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“Soon I’ll be fed up with the (theory of) relativity...Even such a thing

fades away when one is too involved with it.” – Albert Einstein

1 Introduction

Does one’s valuation for a good depend on its frequency of consumption? Will

someone accustomed to certain levels of comfort and quality come to demand the

same? And is an increase in consumption always beneficial, even if it is only

temporary? Because questions such as these cannot be properly addressed in the

standard intertemporally separable model of choice, the literature in varied fields of

economics has seen a surge in models incorporating intertemporal nonseparability

through habit formation. By presuming a correlation between an individual’s prior

consumption levels (her intrinsic habit) and her enjoyment of present and future

consumption, such models have had success in accounting for notable phenomena

that more traditional theory has been unable to explain.1

The literature on habit formation has, however, been unable to come to a con-

sensus on a single formulation of intertemporal dependence; and in some cases, the

predictions of the most commonly utilized models disagree.2 Related to this diffi-

culty is the scarcity of theoretical work examining the underpinnings of such pref-

erences. While there is a large axiomatic literature on static reference dependence,

there is little understanding of dynamic settings where the reference point changes

endogenously, as is the case in habit formation.3 By clarifying the implications for

choice behavior, such work would help illuminate why one utility representation

of habit formation might be more reasonable than another; or why the commonly

used incarnations are reasonable at all. We contribute to the literature in that

theoretical vein.

1Variations of the model of intrinsic linear habit formation we axiomatize have shed light on
data indicating individuals are far more averse to risk than expected (e.g., Constantinides (1990)
on the equity premium); suggested why consumption growth is connected strongly to income,
but only weakly to interest rates (see Boldrin, Christiano & Fisher (2001) for a real business
cycles model with habit formation and intersectoral inflexibilities); and explained the consumption
contractions seen before exchange rate stabilization programs collapse (Uribe (2002)).

2While intrinsic linear habits is the most common model, other models posit habits that are
extrinsic (Abel (1990)’s “catching up with the Joneses” effect), nonlinear (Campbell & Cochrane
(1999)), or affect the discount factor (Shi & Epstein (1993)). A common nonlinear model specifies
a linear habit aggregator that divides consumption (Carroll, Overland & Weil (2000)); this model
is criticized by Wendner (2003) for having counterintuitive implications for consumption growth.

3We contribute to this axiomatic literature, particularly Neilson (2006), which specifies the
first component of a bundle as the reference point. By contrast, we do not assume a particular
reference point but derive an infinite sequence of endogenously changing reference points.
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We formulate a theory of history-dependent intertemporal choice, describing

a decision-maker (DM) by a family of continuous preference relations over future

consumption, each corresponding to a possible consumption history. Our represen-

tative DM is dynamically consistent given her consumption history, can be weaned

from her habits using special streams of compensation, and satisfies a separability

axiom appropriate for time-nonseparable preferences. Though she is fully ratio-

nal, her history dependent behavior violates the axioms of Koopmans (1960), upon

which the standard theory of discounted utility rests. Instead, our theory lays

the foundation for the model of linear habit formation, in which a DM evaluates

consumption at each point in time with respect to a reference point that is gen-

erated linearly from her consumption history. Suppose the DM’s time-0 habit is

h = (. . . , h3, h2, h1), where hk denotes consumption k periods ago. If she consumes

the stream c = (c0, c1, c2, . . .), her time-t habit will be h(t) = (h, c0, c1, . . . , ct−1),

where h
(t)
k denotes consumption k periods prior to time t. The DM then evaluates

the stream c using the utility function

Uh(c) =
∞∑

t=0

δtu
(
ct −

∞∑
k=1

λkh
(t)
k

)
.

In this model, the time-t habit (h, c0, c1, . . . , ct−1) that results from consuming c

under initial habit h is aggregated into the DM’s period-t reference point by taking a

weighted average using the habit formation coefficients {λk}k≥1. These coefficients

satisfy a geometric decay property ensuring that the influence of past consumption

fades over time. A number of variations of this model are prevalent in the applied

literature. We provide foundations for this general formulation and some common

specializations, clarifying the behavioral differences across the nested specifications

and providing various measures of habit-forming tendencies.

Although our DM has discounted utility over habit-adjusted consumption streams

of the form (c0 −
∑∞

k=1 λkhk, c1 − λ1c0 −
∑∞

k=1 λk+1hk, . . .), the problem at hand

has a quite different nature than that of Koopmans’, who imposes the axioms of

discounted utility on the real consumption space. By contrast, the space of habit-

adjusted consumption streams is hypothetical and depends on the DM’s habit-

formation coefficients. Axioms imposed on the real consumption space must both

elicit the manner of habit-adjustment and embed it into the utility representation

as the history-dependent “inner utility” ct −
∑∞

k=1 λkh
(t) that is evaluated before

the “outer utility”
∑∞

t=0 δtu(·) is applied.

To resolve this problem, we develop a compensation-based theory of intertem-
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poral choice that succeeds in disentangling the effects of habit formation and time-

preference. Just as classical Hicksian income compensation separates income and

substitution effects, we propose intertemporal consumption compensation in our

main axiom, Habit Compensation, to identify both habit and time-preference. An

increase in the DM’s habit has similar effects as a change in intertemporal prices,

and by compensating the DM for this change with a decreasing stream of the

habit-forming good (weaning) we can elicit subjective reference points from choice

behavior. Our approach suggests a means to derive axiomatic foundations for dis-

counted utility representations on spaces defined by subjective reference points.

This paper is related to a growing literature on forward-looking habit formation,

beginning with the seminal work of Becker & Murphy (1988) on rational addiction.

Although Koopmans (1960) uncovered foundations for intertemporally separable

preferences, this literature has not found axiomatic foundations for a structured

model of habit-forming preferences over consumption streams, such as those used

in applied work. Rustichini & Siconolfi (2005) propose axiomatic foundations for

a model of dynamically consistent habit formation which, unlike this paper, does

not offer a particular structure for the utility or form of habit aggregation. Gul

& Pesendorfer (2007) study self-control problems by considering preferences over

menus of consumption streams of addictive goods, rather than over the streams

themselves. Shalev (1997) provides a foundation for a special case of loss aversion,

which, like the classical representation, is time-inconsistent (Tversky & Kahneman

(1991)). Our representation can accommodate a dynamically consistent model of

loss aversion where the period-utility takes the well-known “S”-shaped form. Such

a model would resolve various anomalies of intertemporal choice; as Camerer &

Loewenstein (2004) note, many effects “are consistent with stable, uniform, time

discounting once one measures discount rates with a more realistic utility function.”

This paper is organized as follows. We present the framework in Section 2 and

the main axioms in Section 3. We discuss the main representation theorem and its

proof in Section 4. In Sections 5-7 we examine the behavioral implications of some

common restrictions on the model.

2 The framework

We consider a DM facing an infinite-horizon decision problem in which a single

habit-forming good is consumed in every period t ∈ N = {0, 1, 2, . . .} from the

same set Q = R+. A consumption level q ∈ Q may be interpreted as a choice of
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either quantity or quality of the good.

The DM chooses an infinite stream of consumption c = (c0, c1, c2, . . .) from the

set of bounded consumption streams C = {c ∈ ×∞
t=0Q | supt ct < ∞ }, where ct

is the consumption level prescribed for t periods into the future. Date 0 is always

interpreted to be the current date. We consider C as a metric subspace of ×∞
t=0Q

endowed with the product metric ρC(c, c′) =
∑∞

t=0
1
2t

|ct−c′t|
1+|ct−c′t|

.4

The DM’s preferences over the space of consumption streams C depend on her

consumption history, her habit. The set of possible habits is time-invariant and

given by the space of bounded streams H = {h ∈ ×1
k=∞Q | supk hk < ∞ }. Each

habit h ∈ H is an infinite stream denoting prior consumption and is written as

h = (. . . , h3, h2, h1), where hk denotes the consumption level of the DM k periods

ago. We endow the space H with the sup metric ρH(h, h′) = supk |hk − h′k|.
The DM realizes that her future tastes will be influenced by her consumption

history. Starting from any given initial habit h ∈ H, consuming the stream c ∈ C

will result in the date-t habit (h, c0, c1, . . . , ct−1). Consequently, the DM’s habit,

and therefore her preferences, may undergo an infinite succession of changes en-

dogenously induced from her choice of consumption stream. The DM’s preferences

given a habit h ∈ H are denoted by �h and are defined on the consumption space

C. Each such preference is a member of the family �= {�h}h∈H . We assume that

the DM’s preference depends on consumption history but not on calendar time.

Our setup explicitly presumes histories are infinite because this assumption

is commonly invoked in the literature. Alternatively, one may assume that the

DM’s preferences are affected only by her last K ≥ 3 consumption levels.5 The

notation in our analysis would remain the same so long as current and future

habits are truncated after K components; that is, (h, c0) would denote the habit

(hK−1, . . . , h2, h1, c0). Finally, while our framework is one of riskless choice, the

analysis can be extended immediately to lotteries over consumption streams by

imposing the von Neumann-Morganstern axioms on lotteries and our axioms on

the degenerate lotteries.

We collect here some useful notation. We reserve the variable k ∈ {1, 2, 3, . . .}
to signify a period of previous consumption and the variable t ∈ {0, 1, 2, . . .} to

4Since ×∞t=0Q endowed with ρC is a topologically separable metric space, so is C when viewed
as a metric subspace. Ensuring that C is separable in this manner allows us to concentrate on the
structural elements of habit formation. Alternatively we could impose separability directly as in
Rustichini & Siconolfi (2005). Bleichrodt, Rohde & Wakker (2007) is representative of a literature
that concentrates on relaxing assumptions about the consumption space, including separability.

5K ≥ 3 is required only for the proof of time-additivity.
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signify a period of impending consumption. The notation c+ c′ (or h+h′) refers to

usual vector addition. As is customary, tc denotes (ct, ct+1, ct+2, . . .) and ct denotes

(c0, c1, . . . , ct). If c′ ∈ C we write (ct, t+1c+c′) to denote (c0, c1, . . . , ct, ct+1+c′0, ct+2+

c′1, . . .). For α ∈ R we use the similar notation αt to signify the t-period repetition

(α, α, . . . , α) and (ct, t+1c + α) to compactly denote (c0, c1, . . . , ct, ct+1 + α, ct+2 +

α, . . .) whenever the resulting stream is in C. At times it will be convenient to let

hq denote the habit (h, q) that forms after consuming q under habit h (similarly for

hct). The zero habit (. . . , 0, 0) is denoted by 0̄. Finally, h ≥ h′ (or c ≥ c′) means

hk ≥ h′k for all k (or ct ≥ c′t for all t), with at least one strict inequality.

3 The main axioms

This section presents axioms of choice behavior that are necessary and sufficient

for a linear habit formation representation. The roles that these axioms play in the

proof of the representation theorem are discussed in Section 4.

The following axioms are imposed for all h ∈ H. The first three axioms are fa-

miliar in the theory of rational choice over consumption streams, and the fourth is a

simple technical condition to ensure that the DM’s preferences are non-degenerate.

As usual, �h denotes the asymmetric part of �h.

Axiom PR (Preference Relation) �h is a complete and transitive binary relation.

Axiom C (Continuity) For all c ∈ C, {c′ : c′ �h c} and {c′ : c �h c′} are open.

Axiom DC (Dynamic Consistency) For any q ∈ Q and c, c′ ∈ C, (q, c) �h (q, c′)

if and only if c �hq c′.

Axiom S (Sensitivity) There exist c ∈ C and α > 0 such that c + α 6∼h c.

Axioms PR and C together require that the DM’s choices are derived from a

continuous preference relation, thereby ensuring a continuous utility representation

on our separable space. Axiom DC further assumes that the DM’s preferences are

dynamically consistent in a history-dependent manner, in the sense that given the

relevant histories, she will not change her mind tomorrow about the consumption

stream she chooses today. Axiom DC is weak enough to accommodate a number

of observed time-discounting anomalies, but strong enough to ensure that dynamic

programming techniques can be used to solve the DM’s choice problem and that

the DM’s welfare can be analyzed unambiguously.6 Axiom S is a non-degeneracy

6Without DC, it becomes more difficult to interpret the DM’s choices for the future and
discuss the welfare implications of her choices; the DM’s choice may need to be modeled through
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condition requiring that there is some consumption stream that can be uniformly

increased in a manner that does not leave it indifferent to the original. It is a much

weaker condition than monotonicity, which we address in Section 5, and allows for

the possibility that due to habit formation, the DM is worse off under a uniform

increase in consumption.

Our main structural axiom of habit formation provides a revealed-preference

theory of weaning a DM from her habits. To state the axiom, we define the

set of ordered pairs of consumption histories H = {(h′, h) ∈ H × H | h′ ≤ h}.
We say that habits (h′, h) ∈ H agree on k if hk = h′k. Similarly, we say that

the habits (h′, h) ∈ H agree on a subset of indices K ⊂ {1, 2, . . .} if they agree

on each k ∈ K. The axiom has three parts, two of which play central roles.

The first, weaning, says that for any ordered pair of habits, there is a decreasing

“compensating stream” that compensates the DM for having the higher habit.

The second, compensated separability, says that if a compensating stream that is

received in the future compensates the DM for variations in prior consumption,

preferences over current consumption are independent of the future consumption

stream.

Axiom HC (Habit Compensation) There is a collection {dh′,h}(h′,h)∈H of strictly

positive consumption streams such that

(i) (Weaning). Each dh′,h is a weakly decreasing stream and uniquely satisfies

c �h′ c′ iff c + dh′,h �h c′ + dh′,h ∀ c, c′ ∈ C.

(ii) (Compensated Separability). For any c, ĉ ∈ C, t ≥ 0 and h′ ≤ hct, hĉt,

(ct, dh′,hct

) �h (ĉt, dh′,hĉt

) iff (ct, c̄ + dh′,hct

) �h (ĉt, c̄ + dh′,hĉt

) ∀ c̄ ∈ C.

(iii) (Independence of Irrelevant Habits). For any k̂, (h′, h) ∈ H that agree on

k̂, and q ∈ Q, if ĥ′k =

{
h′k if k 6= k̂

q if k = k̂
and ĥk =

{
hk if k 6= k̂

q if k = k̂
then

dh′,h = dĥ′,ĥ.

Formally, Axiom HC(i) says that for any h ≥ h′, there exists a unique com-

pensating stream dh′,h such that when we endow the DM with dh′,h at the larger

an equilibrium concept rather than as a decision problem. An equilibrium notion for dynamic
reference dependence is studied in Köszegi & Rabin (2008), where the utility over sequences of
consumption and beliefs is technically consistent but beliefs are forced to be determined rationally
in a personal equilibrium (see Köszegi & Rabin (2006)).
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habit h, her choice behavior at h is identical to her choice behavior at the smaller

habit h′, without this endowment.7 As illustrated in Figure 1, HC(i) establishes

that the indifference curves for habit h′ are translated up by the strictly positive

stream dh′,h into indifference curves for habit h.8 Because dh′,h is a consumption

stream of the habit-forming good, the amount with which the DM is compensated

in any period must account not only for her original habit, but also for habits

generated by compensation received in previous periods. In theory, this could lead

to an increasing need for compensation over time. Since dh′,h serves as the baseline

consumption level which induces the DM with habit h to behave as if she has habit

h′, the requirement that dh′,h is weakly decreasing formalizes the sense in which

the DM can be “weaned” from her habit: the DM receives the highest levels of

compensation today, because the effect of her habit today is sufficiently stronger

than it will be tomorrow.

Axiom HC(ii) considers the effect of compensation received midstream. Suppose

a DM with habit h compares consumption streams having one of two possible

consumption paths for periods 0 through t: ct or ĉt. Which path the DM chooses

affects her habit, and therefore her preferences, at time t + 1. But if, starting in

period t + 1, the DM is compensated to behave as if she has some lower habit

h′ (using the appropriate choice of either dh′,hct
or dh′,hĉt

), then the DM evaluates

any common continuation path c̄ starting from time t + 1 from the perspective of

habit h′, regardless of what she has already consumed. Axiom HC(ii) says that

the DM’s choice between the two infinite streams is determined by the values of

the consumption stream up to time t, as long as these streams agree on their

continuation path. That is, receiving the appropriate compensation starting from

period t blocks the channel through which consumption prior to t affects future

preferences; the future becomes “separable” from the past. Consequently, Axiom

HC(ii) may be viewed as a generalization of separability for time-nonseparable

preferences, and would be satisfied by the standard model of discounted utility if

all the compensating streams were identically zero.

Axiom HC(iii) ensures that if (h′, h) ∈ H agree on some k, then the compen-

7Given the existence of compensating streams, uniqueness corresponds to a regularity or non-
degeneracy condition on preferences for any fixed habit: if compensation is not unique for some
pair (ĥ′, ĥ), then for every h ≥ ĥ, there are nonzero c̄ 6= ¯̄c ∈ C such that for any c, c′ ∈ C, we
have c+ c̄ �h c′+ c̄ if and only if c+ ¯̄c �h c′+ ¯̄c . As the representation theorem shows, this rules
out period-utilities that are essentially periodic functions (see Figure 2).

8Moreover, while it is not evident from the picture, the two pictured indifference curves cor-
respond to the same utility levels under their respective habits; hence the analogy to Hicksian
income compensation.
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sation needed to wean the DM from h to h′ is independent of the period-k habit

level. Thus, an element of a habit that is unchanged does not affect weaning.

′,

′,

′,

′

Figure 1: HC(i) applied to an h′-indifference curve on (c0, c1), for given 2c

Finally, we require two additional technical conditions on the DM’s initial level

of compensation. These conditions concern the strength of the DM’s memory and

rule out degenerate representations of the preferences we seek. First, we require

that the initial compensation needed for a habit goes to zero as that habit becomes

more distant in memory: i.e., for any habit h ∈ H we have limt→∞ d0̄,h0t

0 = 0. In

counterpoint, the second condition states that for any fixed prior date of consump-

tion, we can find two habits that differ widely enough on that date to generate any

initial level of compensation: i.e., for any q > 0 and k, there exist (h′, h) ∈ H that

agree on N\{k} and satisfy dh′,h
0 = q.9 We say the DM’s memory is non-degenerate

if these two conditions hold.

Axiom NDM (Non-Degenerate Memory) The DM’s memory is non-degenerate.

4 The main representation theorem

We now present our main theorem, which offers a precise characterization of the

preferences that satisfy our axioms of habit formation. The utility representation

obtained is a dynamically consistent and additive model of intrinsic linear habit

formation that has featured prominently in the applied literature. The representa-

tion theorem requires a weak acyclicity condition on period utilities, but otherwise

9The first condition is required only for histories of infinite length: it rules out an undesirable
term inside the utility that depends only on tail elements of the habit. The second condition rules
out degenerate solutions of a critical functional equation.
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permits any choice of continuous period utility. We say that u : R → R is quasi-

cyclic if there exist α ∈ R and β, γ > 0 such that u(x + γ) = βu(x) + α for all

x ∈ R, and cyclic if it is quasi-cyclic with β = 1. See Figure 2 in the appendix for

an illustration of quasi-cyclic functions.

Theorem 1 (Main representation). The family of preference relations � satisfies

Axioms PR, C, DC, S, HC, and NDM if and only if there exist a discount factor

δ ∈ (0, 1), habit formation coefficients {λk}k≥1 ∈ R, and a period-utility u : R → R
such that for every h ∈ H, �h can be represented by

Uh(c) =
∞∑

t=0

δtu
(
ct −

∞∑
k=1

λkh
(t)
k

)
, with h(t) = (h, c0, c1, . . . , ct−1), (1)

where the habit formation coefficients {λk}k≥1 are unique and satisfy

λk ∈ (0, 1) and
λk+1

λk

≤ 1− λ1 for all k ≥ 1; (2)

and the period-utility u(·) is continuous, unique up to positive affine transformation,

and is not cyclic (and is not quasi-cyclic if
∑∞

k=1 λk < 1).

In Section 4.1 we examine why this utility representation satisfies Axiom HC,

which provides some insight into our constructive proof of the theorem in Appendix

B.1. In Section 4.2 we give an overview of some of the key steps in the construction.

The representation in Theorem 1 may be seen as a model of dynamic reference

dependence: the linear habit aggregator ϕ : H → R defined by

ϕ(h(t)) =
∞∑

k=1

λkh
(t)
k (3)

determines the reference point against which date-t consumption is evaluated. The

representation has two main features. First, the DM transforms each consumption

stream c into a habit-adjusted stream (c0−ϕ(h), c1−ϕ(h, c0), c2−ϕ(h, c0, c1), . . .);

we denote this transformation by g(h, c) and call it the DM’s “inner utility.” The

DM then applies a discounted “outer utility” U∗, given by
∑∞

t=0 δtu(·), to evaluate

the habit-adjusted stream. The DM’s utility Uh over consumption streams is then

given by U∗(g(h, ·)). Because the habit formation coefficients in Theorem 1 are

positive, the representation implies that utility is history dependent. If the DM’s

history is assumed to be finite and of length K, only the first K habit formation

coefficients would be positive.
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A standard discounted utility maximizer, for whom all the habit formation coef-

ficients would equal zero, would satisfy all our axioms if the compensating streams

were identically zero. We may include the standard model by relaxing Axiom HC

to include the possibility that all the compensating streams are identically zero,

but avoid doing so to simplify exposition. The other restriction in this represen-

tation is the acyclicity requirement on the period utility; some functions violating

this requirement are illustrated in Figure 2 in the appendix. Observe that if the

DM’s period-utility were linear (hence cyclic) in the representation above, then her

choice behavior would be observationally equivalent to that in a model without

habit formation. More generally, if the DM’s period-utility violates the acyclic-

ity requirement, then we cannot pin down the transformation of her preferences

from one habit to another; that is, acyclicity ensures that compensating streams

are unique. In light of Figure 2, a quasi-cyclic function, unless it is linear, would

not fall into the class of period-utilities regularly considered in economic models.10

Consequently, the compensating streams are unique for essentially all applications.

Theorem 1 may also be viewed as obtaining foundations for a log-linear repre-

sentation Uh(c) =
∑∞

t=0 δtu
(

ct

ϕ(h(t))

)
, where ϕ(ĥ) =

∏∞
k=1 ĥλk

k and λk+1

λk
≤ 1− λ1, if

we reinterpret the framework so that the DM cares about, and forms habits over,

consumption growth rates instead of consumption levels.11 Assuming consumption

is bounded below by ε > 0, in such a model the DM forms habits over the loga-

rithms of her past consumption levels (. . . , log h2, log h1) and her preferences are

defined over streams of logarithms of consumption (log c0, log c1, . . .). The axioms

would need to be reinterpreted in this new setting; for example, in Axiom HC(i),

the DM would need to be compensated in terms of rates of consumption growth

rather than using consumption levels.

4.1 Why the representation satisfies Axiom HC

Consider a DM who can be represented as in Theorem 1. Why does this DM satisfy

Axiom HC, and how would the compensating streams look?

Consider any ordered pair of habits (h′, h) ∈ H. At time t, the DM’s period-

utility is u
(
ct−ϕ(h′, ct−1)

)
if she has habit h′, while it is u

(
ct−ϕ(h, ct−1)

)
if she has

habit h. However, there is a simple relationship between these two period-utilities

10A quasi-cyclic function has a period and repeats itself (up to scaling). Unless it is affine, it
cannot be both smooth and concave; nor can it have a finite and nonzero number of kinks.

11Such a model is proposed by Kozicki & Tinsley (2002) and is particularly appealing in light
of Wendner (2003), which shows the counterintuitive implications of a common model in which
the argument of the period-utility is current consumption divided by a linear habit stock.
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obtained by adding and subtracting ϕ(h, ct−1):

u
(
ct − ϕ(h′, ct−1)

)
= u

(
ct + [ϕ(h, ct−1)− ϕ(h′, ct−1)]− ϕ(h, ct−1)

)
. (4)

Since the habit aggregator ϕ(·) is strictly increasing and linear, the bracketed term

ϕ(h, ct−1)− ϕ(h′, ct−1) is strictly positive and equal to ϕ
(
h− h′, 0t

)
.

Axiom HC(i) says that whenever the DM is endowed with dh′,h at habit h, her

utility from any stream c is the same as her utility from c under the lower habit

h′, without compensation. We use (4) to construct dh′,h as follows. At time 0, we

provide the DM with the amount dh′,h
0 = ϕ(h − h′). As seen from (4), the DM’s

period-utility from consuming c0 + dh′,h
0 under habit h at time 0 is the same as

her period-utility from consuming c0 under habit h′. To construct dh′,h
1 , we must

take into account that the DM was compensated with the habit-forming good: the

actual time-0 consumption level under h in (4) is c0 + dh′,h
0 . The bracketed term in

(4) is then dh′,h
1 = ϕ

(
h− h′, ϕ(h− h′)

)
.

Continuing in this manner, at time t the compensating stream dh′,h compensates

for the original difference in habits as well as for compensation provided prior to t.

Formally, dh′,h has the recursive structure

dh′,h =
(
ϕ(h−h′), ϕ

(
h−h′, ϕ(h−h′)

)
, ϕ

(
h−h′, ϕ(h−h′), ϕ(h−h′, ϕ(h−h′))

)
, . . .

)
,

(5)

where ϕ is linear. In the Appendix we prove this fundamental characterization of

compensation directly from the axioms. In the special case that the habits involved

differ only by the most recent element, (5) takes a particularly simple form:

dhq′,hq
0 = λ1(q − q′)

dhq′,hq
1 = λ2(q − q′) + λ1d

hq′,hq
0

dhq′,hq
2 = λ3(q − q′) + λ2d

hq′,hq
0 + λ1d

hq′,hq
1

...

Then it is easy to see that dhq′,hq is a weakly decreasing stream if λk+1

λk
≤ 1 − λ1;

and if one knows dhq′,hq then this triangular linear system recovers all the {λk}∞k=1.

Because the argument of the period utility is linear, the construction of dh′,h

above delivers a compensating stream that is independent of the actual consump-

tion stream c being evaluated. That is, linearity of the “inner utility” is critically

related to the order of the quantifiers in Axiom HC(i). Indeed, HC(i) would be

11



nearly unrestrictive if the compensation were allowed to depend on the choices

involved without specifying any further properties. Note that Axiom HC(i) by

itself does not require the manner of habit dependence to be homogenous across

habits. Our construction of compensation still works if the habit formation co-

efficients depend on tail elements of the habit (e.g, λk,h = λk
α+lim supk′ hk′
β+lim supk′ hk′

, where

β > α > 0). Tail dependence would only violate Axiom HC(iii), which requires

homogeneity. Furthermore, the form of the “outer” utility is irrelevant: our con-

struction remains valid so long as the DM evaluates a consumption stream c through

U∗(c0 −
∑∞

k=1 λkhk, c1 − λ1c0 −
∑∞

k=1 λk+1hk, . . .), where U∗ : R∞ → R.

The special feature of our time-additive utility is that it satisfies Axiom HC(ii),

which is a generalized separability axiom that restricts the “outer utility” U∗

above to be additively separable (that is, U∗(x0, x1, x2, . . .) =
∑∞

s=0 u∗s(xs)). To

see why HC(ii) is implied by time-additivity, notice that if the DM receives com-

pensation dh′,hct
after consuming ct, and dh′,hĉt

after consuming ĉt, then compar-

ing the streams (ct, c̄) and (ĉt, c̄) reduces to comparing
∑t

s=0 u∗s(cs − ϕ(h, cs−1))

and
∑t

s=0 u∗s(ĉs − ϕ(h, ĉs−1)). This argument does not depend on stationarity or

dynamic consistency (i.e., u∗s(·) = δsu(·)); if the DM naively used β − δ quasi-

hyperbolic discounting, HC(ii) would still be satisfied. Moreover, HC(ii) does not

require linearity of the “inner utility”: the axiom would still be satisfied using a

generalized notion of compensation that permits dependence on the consumption

streams being evaluated, so long as the “outer utility” is time-additive.

4.2 Constructing the representation from the axioms

Here we offer an overview of our constructive proof in Appendix B.1, discussing

some of the key steps in the argument. In Section 4.2.1 we show that the habit

aggregator ϕ(·) is linear and that compensation has the recursive form in (5). In

Section 4.2.2 we generate the DM’s “inner utility.” That is, we find the DM’s

manner of habit-adjustment, given by ct−ϕ(hct−1) at each time t, and construct a

preference relation �∗ over habit-adjusted consumption streams that is equivalent

to the DM’s preferences over actual consumption streams. Finally, in Section 4.2.3

we discuss how to find a discounted utility representation for �∗, which serves as

the “outer utility” in the representation of each �h.

In the remainder of this section we will provide intuition for some of the argu-

ments by imposing the strong restriction that habits are only one-period long. This

allows us to convey the flavor of the arguments while sidestepping complications

12



that arise from more intricate history dependence. We defer complete arguments,

including topological considerations, to the appendix.

4.2.1 Determining the form of habit aggregation

In order to construct the utility representation, we must first determine how the

DM’s habits are aggregated into a single reference point. In view of (5), it is

evident that our constructive proof should define the habit aggregator ϕ(h) by d0̄,h
0 .

Therefore, the first task at hand is to prove that our axioms imply that there exists

a sequence of habit formation coefficients {λk}∞k=1 such that d0̄,h
0 =

∑∞
k=1 λkhk.

Second, we would like to prove the recursive structure in (5), for then {λk}∞k=1

would fully characterize each dh′,h. To accomplish these tasks we must develop

further properties of compensation from the axioms.

The underlying idea is best elucidated using one-period histories q ∈ Q. One-

period histories allow us to avoid several complications that we must defer to the

appendix; these include accounting for extended effects of compensation on fu-

ture preferences, aggregating different periods in history, and showing that the

habit-formation coefficients are homogeneous across all histories and are applied to

updated histories in a stationary manner.12 In this simplified setting, the desired

results will follow from three claims:

(i) (Triangle Equality) For any q′′ < q′ < q, we have dq′′,q = dq′′,q′ + dq′,q.

(ii) (Weak Invariance) For any q, q′, we have dq′,q′+dq
0 = d0,dq

0 .

(iii) (Recursion) For any q, we have d0,dq
0 = 1d0,q.

Then, by claim (i), dq′,q = d0,q − d0,q for any q′ < q. Defining ϕ : Q → R+ by

ϕ(q) = d0,q
0 for q > 0 and ϕ(0) = 0, we have d

q′,q′+dq
0

0 = ϕ(q′ + ϕ(q)) − ϕ(q′). By

claim (ii), we know that d
q′,q′+dq

0
0 = d

0,dq
0

0 = ϕ(ϕ(q)). Therefore,

ϕ(ϕ(q)) = ϕ(q′ + ϕ(q))− ϕ(q′) ∀ q, q′ ∈ Q. (6)

Since Axiom NDM implies that the range of ϕ(q′) is all of Q, the functional equation

above is equivalent to a simple Cauchy equation, ϕ(q + q′) = ϕ(q) + ϕ(q′) for all

q′, q ∈ Q. Because (i) implies that ϕ(·) is increasing, the solution to this functional

equation is ϕ(q) = λq for some λ > 0. Iterated use of (iii) implies the recursive

structure (5) in this setting.

12For example, one must rule out that even though d0̄,h
0 =

∑∞
k=1 λkhk, the k-th element of the

initial history, hk, always receives weight λk in the future.
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We now prove claims (i)-(iii). For claim (i), observe that we wish to show

c + dq′′,q′ + dq′,q �q c′ + dq′′,q′ + dq′,q if and only if c �q′′ c′ for all c, c′ ∈ C,

for then uniqueness of compensation would imply that dq′′,q′ + dq′,q is dq′′,q. By

Axiom HC(i), dq′′,q′ satisfies c �q′′ c′ if and only if c + dq′′,q′ �q′ c′ + dq′′,q′ for all

c, c′ ∈ C. But using Axiom HC(i) again on the RHS above, we also know that

c+dq′′,q′ �q′ c′+dq′′,q′ if and only if c+dq′′,q′+dq′,q �q c′+dq′′,q′+dq′,q for all c, c′ ∈ C,

completing the argument.

Now consider claims (ii) and (iii). Consider any q, q′ ∈ Q and any two c, c′ ∈ C

such that c0 = c′0 = q′. By Axiom HC(i),

c �0 c′ if and only if c + d0,q �q c′ + d0,q. (7)

Applying Axiom DC to the RHS of (7),

c + d0,q �q c′ + d0,q if and only if 1c + 1d0,q �q′+d0,q
0

1c′ + 1d0,q. (8)

But again by Axiom DC, c �0 c′ if and only if 1c �q′
1c′. Combining (7) and (8),

1c �q′
1c′ if and only if 1c + 1d0,q �q′+d0,q

0

1c′ + 1d0,q.

Since 1c and 1c′ were arbitrary, it must be that 1d0,q = dq′,q′+d0,q
0 . But 1d0,q is

independent of q′. Setting q′ = 0, this proves claim (iii). Moreover, dq′,q′+d0,q
0 must

be independent of q′, proving claim (ii).

4.2.2 The habit-adjusted consumption space C∗ and preference �∗

Once we have constructed ϕ(·), we may construct the space of habit-adjusted con-

sumption streams. To do this, we define the mapping g : H × C → R∞ by

g(h, c) = (c0 − ϕ(h), c1 − ϕ(h, c0), c2 − ϕ(h, c0, c1), . . .)

C∗ = g(H × C) is the space of all possible habit-adjusted consumption streams,

while C∗
h = g({h}, C) is the space of all h-adjusted consumption streams.13 Intu-

13We endow R∞ with the product topology; metrize H × C by ρH×C((h, c), (h′, c′)) =
ρH(h, h′) + ρC(c, c′); and consider C∗ as a metric subspace of R∞.
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itively, for any possible consumption stream c and habit h of the DM, the resulting

habit-adjusted consumption stream g(h, c) is “worse” the higher is the DM’s habit

h. Formally, it can be shown that C∗
h′ ⊆ C∗

h if h ≥ h′ (i.e., the C∗
h’s are nested).

We would like to construct a relation �∗ on habit-adjusted consumption streams

that is equivalent to the DM’s preferences on real consumption streams, by defining

g(h, c) �∗ g(h, ĉ) if and only if c �h ĉ. (9)

By obtaining a utility representation U∗ for �∗ on the space C∗, we would have a

representation Uh for each �h. We would simply transform each stream c by the

habit-adjustment g(h, ·) (the “inner utility”) and then apply the “outer utility” U∗;

more formally, Uh(·) = U∗(g(h, ·)). However, before we can find a representation

for �∗, we must show that it is a continuous preference relation; and given that

there are multiple pairs of streams and habits that map to the same habit-adjusted

stream c∗ we must also show that �∗ is well-defined.

We illustrate that �∗ is well-defined using one-period histories. If one fixes a

particular habit q, we can uniquely reconstruct from any c∗ ∈ C∗
q the consumption

stream c such that g(q, c) = c∗. Indeed, since c∗0 = c0 − λq, we know c0 = c∗0 + λq.

Similarly, since c∗1 = c1− λc0, we know c1 = c∗1 + λc∗0 + λ2q, and so on and so forth.

Using the linear habit-aggregator ϕ(·), the stream c such that g(q, c) = c∗ is given

by (c∗0 + ϕ(q), c∗1 + ϕ(c∗0 + ϕ(q)), . . .).

To see that �∗ is well-defined, notice that we may equivalently define �∗ by

c∗ �∗ ĉ∗ iff (c∗0+ϕ(q), c∗1+ϕ(c∗0+ϕ(q)), . . .) �q (ĉ∗0+ϕ(q), ĉ∗1+ϕ(ĉ∗0+ϕ(q)), . . .) (10)

for some q ∈ Q such that c∗, ĉ∗ ∈ C∗
q . Suppose that �∗ is not well-defined. That

is, while the RHS of (10) holds for some q, there is a q′ such that c∗, ĉ∗ ∈ C∗
q′ and

(ĉ∗0 + ϕ(q′), ĉ∗1 + ϕ(ĉ∗0 + ϕ(q′)), . . .) �q′ (c∗0 + ϕ(q′), c∗1 + ϕ(c∗0 + ϕ(q′)), . . .).

Assume without loss that q > q′. Axiom HC(i) then implies that

(ĉ∗0 +ϕ(q′), ĉ∗1 +ϕ(ĉ∗0 +ϕ(q′)), . . .)+dq′,q �q (c∗0 +ϕ(q′), c∗1 +ϕ(c∗0 +ϕ(q′)), . . .)+dq′,q.

But since dq′,q = (ϕ(q − q′), ϕ(ϕ(q − q′)), . . .), the relation above is precisely

(ĉ∗0 + ϕ(q), ĉ∗1 + ϕ(ĉ∗0 + ϕ(q)), . . .) �q (c∗0 + ϕ(q), c∗1 + ϕ(c∗0 + ϕ(q)), . . .),
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which contradicts (10). Hence �∗ is well-defined.

Given that �∗ is well-defined, we can now show it is a preference relation. Be-

cause the C∗
q ’s are nested, for any three habit-adjusted consumption streams, there

is q̄ large enough that all three belong to C∗
q̄ . Therefore, �∗ inherits completeness

and transitivity from �q̄; a more delicate argument proves that �∗ also inherits

continuity.

4.2.3 Obtaining a discounted “outer utility” representation

While the DM’s preferences are neither additively separable nor dynamically con-

sistent in a manner independent of history, we can prove that �∗ does satisfy these

properties, and therefore that �∗ has a discounted utility representation U∗.

We leave a detailed discussion of the argument for additive separability, which

is complex, to the Appendix. Given our other axioms, we show in the Appendix

that Axiom HC(ii), which has the flavor of a separability axiom, implies that �∗

satisfies the separability conditions of Gorman (1968) on C∗.14 To prove that HC(ii)

generates this complete set of separability conditions for �∗ on C∗ using our axioms

on C requires that consumption histories be at least three periods long.

However, we can show here that �∗ satisfies history-independent dynamic con-

sistency, which gives the representation of �∗ a recursive structure. Again, let us

consider the special case of one-period histories. We would like to show that for

any c∗, ĉ∗ ∈ C∗ with c∗0 = ĉ∗0, (c∗0,
1c∗) �∗ (c∗0,

1ĉ∗) if and only if 1c∗ �∗ 1ĉ∗. To see

this, note that (c∗0,
1c∗) �∗ (c∗0,

1ĉ∗) if and only if

(c∗0 + ϕ(q), c∗1 + ϕ(c∗0 + ϕ(q)), . . .) �q (c∗0 + ϕ(q), ĉ∗1 + ϕ(c∗0 + ϕ(q)), . . .) (11)

for some q ∈ Q such that c∗, ĉ∗ ∈ C∗
q . Because �q satisfies Axiom DC, (11) holds

if and only if

(c∗1 + ϕ(c∗0 + ϕ(q)),c∗2 + ϕ(c∗1 + ϕ(c∗0 + ϕ(q))), . . .)

�c∗0+ϕ(q) (ĉ∗1 + ϕ(c∗0 + ϕ(q)), ĉ∗2 + ϕ(ĉ∗1 + ϕ(c∗0 + ϕ(q))), . . .).

This means, by definition, that 1c∗ �∗ 1ĉ∗. Hence the claim is proved.

14The only other paper of which we are aware that applies Gorman-type conditions to infinite
streams in order to obtain a discounted utility representation is Bleichrodt, Rohde & Wakker
(2007), which is unrelated to habit formation.
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5 Desirable habit-forming goods

For cases in which the consumption good is a desirable one, we can strengthen

the previous representation to one in which the period-utility is monotonic, as is

typically assumed in the applied literature on habit formation.

Standard monotonicity says the DM is better off whenever consumption in any

period is increased. This seemingly innocuous assumption may not be satisfied in

a time-nonseparable model: a consumption increase also raises the DM’s habit.

We suggest a weakening that accommodates the possibility that a short-term con-

sumption gain might not suffice to overcome the long-term utility loss. Our axiom

considers an unambiguous “gain” to be an indefinite increase in consumption.15

Axiom GM (Gains Monotonicity) If α > 0, (ct, t+1c + α) � c for all c, t.

Replacing Axiom S with GM ensures that the period-utility in Theorem 1 is

increasing. The proof requires additional results found in the supplement.

Theorem 2 (Main representation with monotonic period-utility). The family of

preference relations � satisfies Axioms PR, C, DC, GM, HC, and NDM if and only

if each �h can be represented as in Theorem 1 using an increasing period-utility u(·)
which is (i) strictly increasing on (0,∞) if

∑∞
k=1 λk < 1 and (ii) strictly increasing

on either (−a,∞) or (−∞, a) for some a > 0 if
∑∞

k=1 λk = 1.

Unlike monotonicity, Axiom GM does not contradict experimental evidence in-

dicating that individuals may prefer receiving an increasing stream of consumption

over one that is larger but fluctuates more (see Camerer & Loewenstein (2004) for

a comprehensive survey). Instead, it suggests a guideline for when a larger stream

should be preferred. Consider two consumption streams, c and c′, with c ≥ c′. We

say that c >GD c′, or c gains-dominates c′, if c has larger period-to-period gains and

smaller period-to-period losses: that is, ct− ct−1 ≥ c′t− c′t−1 ∀ t ≥ 1. The following

result characterizes GM in terms of a preference for gains-dominating streams.

Proposition 1 (Respect of gains-domination). A preference relation continuous

in the product topology satisfies GM if and only if it respects gains-domination; that

is, if and only if for any c, c′ ∈ C, c >GD c′ implies that c � c′.

The proof is immediate after noting that a stream will gains-dominate another

if and only if the difference between the two streams is positive and increasing; the

15By constrast, Shalev (1997)’s constant-tail monotonicity says (restricted to deterministic
streams) that if a stream gives q from time t onwards, then raising q to some q′ > q from t
onwards improves the stream. This is equivalent to saying that a weakly increasing (decreasing)
consumption stream is at least as good (bad) as getting its worst (best) element constantly.
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result follows from repeatedly applying Axiom GM to build the gains-dominating

stream forward and using continuity in the product topology.

6 The autoregressive model and habit decay

A frequently used specification of the linear habit formation model posits an au-

toregressive specification of the habit aggregator that reduces the number of habit

parameters to two. According to this model, there exist α, β > 0 with α + β ≤ 1

such that the habit aggregator satisfies the autoregressive law of motion ϕ(hq) =

αϕ(h) + βq for all h ∈ H and q ∈ Q.16 In this section we examine the implications

of this simplification for choice behavior. Specifically, we show that the autoregres-

sive structure of the habit aggregator corresponds to an additional axiom that can

calibrate the habit decay parameter α in that model.

Suppose a DM faces two possible consumption scenarios for period 0, High and

Low. In the former, the DM consumes very much at t = 0; in the latter, she

consumes very little. We may wonder whether the date-0 consumption level deter-

mined in these scenarios has an irreversible effect on the DM’s future preferences.

If the DM were to consume very little for some time after scenario High, and very

much for some time after scenario Low, could the opposing effects cancel so that her

preferences following each scenario eventually coincide? The next axiom describes

a choice behavior for which such equilibration is possible.

Axiom IE (Immediate Equilibration) For all c0, ĉ0 ∈ Q, there exist c1, ĉ1 ∈ Q such

that for all c̄, ¯̄c ∈ C, (c0, c1, c̄) �h (c0, c1, ¯̄c) if and only if (ĉ0, ĉ1, c̄) �h (ĉ0, ĉ1, ¯̄c).

This says we can undo by tomorrow the effect of a difference in consumption

today. Together, Axioms DC and IE imply that �hc0c1 and �hĉ0ĉ1 are identical.

Axiom IE offers a comparative measure of habit decay. To see this, fix any

period-0 consumption levels ĉ0 > c0 and consider the corresponding period-1 con-

sumption levels ĉ1, c1 that are given by Axiom IE. If the DM’s habits decay slowly

then the effects of prior consumption linger strongly, so c1 will have to be quite

large and ĉ1 will have to be quite small in order to offset the initial difference.

More formally, for fixed ĉ0 > c0 one would expect that the difference c1 − ĉ1 in the

period-1 consumption levels required by Axiom IE should be larger for those DM’s

whose habits decay more slowly.

This intuition is confirmed by the following representation theorem, which re-

16Such a model appears in Boldrin, Christiano & Fisher (1997) in our discrete time form and
in Constantinides (1990), Schroder & Skiadas (2002) and Sundaresan (1989) in continuous time.
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veals that Axiom IE corresponds to the autoregressive specification of habits, and

that habits decay at the constant rate c1−ĉ1
ĉ0−c0

.17

Theorem 3 (Autoregressive habit formation). The family of preference relations

� satisfies Axioms PR, C, DC, S, HC, NDM and IE if and only if each �h can

be represented by Uh(c) =
∑∞

t=0 δtu
(
ct−ϕ(h, c0, c1, . . . , ct−1)

)
as in Theorem 1 and

there exist α, β > 0 with α+β ≤ 1 such that the linear habit aggregator ϕ(·) satisfies

the autoregressive law of motion

ϕ(hq) = αϕ(h) + βq ∀ h ∈ H, q ∈ Q. (12)

Moreover, for arbitrary choice of c0, ĉ0 in Axiom IE, the values of c1, ĉ1 given by

Axiom IE calibrate the habit decay parameter: α = c1−ĉ1
ĉ0−c0

.18

The proof of Theorem 3, which appears in the Appendix, suggests a more

general result. It can similarly be shown that a generalization of the autoregressive

model that has n habit parameters corresponds to a generalized n−1 period version

of equilibration in which it takes n − 1 periods to equilibrate preferences after a

single difference in consumption.

Clearly, for the simplest autoregressive model, the geometric coefficients model

where the aggregator satisfies the law of motion ϕ(hq) = (1 − λ)ϕ(h) + λq, the

choice experiment in Axiom IE immediately recovers the single parameter λ. Since

this model corresponds to the special case α + β = 1, the parameter λ is given

by 1 − c1−ĉ1
ĉ0−c0

. Although the autoregressive model and its geometric specialization

appear quite similar, we show in the next section that choice behavior can depend

critically on whether α + β is equal to or smaller than one.

7 Persistent versus responsive habits

In this section we distinguish between two types of preferences that satisfy our

axioms, those whose habits are responsive to weaning and those whose habits

are persistent. Recall that Axiom HC(i) implies that the indifference curves for

the preference �h′ are translated up by dh′,h into indifference curves for �h, as

17Consider an alternative to IE: ∀ h, ∃ q ∈ Q s.t. for all c̄, ¯̄c ∈ C, c̄ �h ¯̄c iff (q, c̄) �h (q, ¯̄c).
This axiom would get the representation in Theorem 3 but would not calibrate the parameter α.

18For finite histories of length K ≥ 3, the habit aggregator cannot be written in the form (12)
but the result of Theorem 3 is unchanged: the ratio of successive habit formation coefficients λk+1

λk

is constant and given by c1−ĉ1
ĉ0−c0

.
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illustrated in Figure 1. Stated differently, dh′,h measures the distance between the

indifference curves of �h′ and �h. Whether the DM can be weaned using a quickly

fading stream of compensation, or must be weaned using possibly high levels of

consumption that fade slowly - or never at all - will determine the extent to which

consumption affects her preferences. To capture this, we suggest the following

simple characterization of the DM’s habit-forming tendencies.

Definition 1. The DM is responsive to weaning if she can always be weaned using

a finite amount of compensation; that is, for every (h′, h) ∈ H, the total amount∑∞
t=0 dh′,h

t is finite. The DM has persistent habits if she can never be weaned using

a finite amount of compensation; that is, for every (h′, h) ∈ H,
∑∞

t=0 dh′,h
t = ∞.

We show that the value
∑∞

k=1 λk characterizes a DM’s habits as responsive

or persistent and can have a profound effect on the manner in which indifference

curves are translated from one habit to another.19

Proposition 2 (Dichotomy). Suppose the DM satisfies our axioms. Then,

(i) The DM’s habits are persistent if
∑∞

k=1 λk = 1. Moreover, for every (h′, h) ∈
H, the compensating stream dh′,h is constant.

(ii) The DM’s habits are responsive to weaning if
∑∞

k=1 λk < 1. Moreover, if k∗

is such that
λk∗+1

λk∗
< 1 − λ1, then for every (h′, h) ∈ H, the compensating

stream dh′,h decays at least at the geometric rate 1 − λk∗(1 − λ1 − λk∗+1

λk∗
) for

all t ≥ k∗; and if h > h′, dh′,h is strictly decreasing for all t.

Observe that
∑∞

k=1 λk = 1 if and only if λk+1

λk
= 1−λ1 for every k. To illustrate

the meaning of this result suppose that
∑∞

k=1 λk = 1− γ, where γ > 0 may be at-

tributed to
λk∗+1

λk∗
falling below 1−λ1 for some small k∗. Even if γ is small, the effect

of habits on choice behavior is quite different from that under persistent habits,

ceteris paribus. Compensation rapidly decreases early on and the translation of the

indifference map between two habits (h′, h) ∈ H is much milder than it would be

if habits were persistent (in which case the translation would be constant).

This difference is particularly pronounced within the class of autoregressive

models discussed in the previous section. The autoregressive model corresponds to

the restriction that λk+1

λk
is a constant given by α (and β = λ1). If α+β < 1, applying

the result above with k∗ = 1 indicates that compensation decreases immediately.

While attention is not always paid to the value of α + β in the autoregressive

19The proof follows from Lemma 8.
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model, this result suggests that this modeling decision should be taken with care.

In particular, the following result shows that the choice of a period-utility should

be made in conjunction with the choice of persistent or responsive habits.20

Proposition 3 (Persistent habits). Suppose the DM’s habits are persistent. Then

for any ε > 0, there are no c ∈ C and habit h ∈ H such that the argument of the

DM’s period-utility, ct − ϕ(hct−1), is at least as large as ε for every t.

To facilitate dynamic programming, the applied literature typically uses a period-

utility satisfying an Inada condition limx→0 u′(x) = ∞. For such a period-utility,

this result means that a persistent DM will have infinite marginal utility infinitely

often from any bounded consumption stream. Moreover, a persistent DM cannot

perfectly smooth her habit-adjusted consumption if her consumption is bounded.

8 Conclusion

In this paper we have introduced the device of compensating a DM for giving up her

habits to provide axiomatic foundations for intrinsic linear habit formation. This

approach has allowed us to clarify the behavioral differences across some prevalent

specifications of this model in the applied literature.

Our axiomatization can be modified to accommodate other models of history

dependence. For example, it is easy to extend our axioms to generate a multidi-

mensional version of intrinsic linear habit formation (e.g., with one standard good

and two habit-forming ones). By specifying compensation to be independent across

goods, one may obtain the representation
∑∞

t=0 δtu
(
c1
t , c

2
t −ϕ2(h2, c2

0, . . . , c
2
t−1), c

3
t −

ϕ3(h3, c3
0, . . . , c

3
t−1)

)
, where the habit aggregator ϕi(·) for good i = 2, 3 is given by

ϕi(ĥi) =
∑∞

k=1 λi
kĥ

i
k. Although consumption histories for each good are evaluated

separately, the curvature of u(·) may imply that a DM’s desire for a habit-forming

good she has not tried before is intensified when another good for which she has a

high habit is unavailable. In addition, if the definition of weaning is generalized so

that compensation may depend on the DM’s choice set, then the critical assump-

tion generating linearity is relaxed. One may potentially place the appropriate

axioms on compensation to axiomatize models of non-linear habit formation.

20This result follows from Lemma 31 in the supplement.
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Appendix

A Illustrations of quasi-cyclicity

(a) (b) (c)

Figure 2: Violations of acyclicity. (a) β = 1; (b) β > 1; (c) β = 1 and affine.

B Proof of Theorem 1

Combined with the results in the supplement, this also proves Theorem 2.

B.1 Sufficiency

Axioms PR, C, DC, S, HC, and NDM are implicit in all hypotheses.

Results about the sequences dh′,h

Lemma 1 (Zero). For each h′ there is no nonzero c̄ ∈ C such that c + c̄ �h′ c′ + c̄

iff c �h′ c′ for all c, c′ ∈ C. Consequently we may define dh,h = (0, 0, . . .).

Proof. If there were, then for any h ≥ h′ both c̄+ dh′,h and dh′,h would compensate

from h′ to h, violating uniqueness.

Lemma 2 (Triangle Equality). Let h′′ ≥ h′ ≥ h. Then dh,h′′ = dh,h′ + dh′,h′′.

Proof. This is analogous to the proof on page 14 in the main text.

By the triangle equality, dh′,h = d0̄,h − d0̄,h′ . We abuse notation by writing dh

whenever d0̄,h is intended. For any h ∈ H, q ∈ Q and k ∈ N, the habit hk,q ∈ H

is defined by hk,q
k = q and hk,q

t = ht for every t 6= k. In particular, 0̄k,q is the habit

which has q as the k-th element and 0 everywhere else.

Lemma 3 (Additive Separability). dh′,h =
∑∞

k=1

(
d0̄k,hk − d0̄k,h′k

)
.
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Proof. Let h0 = h′ and for every k inductively define hk by hk
k = hk and hk

i = hk−1
i

for all i 6= k. We prove the lemma in three steps: (i) for any (h′, h) ∈ H, we may

write dh′,h =
∑∞

k=1 dhk−1,hk
+ limK→∞ dhK ,h; (ii) each dhk−1,hk

= d0̄k,hk − d0̄k,h′k ; and

(iii) limK→∞ dhK ,h = (0, 0, . . .).

(i) Using iterated application of Lemma 2, observe that for habits (h′, h) ∈ H
that eventually agree (WLOG, suppose they agree on {t, t + 1, . . .}) we have

dh′,h =
∑t

k=1 dhk−1,hk
. Now consider arbitrary (h′, h) ∈ H. For any K ∈ N

and any c, c′ ∈ C, c �h′ c′ iff c +
∑K

k=1 dhk−1,hk �hK c′ +
∑K

k=1 dhk−1,hk
. But

again by Weaning in Axiom HC, c +
∑K

k=1 dhk−1,hk �hK c′ +
∑K

k=1 dhk−1,hk
iff

c+
∑K

k=1 dhk−1,hk
+dhK ,h �h c′+

∑K
k=1 dhk−1,hk

+dhK ,h. Therefore, for arbitrary

K, dh′,h =
∑K

k=1 dhk−1,hk
+ dhK ,h.

(ii) We now show that each dhk−1,hk
is independent of the values of h′ and h on

N \ {k}. In fact, we will show that for arbitrary q′ ≤ q and (h, h̄) ∈ H,

dhk,q′ ,hk,q

= dh̄k,q′ ,h̄k,q

if and only if dhk,q ,h̄k,q

= dhk,q′ ,h̄k,q′

. (13)

To see this, use Lemma 2 to write dhk,q′ ,h̄k,q
= dhk,q′ ,h̄k,q′

+ dh̄k,q′ ,h̄k,q
as well as

dhk,q′ ,h̄k,q
= dhk,q′ ,hk,q

+ dhk,q ,h̄k,q
. Combining these two expressions,

dhk,q′ ,h̄k,q′ − dhk,q ,h̄k,q

= dhk,q′ ,hk,q − dh̄k,q′ ,h̄k,q

.

This proves (13). By Axiom HC(iii), dhk,q′ ,h̄k,q′
= dhk,q ,h̄k,q

. Since hk and hk+1

agree on N\{k}, (13) implies that dhk,hk+1
= d0̄k,h′k ,0̄k,hk . Now use the triangle

equality.

(iii) Now we show that limK→∞ dhK ,h = (0, 0, . . .). Since the habits hK and h

agree on {1, 2, . . . , K}, iterated application of Axiom HC(iii) implies that for

each K, dhK ,h = dh′0K ,h0K
. But by the triangle equality, dh′,h is decreasing in

h′. Hence dh′0K ,h0K ≤ d0̄,h0K
. Therefore,

(0, 0, . . .) ≤ lim
K→∞

dhK ,h = lim
K→∞

dh′0K ,h0K ≤ lim
K→∞

d0̄,h0K

= (0, 0, . . .),

where the last equality is due to Axiom NDM and dh′,h decreasing in h′.

Lemma 4 (Weak Invariance). For any q, q̂ ∈ Q and k, d0̄k,q ,0̄k,q+d0̄k,q̂

0

0 = d0̄,0̄k,d0̄k,q̂

0

0 .

Proof. Consider any c, c′ ∈ C such that (c0, c1, . . . , ck−1) and (c′0, c
′
1, . . . , c

′
k−1) are
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both equal to (q, 0, 0, . . . , 0). According to Weaning,

c �0̄ c′ iff c + d0̄k,q̂ �0̄k,q̂ c′ + d0̄k,q̂

. (14)

Applying DC to the RHS of (14),

c + d0̄k,q̂ �0̄k,q̂ c′ + d0̄k,q̂

iff kc + kd0̄k,q̂ �
(0̄k,q̂ ,q+d0̄k,q̂

0 ,d0̄k,q̂
1 ,...,d0̄k,q̂

k−1 )
kc′ + kd0̄k,q̂

. (15)

But again by DC, this time applied to the LHS of (14),

c �0̄ c′ iff kc �0̄k,q
kc′. (16)

Combining expressions (15) and (16) using (14),

kc �0̄k,q
kc′ iff kc + kd0̄k,q̂ �

(0̄k,q̂ ,q+d0̄k,q̂
0 ,d0̄k,q̂

1 ,...,d0̄k,q̂
k−1 )

kc′ + kd0̄k,q̂

. (17)

Since both have a q in the k-th place, 0̄k,q ≤ (0̄k,q̂, q + d0̄k,q̂

0 , d0̄k,q̂

1 , . . . , d0̄k,q̂

k−1). As

kc and kc′ are arbitrary, kd0̄k,q̂
= d0̄k,q ,(0̄k,q̂ ,q+d0̄k,q̂

0 ,d0̄k,q̂

1 ,...,d0̄k,q̂

k−1 ). In particular, the

choice of c, c′ (which depended on q) does not affect d0̄k,q̂
. This means kd0̄k,q̂

=

d(0̄k,q̂ ,d0̄k,q̂

0 ,d0̄k,q̂

1 ,...,d0̄k,q̂

k−1 ) as well. Canceling parts using Lemma 3 gives the desired

conclusion.

Construction of the habit aggregator

For each k define ϕk : Q → R by ϕk(q) = d0̄k,q

0 if q > 0 and ϕk(0) = 0. We naturally

define ϕ : H → R by ϕ(h) = dh
0 =

∑∞
k=1 ϕk(hk).

Lemma 5 (Linearity). ϕk(q) = λkq for some λk > 0 and for all q ∈ Q; and

dh′,h = d0̄,h−h′ for every (h′, h) ∈ H. This implies that ϕ(h− h′) = dh−h′

0 = dh′,h
0

Proof. By Lemma 2, we know that ϕk(q + ϕk(q̂)) = ϕk(q) + d0̄k,q ,0̄k,q+d0̄k,q̂

0

0 because

d0̄k,q+d0̄k,q̂

0

0 = d0̄k,q

0 + d0̄k,q ,0̄k,q+d0̄k,q̂

0

0 .

But the last term above is ϕk(ϕk(q̂)) because of Lemma 4, weak invariance. Then,

by construction, ϕk(·) is additive on its image, i.e., for every k,

ϕk(ϕk(q̂) + q) = ϕk(ϕk(q̂)) + ϕk(q) ∀ q, q̂ ∈ Q. (18)
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By Axiom NDM, ϕk(·) is onto Q.21 Hence (18) is identical to a non-negativity

restricted Cauchy equation (i.e., f(x + y) = f(x) + f(y) for all x, y ≥ 0) under the

reparametrization q′ = ϕk(q̂). We know ϕk(·) is strictly monotone, so by Aczel &

Dhombres (1989, Corollary 9), ϕk(x) = λx for some λ > 0.

Lemma 6 (Recursive Structure). For any t ≥ 0 and h ∈ H, tdh = dhdh
0dh

1 ···dh
t−1;

hence dh
1 = ϕ(hϕ(h)), dh

2 = ϕ(hϕ(h)ϕ(hϕ(h))), etc.

Proof. By strong induction. The lemma is true for t = 0: dh = dh. Assume

that tdh = dhdh
0dh

1 ···dh
t−1 for all t smaller than some t̂. This implies that t̂+1dh =

1d
hdh

0dh
1 ···dh

t̂−1 . Using the inductive hypothesis with hdh
0d

h
1 · · · dh

t̂−1
as the habit,

1d
hdh

0dh
1 ···dh

t̂−1 = d
hdh

0dh
1 ···dh

t̂−1
d

hdh
0 dh

1 ···d
h
t̂−1

0 .

Once more by the inductive hypothesis, dh
t̂

= d
hdh

0dh
1 ···dh

t̂−1

0 . Therefore, t̂+1dh is equal

to dhdh
0dh

1 ···dh
t̂ as desired.

Lemma 7 (Geometric Decay). For all h ∈ H, dh is decreasing iff λ1 ∈ (0, 1) and

λk+1

λk

≤ 1− λ1 ∀ k ≥ 1. (19)

We remark that (19) clearly implies
∑∞

k=1 λk ≤ 1.

Proof. Lemmas 3, 5 and 6 together prove that each d0̄k,q

t may be written

d0̄k,q

t = qλt+k +
t−1∑
i=0

d0̄k,q

i λt−i. (20)

Therefore, for t ≥ 1,

d0̄k,q

t−1 − d0̄k,q

t =
t−2∑
i=0

d0̄k,q

i λt−i−1 + qλt−1+k −
t−1∑
i=0

0̄k,qλt−i − λt+kq. (21)

When t = 1, only the term q(λk − λkλ1 − λk+1) remains in (21) for each k. Hence,

the condition (19) holds if and only if d0̄k,q

0 ≥ d0̄k,q

1 for every k. Note that this also

has the effect of implying λ1 < 1, since λk > 0 for every k by Lemma 5. Now, we

show that (19) guarantees that d0̄k,q

t−1 ≥ d0̄k,q

t for every t. Indeed, rearranging (21)

21The solution of functional equation (18) is not fully characterized. Jarczyk (1991, pp. 52-61)
proves continuous solutions must be affine. We know ϕ is a.e. continuous (without NDM).
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and plugging in from (20), we obtain

d0̄k,q

t−1 − d0̄k,q

t =
t−2∑
i=0

d0̄k,q

i [λt−i−1 − λt−i] + q[λt−1+k − λt+k]− λ1d
0̄k,q

t−1

=
t−2∑
i=0

d0̄k,q

i [λt−i−1(1− λ1)− λt−i] + q[λt−1+k(1− λ1)− λt+k].

Hence d0̄k,q

t−1 ≥ d0̄k,q

t follows from condition (19).

Lemma 8 (Persistent or Responsive). For any h ∈ H,

(i) If
∑∞

k=1 λk < 1, dh is infinitely summable. In particular, if for some ε > 0

there is k∗ such that
λk∗+1

λk∗
= 1− λ1 − ε then

dh
t

dh
t−1

≤ 1− ελk∗ for all t ≥ k∗.

(ii) If
∑∞

k=1 λk = 1 then dh is a constant sequence.

Proof. For (i), let ε = 1− λ1 − λk∗+1

λk∗
and xt,k∗ =

{
dh

t−1−k∗ if t > k∗

hk∗+1−t if t ≤ k∗
Using the

recursive construction of Lemma 6 and the fact that ϕ(h0t) =
∑∞

k=t+1
λk

λk−t
λk−thk−t,

dh
t

dh
t−1

=
ϕ(hdh

0 · · · dh
t−20) + λ1d

h
t−1

dh
t−1

≤
(1− λ1)d

h
t−1 − εxt,k∗λk∗ + λ1d

h
t−1

dh
t−1

,

with equality if k∗ uniquely satisfies λk+1

λk
< 1− λ1. Since dh

t−1−k∗ ≥ dh
t−1 ∀ t > k∗,

dh
t

dh
t−1

≤
(1− λ1)d

h
t−1 − εdh

t−1−k∗λk∗ + λ1d
h
t−1

dh
t−1

= (1−λ1)−ε
dh

t−1−k∗

dh
t−1

λk∗+λ1 ≤ 1−ελk∗ .

For (ii), note that for all q ∈ Q, ϕ(hq) = (1−λ1)ϕ(h)+λ1q. Therefore ϕ(hϕ(h)) =

ϕ(h). The claim easily follows from induction and Lemma 6.

Construction of the continuous preference relation �∗

We use Axiom HC to construct a continuous map g from H × C into an auxiliary

space C∗, as well as a continuous preference relation on C∗ preserving �. We

endow the space ×∞
i=0R with the product topology and define the transformation

g : H × C → ×∞
i=0R by g(h, c) = (c0 − ϕ(h), c1 − ϕ(hc0), c2 − ϕ(hc0c1), . . .). Let

C∗ = g(H × C) and C∗
h = g({h} × C), for any h ∈ H, be the image and projected

image under g, respectively. We shall consider C∗ to be a metric subspace of

×∞
t=0R, implying that C∗ is a metric space in its own right. As a reminder, the
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spaces H and C are metrized by the sup metric ρH(h, h′) = supk |hk − h′k| and

the product metric ρC(c, c′) =
∑∞

t=0
1
2t

|ct−c′t|
1+|ct−c′t|

respectively. We metrize H × C by

ρH×C((h, c), (h′, c′)) = ρH(h, h′) + ρC(c, c′).

Lemma 9 (Continuous Mapping). g(·, ·) is a continuous mapping; moreover, for

any given h ∈ H, g(h, ·) is a homeomorphism into C∗
h.

Proof. The map is continuous in the topology if every component is. Linearity of

ϕ implies that the t-th component can be written as ct − ϕ(h0t) −
∑t

k=1 λkct−k;

as only there is only a finite sum of elements of c in each component, the map

is continuous with respect to C. Using the sup metric it is clear that ϕ(·) is

continuous with respect to H. The desired joint continuity is evident under the

respective metrics. Finally, for any h ∈ H we can directly exhibit the clearly

continuous inverse g−1(h, ·) : C∗
h → C defined by g−1(h, c∗) equal to

(c∗0 + ϕ(h), c∗1 + ϕ(h, c∗0 + ϕ(h)), c∗2 + ϕ
(
h, c∗0 + ϕ(h), c∗1 + ϕ(h, c∗0 + ϕ(h))

)
, . . .).

Lemma 10 (Nestedness). C∗
h′ ⊆ C∗

h for any (h′, h) ∈ H.

Proof. Take (c0−ϕ(h′), c1−ϕ(h′c0), c2−ϕ(h′c0c1), . . .) ∈ C∗
h′ , so that (c0, c1, c2, . . .) ∈

C. For any (h′, h) ∈ H, c + dh′,h ∈ C. By Lemma 6 we know that dh′,h = dh−h′ =

(ϕ(h− h′), ϕ(h− h′, ϕ(h′ − h)), . . .). Moreover, since ϕ is affine by Lemma 5,

(c0+ϕ(h− h′)− ϕ(h), c1 + ϕ(h− h′, ϕ(h− h′))− ϕ(h, c0 + ϕ(h− h′)), . . .)

= (c0 + ϕ(h− h′ − h), c1 + ϕ(h− h′ − h, ϕ(h− h′)− c0 − ϕ(h− h′)), . . .)

= (c0 − ϕ(h′), c1 − ϕ(h′c0), c2 − ϕ(h′c0c1), . . .) ∈ C∗
h.

Lemma 11 (Topological Properties). C∗ is separable, connected and convex.

Proof. Connectedness follows from being the continuous image of a connected

space. Convexity follows from convexity of C and H and linearity of g(·, ·). To see

separability, construct the sequence {hn}n∈Z by hn = (. . . , n, n, n). By Lemma 10,

C∗ =
⋃

n∈Z C∗
hn . Since each g(hn, ·) is continuous, each C∗

hn is separable, being the

continuous image of a separable space. Let C̃∗
hn denote the countable dense subset

of each C∗
hn . Then

⋃
n∈Z C̃∗

hn is a countable dense subset of C∗.22

We define a binary relation �∗ on C∗ × C∗ by

g(h, c) �∗ g(h, ċ) iff c �h ċ. (22)

22Note H is not separable under the sup metric; if we were to make H separable by endowing
it with the product topology instead, then g would not be continuous with respect to h.
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Note that the definition of �∗ can be rewritten as c∗ �∗ ċ∗ if and only if c∗, ċ∗ ∈ C∗
h

and g−1(h, c∗) �h g−1(h, ċ∗) for some h ∈ H.

Lemma 12 (Well-Definedness). The relation �∗ is well-defined.

Proof. Suppose there are h, h′ and c∗, ċ∗ ∈ C∗
h, C

∗
h′ with g−1(h, c∗) �h g−1(h, ċ∗)

and g−1(h′, ċ∗) �h′ g−1(h′, c∗). We apply HC(i) to both relationships: g−1(h, c∗) +

dh,h̄ �h̄ g−1(h, ċ∗) + dh,h̄ and g−1(h′, ċ∗) + dh′,h̄ �h̄ g−1(h′, c∗) + dh′,h̄. But both

g−1(h, c∗) + dh,h̄ and g−1(h′, c∗) + dh′,h̄ are equal to g−1(h̄, c∗) (similarly for ċ∗).

Hence the statements above are contradictory.

Lemma 13 (Continuous Preference). �∗ is a continuous preference relation.

Proof. The C∗
h′ are nested by Lemma 10. Thus for any c∗, ċ∗, ĉ∗ ∈ C∗, there is

h ∈ H large enough so that c∗, ċ∗, ĉ∗ ∈ C∗
h. Hence �∗ inherits completeness and

transitivity over {c∗, ċ∗, ĉ∗} from �h, which suffices since c∗, ċ∗, ĉ∗ were arbitrary.

To prove that �∗ is continuous in the product topology, we will show that the

weak upper contour sets are closed; the argument for the weak lower contour sets

is identical. Consider any sequence of streams {c∗n}n∈Z ∈ C∗ converging to some

c∗ ∈ C∗ and suppose there is ĉ∗ ∈ C∗ such that c∗n �∗ ĉ∗ for all n. Take any h and c

such that g(h, c) = c∗. By Lemma 9, g is continuous: for any ε-ball Y ⊂ C∗ around

c∗ there is a δ-ball X ⊂ H × C around (h, c) such that g(X) ⊂ Y . Because the

sequence {c∗n} converges to c∗ there is a subsequence {c∗m} ∈ Y also converging to

c∗. By our use of the sup metric on H we know that any (h′, c′) ∈ X must satisfy

h′ ≤ h + (δ, δ, . . .). Then Lemma 10 ensures that for every m, c∗m ∈ C∗
h+(...,δ,δ).

Take h̄ ≥ h + (. . . , δ, δ) and large enough that ĉ∗ ∈ C∗
h̄
. We may compare the

corresponding streams in C under �h̄. Using g−1(h̄, ·) as defined in the proof of

Lemma 9, take c̄m = g−1(h̄, c∗m) for each m, c̄ = g−1(h̄, c∗), and ˆ̄c = g−1(h̄, ĉ∗).

Using the hypothesis and the definition of �∗ we know that c̄m �h̄
ˆ̄c for every m.

Lemma 9 asserts that g−1(h̄, ·) is continuous, so c̄m converges to c̄. Since �h̄ is

continuous by Axiom C, we know c̄ �h̄
ˆ̄c, proving that c∗ �∗ ĉ∗.

Standard results then imply �∗ has a continuous representation U∗ : C∗ → R.

Lemma 14 (Koopmans Sensitivity). There exist q∗, q̂∗ ∈ R, c∗ ∈ C∗, and t ∈ N
such that (c∗t−1, q∗, t+1c∗) �∗ (c∗t−1, q̂∗, t+1c∗).

Proof. Let α > 0, h ∈ H, and c ∈ C be such that c + α 6∼h c. Since the compen-

sating streams are (weakly) decreasing and d0̄α
0 < α for all α > 0, we can write

any positive constant stream as a staggered sum of streams of the form (α, d0̄α).
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Formally, for any α > 0 we can find a sequence of times t1 < t2 < · · · and positive

numbers α > α1 > α2 > · · · such that the stream (α, α, . . .) can be written as the

consumption stream given by (α, d0̄α) starting at time 0, plus (α1, d0̄α1
) starting at

time t1, plus (α2, d0̄α2
) starting at time t2, etc. Suppose by contradiction that ∀

q∗, q̂∗ ∈ R, c∗ ∈ C∗, and t ∈ N, (c∗t−1, q∗, t+1c∗) ∼∗ (c∗t−1, q̂∗, t+1c∗). Let g(h, c) = c∗

where h, c are given as initially stated. Then (c∗t−1, c∗t + α, t+1c∗) ∼∗ c∗ by hypoth-

esis. By definition, this means that g−1(h, (c∗t−1, c∗t + α, t+1c∗)) ∼h g−1(h, (c∗)), or

(ct−1, ct + α, t+1c + d0̄α) ∼h c. Iterative application of the indifference for α1, α2, . . .

and product continuity imply that c + (α, α, . . .) ∼h c, violating Axiom S.

Separability conditions for �∗

We now prove that Compensated Separability suffices for the required additive

separability conditions to hold by showing that the following mapping from C into

C∗ is surjective, so the needed conditions apply for all elements of C∗. For each t,

define the “compensated consumption” map ξt : H × C → C∗ by

ξt(h, c) = g
(
h, (ct−1, tc + dh0t,hct−1

)
)
. (23)

To show ξt is surjective, we first prove the following auxiliary result.

Lemma 15 (Containment). For any h ∈ H, t ≥ 0 and ct ∈ Qt+1, there exists

ĥ ∈ H large enough that C∗
hct ⊆ C∗

ĥ0t+1.

Proof. Since ϕ is linear and strictly increasing, we may choose ĥ > h such that

ϕ(ĥ0t+1)− ϕ(hct) ≥
t∑

s=0

(1− λ1)
s+1cs. (24)

Choose any c∗ ∈ C∗
hct . Then, there is a ċ ∈ C such that g(hct, ċ) = c∗. For it to

also be true that c∗ ∈ C∗
ĥ0t+1 it must be that for some ĉ ∈ C,

ĉs − ϕ(ĥ0t+1ĉs−1) = c∗s = ċs − ϕ(hctċs−1) ∀s ≥ 0, (25)

where c−1, ċ−1 are ignored for the case s = 0. We claim that we can construct a ĉ ∈
C (nonnegative, bounded) by using (25) to recursively define ĉs = ϕ(ĥ0t+1ĉs−1) +

ċs − ϕ(hctċs−1) for every s ≥ 0.

Step (i): ĉ is nonnegative. It suffices to show ĉ ≥ ċ. For s = 0 it is clearly true that

ĉ0 ≥ ċ0, since we have chosen ϕ(ĥ0t+1)−ϕ(hct) ≥ 0 in (24). We proceed by strong
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induction, assuming ĉŝ−1 ≥ ċŝ−1 for every ŝ ≤ s. From (25), to prove ĉs ≥ ċs we

must show ϕ(ĥ0t+1ĉs−1)− ϕ(hctċs−1) ≥ 0. By the inductive hypothesis,

ϕ(ĥ0t+1ĉs−1)− ϕ(hctċs−1) = ϕ
(
(ĥ− h)0t+s+1

)
+ ϕ

(
0̄(ĉ1 − ċ1) · · · (ĉs−1 − ċs−1)

)
+

ϕ
(
0̄(ĉ0 − ċ0)0

s−1
)
− ϕ(0̄ct0s)

≥ ϕ
(
0̄(ĉ0 − ċ0)0

s−1
)
− ϕ(0̄ct0s)

= ϕ
(
0̄
(
ϕ(ĥ0t+1)− ϕ(hct)

)
0s−1

)
− ϕ(0̄ct0s)

≥ λs

t∑
i=0

(1− λ1)
i+1ci −

t∑
i=0

λs+1+ici

(26)

where the first inequality comes from the nonnegativity of ϕ; the equality comes

from plugging in for ĉ0 − ċ0 from (25); and the second inequality comes from (24)

and Lemma 5. By Lemma 7, λs+1+i

λs
≤ (1− λ1)

i+1, hence 26 is positive.

Step (ii): ĉ remains bounded. Since ċ ∈ C it is bounded, so it will suffice to show

that the difference between ĉ and ċ is bounded. Let us denote by y the quantity

ϕ
(
(ĥ − h)0t+2

)
+ ϕ

(
0̄(ĉ0 − ċ0)0

)
. By construction, for every s ≥ 1, ĉs − ċs is

equal to the sum on the RHS of the first equality in (26). By the fading nature

of compensation, all terms but ϕ
(
0̄(ĉ1 − ċ1) · · · (ĉs − ċs)

)
converge to 0 as s tends

to infinity. In fact, for any h and t, ϕ(h0t) ≤ (1 − λ1)
tϕ(h). Consequently, the

sum ϕ
(
(ĥ − h)0t+s+1

)
+ ϕ

(
0̄(ĉ0 − ċ0)0

s−1
)

is no bigger than (1 − λ1)
s−1y for any

s. Let us drop the negative term −ϕ(0̄ct0s) in (26) to obtain an upper bound.

By the definition of y, we see that ĉ1 − ċ1 ≤ y. We claim that for all s ≥ 1,

ĉs−ċs ≤ y. The proof proceeds by strong induction. Using the inductive hypothesis,

ĉs−ċs ≤ y(1−λ1)
s−1+y

∑s−1
k=1 λs. But

∑s−1
k=1 λs ≤ λ1

∑s−2
k=0(1−λ1)

k = 1−(1−λ1)
s−1,

so ĉs − ċs ≤ y as claimed.

Lemma 16 (Surjectivity). Each ξt as defined in (23) is surjective.

Proof. Fix any c∗ ∈ C∗ and t ≥ 1. By definition, there is h ∈ H and c ∈ C such

that g(h, c) = c∗. That is, for every s, cs − ϕ(hc0c1 . . . cs−1) = c∗s. Fix this h and c.

We wish to show that there exist ĥ ∈ H and ĉ ∈ C such that ξt(ĥ, ĉ) = c∗, i.e.

( ĉ0−ϕ(ĥ), ĉ1−ϕ(ĥĉ0), . . . , ĉt−1−ϕ(ĥĉ0 . . . ĉt−2), ĉt−ϕ(ĥ0t), ĉt+1−ϕ(ĥ0tĉt), . . . ) = c∗.

(27)

Because c∗ ∈ C∗
h, tc∗ ∈ C∗

hct−1 . Equation (27) suggests that we must show that
tc∗ ∈ C∗

ĥ0t for some ĥ ∈ H. Lemma 15 provides a c̄ and ĥ > h s.t. g(ĥ0t, c̄) = tc∗.
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Moreover, since ĥ > h, c∗ ∈ C∗
ĥ
. Therefore, there exists ¯̄c ∈ C such that g(ĥ, ¯̄c) = c∗

and in particular, g(ĥ, ¯̄c)t−1 = c∗t−1. Setting ĉ = (¯̄ct−1, tc̄), we have ξt(ĥ, ĉ) = c∗.

Lemma 17 (Separability). �∗ satisfies the following separability conditions:

(i) Take any c∗, ĉ∗ ∈ C∗ with c∗0 = ĉ∗0. Then, for any c̄∗0 s.t. (c̄∗0,
1c∗), (c̄∗0,

1ĉ∗) ∈ C∗,

(c∗0,
1c∗) �∗ (c∗0,

1ĉ∗) iff (c̄∗0,
1c∗) �∗ (c̄∗0,

1ĉ∗). (28)

(ii) For any t ≥ 0, c∗, ĉ∗, c̄∗, ¯̄c∗ ∈ C∗ s.t. (c∗t, c̄∗), (ĉ∗t, c̄∗), (c∗t, ¯̄c∗), (ĉ∗t, ¯̄c∗) ∈ C∗,

(c∗t, c̄∗) �∗ (ĉ∗t, c̄∗) iff (c∗t, ¯̄c∗) �∗ (ĉ∗t, ¯̄c∗). (29)

Proof. The proof of Condition (i) is analogous to the proof on page 16 for one-

period histories. We now prove Condition (ii).

Find h large enough so that (c∗t, c̄∗), (ĉ∗t, c̄∗), (c∗t, ¯̄c∗), (ĉ∗t, ¯̄c∗) ∈ C∗
h. Hence,

there exist c̃, ˜̃c, ċ, c̈ such that g(h, c̃) = (c∗t, c̄∗), g(h, ˜̃c) = (ĉ∗t, c̄∗), g(h, ċ) = (c∗t, ¯̄c∗),

and g(h, c̈) = (ĉ∗t, ¯̄c∗). Moreover, we must have c̃t = ċt and ˜̃ct = c̈t.

By Lemma 16, ξt is surjective. We claim there are ĥ and c, ĉ, c̄, ¯̄c ∈ C so that

ξt(ĥ, (ct, c̄)) = (c∗t, c̄∗), ξt(ĥ, (ĉt, c̄)) = (ĉ∗t, c̄∗),

ξt(ĥ, (ct, ¯̄c)) = (c∗t, ¯̄c∗), ξt(ĥ, (ĉt, ¯̄c)) = (ĉ∗t, ¯̄c∗).
(30)

Recalling the construction in Lemma 15, choose ĥ > h large enough so that

ϕ(ĥ0t+1) ≥ max
{ t∑

s=0

(1− λ1)
s+1c̃s + ϕ(hc̃t),

t∑
s=0

(1− λ1)
s+1˜̃cs + ϕ(h˜̃ct)

}
.

Now that we have an ĥ that will work uniformly for these four streams in C∗, note

again from the construction in Lemma 15 that the required continuation streams

depend only on c̃t = ċt and ˜̃ct = c̈t. Therefore, c̄ and ¯̄c may be constructed as

desired in (30). From the construction at the end of Lemma 16 and the fact that

ĥ has been chosen to work uniformly, c and ĉ may be chosen to satisfy (30).

Consequently, using (30), the desired result (29) holds if and only if

ξt(ĥ, (ct, c̄)) �∗ ξt(ĥ, (ĉt, c̄)) iff ξt(ĥ, (ct, ¯̄c)) �∗ ξt(ĥ, (ĉt, ¯̄c)),
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which, using the definitions of ξt in (23) and �∗, holds if and only if

(ct−1, c̄ + dh0t,hct−1

) �ĥ (ĉt−1, c̄ + dh0t,hĉt−1

) if and only if

(ct−1, ¯̄c + dh0t,hct−1

) �ĥ (ĉt−1, ¯̄c + dh0t,hĉt−1

).

But this is immediately true by Compensated Separability.

For each subset of indices K ⊂ N, we will define the projection correspondences

ιK : C∗  ×i∈KR by ιK(Ĉ∗) = {x ×i∈K R | ∃ c∗ ∈ Ĉ∗ s.t. c∗|K = x }, where c∗|K
denotes the restriction of the stream c∗ to the indices in K (e.g., c∗|{3,4} = (c∗3, c

∗
4)).

For any t ≥ 0 we will use C∗
t and tC∗ to denote the projected spaces ι{t}(C

∗)

and ι{t,t+1,...}(C
∗), respectively. Since g(·, ·) is continuous the projected image C∗

t

is connected for every t. Moreover each C∗
t is separable. It is evident by the

arbitrariness of histories used to construct these spaces that for any t, tC∗ = C∗.

Lemma 18 (Product of Projections). Choose some t and ĉ∗ ∈ tC∗, and take

c∗s ∈ C∗
s for every 0 ≤ s ≤ t. Then (c∗0, c

∗
1, . . . , c

∗
t , ĉ

∗) ∈ C∗.

Proof. Pick ĥ ∈ H and ĉ ∈ C such that ĉ∗ ∈ C∗
ĥĉt , and let c̃∗t = g(ĥ, ĉ)|{0,1,...,t}.

Choose any ε ≥ max{0, max0≤i≤t
c̃∗i−c∗i∑∞
k=i+1 λk

} and set h = ĥ + (. . . , ε, ε). Recall the

inverse function g−1(h, ·), which takes an element of C∗ and returns an element of C.

We do not know that (c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗) ∈ C∗, but we demonstrate that applying the

transformation used in g−1(h, ·) to (c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗) returns a nonnegative stream.

Let us take ct = g−1(h, (c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗))|{0,1,...,t}. Since the C∗
h′ are nested and

h ≥ ĥ, it will suffice to prove that ct ≥ ĉt, for then ĉ∗ ∈ C∗
hct and there is a

c̄ ∈ C such that g(h, (ct, c̄)) = (c∗0, c
∗
1, . . . , c

∗
t , ĉ

∗). Using the transformation, ct ≥ ĉt

if and only if c∗0 + ϕ(h) ≥ c̃∗0 + ϕ(ĥ), c∗1 + ϕ(hc0) ≥ c̃∗1 + ϕ(ĥĉ0), up through

c∗t + ϕ(hc0 . . . ct−1) ≥ c̃∗t + ϕ(ĥĉ0 . . . ĉt−1). But this can be seen using induction, the

choices of ε and h, and the fact that ϕ is linear and strictly increasing.

We have proved that C∗ = C∗
0 × C∗

1 × C∗
2 × C∗ and that �∗ is continuous

and sensitive (stationarity implies essentiality of all periods). Hence C∗ is a prod-

uct of separable and connected spaces. We now use the result of Gorman (1968,

Theorem 1), which requires that each of C∗
0 , C

∗
1 , C

∗
2 and C∗ be arc-connected and

separable. We have shown separability; and arc-connectedness follows from being

a path-connected Hausdorff space (a convex space is path-connected, and a metric

space is Hausdorff). Gorman’s Theorem 1 asserts that the set of separable in-

dices is closed under unions, intersections, and differences. Condition (29) implies

separability of {(0), (1)} and stationarity implies separability of {(1, 2, 3, . . .)} and
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{(2, 3, 4, . . .)}, etc..23 Repeated application of Gorman’s theorem implies Debreu’s

additive separability conditions for n = 4 and we may conclude (Fishburn (1970,

Theorem 5.5)) that there exist u0, u1, u2 : R → R and U3 : C∗ → R (all continuous

and unique up to a similar positive linear transformation) such that c∗ �∗ ĉ∗ iff

u0(c
∗
0) + u1(c

∗
1) + u2(c

∗
2) + U3(

3c∗) ≥ u0(ĉ
∗
0) + u1(ĉ

∗
1) + u2(ĉ

∗
2) + U3(

3ĉ∗).

�h can be represented as in (1)

Lemma 19 (Representation). For some continuous u(·) and δ ∈ (0, 1), Uh(c) =∑∞
t=0 δtu(ct −

∑∞
k=1 λkh

(t)
k ), where h(t) = (h, c0, c1, . . . , ct−1).

Proof. �∗ is a continuous, stationary, and sensitive preference relation; and can

be represented in the form u0(·) + u1(·) + u2(·) + U3(·) on the space C∗ = C∗
0 ×

C∗
1 ×C∗

2 ×C∗, with the additive components continuous and unique up to a similar

positive affine transformation. There is also additive representability on C∗ = C∗
0×

C∗
1 ×C∗, with the additive components again unique up to a similar positive linear

transformation. By stationarity, u0(·)+u1(·)+[u2(·)+U3(·)] and u1(·)+u2(·)+U3(·)
are both additive representations on C∗ = C∗

0 × C∗
1 × C∗. Thus, ∃ δ > 0 and

β1, β2, β3 ∈ R s.t. u1(·) = δu0(·)+β1, u2(·) = δu1(·)+β2 = δ2u0(·)+δβ1+β2, and for

any c∗ ∈ C∗, U3(c
∗) = δ[u2(c

∗
0)+U3(

1c∗)]+β3 = δ3u0(c
∗
0)+δU3(

1c∗)+β3+δβ2+δ2β1.

Each c ∈ C and h ∈ H is bounded and
∑∞

k=1 λk ≤ 1, so for each c∗ ∈ C∗ ∃ x̄, x ∈ R
such that x ≤ c∗t ≤ x̄ ∀ t. By Tychonoff’s theorem [x, x̄]∞ is compact in ×∞

i=0R
and therefore [x, x̄]∞∩C∗ is compact in C∗. Given x and x̄, continuity of u0(·) and

U3(·) ensures they remain uniformly bounded on [x, x̄] and [x, x̄]∞∩C∗, respectively.

Using iterative substitution U∗(c∗) =
∑∞

t=0 δtu(c∗t ), where u(·) = u0(·) is continuous

and δ ∈ (0, 1) by product continuity. To represent �h as in (1) we then transform

each c ∈ C by g(h, ·) into an argument of U∗.

The felicity u is not (quasi-)cyclic

We first prove the following auxiliary result.24

Lemma 20 (Rewriting). Consider any sequence {γt}t∈N and h ∈ H. If c̄ ∈ ×∞
t=0R

23Because (29) hold for all t it is an even stronger hypothesis than necessary; also, for any t,
{(t, t + 1, t + 2, . . .)} is strictly sensitive by dynamic consistency.

24For technical convenience, the statement of this lemma allows an extension of the definition
of compensation to negative “histories;” hence if γ < 0 then d(0̄,γ) = −d(0̄,−γ).
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satisfies c̄t = ϕ(hc̄t−1) + γt for every t then each c̄t may be alternatively written as

c̄t = γt + dh
t +

t−1∑
s=0

d0̄γt−s−1
s . (31)

Proof. It is clearly true for t = 0. Suppose (31) holds for every t ≤ T − 1. Then

c̄T = γT + ϕ(hc̄T−1)

= γT + ϕ(h, γ0 + dh
0 , γ1 + dh

1 + d0̄γ0

0 , . . . , γT−1 + dh
T−1 +

T−2∑
s=0

d0̄γT−s−2
s )

= γT + ϕ(hdh
0 · · · dh

T−1) +
T−1∑
s=0

ϕ(0̄γsd
0̄γs

0 · · · d0̄γs

T−2−s)

= γT + dh
T +

T−1∑
s=0

d0̄γT−s−1
s ,

where the second-to-last equality follows from using the recursive characterization

given in Lemma 6 and reversing the order of summation.

Lemma 21 (Acyclicity). u(·) is not cyclic, and is not quasi-cyclic if
∑∞

k=1 λk < 1.

Proof. The two cases are examined separately.

Case (i):
∑∞

k=1 λk < 1. Suppose that u is quasi-cyclic, so there exists γ, β > 0

and α ∈ R such that u(x + γ) = βu(x) + α for every x ∈ R. Apply Lemma 20

with γt = γ for every t and recall the summability of per-period compensation from

Lemma 8. These results imply that c̄ as defined in Lemma 20 remains bounded,

i.e. c̄ ∈ C. Moreover c̄0 = γ, so c is nonzero. We claim this c̄ is exactly ruled out

in Lemma 1, a contradiction. By the representation c + c̄ �h c′ + c̄ iff

∞∑
t=0

δtu
(
ct + c̄t − ϕ(hct−1)− ϕ(0̄c̄t−1)

)
≥

∞∑
t=0

δtu
(
c′t + c̄t − ϕ(hc′t−1)− ϕ(0̄c̄t−1)

)
.

Consider the t-th term u
(
ct + c̄t − ϕ(hct−1)− ϕ(0̄c̄t−1)

)
. By construction of c̄, this

term is equal to u
(
ct − ϕ(hct−1) + γ

)
= βu(ct − ϕ(hct−1)) + α. Since β > 0, it

becomes evident that c + c̄ �h c′ + c̄ iff c �h c′ for any c, c′ ∈ C.

Case (ii):
∑∞

k=1 λk = 1. Suppose that u is cyclic. Then there exists γ > 0 and

α ∈ R such that u(x + γ) = u(x) + α for every x ∈ R. In this case, simply choose

c̄0 = γ and c̄t = ϕ(0̄c̄t−1) for every t ≥ 1. Clearly c̄ ∈ C. It is easy to check that

c + c̄ �h c′ + c̄ iff c �h c′ for any c, c′ ∈ C, violating Lemma 1.
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B.2 Necessity

The constructive proof of sufficiency has proved all but uniqueness of compensation.

Lemma 22 (Unique Compensation). Given the representation, for every (h′, h) ∈
H there is a unique d ∈ C satisfying c + d �h c′ + d iff c �h′ c′ for every c′, c ∈ C.

Proof. Suppose both dh′,h as constructed earlier and some d ∈ C, d 6= dh′,h sat-

isfyy the condition. By the representation for �h′ , both the utility functions∑∞
t=0 δtu

(
ct−ϕ(h′ct−1)+dt−ϕ((h−h′)dt−1)

)
and

∑∞
t=0 δtu

(
ct−ϕ(h′ct−1)

)
represent

�h′ . Using the uniqueness of the additive representation, there exist β > 0 and a

sequence {αt}t≥0 such that for any c ∈ C,

u
(
ct − ϕ(h′ct−1) + dt − ϕ((h− h′)dt−1)

)
= βu

(
ct − ϕ(h′ct−1)

)
+ αt.

Let γt = dt − ϕ((h − h′)dt−1) for every t; we must show γt = 0 for all t. For any

x ∈ R and any t, there is c ∈ C such that ct − ϕ(h′ct−1) = x. Indeed, if x ≥ 0

choose cs = 0 for s < t and ct = ϕ(h′0t) + x; if x < 0, choose cs = 0 for s < t− 1,

ct−1 = x
λ1

, and ct = ϕ(h′0t). Hence u(x + γt) = βu(x) + αt for all x, t.

Suppose that
∑∞

k=1 λk < 1. Consider the first nonzero γt. If it is positive then u

is quasi-cyclic, a contradiction. If γt < 0, then rearranging and changing variables

gives u(x + |γt|) = 1
β
u(x)− αt

β
. Hence u is quasi-cyclic, a contradiction.

Now suppose
∑∞

k=1 λk = 1. If some γt = 0 then u(x)(1 − β) = αt for all x,

implying that β = 1 and u is cyclic, a contradiction. Hence γt 6= 0 for every t. We

aim to show there exist t, t̂ such that γt 6= γt̂. If instead γt = γ for every t, then

we know that γ > 0 from Lemma 26 in the supplemental Appendix. That lemma

says that for any γ < 0, there does not exist a stream c ∈ C and history ĥ ∈ H

such that g(ĥ, c) ≤ (γ, γ, . . .) (apply the lemma with ĥ = h− h′ and c = d). But if

γ > 0, then dt = ϕ((h− h′)dt−1) + γ cannot be in C, a contradiction. To see this,

observe by Lemma 8 that d0̄γ
t−1 = λ1γ > 0 when

∑∞
k=1 λk = 1; then apply Lemma

20 to see d grows unboundedly.

Hence there exist nonzero γt 6= γt̂ such that u(x+γt) = βu(x)+αt and u(x+γt̂) =

βu(x)+αt̂ for all x. Plugging x+γt̂ into the first equation and x+γt into the second

implies βu(x+γt)+αt̂ = u(x+γt +γt̂) = βu(x+γt̂)+αt for all x. Suppose WLOG

that γt > γt̂. By changing variables we see that for all x u(x+ γ̃) = u(x)+ α̃, where

γ̃ = γt − γt̂ and α̃ =
αt−αt̂

β
. But then u is cyclic, a contradiction.

35



C Proof of Theorem 3

If
∑∞

k=1 λk = 1, then λk+1

λk
= 1−λ1 for every k and clearly ϕ(hq) = (1−λ1)ϕ(h)+λ1q.

For the particular h and c0, ĉ0 ∈ Q from Axiom IE find the corresponding c1, ĉ1.

Axioms IE and DC together imply that �hc0c1 and �hĉ0ĉ1 are equivalent preferences,

both representable as in (1) according to Theorem 1. By the uniqueness of additive

representations up to positive affine transformation, there exist a ρ > 0 and a σi

for every i ≥ 0 such that for each c̄ ∈ C,

u
(
c̄−ϕ(h00c̄i−1)−λi+1c1−λi+2c0

)
= ρu

(
c̄−ϕ(h00c̄i−1)−λi+1ĉ1−λi+2ĉ0

)
+σi. (32)

For each i, let γi = λi+1c1 + λi+2c0 − λi+1ĉ1 − λi+2ĉ0.

If
∑∞

k=1 λk < 1, then γi = 0 for every i since u cannot be quasi-cyclic. For the

case
∑∞

k=1 λk = 1, we note that ρ = 1 must hold. Since λi+1

λi
≤ 1−λ1 ∈ (0, 1), both

|λi+1ĉ1+λi+2c0| and |λi+1ĉ1+λi+2ĉ0| tend to zero as i goes to infinity. As previously

noted, for any i and x ∈ R we may find a c̄ ∈ C such that x = c̄ − ϕ(h00c̄i−1).

Then, by (32) and continuity of u(·), limi→∞ σi = (1− ρ)u
(
x) for any x ∈ R. Since

the RHS depends on x while the LHS does not, we must have ρ = 1. Since u

cannot be cyclic when
∑∞

k=1 λk = 1, we have γi = 0 for every i in that case too.

Since γi = 0 for every i, we have λi+1

λi
= c1−ĉ1

ĉ0−c0
for all i ≥ 1. Then

ϕ(hq) =
∞∑

k=2

λkhk−1 + λ1q =
∞∑

k=2

λk

λk−1

λk−1hk−1 + λ1q =
c1 − ĉ1

ĉ0 − c0

ϕ(h) + λ1q.

Now define α = c1−ĉ1
ĉ0−c0

and β = λ1. Clearly α+β ≤ 1 since λi+1

λi
≤ 1−λ1. �

36



References

Abel, A. (1990): “Asset Prices Under Habit Formation and Catching Up With

the Joneses,” American Economic Review, 80, 38–42.

Becker, G., and K. Murphy (1988): “A Theory of Rational Addiction,” Jour-

nal of Political Economy, 96, 675–700.

Bleichrodt, H., K. Rohde, and P. Wakker (2007): “Koopmans’ Constant

Discounting: A Simplification and an Extension to Incorporate General Eco-

nomic Growth,” Mimeo.

Boldrin, M., L. Christiano, and J. Fisher (1997): “Habit Persistence and

Asset Returns in an Exchange Economy,” Macroeconomic Dynamics, 1, 312–332.

(2001): “Habit Persistence, Asset Returns, and the Business Cycle,” The

American Economic Review, 91, 149–166.

Camerer, C., and G. Loewenstein (2004): “Behavorial Economics: Past,

Present, and Future,” in Advances in Behavioral Economics, ed. by C. Camerer,

G. Loewenstein, and M. Rabin. Princeton University Press.

Campbell, J., and J. Cochrane (1999): “By Force of Habit: A Consumption

Based Explanation of Aggregate Stock Market Behavior,” Journal of Political

Economy, 107, 205–251.

Carroll, C., J. Overland, and D. Weil (2000): “Saving and Growth with

Habit Formation,” American Economic Review, 90, 341–355.

Constantinides, G. (1990): “Habit Formation: A Resolution of the Equity

Premium Puzzle,” Journal of Political Economy, 98, 519–543.

Fishburn, P. (1970): Utility Theory for Decisionmaking. John Wiley & Sons,

Inc., New York, NY.

Gorman, W. (1968): “The Structure of Utility Functions,” Review of Economic

Studies, 35, 367–390.

Gul, F., and W. Pesendorfer (2007): “Harmful Addiction,” Review of Eco-

nomic Studies, 74, 147–172.

Jarczyk, W. (1991): “A Recurrent Method of Solving Iterative Functional Equa-

tions,” Prace Naukowe Uniwersytetu Slaskiego w Katowicach 1206.

37



Koopmans, T. (1960): “Stationary Ordinal Utility and Impatience,” Economet-

rica, 28, 287–309.
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