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1 Introduction

Behavioral theories of choice seek both to explain past choices as a function of changes
in exogenous variables, and given data on past choice behavior, together with a
probability model of the data generating process, to predict future choices. It is
in this sense that affective decision-making, ADM, is a behavioral theory of choice.
A property shared by consumer demand analysis – see part one in Deaton and
Muellbauer (1980), but not evident in other strategic models of choice behavior such
as Gul—Pessendorfer (2001), Bernheim—Rangel (2004) or Fudenberg—Levine (2006).
ADM is a game-theoretic model of individual decision-making under risk and

uncertainty, which generalizes expected utility, and where the probability weights –
perceived risk – are endogenous, as implied by optimism bias (Slovic 2000, Weinstein
1980). In our model of individual decision-making there are two distinct psycholog-
ical processes that mutually determine choice. This approach is inspired in part by
Kahneman (2003), who proposes two systems of reasoning that differ in several im-
portant aspects, such as emotion. We call these systems of reasoning the rational
process and the emotional process. The rational process coincides with the expected
utility model. That is, for a given risk perception, i.e., perceived probability distrib-
ution, it maximizes expected utility. The emotional process is where risk perception
is formed. In particular, the agent selects an optimal risk perception to balance two
contradictory impulses: (1) affective motivation and (2) a taste for accuracy. This
is a definition of motivated reasoning, a psychological mechanism where emotional
goals motivate agent’s beliefs, e.g., Kunda (1990), and is a source of psychological
biases, such as optimism bias. Affective motivation is the desire to hold a favorable
personal risk perception – optimism– and is captured by the expected utility term.
The desire for accuracy is the mental cost incurred by the agent for holding beliefs
other than her base rate, given her desire for favorable risk beliefs. The base rate is
the belief that minimizes the mental cost function of the emotional process. This is
the agent’s correct risk belief, if her risks are objective such as mortality tables.
As an application of affective decision-making, we present an example of the de-

mand for insurance in a world with two states of nature: Bad and Good. The relevant
probability distribution in insurance markets is personal risk, hence the demand for
insurance may depend on optimism bias. Affective choice in insurance markets is
defined as the insurance level and risk perception which constitute a pure strategy
Nash Equilibrium of the ADM intrapersonal game.
The systematic departure of the ADM model from the expected utility model

allows for both optimism and pessimism in choosing the level of insurance, and shows,
consistent with consumer research (Keller and Block 1996), that campaigns intended
to educate consumers on the loss size in the bad state can have the unintended
consequence that consumers purchase less, rather than more, insurance. Hence, the
ADM model suggests that the failure of the expected utility model to explain some
data sets may be due to systematic affective biases.
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To show that the ADMmodel explains past choice behavior in insurance markets,
we introduce the ADM inequalities. These inequalities, are defined by the first or-
der conditions for pure strategy Nash equilibria in the ADM intrapersonal game; the
Afriat inequalities for the concave, Bernoulli utility function of the rational process;
the Afriat inequalities for the convex, mental cost function of the emotional process;
and the budget constraints. The ADM inequalities are a finite family of multivariate,
polynomial inequalities, where the unknowns are the utility levels and marginal util-
ities for the rational process, and costs and marginal costs for the emotional process.
Every solution of the ADM inequalities defines an ADM intrapersonal game.
An insurance market data set–a finite set of observations on state-contingent

endowments of wealth, state-prices or insurance premia and the level of insurance
purchased by the agent – is rationalized by the ADM model if the ADM inequalities
are solvable for the parameter values derived from the data set. It follows from the
Tarski-Seidenberg Theorem that the ADMmodel is refutable if the ADM inequalities
are solvable for some but not all insurance market data sets. That is, the ADM
model explains some, but not all past choice behavior in insurance markets. We
show that this model is refutable if bounds on risk perception are known, consistent
with Kahneman and Tversky (1979).
If the ADM inequalities are solvable, then the solution need not be unique. If

the solution is unique, then it need not be stable, i.e., continuous under small, noisy
perturbations of the data. Hence, the ADM inequalities are ill-posed in the sense
of Hadamard (1932), a property they share with the Afriat inequalities. In this
case, a unique, stable solution of the ADM inequalities is obtainable by Tikhonov
regularization. Ridge regression is an example of Tikhovov regularization. Melkman
and Micchelli (1979) show that regularization is the optimal algorithm for learning a
function from noisy data.
The ADM intrapersonal game is a potential game, where the potential function

is bi-concave. Potential games were introduced by Monderer and Shapley (1996).
Neyman (1997) proved that potential games with a concave potential function have a
unique pure strategy Nash equilibrium. The predictive ADM inequalities are defined
by the ADM inequalities and the Afriat inequalities for a concave potential func-
tion. Every solution of the predictive ADM inequalities defines a predictive ADM
intrapersonal game, with a unique pure strategy Nash equilibrium. In the insurance
market example, every concave utility function, u(W ), and convex cost function, c(β),
where the associated potential function is concave, jointly define a predictive ADM
intrapersonal game.
We identify the family of predictive, ADM intrapersonal games with the closed,

convex cone of ordered pairs of concave utility functions and convex cost functions,
denoted CP . The optimal predictive ADM intrapersonal game is the argmin over
(u(W )), c(β)) ∈ CP of the regularized, mean square deviation between the observed
demand for insurance and the affective demand for insurance. As such, it is a unique,
stable solution of the predictive ADM inequalities.
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If we assume that the insurance market data sets are i.n.i.d., identical but not
identically distributed, samples from a stratified population where the data generating
process is random sampling within and across strata, then we can derive the optimal
prediction of the agent’s future affective demand for insurance. The choice of the
rational process, in the optimal predictive ADM intrapersonal game, is the best mean
square prediction of the agent’s affective demand for insurance on future data sets.
If insurance markets are actuarially fair then the predictive ADM model reduces to
the expected utility model. In this case, our predictive analysis can be applied to the
expected utility model.
This machine learning perspective is due to Poggio and Smale (2003) who pro-

pose a “predictive algorithm for fitting the best multivariate function to data.” They
discuss both a PAC learning algorithm and a regularized, learning algorithm. PAC
learning was independently introduced in economic theory by Gil Kalai (2003) in the
context of social choice theory.
In the next section of the paper, we present the ADM intrapersonal game. In the

third section, we derive the ADM inequalities in the ADM state-preference model
and discuss our results on the refutable implications of affective decision-making. In
the fourth section of the paper, we follow Brown, Calsamiglia and Jones (2007), and
extend the Poggio—Smale regularized, learning algorithm to fitting the best predictive,
ADM intrapersonal game to insurance market data.

2 The ADM Intrapersonal Game

Affective decision-making (ADM) is a theory of choice, which generalizes expected
utility theory by positing the existence of two cognitive processes – the rational and
the emotional process. Observed choice is the result of their simultaneous interaction.
This theory accommodates endogenity of beliefs, probability perceptions and tastes.
In this paper, we present a model of affective choice in insurance markets, where
probability perceptions are endogenous.
Consider an agent facing two possible future states of the world, Bad and Good

with associated wealth levels ωB and ωG, where ωB < ωG. The agent has a strictly in-
creasing, strictly concave, smooth utility function of wealth, u(W ), with
limw→−∞Du(W ) = ∞, limw→∞Du(W ) = 0.1 Risk perception is defined as the
perceived probability β ∈ [0, 1] of the Bad state occurring. To avoid (perceived) risk,
the agent can purchase or sell insurance I ∈ (−∞,∞) to smooth her wealth across
the two states of the world. The insurance premium rate, γ ∈ (0, 1) is fixed for all
levels of insurance purchases.
The rational process chooses an optimal insurance (I∗) to maximize expected

utility given a perceived risk β. Specifically, the rational process maximizes the

1All qualitative results remain the same for the case of limW→0Du(W ) =∞, limW→∞Du(W ) =
0.
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following objective function:

max
I
{βu(ωB + (1− γ)I) + (1− β)u(ωG − γI)} .

The emotional process chooses an optimal risk perception (β∗) given an insur-
ance level I, to balance affective motivation and taste for accuracy. Specifically, the
emotional process maximizes the following objective function:

max
β
{βu(ωB + (1− γ)I) + (1− β)u(ωG − γI)− c(β;β0)} .

Affective motivation is captured with the expected utility term – the agent would
like to assign the highest possible weight to her preferred state of the world. Taste
for accuracy is modeled by introducing a mental cost function c(β;β0) that is a
nonnegative, and smooth function of β. It is strictly convex in β, and reaches a
minimum at β = β0, where β0 is the objective probability. The farther away β is
from β0, the greater are the psychological cost.

2 We will assume that c(β;β0) is a
smooth function of β0. It is well-known that agents attribute a special quality to
situations corresponding to the extreme beliefs β ∈ {0, 1} (Kahneman and Tversky
1979). Hence we assume that there exist limits β, β̄ ∈ (0, 1) such that for β ∈ (β, β̄),
c(β;β0) is finite, and limβ→βc(β;β0) = lim β→βc(β;β0) = +∞.
The interaction of the two processes in decision-making is modeled using an in-

trapersonal simultaneous-move game. Modeling the interaction of the two processes as
a simultaneous move game reflects a recent view in cognitive neuroscience; namely,
both processes mutually determine the performance of the task at hand (Damasio
1994).

Definition 1 An intrapersonal game is a simultaneous move game of two players,
namely, the rational and the emotional processes. The strategy of the rational process
is an insurance level, I ∈ (−∞,∞), and the strategy of the emotional process is a
risk perception, β ∈ (β, β̄). The payoff function for the rational process g : (β, β̄) ×
(−∞,∞)→ R is g(β, I) ≡ βu(ωB+(1−γ)I)+(1−β)u(ωG−γI). The payoff function
for the emotional process ψ : (β, β̄)× (−∞,∞) → R is ψ(β, I) ≡ g(β, I)− c(β;β0),
where c(·) is the mental cost function of holding belief β, which reaches a minimum
at β0.

The pure strategy Nash equilibria of this game, if they exist, are the natural candi-
dates for the agent’s choice, as they represent mutually determined choice and reflect
consistency between the rational and emotional processes. The intrapersonal game
defined above is a potential game, where the potential function can be interpreted as
the utility function of the composite agent.

2To justify favorable beliefs agents may use strategies such as the availability heuristic, which can
be unconsciously manipulated to arrive at the desired beliefs. Such mental strategies, or justification
processes, are likely to be costly and are captured by the cost function. We assume that biased recall
becomes increasingly more costly as the distance between desired beliefs β and the objective odds
β0 increases.
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Proposition 2 The intrapersonal game is a potential game, in which the emotional
process’s objective function is the potential function for the game. Because the poten-
tial function is strictly concave in each variable (risk perception and insurance), its
critical points are the pure strategy Nash equilibria of the game.

Proof. Denote the rational process’s payoff function as (R) and the emotional
process’s payoff function as (E). A necessary and sufficient condition for the intraper-
sonal game to have a potential function (Monderer and Shapley 1996) is ∂2R

∂β∂I
= ∂2E

∂β∂I
.

This condition clearly is satisfied in the ADM model. The potential function P (β, I)
is a function such that (Monderer and Shapley, 1996): ∂P

∂β
= ∂E

∂β
, ∂P

∂I
= ∂R

∂I
. Because

∂E
∂I
= ∂R

∂I
, (E) can serve as a potential function. The critical points of the potential

function are ∂P
∂β
= ∂E

∂β
= 0, ∂P

∂I
= ∂R

∂I
= 0. The potential function is strictly concave

in each variable, so at each critical point, each process is maximizing its objective
function, given the strategy of the other process. Therefore, the critical points of the
potential function are the pure strategy Nash equilibria of the intrapersonal game,
and all pure strategy Nash equilibria are critical points of the potential function.
The potential function allows us to find sufficient condition for uniqueness, conduct

welfare analysis, and make predictions about future behavior.
Excluding the case of tangency between the best responses of the two processes,

we have the following existence theorem.

Proposition 3 The ADM intrapersonal game has an odd number of pure strategy
Nash equilibria. The set of Nash equilibria is a chain in R2, under the standard
partial order on points in the plane.3

Proof. By the boundaries on risk perception, 0 < β < β̄ < 1, β∗ ∈ (β, β̄), and in-
surance I∗ ∈ [I∗(β), I∗(β̄)]. Hence, all Nash equilibria will have perceived probabilities
in the interval [β∗(I∗(β)), β∗

¡
I∗(β̄)

¢
] where 0 < β < β∗(I∗(β)) < β∗

¡
I∗(β)

¢
< β < 1.

Define β∗(I∗(β)) ≡ β
0
, β∗

¡
I∗(β̄)

¢
≡ β̄

0
; because all the Nash equilibria of the intrap-

ersonal game for β ∈ (β, β̄) are ∈ [β0, β̄0] the focus can remain on the latter probability
space.
The existence and chain results can be shown by defining a restricted intrapersonal

game in which the insurance pure strategy space is restricted to [I∗(β), I∗(β̄)] and the
perceived probabilities are restricted to β ∈ [β0, β̄0], such that the equilibria points
of the intrapersonal game are not altered. The restricted game is a supermodular
game, and thus, these results follow from the properties of this class of games (see
Topkis 1998). To Show that the game admits odd number of equilibria, think of
the geometry of the game. As β → β̄, the best response of the emotional process is
above the best response of the rational process, while this relationship is reversed for

3The existence of a pure strategy Nash equilibrium also can be derived for the case of a logarithmic
utility function, in which the agent’s income in each state is not negative.
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β → β. Since the best responses are monotonically increasing, it follows that there
exists odd number of Nash equilibria.
To derive the predictive properties of the ADMmodel, we require the intrapersonal

game to have a unique pure strategy Nash equilibrium. A sufficient condition for
uniqueness follows:

Proposition 4 A sufficient condition for a unique pure strategy Nash equilibrium of
the intrapersonal game is:

∂2c(β;β0)

∂β2
> − [Du(ωB + (1− γ)I)(1− γ) +Du(ωG − γI)γ]2

[βD2u(ωB + (1− γ)I)(1− γ)2 + (1− β)D2u(ωG − γI)γ2]
,

∀(I, β) ∈ [I∗((β0), I∗(β̄0)]× [β0, β̄0],

where β0 ≡ β∗(I∗(β)) and, similarly, β̄0 ≡ β∗(I∗
¡
β̄
¢
).

Proof. The emotional process’s objective function βu(ωB + (1 − γ)I) + (1 −
β)u(ωG − γI)− c(β;β0) is the potential function of the game. The maximization of
(P) with respect to a pair (I, β) gives rise to a pure strategy Nash equilibria of the
game.β ∈ [β0, β̄0] and I ∈ [I∗(β0), I∗(β̄

0
)] (see proof of Proposition 3), hence only the

restricted intrapersonal game in which both players’ strategy spaces are compact need
be considered. Neyman (1997), proved that a potential game with a strictly concave,
smooth potential function, in which all players have compact, convex strategy sets,
has a unique pure strategy Nash equilibrium. That is, the Hessian of the potential
function is negative definite, as follows from the condition given above.
For large mental costs, the equilibrium is unique (think of λ > 0, ĉ (·) = λc(·)).

Moreover, for very large mental costs, the ADMmodel reduces to the expected utility
model.4

However, considering the general case, where the mental costs are not very large,
risk perceptions are endogenous and the ADM model systematically departs from the
expected utility model. This suggests that the failure of the expected utility model
to explain some data sets may be due to systematic affective biases. How exactly
does affective choice in insurance markets differ from the demand for insurance in the
expected utility model? Proposition 5 below shows that the expected utility outcome
in the case of an actuarially fair insurance market (full insurance) falls within the
choice set of the ADM agent. However, if the insurance market is not actuarially fair,
then this is no longer the case.

Proposition 5 If γ = β0, there exists at least one Nash equilibrium (β∗, I∗) with
β∗ = β0 = γ, and I∗ = full insurance.
If γ > β0, there exists at least one Nash equilibrium (β∗, I∗) with β∗ < β0 and

I∗ < I∗(β0),

4As c→∞, β∗ → β0 for all values of I. As a result, the ADM model converges to the expected
utility model.
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If γ < β0, there exists at least one Nash equilibrium (β∗, I∗) with β0 < β∗ and
I∗ > I∗(β0).

Proof. Consider the case in which γ = β0. At full insurance, there is no mental
gain for holding beliefs β 6= β0 but there exists mental cost. Therefore, at full
insurance, the mental process’s best response is β = β0. Given that γ = β0 = β, the
rational process’s best response is full insurance. Consequently, full insurance and
β = β0 is a Nash equilibrium of this case. Next, consider the case γ > β0; because
the insurance premium is higher than β0, I

∗(β = β0) < z. Also, β∗ = β0 only at
full insurance, where I = z. Therefore, at β = β0 the mental process’s best response
falls above the rational process’s best response. This relationship is reversed at the
limit β → β, and both the mental and the rational best responses increase; therefore,
there exists a Nash equilibrium with β < β0 and less insurance than predicted by
the expected utility model. A similar argument can be used to prove the result when
γ < β0.
To understand the intuition behind these results, consider a standard myopic ad-

justment process where the processes alternate moves. If γ > β0, at β0 the rational
process, similar to the expected utility model, prescribes buying less than full insur-
ance. The emotional process, in turn, leads the decision maker to believe “this is not
going to happen to me” and determines that she is at a lower risk. This effect causes
a further reduction in the insurance purchase, with a result of less than full insurance,
even less than what the expected utility model would predict. Note that proposition
5 also implies that, from the viewpoint of an outside observer, both optimism and
pessimism (relative to β0) are possible. This is due to the characteristics of insur-
ance: if an agent purchases more than full insurance, then the “bad” state becomes
the “good” state, and vice versa. Consequently, if there is no effective action, i.e.,
one cannot change the bad state to a good state, we would observe optimism and
less-than-optimal insurance.
Here is another example of the difference between affective choice and the demand

for insurance in the expected utility model. In the expected utility model, if people
realize that they face a higher potential loss, due to educational campaigns that
make them aware of the possible catastrophe, then they purchase more insurance. In
the ADM model, if an agent realizes she faces higher possible loss, then she might
purchase less insurance. Because the increased loss size affects both the emotional
and the rational processes in different directions; the rational process prescribes more
insurance, the emotional process prescribes lower risk belief to every insurance level
(due to greater incentives to live in denial). If the emotional effect is stronger the
agent will buy less insurance than previously. That is, if the loss is great, agents might
prefer to remain in denial and ignore the possible catastrophes altogether, which will
lead them to take fewer precautions such as buying insurance. This is consistent with
consumer research showing that high fear arousal in educating people on the health
hazards of smoking leads to a discounting of the threat (Keller and Block 1996).
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Proposition 6 below summarizes the conditions for educational campaigns to produce
the counter-intuitive affective result.

Proposition 6 An educational campaign result in less insurance if

r(ωB − γI)

Du(ωB − γI)
>

r(ωG + (1− γ)I)

Du(ωG + (1− γ)I)
,

where r(·) is the absolute risk aversion property of the utility function u(·)

Proof. Define Ĩ(β;β0) as the inverse function β∗−1. Define Π(β;β0) = I∗(β)
−Ĩ(β;β0), Π : [β0, β̄

0
]→ R

Educational campaigns on impending catastrophes increase the loss size, z. Be-
cause Π(β;β0) = 0 is a NE, ∂Π

∂z
< 0 represent the unintended consequence of such

campaigns.
∂Π

∂z
< 0⇔

∂Ĩ
∂z
∂I∗

∂z

> 1

.
∂I∗

∂z
= [u00(w2−z+(1−γ)I∗)][u

0
(w2−γI∗)]2

[u0(w2−γI∗)][u00(w2−z+(1−γ)I∗)u0(w2−γI∗)(1−γ)+u0(w2−z+(1−γ)I∗)u00(w2−γI∗)γ] ;

∂Ĩ

∂z
=

[u0(w2 − z + (1− γ)Ĩ)]

[u0(w2 − z + (1− γ)Ĩ)(1− γ) + u0(w2 − γĨ)γ]
⇒ ∂Π

∂z
< 0

⇔ r(w2 − γI)

u0(w2 − γI)
>

r(w1 + (1− γ)I)

u0(w1 + (1− γ)I)
, where r(x) = −u

00(x)

u0(x)
.

In Proposition 6, if the utility function u(·) exhibits constant or increasing absolute
risk aversion, educational campaigns will lead to higher insurance purchase if and only
if initially the agent buys more than full insurance. Insurees who initially buy less
than full insurance will buy even less after the educational campaign. Hence, for
such utility functions, educational campaigns divide the insurance market into a set
of agents who purchase more insurance – the intended consequence – and a set of
agents who purchase less insurance – the unintended consequence.

3 A Refutable Model of ADM

This section formulates the ADM model in the state preference framework, presents
the ADM inequalities and derives the Axiom of Revealed Affective Choice or ARAC.
The rational process’s choice can be formulated in the state-preference model:

max
WB ,WG∈R2

βu(WB) + (1− β)u(WG)

s.t. γWB + (1− γ)WG = γωB + (1− γ)ωG.
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Because the income level and the insurance premium are given, choosing the
wealth levels WB and WG is equivalent to selecting an insurance level I.
The first-order conditions of the state preference model are:

βDu(WB) = λγ (1)

(1− β)Du(WG) = λ(1− γ) (2)

These conditions can be written as

Du(WG)

Du(WB)
=
(1− γ)

γ

β

(1− β)
(3)

Thus, every solution of the intrapersonal game can be translated into a point
on the budget line in the (WB,WG) plane; this point is observable and the slope of
the budget line is the ratio (1−γ)

γ
. However, the inequality is transformed such that

Du(WG)
Du(WB)

equals (1−γ)
γ

β
(1−β) , which is labeled the perceived price ratio and is determined

by the perceived probabilities. These perceived probabilities must satisfy the first-
order condition of the emotional process:

u(WB)− u(WG) = Dc(β). (4)

Figure 1 illustrates a possible choice.

WG

WB

Observed 
Consumption

E

ωG

ωB

Perceived price ratio is 
( )

( )β
β

γ
γ

−
−

1
1

Slope = ( )
γ
γ−1

Figure 1 — Affective Choice in the State-Preference Framework.

Definition 7 An affective choice is a wealth point (WB,WG) and price 0 < γ < 1,
such that the agent maximizes utility subject to her budget constraint and satisfies her
emotional process’s first-order condition.
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The distinction between objective and perceived probabilities enables the ADM
model to support data sets that cannot be rationalized by expected utility theory, as
Figure 2 shows.

WG

WB

Slope = 

Observed 
Choice 1

Observed 
Choice 2

Slope = 

E

( )
i

i

γ
γ−1

( )
j

j

γ
γ−1

Perceived 
price ratio

Figure 2 — Data Rationalized by ADM, But Not EU.

In Figure 2, with objective probabilities, the two observations violate the weak ax-
iom of revealed preference (WARP). Therefore, this agent is not an expected utility
maximizer; these observations refute the expected utility paradigm. However, if the
agent is an affective agent, these observations need not violate WARP. Recall that
with ADM, perceived probabilities generally differ from objective probabilities, so the
agent’s perceived price ratio is different from the one observed, and the data might
not violate WARP; hence there exists a utility and a mental cost function such that
the agent acts as if she is an affective expected utility maximizer. Thus the ADM
model can rationalize the data.
To show that the ADM model is refutable, we introduce the ADM inequalities.

Let the insurance market data set D = {(xi; yi)}i=1,...,N . The Bernoulli agent’s utility
of W dollars is u(W ), and the marginal utility is Du(W ). ωB and ωG are the agent’s
endowments of wealth in the bad and the good state, respectively; γ ∈ (0, 1) is the
insurance premium, and I is the agent’s insurance level. c(β ) is the mental cost of
the perceived risk β and the marginal cost is Dc(β). If (x; y) ≡ (ωB, ωG, I; γ), then
WB(x; y) ≡ (ωB + (1 − γ)I), wealth in the bad state, and WG(x; y) ≡ (ωG − γI),
wealth in the good state.
The ADM inequalities consist of:

(a) The first order conditions for a pure strategy Nash equilibrium in the ADM
game:

Rational Process: βiDu(WB(x
i; yi)) = γi; (1− βi)Du(WG(x

i; yi)) = 1− γi, and
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Emotional Process: u(WB(x
i; yi))− u(WG(x

i; yi)) = Dc(βi), for i = 1, ..., N ;

(b) The Afriat inequalities for the concave, Bernoulli utility function of the rational
process:

u(Wi) ≤ u(Wj) +Du(Wj)(Wi −Wj), for all Wi and Wj;

(c) The Afriat inequalities for the convex, mental cost function of the emotional
process:

c(βi ) ≥ c(βj ) +Dc(βj )(βi − βj), for all βi and βj;

(d) The budget constraints:

γiWB(x
i; yi) + (1− γi)WG(x

i; yi) = γiωi
B + (1− γi)ωi

G, for i = 1, ..., N.

This is a finite family of multivariate, polynomial inequalities, where the unknowns
are the utility levels and the marginal utilities for the rational process together with
the costs and the marginal costs for the emotional process. An insurance market data
set is rationalized by the ADM model if the ADM inequalities are solvable for the
parameter values derived from the data set. It follows from the Tarski—Seidenberg
Theorem that the ADM model is refutable if the ADM inequalities are solvable for
some but not all insurance market data sets– see chapter one in Brown and Kubler
(2008).
That is, there exists a system of multivariate, polynomial inequalities where the

unknowns are the agent’s demands for insurance and prices of insurance. These in-
equalities constitute the Axiom of Revealed Affective Choice or ARAC. The ADM
model rationalizes the data if and only if the data satisfies ARAC. This axiom ex-
hausts all the refutable implications of the ADM model, just as GARP exhausts all
the refutable implications of utility maximization subject to a budget constraint –
see Varian (1983). In the Appendix we derive a necessary condition for rationalizing
an insurance data set with the ADM model: The Weak Axiom of Revealed Affective
Choice or WARAC, analogous to WARP. That is, we derive an explicit expression
for ARAC in the case of two observations.
It is surprising that the ADMmodel is refutable, given that perceived probabilities

are not observable. After all, if probabilities are allowed to vary, the observed insur-
ance level could always be rationalized. However, this is not true if the perceived
probabilities have known bounds in (0, 1), as has been experimentally supported
(Kahneman and Tversky 1979).
Recall the bounds β < β < β̄, such that 0 < β < β̄ < 1. Let (γi, Ii) for i = 1, ..., T

be a finite number of observations of insurance premia and levels, respectively. Using
the state preference formulation of the ADM model we show that:

Proposition 8 The ADM model is refutable.
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Proof. The proof has two parts: an existence proof or example to demonstrate
that the inequalities have a solution, and an example in which the inequalities do not
have a solution. Proposition 3 ensures that for a given insurance premium γi and
endowments of wealth (ωB, ωG), a solution (Ii, βi) exists. Given (ωB, ωG), γi and Ii
the corresponding wealth levels are (WB,WG). With (WB,WG) and the endowment
point, the state prices are determined, which establish existence. For refutability,
one needs to show that some observations (Ii, γi) can not be rationalized by the
model. If the state preference model represents the rational account choice, observing
a consumption choice (equivalent to observing (Ii, γi)) can be illustrated as in Figure
3.

WG

WB

Observed 
Choice

E

ωG

ωB

( )
γ
γ−1Slope =

Figure 3 — Choice Representation.

Observing another choice pair (Ij, γj) can be illustrated as in Figure 4.

WG

WB

Slope = i

i

p
p

1

2

Observed  
Choice 1

Observed 
Choice 2

E

Figure 4 — Illustration of Two Choices.

Because the endowment point E must lie on the budget line, as must the consumption

13



choice, the budget line may be determined with a single observation point, as is
illustrated in Figure 5.

WG

WB

Slope = 

Observed  
Choice 1

Observed 
Choice 2

Slope = 

E

( )
i

i

γ
γ−1

( )
j

j

γ
γ−1

Figure 5 — Construction of the Budgent Line.

This case cannot be rationalized by an expected utility maximizer agent with constant
probabilities, whether objective or subjective, nor can it be rationalized by the ADM
model. The ADM model solves:

(1− γ)

γ
=
(1− β)

β

Du(WG)

Du(WB)
(5)

Following Brown and Calsamiglia (2004), the rational account can be represented as
a Bernoulli expected utility maximizer, such that

Du(WB) =
λp

β
(6)

Du(WG) =
λ(1− p)

(1− β)
(7)

Du(WG)

Du(WB)
=

λ(1− p)β

(1− β)λp
(8)

=
β

(1− β)

(1− p)

p
(9)

=
β

(1− β)

(1− γ)

γ
(10)

Thus, the perceived probability effect can be transferred to the price line, thereby
illustrating the previous choice as the choice of a Bernoulli agent, as illustrated in
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Figure 6:

WG

WB

Slope = 

Observed
Choice 1

Observed 
Choice 2

Slope = ( )
( )

j

j

j

j

γ
γ

β
β −
−

1
1

( )
( )

i

i

i

i

γ
γ

β
β −
−

1
1

Figure 6 — The Bernoulli Agent Choice.

Recall that the marginal utilities of the Bernoulli agent are independent of the per-
ceived probabilities,where the perceived probabilities are embodied in the (perceived)
prices facing the agent. To refute the ADM model, it suffices that the weak axiom of
revealed preference (WARP) is contradicted for any set of perceived prices. See the
example in Figure 7.

WG

WB

Slope = 

Slope = ( )
( )

j

j

j

j

γ
γ

β
β −

−

1
1

( )
( )

i

i

i

i

γ
γ

β
β −
−

1
1

Figure 7 — Refuting the ADM model.

The model imposes bounds on the perceived probabilities which in turn bound the
perceived prices; therefore, the model can be refuted. Note that only the upper
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bound on perceived probabilities for choice j and the lower bound on the perceived
probabilities for choice i are binding.
The proof relies on the multiplicative separability of the marginal utility of a

Bernoulli agent and the perceived probabilities, similar to the case of random utility
functions, analyzed by Brown and Calsamiglia (2004). As a consequence, we can
view the observed choice as a choice of a Bernoulli agent with a perceived price
ratio, as illustrated in the previous section. The remaining difficulty pertains to the
unobservability of the perceived price ratio. Fortunately, if the perceived probabilities
have known bounds in (0, 1) (as supported by experiments), the perceived price ratio
also has known bounds, and the ADM model is refutable.5

In the next section, we will need the predictive ADM inequalities, defined as
the ADM inequalities and the Afriat inequalities for the strictly concave potential
function of the ADM game. That is, the objective function of the emotional process,
denoted P (β, I):

P (βi, I i) < P (βj, Ij) + ∂βP (β
j, Ij)(βi − βj) + ∂IP (β

j, Ij)(Ii − Ij)

for i, j = 1, ..., N and i 6= j.

4 A Predictive Model of ADM

This section shows that the ADM model is predictive. That is, if the data gener-
ating process is i.n.i.d. then the regularized, least squares solution of the predictive
ADM inequalities is the best prediction of the agent’s future affective demand for
insurance. Our analysis utilizes the elements of the theory of Hilbert-function spaces
with reproducing kernels, denoted RKHS, and some elementary material from the
theory of Sobolev—Hilbert spaces. There are several excellent introductions to both
theories and we recommend Schaback (2007) for RKHS and Lieb and Loss (2001) for
a discussion of the Sobolev- Hilbert spaces considered in this paper.
For finite a and b ∈ R1, let H1,1(a, b) ≡ the completion of {f ∈ C1(a, b) :

kfk1 < ∞} with respect to the norm kfk1 ≡ kfk1,1 + kDfk1,1 = hf0, h0iL2[a,b] +
hf1, h1iL2[a,b], where hf j, hjiL2[a,b] =

R b
a
f j(t)hj(t)dt and rj is the jth derivative of

r ∈ H1,1(a, b). H1,1(a, b) is a Sobolev—Hilbert space – see Lieb and Loss (2001).
Berlinet and Thomas-Agnan (2004) prove that H1,1(−∞,+∞) is also a Sobolev—
Hilbert space. The norm on H1,1(−∞,+∞) is kfk2H1,1(−∞,+∞) =

R +∞
−∞ f(s)2dν(s) +

(1/λ2)
R +∞
−∞ Df(s)2dν(s).

The predictive ADM inequalities are functions of the Bernoulli utility function
and the marginal utility function of the rational process together with the mental
cost function and the marginal cost function of the emotional process. We show that
these functions are members of Hilbert-function spaces with reproducing kernels. This

5Brown and Calsamiglia (2004) show in their model that if probabilities are not bounded it is
not refutable. This holds true for the ADM model as well.
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property allows us to use the Representer Theorem of Micchelli and Pontil (2005) to
reduce the infinite dimensional regularized, least squares regression for the ADM
model to a finite dimensional regularized, regression model. The regularized, least
squares regression proposed in this section is computed in the direct product of these
Hilbert spaces.
Let HE ≡ (H1,1(0, 1))2 and CE be the closed, convex cone of ordered pairs

(c(β),Dc(β)) ∈ HE, where c(β) is a smooth, monotone, convex function on (0, 1),
with derivative Dc(β). c(β) is the mental cost of the perceived risk β and Dc(β)
is the marginal mental cost of the perceived risk β. In a similar fashion, we define
HR ≡ (H1,1(−∞,+∞))2.
Let CR be the closed, convex cone of ordered pairs (u(W ),Du(W )) ∈ HR, where

u(W ) is a smooth, monotone, concave function on the real line, with derivative
Du(W ). The agent’s utility ofW dollars is u(W ), and her marginal utility is Du(W ).
ωB and ωG are the agent’s endowments of wealth in the bad and the good state,
respectively, γ ∈ (0, 1) is the insurance premium, and I is the agent’s insurance level.
If (x; y) ≡ (ωB, ωG, I; γ), then WB(x; y) ≡ (ωB + (1 − γ)I) is the wealth in the bad
state, and WG(x; y) ≡ (ωG − γI) is the wealth in the good state.
To formulate the regularized, least squares regression model for estimating the

affective demand, we first recall the first order conditions for a pure strategy Nash
equilibrium in the ADM intrapersonal game.
Rational Process: βDu(WB(x; y)) = γ; (1− β)Du(WG(x; y)) = 1− γ,
Emotional Process: u(WB(x; y))− u(WG(x; y)) = Dc(β).
To compute the affective demand for insurance, we use the indirect Afriat inequal-

ities, introduced by Brown and Shannon (1996). If V (p
I
, 1) is the agent’s indirect

utility function, then it follows from Roy’s identity that ∇V ( p
I
,1)

( p
I
)×∇V ( p

I
,1)
= x, the agent’s

Marshallian demand at the normalized price vector p
I
.

If D = {pj, Ij}Nj=1, then the indirect Afriat inequalities are of the form:

(a) V i − V j ≥ qj ·
µ
pi

Ii
− pj

Ij

¶
for i, j = 1, ..., N

(b) λj > 0, qj ¿ 0, j = 1, ..., N

(c)
qj

Ij
= −λjxj, j = 1, ..., N,

where qj = ∇V (pj
Ij
, 1) ∈ RL, pj ∈ RL

++, I
j > 0,V j > 0, for j = 1, ..., N .

An affective agent is characterized by the convex, indirect Bernoulli utility func-
tion of her rational process, u(·), and the convex, mental cost function of her emotional
process, c(·).
The two states of the world are Bad and Good and the market data can be

expressed as

(x; y) ≡
µ
ωB, ωG,

γ

γωB + (1− γ)ωG
,

(1− γ)

γωB + (1− γ)ωG
; I

¶
.
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If (u(W ), Du(W )) ∈ HR, and (c(β), Dc(β)) ∈ HE, then there exists a unique β,
where β = argminhku(WB(x; y))− u(WG(x; y))−Dc(β)k2 | β ∈ [0, 1]i.

V (WB(x; y),WG(x; y)) ≡ βu(WB(x; y)) + (1 − β)u(WG(x; y)) is the expected in-
direct utility function of the rational process and c(β) is the mental cost function
of the emotional process. The state-contingent demands for wealth in the bad state,
XB(x; y), and wealth in the good state, XG(x; y), are:

XB(x; y) =

µ
∂V (WB(x;y),WG(x;y))

∂ γ
γωB+(1−γ)ωG

¶
³

γ
γωB+(1−γ)ωG

µ́
∂V (WB(x;y),WG(x;y))

∂ γ
γωB+(1−γ)ωG

¶
+
³

1−γ
γωB+(1−γ)ωG

µ́
∂V (WB(x;y),WG(x;y))

∂ 1−γ
γωB+(1−γ)ωG

¶ ,

XG(x; y) =

µ
∂V (WB(x;y),WG(x;y))

∂ 1−γ
γωB+(1−γ)ωG

¶
³

γ
γωB+(1−γ)ωG

µ́
∂V (WB(x;y),WG(x;y))

∂ γ
γωB+(1−γ)ωG

¶
+
³

1−γ
γωB+(1−γ)ωG

µ́
∂V (WB(x;y),WG(x;y))

∂ 1−γ
γωB+(1−γ)ωG

¶ ,
where

∂V (WB(x; y),WG(x; y))

∂
³

γ
γωB+(1−γ)ωG

´ =
β × ∂u(WB(x; y))

∂
³

γ
γωB+(1−γ)ωG

´ and

∂V (WB(x; y),WG(x; y))

∂
³

1−γ
γωB+(1−γ)ωG

´ =
(1− β)× ∂u(WG(x; y))

∂
³

1−γ
γωB+(1−γ)ωG

´ .

That is,

XB(x; y) =

µ
β×∂u(WB(x;y))

∂ γ
γωB+(1−γ)ωG

¶
³

γ
γωB+(1−γ)ωG

´µ
β∂u(WB(x;y))

∂ γ
γωB+(1−γ)ωG

¶
+
³

1−γ
γωB+(1−γ)ωG

´µ
(1−β)∂u(WG(x;y))

∂ 1−γ
γωB+(1−γ)ωG

¶ ,

XG(x; y) =

µ
(1−β)∂u(WG(x;y))

∂ 1−γ
γωB+(1−γ)ωG

¶
³

γ
γωB+(1−γ)ωG

´µ
β∂u(WB(x;y))

∂ γ
γωB+(1−γ)ωG

¶
+
³

1−γ
γωB+(1−γ)ωG

´µ
(1−β)∂u(WG(x;y))

∂ 1−γ
γωB+(1−γ)ωG

¶ ,
and I(x; y) = (XB(x; y)− ωB)− (XG(x; y)− ωG) is the demand for insurance.
Let CR×E ≡ CR × CE, then CR×E ⊂ HR × HE ≡ HK and CP ⊂ CR×E is also

a closed, convex cone. Then, for each observation (x; y) and (u,Du, c,Dc) ∈ CP ,
the theoretical regularized, mean square deviation between observed demand bI(x; y)
and the affective demand I(x; y) is Q(u,Du, c,Dc) =

R
||Î(x; y)− I(x; y)||2dν(x, y)+

kfk2HK
, where dν(x, y) is the fixed, but unknown bivariate distribution over (x; y). The
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theoretical, regularized, least squares problem ismin{Q(u,Du, c,Dc) |(u,Du, c,Dc) ∈
CP}. For each observation (xi; yi) and (u,Du, c,Dc) ∈ CP , the empirical regular-
ized, mean square deviation between the observed demand Î(xi; yi), and the af-
fective demand I(xi; yi) is QN(u,Du, c,Dc) = 1

N

P
i=1,..,N ||Î(xi; yi) − I(xi; yi)||2 +

kfk2HK
. The empirical, regularized, least squares problem is min{QN(u,Du, c,Dc) |

(u,Du, c,Dc) ∈ CP}.
We convert this infinite dimensional, constrained optimization problem, to a finite

dimensional, unconstrained optimization problem by formulating the predictive ADM
intrapersonal game as a model in vector-valued learning, and employ the analysis
developed by Micchelli and Pontil (2005). That is, we use the ADM inequalities to
convert the empirical, regularized, least squares problem over CP to a regularized,
least squares problem over HK , using Lagrange multipliers. Next we show that HK

inherits the Reproducing Property, defined by Micchelli and Pontil, from the classical
Reproducing Property of the factors of HK , defined below as Hr,s. The final step
is to verify the assumptions of Micchelli and Pontil’s Representer Theorem — also
originally due to Kimeldorf and Wahba (1970). The result is a finite dimensional,
unconstrained optimization problem.
The domain of functions in HK is X = (0, 1)× (−∞,+∞) and the range is R4. If

f ∈ HK , then f(x) = f(x1, x2) = (f1(x1), f2(x2)), where f1(x1) = (f1,1(x1), f1,2(x1)) =
(c(x1), Dc(x1)) and f2(x2) = (f2,1(x2), f2,2(x2)) = (u(x2), Du(x2)).
That is, f(x) = (f1,1(x1), f1,2(x1), f2,1(x2), f2,2(x2)) = (c(x1),Dc(x1), u(x2),Du(x2)).

Micchelli and Pontil (2005) define a vector-valued, reproducing kernel Hilbert space
HK as a Hilbert function space taking values in a Hilbert space HV , where for all
x and v the map (v, f(x))E is a continuous linear functional on HK . That is, there
exists a gx,v ∈ Hk such that for all f ∈ HK : (v, f(x))E = (f, gx,v)Hk

. We call this
condition the Reproducing Property. If Y = R1, then this definition reduces to the
classical, Reproducing Property in Hilbert-function spaces with reproducing kernels
– see Schaback (2007).

Proposition 9 HK has the Reproducing Property.

Proof. Schaback (2007) shows that H1,1(0, 1) is a RKHS with reproducing kernel
K(x, t). The reproducing kernel Kr,s(x, t) for Hr,s = H1,1(0, 1) for r = 1 and s = 1, 2
is given by the formulas: Kr,s(x, t) = K(x, t) = cosh(x − b) cosh(t − a)/ sinh(b − a)
for a ≤ t ≤ x ≤ b and K(x, t) = cosh(x−a) cosh(t−b)/ sinh(b−a) for a ≤ x ≤ t ≤ b.
Berlinet and Thomas-Agnan (2004) show that H1,1(−∞,+∞) is a RKHS with

reproducing kernel K(x, t), the reproducing kernel K(x, t) for Hr,s = H1,1(−∞,+∞)
for r = 2 and s = 1, 2 is given by the formula:Kr,s(x, t) = K(x, t) = (λ/2) exp(−λ|x−
t|).
Let HV = R4 with the Euclidean inner product (·, ·)E. Recall that the inner

product on the direct product of Hilbert spaces is the sum of the inner products on
the factor spaces.
If f(x) ∈ HK then f(x) = (f1,1(x1), f1,2(x1), f2,1(x2), f2,2(x2)).
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If v = (v1,1, v1,2, v2,1, v2,2) ∈ HV then (v, f(x))E = v1,1f1,1(x1) + v1,2f1,2(x1) +
v2,1f2,1(x2) + v2,2f2,2(x2). Denote the factors of HK as Hr,s, then fr,s(x) = (fr,s(t),
Kr,s(x, t))Hr,s for r, s = 1 or 2, where Kr,s(x, z) is the reproducing kernel for Hr,s,
since each Hr,s is a RKHS.
Hence vr,sfr,s(x) = (fr,s(t), vr,sKr,s(x, t))Hr,s for r, s = 1 or 2.
For fixed x = (x1, x2) and v = (ν1,1, ν1,2, ν2,1, ν2,2) let gx,v = (v1,1K1,1(x1, t1),

v1,2K1,2(x1, t1), v2,1K2,1(x2, t2), v2,2K2,2(x2, t2)), then (v, f(x))E = (f, gx,v)HK
.

Definition 10 The kernel K(x, t) in Micchelli and Pontil is the operator-valued map
K(x, t) : X2 → HHV

V , where K(x, t)(v) ≡ gt,v(x) and X ⊆ R2.

Proposition 11 If HV = R4 then for all (x, t) in X2, K(x, t) has the 4× 4 matrix
representation (gx,ei , gt,ej)HK

for i, j = 1, .., 4 and e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0),
e3 = (0, 0, 1, 0, 0), e4 = (0, 0, 0, 1, 0).

Proof. See Theorem 1 in Micchelli and Pontil (2005).

Definition 12 Suppose D̃ = {xi}i=1,..,N , where for all i, (xi) = (xi1, xi2) ∈ R2

Definition 13 For any (c1, ..., cN), where ci ∈ R4:

f̃(c1,..,cN )(·) ≡
P

i=1,...,N

gxi,ci(·) ∈ HK .

Following Micchelli and Pontil, let E : (HV )
N × R+ → R be given and consider

minimizing E(f(x), kfk) over all f ∈ HK . We now state their Representer Theorem.

Proposition 14 If for every v ∈ (HV )
N , the function h : R+ → R+ defined by

h(t) = E(v, t) is strictly increasing in t and f0 ∈ HK minimizes E(f(x), kfk) then
f0 = f̃(c1,...,cN ) for some (c1, ..., cN) ∈ (HV )

N .

Proof. See Theorem 5 in Micchelli and Pontil (2005).

Definition 15

W (xi, yi, u,Du, c,Dc, λj) =
1

N

X
i=1,...,N

°°°Î i(x, y)− I i(x, y)
°°°

+
X

j=i,...,M

λiφj(x
i, yi, u,Du, c,Dc).

Definition 16

LR(x
i, yi, u,Du, c,Dc, λj, μ) =W (xi, yi, u,Du, c,Dc, λj) + μ kfk2HK

is the regularized Lagrangian, where φj(·), are the ADM (state-preference) inequalities
– see Section 3.
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Proposition 17 If (u,Du, c,Dc) minimized LR(x
i, yi, u,Du, c,Dc, λj, μ) over all

(u,Du, c,Dc) ∈ HK then (u,Du, c,Dc) = f̃(c1,...,cN )(·) for some (c1, ..., cN) ∈ (HV )
N .

Proof. By the Representer Theorem we can substitute f̃(c1,...,cN )(x
i) for the

(u,Du, c,Dc) in the Lagrangian. The Lagrangian LR(x
i, yi, ci, λj, μ) is now a func-

tion of the ci. We compute (u,Du, c,Dc) by minimizing LR(x
i, yi, ci, λj, μ) over all

(c1, ..., cN) ∈ (HV ). If there are K agents in the market for mutual insurance, then
the best (ADM) prediction of the future aggregate for insurance is simply the sum of
the individual affective demands for insurance on future data sets.
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Appendix: The Weak Axiom of Affective Choice

It is convenient to change the notation in this section of the paper: x1 ≡WB, x2 ≡WG

and u0 ≡ Du.
Consider two choices (γ, x1, x2, β) ,and (γ̂, x̂1, x̂2, β̂) of some affective agent, where

γ, γ̂ are prices, (x1, x2) , (x̂1, x̂2) are consumption bundles, and β, β̂ are the associated
risk beliefs. However, for an outside observer, the data consist of the consumption
choices and prices only – (γ, x1, x2) and (γ̂, x̂1, x̂2) . On the basis of the preceding
discussion, if the ADM rationalizes the data (i.e., if these are the choices of an affective
agent), the observables must satisfy the rational and emotional processes’ first-order
conditions, as well as the Afriat’s inequalities. For the case of two observations, these
conditions total 18 inequalities that can be reduced to the following:

[β − β̂][û1 − u2 − û1 + û2] ≥ 0 (11)

and
xi > xj ⇒ u0i < u0j (12)

where

β =
u02γ

u01(1− γ) + u02γ
; β̂ =

û02γ̂

u01(1− γ̂) + û02γ̂
.

In other words, if there exists numbers u1, u2, û1, û2, u01 ≥ 0, u02 ≥ 0, û01 ≥ 0, û02 ≥ 0
that satisfy the inequalities in (11( and (12), then there exist a concave utility function
and a convex mental cost function such that the observed choices constitute a pure
strategy Nash equilibrium in the intrapersonal game of the affective agent. In the
following proposition we give neccesary and sufficient conditions on the data such
that the inequalities in (11) and (12) are satisfied. These conditions constitute the
Weak Axiom of Revealed Affective Choice or WARAC. This axiom is presented as
a finite family of multivariate, polynomial inequalities in the data and the assumed
known bounds on risk preferences.
The possible rankings on (x1, x2, x̂1, x̂2) can be divided into three exhaustive and

mutually exclusive groups of eight (8) rankings, denoted A, B and C.

Proposition 18 Consider two observations (γ, x1, x2), (γ̂, x̂1, x̂2), where γ, γ̂ are
insurance prices and (x1, x2), (x̂1, x̂2) are state-contingent choices of wealth. For
known bounds on risk beliefs β, β̄, such that 0 < β < β̄ < 1 the data is rationalized
by the ADM model if and only if:

(i) The rankings lie in Group A and
γ

(1− γ)

1− β̄

β̄
<

γ̂

(1− γ̂)

1− β

β
, or

(ii) The rankings lie in Group B and
γ̂

(1− γ̂)

1− β̄

β̄
<

γ

(1− γ)

1− β

β
, or

(iii) The rankings lie in Group C.
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Proof. Consider two observations (γ, x1, x2), (γ̂, x̂1, x̂2) with associated risk belief
β, β̂, respectively; if these observations are choices of some affective agent, then we
must find numbers u1, u2, û1, û2, u01 ≥ 0, u02 ≥ 0, û01 ≥ 0, û02 ≥ 0 that satisfy the
rational and the emotional processes’ first-order conditions, as follows:

βu01(1− γ)− (1− β)u02γ = 0 (13)

β̂û01(1− γ̂)− (1− β̂)û02γ̂ = 0 (14)

u1 − u2 − c0 (β) = 0 (15)

û1 − û2 − c0(β̂) = 0 (16)

where ui = u(xi), and c(·) is the mental cost function. The observed behavior should
also satisfy the Afriat’s (1967) inequalities:

u1 ≤ u2 + u02(x1 − x2) (17)

u2 ≤ u1 + u01(x2 − x1) (18)

û1 ≤ û2 + û02(x̂1 − x̂2) (19)

û2 ≤ û1 + û01(x̂2 − x̂1) (20)

u1 ≤ û1 + û01(x1 − x̂1) (21)

u1 ≤ û2 + û02(x1 − x̂2) (22)

u2 ≤ û1 + û01(x2 − x̂1) (23)

u2 ≤ û2 + û02(x2 − x̂2) (24)

û1 ≤ u1 + u01(x̂1 − x1) (25)

û1 ≤ u2 + u02(x̂1 − x2) (26)

û2 ≤ u1 + u01(x̂2 − x1) (27)

û2 ≤ u2 + u02(x̂2 − x2) (28)

c(β) ≥ c(β̂) + c0(β̂)(β − β̂) (29)

c(β̂) ≥ c(β) + c0(β)(β̂ − β) (30)

From Equations (15), (16), (29), and (30),

(β − β̂)[u1 − u2 − û1 + û2] ≥ 0 (31)

From Equations (13) and (14),

β =
u02γ

u02γ + u01 (1− γ)
; β̂ =

û02γ̂

û02γ̂ + û01 (1− γ̂)
(32)
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Conditions (17)—(28) can be reduced to

(x1 − x2)(u
0
2 − u01) ≥ 0

(x̂1 − x̂2)(û
0
2 − û01) ≥ 0

(x̂1 − x1)(u
0
1 − û01) ≥ 0

(x1 − x̂2)(û
0
2 − u01) ≥ 0

(x̂1 − x2)(u
0
2 − û01) ≥ 0

(x̂2 − x2)(u
0
2 − û02) ≥ 0

which can be summarized as:

xi > xj ⇒ u0i < u0j (33)

Therefore, we restrict attention to conditions (31), (32), and (33). Splitting the
observations into three groups of eight rankings, where the rankings in Group A are:

x1 > x̂1 > x̂2 > x2

x1 > x2 > x̂2 > x̂1

x1 > x̂2 > x̂1 > x2

x1 > x̂2 > x2 > x̂1

x̂2 > x̂1 > x1 > x2

x̂2 > x1 > x̂1 > x2

x̂2 > x1 > x2 > x̂1

x̂2 > x2 > x1 > x̂1

If numbers u01 ≥ 0, u02 ≥ 0, û01 ≥ 0, û02 ≥ 0 satisfy condition (33), all members of
group A must satisfy:

u01
u02

<
û01
û02

We assume each risk belief β falls between known bounds {β, β̄}, where 0 < β < β̄ <
1. According to condition (32),

β < β =
u02γ

u
0
2γ + u

0
1(1− γ)

< β̄

⇒
γ

1− γ

1− β̄

β̄
<

u01
u
0
2

<
γ

1− γ

1− β

β

Similarly,

β < β̂ =
û02γ̂

û02γ̄ + û01(1− γ̂)
< β̄

⇒
γ̂

1− γ̂

1− β̄

β̄
<

û01
û02

<
γ̂

1− γ̂

1− β

β
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if
γ̂

1− γ̂

1− β

β
<

γ

1− γ

1− β̄

β̄

Therefore, it can not be that
u01
u02

<
û01
û02
,

a contradiction.
If

γ̂

1− γ̂

1− β

β
>

γ

1− γ

1− β̄

β̄

then there exists numbers u01, u
0
2 and û01, û

0
2, such that

u01
u02

<
û01
û02

This guarantees that u1 − u2 − û1 + û2 > 0. Therefore, for the ADM model to be
consistent with the data, condition (31) must be satisfied. That is, (β − β̂) ≥ 0

β =
u02γ

u02γ + u01(1− γ)
≥ β̂ =

û02γ̂

û02γ̄ + û01(1− γ̂)

u02γ

u02γ + u01(1− γ)
≥ û02γ̂

û02γ̄ + û01(1− γ̂)

u02γ[û
0
2γ̂ + û01(1− γ̂)] ≥ û02γ̂[u

0
2γ + u01(1− γ)]

u02γû
0
2γ̂ + u02γû

0
1(1− γ̂) ≥ û02γ̂u

0
2γ + û02γ̂u

0
1(1− γ)

u02γû
0
1(1− γ̂) ≥ û02γ̂u

0
1(1− γ)

u01
u02

γ̂

(1− γ̂)
≤ γ

(1− γ)

û01
û02

Therefore numbers u01, u
0
2 and û01, û

0
2 must satisfy

u01
u02

γ̂

(1− γ̂)
≤ γ

(1− γ)

û01
û02

If γ̂ < γ this result is obvious, but if γ̂ > γ, then there exists numbers u01, u
0
2 and

û01, û
0
2 such that

u01
u02
≤ γ(1−γ̂)

γ̂(1−γ)
û01
û02
= k

û01
û02
.
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The rankings in Group B are:

x2 > x1 > x̂1 > x̂2

x2 > x̂1 > x1 > x̂2

x2 > x̂1 > x̂2 > x1

x2 > x̂2 > x̂1 > x1

x̂1 > x̂2 > x2 > x1

x̂1 > x2 > x1 > x̂2

x̂1 > x2 > x̂2 > x1

x̂1 > x1 > x2 > x̂2

If condition (33) holds, all observations that belong to this group satisfy:

u01
u02

>
û01
û02

In turn, u1 − u2 − û1 + û2 < 0. Therefore, arguments similar to arguments used for

group A, prove that this group can be rationalized iff
γ̂

(1− γ̂)

β

1− β
<

γ

(1− γ)

β̄

1− β̄
.

Finally,the rankings in Group C are:

x1 > x2 > x̂1 > x̂2

x1 > x̂1 > x2 > x̂2

x2 > x1 > x̂2 > x̂1

x2 > x̂2 > x1 > x̂1

x̂1 > x̂2 > x1 > x2

x̂1 > x1 > x̂2 > x2

x̂2 > x̂1 > x2 > x1

x̂2 > x2 > x̂1 > x1

Suppose the Afriat (1967) inequalities are satisfied for members of group C; then the
sign of [u1−u2− û1+ û2] is undetermined. Hence there always exists a set of numbers
u1, u2, û1, û2, u

0
1 ≥ 0, u02 ≥ 0, û01 ≥ 0, û02 ≥ 0 that satisfy conditions (31), (32), and

(33). That is, the data can always be rationalized by the ADM model.
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