) + u2(ĉ

∗
2) + U3(

3ĉ∗).

Instead of (48), Lemma B.26 proves the statement (46). We now utilize the result of
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Gorman (1968, Theorem 1), which requires that each of C∗
1 , C

∗
2 , C

∗
3 and C∗ be arc-connected

and separable. We have already shown separability; and arc-connectedness follows from

being a path-connected Hausdorff space (a convex space is path-connected, and a metric

space is Hausdorff). Then, Gorman’s Theorem 1 asserts that the set of separable indices

is closed under unions, intersections, and differences. Condition (46) implies separabil-

ity of {(1), (2)} and stationarity implies separability of {(2, 3, 4, . . .)} and {(3, 4, 5, . . .)}.39

Iterated application of Gorman’s theorem implies (48).

ºh can be represented as in (1)

We have shown that º∗ satisfies axioms similar to those of Koopmans (1960). To prove

º satisfies (1) we first obtain an discounted utility representation for º∗ using a related

approach and then use the appropriate transformation.

Lemma B.28. Uh(c) =
∑∞

t=0 δtu(ct −
∑∞

k=1 λkh
t
k) (where ht is the evolving habit vector)

for some continuous u and δ ∈ (0, 1), with the given restrictions on {λk}.

Proof. º∗ is a continuous, stationary, and sensitive preference relation; and satisfies (48),

so it can be represented in the form u0(·) + u1(·) + u2(·) + U3(·) on the space C∗ = C∗
0 ×

C∗
1 ×C∗

2 ×C∗, with the additive components continuous and unique up to a similar positive

affine transformation. Condition (48) clearly also implies additive representability on C∗ =

C∗
0 × C∗

1 × C∗, with the additive components again unique up to a similar positive linear

transformation. By stationarity, u0(·) + u1(·) + [u2(·) + U3(·)] and u1(·) + u2(·) + U3(·) are

both additive representations on C∗ = C∗
0 × C∗

1 × C∗. Thus, ∃ δ > 0 and β1, β2, β3 ∈ R

s.t. u1(·) = δu0(·) + β1, u2(·) = δu1(·) + β2 = δ2u0(·) + δβ1 + β2, and for any c∗ ∈ C∗,

U3(c
∗) = δ[u2(c

∗
0) + U3(

1c∗)] + β3 = δ3u0(c
∗
0) + δU3(

1c∗) + β3 + δβ2 + δ2β1. Each c ∈ C and

h ∈ H is bounded and
∑∞

k=1 λk ≤ 1, so for each c∗ ∈ C∗ ∃ x̄, x ∈ R such that x ≤ c∗t ≤ x̄ ∀ t.

By Tychonoff’s theorem [x, x̄]∞ is compact in ×∞i=0R and therefore [x, x̄]∞ ∩C∗ is compact

in C∗. Given x and x̄, continuity of u0(·) and U3(·) ensures they remain uniformly bounded

on [x, x̄] and [x, x̄]∞ ∩C∗, respectively. Using iterative substitution U∗(c∗) =
∑∞

t=0 δtu(c∗t ),

where u(·) = u0(·) is continuous and δ ∈ (0, 1) by product continuity. To represent ºh as

in (1) we then transform each c ∈ C by g(h, ·) into an argument of U∗.

39Because (46) hold for all t it is an even stronger hypothesis than necessary; also, for any t, {(t, t+1, t+
2, . . .)} is strictly sensitive by dynamic consistency.
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The felicity u is increasing

We have shown that º∗ is represented by U∗(c∗) =
∑∞

t=0 δtu(c∗t ) for some continuous

u : R → R and δ ∈ (0, 1); and that we may derive from this the desired representation (1)

for ºh. We now use Axiom GM to put more structure on u.

Lemma B.29. Under Axiom GM the felicity u is an increasing function.

Before proving this we will prove the following lemma.

Lemma B.30. ∀ T ∈ N, ~x = (x0, x1, . . . , xT ) ∈ RT+1, ∃ h~x,T ∈ H such that

(x0, x1, . . . , xT , 0, 0, . . .) ∈ C∗
h~x,T+1

.

Proof. For arbitrary h, define ch by ch
0 = x0 + ϕ(h), ch

t = xt + ϕ(hch
0c

h
1 · · · ch

t−1) for all

1 ≤ t ≤ T , and ch
t = ϕ(hch

0c
h
1 · · · ch

t−1) for t > T . ϕ is strictly increasing, so we may

choose h~x,T ∈ H sufficiently large so that (c
h~x,T

0 , c
h~x,T

1 , . . . c
h~x,T

T ) is nonnegative. But if

(c
h~x,T

0 , c
h~x,T

1 , . . . c
h~x,T

T ) is nonnegative, then so is T+1ch~x,T . Moreover, the stream is ultimately

weakly decreasing. Therefore ch~x,T ∈ C.

We may now prove Lemma B.29.

Proof. Suppose that u is not increasing. Because u is a continuous function, there must

then exist some x ∈ R and α > 0 such that ∀ α′ ∈ (0, α], u(x + α′) < u(x).

Let T be arbitrary for the moment. Note that by Lemma B.30 there is h′ such that

(x, x, . . . , x, 0, 0, . . .) ∈ C∗
h′ (where x is repeated T + 1 times). Again by Lemma B.30 there

is h′′ such that (x + α, x, x, . . . , x, 0, 0, . . .) ∈ C∗
h′′ (where x by itself is repeated T times).

Let h ≥ h′, h′′, and recall that the C∗
ĥ

are nested. Using the representation for º∗ and the

fact that u(x + α) < u(x),

u(x) +
T∑

t=1

δtu(x) +
∞∑

t=T+1

δtu(0) > u(x + α) +
T∑

t=1

δtu(x) +
∞∑

t=T+1

δtu(0). (49)

Since (x, x, . . . , x, 0, 0, . . .) ∈ C∗
h, there is c ∈ C with g(h, c) = (x, x, . . . , x, 0, 0, . . .). Clearly

c + α ∈ C, and by GM we know c + α Âh c. Moreover, g(h, c + α) is

(x + α, x + α(1− λ1), . . . , x + α(1−
T∑

k=1

λk), α(1−
T+1∑

k=1

λk), α(1−
T+2∑

k=1

λk), . . .), (50)
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where x appears T + 1 times. Therefore, by the representation theorem for º∗,

u(x+α)+
T∑

t=1

δtu
(
x+α(1−

t∑

k=1

λk)
)
+

∞∑
t=T+1

δtu
(
α(1−

t∑

k=1

λk)
)

>

T∑
t=0

δtu(x)+
∞∑

t=T+1

δtu(0).

(51)

Combine the RHS of (49) and the LHS of (51); and rearrange by subtracting the RHS of

(49) from all sides of the inequalities. This obtains

T∑
t=1

δt
[
u
(
x+α(1−

t∑

k=1

λk)
)−u(x)

]
+

∞∑
t=T+1

δt
[
u
(
α(1−

t∑

k=1

λk)
)−u(0)

]
> u(x)−u(x+α), (52)

which is strictly positive. Since each λk > 0 and
∑∞

k=1 λk ≤ 1, we know that the value

α(1−∑t
k=1 λk) ∈ [0, α) for every t, and is in fact strictly positive as t < ∞. The assumption

that u dips below u(x) just to the right of x implies

T∑
t=1

δt
[
u
(
x + α(1−

t∑

k=1

λk)
)− u(x)

]
< 0.

This sum decreases in T . By continuity, u is bounded on [0, α]. Choose T large enough so

that
∑∞

t=T+1 δt
[
u
(
α(1−∑t

k=1 λk)
)−u(0)

]
is small enough to bring about the contradiction

0 > 0 from (52). This is possible because Lemma B.30 permits us to find h large enough

so that the constructed streams are in C∗.

Finally, we prove the strict monotonicity of u(·) on the relevant ranges.

Lemma B.31. Assume Axiom GM. If
∑∞

k=1 λk < 1 then u(·) is strictly increasing on

(0,∞); and if
∑∞

k=1 λk = 1 then there is a with 0 < a ≤ ∞ such that u(·) is strictly

increasing either on (−a,∞) or on (−∞, a).

Proof. By Lemma B.29 we know that u(·) is an increasing function. To prove it is strictly

increasing on the relevant ranges we will consider the two cases separately.

(i)
∑∞

k=1 λk = 1: First we will show that u(·) is strictly increasing in some interval

around 0. To complete the proof, we will show that there cannot exist x > 0 > y

such that u(·) does not increase strictly at both x and y. To see the first point, take

any q > 0 and let h = (. . . , q, q) and c = (q, q, . . .). Then g(h, c) = (0, 0, . . .) and for
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small α, both c + α Âh c and c Âh c− α by Axiom GM. Using the representation for

º∗,
∞∑

t=0

δtu
(
α(1−

t∑

k=1

λk)
)

>

∞∑
t=0

δtu(0) >

∞∑
t=0

δtu
(− α(1−

t∑

k=1

λk)
)
.

By monotonicity of u(·) it must be that u(·) increases strictly in a neighborhood of

0. For the second point, suppose by contradiction that there exist x > 0 > y such

that u(·) does not increase strictly at both x and y. By continuity and monotonicity

of u(·) there is α > 0 such that u(·) is constant on (x, x + α) and on (y, y + α).

Without loss of generality suppose that x, y are rational (else take some rational x, y

inside the interval). Since x, y are rational there exist m, n such that mx = −ny. Let

c∗ = (xm, yn, xm, yn, . . .) (i.e., x is repeated m times, then y is repeated n times, etc).

Because the compensating streams are constant, we may use the characterization

(53) in Lemma B.32 to find h ∈ H large enough so that there is c ∈ C satisfying

g(h, c) = c∗. Observe by GM that c + α
2
Âh c, a contradiction to the assumption that

u(·) is constant on (x, x + α) and (y, y + α).

(ii)
∑∞

k=1 λk < 1: Observe that in this case, for any q ∈ Q, if we set h = (. . . , q, q) and

c = (q, q, . . .), then g(h, q) = (q[1 −∑∞
k=1 λk], q[1 −

∑∞
k=1 λk], . . .). As q is arbitrary,

we may conclude that for any x ≥ 0, (x, x, x, . . .) ∈ C∗. Suppose to the contrary

that u(·) is not increasing from the right at x. Since u(·) is continuous and weakly

increasing, this implies that there exists some β+ > 0 such that for every 0 < β ≤ β+,

u(x+β) = u(x). Let c and h be such that g(h, c) = (x, x, x, . . .). By GM, c+β Âh c,

so using the representation for º∗, ∑∞
t=0 δtu

(
x + β(1 − ∑t

k=1 λk)
)

>
∑∞

t=0 δtu(x).

However, since 0 < β ≤ β+ and
∑t

k=1 λk < 1, u
(
x + β(1 − ∑t

k=1 λk)
)

= u(x) for

every t ≥ 0. This is a contradiction.

The felicity u is not (quasi-)cyclic

Recall the definitions of a cyclic and quasi-cyclic function. To complete the proof of suffi-

ciency we demonstrate that u must satisfy the desired acyclicity properties.

Lemma B.32. u is not quasi-cyclic if
∑∞

k=1 λk < 1 and not cyclic if
∑∞

k=1 λk = 1.

To prove this, we first prove an auxiliary result. For technical convenience the following
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lemma allows an extension of the definition of compensation to negative “histories;” hence

if γ < 0 then d(~0,γ) = −d(~0,−γ).

Lemma B.33. Consider any sequence {γt}t∈N and h ∈ H. If c̄ ∈ ×∞t=0R satisfies c̄t =

ϕ(hc̄t−1) + γt for every t then each c̄t may be alternatively written as

c̄t = γt + dh
t +

t−1∑
s=0

d
~0γt−s−1
s . (53)

Proof. The lemma is clearly true for t = 0. Suppose that Equation (53) holds for every

t ≤ T − 1. Then

c̄T = γT + ϕ(hc̄T−1)

= γT + ϕ(h, γ0 + dh
0 , γ1 + dh

1 + d
~0γ0

0 , . . . , γT−1 + dh
T−1 +

T−2∑
s=0

d
~0γT−s−2
s )

= γT + ϕ(hdh
0 · · · dh

T−1) +
T−1∑
s=0

ϕ(~0γsd
~0γs

0 · · · d~0γs

T−2−s)

= γT + dh
T +

T−1∑
s=0

d
~0γT−s−1
s ,

where the second-to-last equality follows from using the recursive characterization given in

Lemma B.12 and reversing the order of summation.

Proof. (Lemma B.32) The two cases are examined separately.

(i)
∑∞

k=1 λk < 1. Suppose that u is quasi-cyclic, so there exists γ, β > 0 and α ∈ R such

that u(x+γ) = βu(x)+α for every x ∈ R. Apply Lemma B.33 with γt = γ for every

t and recall the summability of per-period compensation from Lemma B.15. These

results imply that c̄ as defined in Lemma B.33 remains bounded, i.e. c̄ ∈ C. Moreover

c̄0 = γ, so c is nonzero. We claim that this c̄ is exactly the consumption stream c̄

ruled out in Lemma B.1, a contradiction. Indeed, by our additive representation

c + c̄ ºh c′ + c̄ if and only if

∞∑
t=0

δtu
(
ct + c̄t − ϕ(hct−1)− ϕ(~0c̄t−1)

) ≥
∞∑

t=0

δtu
(
c′t + c̄t − ϕ(hc′t−1)− ϕ(~0c̄t−1)

)
.
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Consider the t-th term u
(
ct + c̄t − ϕ(hct−1) − ϕ(~0c̄t−1)

)
. By construction of c̄, this

term is equal to u
(
ct−ϕ(hct−1)+γ

)
= βu(ct−ϕ(hct−1))+α. Since β > 0, it becomes

evident that c + c̄ ºh c′ + c̄ iff c ºh c′ for any c, c′ ∈ C.

(ii)
∑∞

k=1 λk = 1. Suppose that u is cyclic. Then there exists γ > 0 and α ∈ R such

that u(x + γ) = u(x) + α for every x ∈ R. In this case, simply choose c̄0 = γ and

c̄t = ϕ(~0c̄t−1) for every t ≥ 1. Clearly c̄ ∈ C. It is easy to check that c + c̄ ºh c′ + c̄

iff c ºh c′ for any c, c′ ∈ C, violating Lemma B.1.

C Proof of necessity in Theorem 4.1

The representation clearly implies Axioms PR, C, DC, and NDM. Given the constructive

proof of sufficiency, the necessity of HC may also be seen, except perhaps for the uniqueness

of compensation. It may also not be obvious why the felicity need not be strictly monotonic.

We resolve these matters here.

Why u need not be strictly increasing everywhere

Lemma C.1. Suppose that
∑∞

k=1 λk < 1. Then,

(i) For any γ > 0, there does not exist a stream c ∈ C and history h ∈ H such that

c ≥ (γ, γ, . . .) and g(h, c) ≤ (0, 0, . . .).

(ii) For any γ < 0, there does not exist a stream c ∈ C and history h ∈ H such that

g(h, c) ≤ (γ, γ, . . .).

Proof. To see (i), we first note that if g(h, c) ≤ (0, 0, . . .) then c0 ≤ ϕ(h), c1 ≤ ϕ(hc0),

c2 ≤ ϕ(hc0c1), etc. But using the monotonicity of ϕ and substituting in recursively, we see

that c1 ≤ ϕ(hϕ(h)), c2 ≤ ϕ(hϕ(h)ϕ(hϕ(h))), etc. Therefore, it suffices to show that the

compensating streams (ϕ(h), ϕ(hϕ(h)), ϕ(hϕ(h)ϕ(hϕ(h))), . . .) tend to zero asymptotically.

But this was accomplished in Lemma B.15.

Similarly, to see (ii), note that if g(h, c) ≤ (γ, γ, . . .) then c0 ≤ ϕ(h)+γ, c1 ≤ ϕ(hc0)+γ ≤
ϕ(hϕ(h))+λ1γ+γ. But since γ < 0, we may drop the term λ1γ to obtain c1 ≤ ϕ(hϕ(h))+γ.

In this manner, c2 ≤ ϕ(hϕ(h)ϕ(hϕ(h))) + γ, and so on. But the compensating streams
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(ϕ(h), ϕ(hϕ(h)), ϕ(hϕ(h)ϕ(hϕ(h))), . . .) tend to zero asymptotically, and yet γ < 0 is fixed,

implying that c must eventually become negative, a contradiction.

When
∑∞

k=0 λk < 1, the fact that there does not exist a stream c ∈ C and history h ∈ H

such that c ≥ (γ, γ, . . .) for some γ > 0 and g(h, c) ≤ (0, 0, . . .) means that the argument of

the felicity in the representation cannot always be strictly negative when the consumption

stream is bounded from zero. Moreover, the fact that there is no stream c ∈ C and history

h ∈ H and γ < 0 such that g(h, c) ≤ (γ, γ, . . .) means that the argument of the felicity

in the representation cannot be bounded below zero. The former implies that we cannot

shift a stream down using GM to conclude the felicity is increasing in the negative range,

and the latter implies that there is no stream which we can shift up using GM to conclude

that felicity is increasing in the negative range. Unlike in the case
∑∞

k=1 λk = 1, shifting

up (down) a stream starting from point t using GM leaves residual increases (decreases)

in every the argument of the felicity starting from point t onward. Even though shifting a

stream down (up) using the GM axiom will cause a decrease (increase) in utility, it suffices

that the felicity is sensitive on the nonnegative domain for the utility to be sensitive to

the GM induced shift due to Lemma C.1. To understand why it suffices that for some

0 < a ≤ ∞, u(·) is only strictly increasing either on (−∞, a) or (−a,∞) when
∑∞

k=0 λk = 1,

we may use Lemma B.33. By the characterization in (53), there cannot exist h and c such

that g(h, c) is always positive and bounded from zero, or always negative and bounded

from zero (the stream would grow unboundedly in the first case and violate nonnegativity

in the second).

On the uniqueness of compensation

Lemma C.2. Assume the representation holds. Then for every (h′, h) ∈ H there is a

unique d ∈ C satisfying c + d ºh c′ + d iff c ºh′ c′ for every c′, c ∈ C.

Proof. Clearly dh′,h as constructed earlier satisfies this; suppose that some d ∈ C, d 6=
dh′,h also satisfies the condition. According to the representation for ºh′ , both the utility

functions
∑∞

t=0 δtu
(
ct − ϕ(h′ct−1) + dt − ϕ((h − h′)dt−1)

)
and

∑∞
t=0 δtu

(
ct − ϕ(h′ct−1)

)

represent ºh′ . Using the uniqueness of the additive representation, there exist β > 0 and
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a sequence {αt}t≥0 such that for any c ∈ C,

u
(
ct − ϕ(h′ct−1) + dt − ϕ((h− h′)dt−1)

)
= βu

(
ct − ϕ(h′ct−1)

)
+ αt.

Let γt = dt − ϕ((h− h′)dt−1) for every t; we must show γt = 0 for all t.

Observe that for any x ∈ R and any t we may find c ∈ C such that ct − ϕ(h′ct−1) = x.

Indeed, if x ≥ 0 choose cs = 0 for every s < t and ct = ϕ(h′0t) + x; if x < 0 choose

cs = 0 for every s < t − 1, ct−1 = x
λ1

, and ct = ϕ(h′0t). Therefore, for any x and t,

u(x + γt) = βu(x) + αt.

Suppose that
∑∞

k=1 λk < 1. Consider the first nonzero γt. If it is positive then u is

quasi-cyclic, a contradiction. If γt < 0, then rearranging and changing variables gives

u(x + |γt|) = 1
β
u(x)− αt

β
. Hence u is quasi-cyclic, a contradiction.

Now consider the case
∑∞

k=1 λk = 1. If some γt = 0 then u(x)(1 − β) = αt for all x,

implying that β = 1 and u is cyclic, a contradiction. Hence γt 6= 0 for every t. We aim

to show there exist t, t̂ such that γt 6= γt̂. If instead γt = γ for every t, then we know

that γ > 0 as a consequence of Lemma C.1, which says that for any γ < 0, there does not

exist a stream c ∈ C and history ĥ ∈ H such that g(ĥ, c) ≤ (γ, γ, . . .) (apply the lemma

with ĥ = h − h′ and c = d). But if γ > 0, then dt = ϕ((h − h′)dt−1) + γ cannot be in

C, a contradiction. To see this, first observe by Lemma B.16 that d
~0γ
t−1 = λ1γ > 0 when

∑∞
k=1 λk = 1; then apply Lemma B.33. Since d grows unboundedly it cannot be in C.

Therefore, we conclude that there exist nonzero γt 6= γt̂ such that u(x+γt) = βu(x)+αt

and u(x + γt̂) = βu(x) + αt̂ for all x. Plug x + γt̂ into the first equation and x + γt into the

second. This implies that for all x,

βu(x + γt) + αt̂ = u(x + γt + γt̂) = βu(x + γt̂) + αt.

Suppose WLOG that γt > γt̂. By changing variables we see that for all x u(x+γ̃) = u(x)+α̃,

where γ̃ = γt − γt̂ and α̃ =
αt−αt̂

β
. But then u is cyclic, a contradiction.
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D Proof of Theorem 6.1 and habit decay

Proof of Theorem 6.1

Proof. Note that the claim (11) is obvious when
∑∞

k=1 λk = 1, for then λk+1

λk
= 1 − λ1 for

every k and consequently ϕ(hq) = (1− λ1)ϕ(h) + λ1q.

For the particular h and c0, ĉ0 ∈ Q from Axiom IE find the corresponding c1, ĉ1. Ax-

ioms IE and DC together imply that ºhc0c1 and ºhĉ0ĉ1 are equivalent preferences, both

additively representable as in (2) according to Theorem 4.1. By the uniqueness of additive

representations up to positive affine transformation, there exist a ρ > 0 and a σi for every

i ≥ 0 such that for each c̄ ∈ C,

u
(
c̄− ϕ(h00c̄i−1)− λi+1c1 − λi+2c0

)
= ρu

(
c̄− ϕ(h00c̄i−1)− λi+1ĉ1 − λi+2ĉ0

)
+ σi. (54)

For each i, let γi = λi+1c1 + λi+2c0 − λi+1ĉ1 − λi+2ĉ0.

If
∑∞

k=1 λk < 1, then γi = 0 for every i since u cannot be quasi-cyclic. But we also wish

to examine the case
∑∞

k=1 λk = 1. Therefore, we note that ρ = 1 must hold. Indeed, since
λi+1

λi
≤ 1− λ1 ∈ (0, 1), both |λi+1ĉ1 + λi+2c0| and |λi+1ĉ1 + λi+2ĉ0| tend to zero as i goes to

infinity. As we have previously noted, for any i and x ∈ R we may find a c̄ ∈ C such that

x = c̄− ϕ(h00c̄i−1). Then, by (54) and continuity of u(·), limi→∞ σi = (1− ρ)u
(
x) for any

x ∈ R. Since the RHS depends on x while the LHS does not, we must have ρ = 1. Since

u cannot be cyclic when
∑∞

k=1 λk = 1, we have γi = 0 for every i in that case too.

Since γi = 0 for every i, we have λi+1

λi
= c1−ĉ1

ĉ0−c0
for all i ≥ 1. Then

ϕ(hq) =
∞∑

k=2

λkhk−1 + λ1q =
∞∑

k=2

λk

λk−1

λk−1hk−1 + λ1q =
c1 − ĉ1

ĉ0 − c0

ϕ(h) + λ1q.

Now define α = c1−ĉ1
ĉ0−c0

and β = λ1. Clearly α + β ≤ 1 since λi+1

λi
≤ 1− λ1.

Additional results on habit decay

To isolate habit decay, we examine how the compensating stream changes dh′,h if the DM

only begins to wean herself from her current habit h tomorrow. If she abstains today,

the DM can be weaned starting tomorrow using dh′0,h0 (the assumption of abstention is
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WLOG). We call the ratio
dh′0,h0

t

dh′,h
t

the period-t rate of habit decay; the lower it is, the faster

the DM’s habit decays in period t. We would like to use this measure to compare DM’s.

Definition D.1. For each (h′, h) ∈ H, let dh′,h
i. denote the compensating streams of DMi

and dh′,h
j. denote the compensating streams of DMj. We say that DMi’s habits decay faster

than DMj’s if
dh′0,h0

i.t

dh′,h
i.t

≤ dh′0,h0
j.t

dh′,h
j.t

for every t and h ≥ h′ ∈ H. We express this relation by

DMi ≥HD DMj.

While the relation≥HD is transitive, it is not complete. The following example illustrates

the difficulty in ranking DM’s according to their rates of habit decay.

Example D.2. Suppose that the agents DM1 and DM2 satisfy our axioms and that each

DM’s habit formation coefficients are determined by three parameters:

(λi.1, λi.2, λi.3, λi.4, λi.5, . . .) = (αi, βi, γi, γi(1− αi), γi(1− αi)
2, . . .) for DMi, i = 1, 2,

where βi

αi
≤ 1−αi and γi

βi
≤ 1−αi for each i. In particular, we specify that α1 = α2 = α = 1

2
,

β1 = 1
6
, β2 = 1

5
, γ1 = 1

17
, and γ2 = 1

25
. For simplicity we compare only the first two values

of
dh′0,h0

t

dh′,h
t

for each DMi given the habits satisfy h−h′ = (~0, 1). Using the recursive formula,

we calculate that for DM1

dh′0,h0
0

dh′,h
0

=
ϕ(~0, 1, 0)

ϕ(~0, 1)
=

β1 · 1
α · 1 =

1

3
and

dh′0,h0
1

dh′,h
1

=
ϕ(~0, 1, 0, ϕ(~0, 1, 0))

ϕ(~0, 1, ϕ(~0, 1))
=

α · 1
6

+ γ1 · 1
α · 1

2
+ β1 · 1

≈ .34

Similarly, for DM2 we calculate that

dh′0,h0
0

dh′,h
0

=
ϕ(~0, 1, 0)

ϕ(~0, 1)
=

β2 · 1
α · 1 =

1
5
1
2

=
2

5
and

dh′0,h0
1

dh′,h
1

=
ϕ(~0, 1, 0, ϕ(~0, 1, 0))

ϕ(~0, 1, ϕ(~0, 1))
=

α · 1
5

+ γ2 · 1
α · 1

2
+ β2 · 1

≈ .31

Here is the difficulty: while the time-0 rate of habit decay is faster for DM1 (1
3

< 2
5
), the

time-1 rate of habit decay is faster for DM2 (.31 < .34). Confounding matters, DM2’s
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time-1 rate of decay is faster than DM1’s time-0 rate of decay (.31 < .33), but DM1’s

time-1 rate of decay is faster than DM2’s time-0 rate of decay (.34 < .4).

The following proves ≥HD is complete on the set of DM’s satisfying Axiom IE and

incomplete if any DM not satisfying IE is added to that set; and that under IE the notion

of habit decay in Theorem 6.1 coincides with that in Definition D.1.

Proposition D.3. Assume Axioms PR, C, DC, GS, HC, and NDM. (i) If the DM satisfies

IE then
dh0

t

dh
t

= λk+1

λk
= α for some α ∈ (0, 1); (ii) for any DM1 not satisfying IE, we may

find a DM2 who satisfies IE such that ≥HD cannot rank DM1 and DM2.

Proof. To see (i), note by Theorem 6.1 that under Axiom IE there is α ∈ (0, 1) such that
λk+1

λk
= α for all k. Since ϕ(h0t) = αtϕ(h) by Lemma B.14,

dh0
0

dh
0

= α. Assume
dh0

t−1

dh
t−1

= α for

some t− 1 . By the inductive hypothesis and Lemma B.12,
dh0

t

dh
t

equals

ϕ(h0dh0
0 . . . dh0

t−1)

ϕ(hdh
0 . . . dh

t−1)
=

ϕ(h0dh0
0 . . . dh0

t−20) + λ1d
h0
t−1

ϕ(hdh
0 . . . dh

t−20) + λ1dh
t−1

=
αdh0

t−1 + λ1d
h0
t−1

αdh
t−1 + λ1dh

t−1

=
α2dh

t−1 + αλ1d
h
t−1

αdh
t−1 + λ1dh

t−1

,

which equals α. To see part (ii), observe that Theorem 6.1 implies that DM1 does not

satisfy Axiom IE if and only if for some k, k̂ with k 6= k̂, λk+1

λk
6= λk̂+1

λk̂
. Let k∗ = min{k ≥

2 | λk+1

λk
6= λk

λk−1
} and define h∗ ∈ H by h∗j =





0 j 6= k∗ − 1

1 j = k∗ − 1
for all j ≥ 1. Observe that

dh∗
0 = λk∗−1, dh∗0

0 = λk∗ , dh∗
1 = λk∗ + λ1λk∗−1, and dh∗0

1 = λk∗+1 + λ1λk∗ . Then
dh∗0
0

dh∗
0

= λk∗
λk∗−1

,

but

dh∗0
1

dh∗
1

=
λk∗+1 + λ1λk∗

λk∗ + λ1λk∗−1

=
λk∗

λk∗−1

·
{ λk∗+1λk∗−1

λk∗
+ λ1λk∗−1

λk∗ + λ1λk∗−1

}

Therefore,
dh∗0
1

dh∗
1

=
dh∗0
0

dh∗
0

= λk∗
λk∗−1

if and only if
λk∗+1λk∗−1

λk∗
= λk∗ . But that implies

λk∗+1

λk∗
=

λk∗
λk∗−1

, contradicting the definition of k∗. WLOG suppose
dh∗0
1

dh∗
1

>
dh∗0
0

dh∗
0

. Let α ∈ (
dh∗0
0

dh∗
0

,
dh∗0
1

dh∗
1

)

and take DM2 satisfying Axiom IE and for whom λ̂k+1

λ̂k
= α for all k. Then DM1 and DM2

cannot be ranked by ≥HD using part (i) of the result.
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