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Abstract

This paper considers the problem of constructing tests and confidence intervals
(CIs) that have correct asymptotic size in a broad class of non-regular models. The
models considered are non-regular in the sense that standard test statistics have asymp-
totic distributions that are discontinuous in some parameters. It is shown in Andrews
and Guggenberger (2005a) that standard fixed critical value, subsample, and b < n
bootstrap methods often have incorrect size in such models. This paper introduces
general methods of constructing tests and CIs that have correct size. First, procedures
are introduced that are a hybrid of subsample and fixed critical value methods. The
resulting hybrid procedures are easy to compute and have correct size asymptotically
in many, but not all, cases of interest. Second, the paper introduces size-correction
and “plug-in” size-correction methods for fixed critical value, subsample, and hybrid
tests. The paper also introduces finite-sample adjustments to the asymptotic results of
Andrews and Guggenberger (2005a) for subsample and hybrid methods and employs
these adjustments in size-correction.

The paper discusses several examples in detail. The examples are: (i) tests when a
nuisance parameter may be near a boundary, (ii) CIs in an autoregressive model with
a root that may be close to unity, and (iii) tests and CIs based on a post-conservative
model selection estimator.

Keywords: Asymptotic size, autoregressive model, b < n bootstrap, finite-sample size,
hybrid test, model selection, over-rejection, parameter near boundary, size correction,
subsample confidence interval, subsample test.

JEL Classification Numbers: C12, C15.



1 Introduction

Non-regular models are becoming increasingly important in econometrics and sta-
tistics as developments in computation make it feasible to employ models with more
nonlinearities. In a variety of non-regular models, however, methods based on a stan-
dard asymptotic fixed critical value (FCV) or the bootstrap do not yield tests or con-
fidence intervals with the correct size even asymptotically. In such cases, the usual
prescription in the literature is to use subsample or b < n bootstrap methods (where
b denotes the bootstrap sample size). For references, see Andrews and Guggenberger
(2005a), hereafter denoted AG1. However, AG1 shows that in a fairly broad array of
non-regular models these methods do not deliver correct asymptotic size (defined to be
the limit of finite-sample size). The purpose of this paper is to provide some general
methods of constructing tests and confidence intervals (CIs) that do have correct as-
ymptotic size in such models. The results cover cases in which a test statistic has an
asymptotic distribution that is discontinuous in some parameter. Examples are listed
in the Abstract. Additional examples are given in AG1 and Andrews and Guggenberger
(2005b).

To avoid considerable repetition, we use the same notation and definitions in this
paper as in AG1. Assumptions A1, A2, B1, B2, etc. are stated in AG1.

Some of the methods we propose are as easy to use as subsample or bootstrap
methods and do not require a detailed analysis of the model at hand (except to de-
termine whether the method is asymptotically correct). Other methods require a de-
tailed analysis of the model and computation of size-correction values. Once these
size-correction values have been determined, the methods are easy to use. In a few
models, size-correction methods (at least of the type we consider here) do not work.

The methods considered here apply to a wide variety of models. In fact, they may
be the most general statistical methods available given that they apply more broadly
than the bootstrap, the b < n bootstrap, and subsampling. However, their usefulness is
greatest in models in which other methods are not applicable. In models in which other
methods work properly (in the sense that the limit of their finite-sample size equals
their nominal level), such methods may be preferable to the methods considered here in
terms of the accuracy of the asymptotic approximations and/or the power of the test or
length of the CI they generate. For example, if standard asymptotic approximations or
the bootstrap work properly in a given model, then they are preferable to the methods
considered here. (However, note that the fixed critical value methods considered here
reduce to standard asymptotic approximations when the latter work properly.)

The first method considered in the paper is a hybrid method that takes the critical
value for a given test statistic to be the maximum of a subsample critical value and the
FCV that applies when the true parameter is not near a point of discontinuity of the
asymptotic distribution. The latter is usually a normal or chi-square critical value. By
simply taking the maximum of these two critical values, one obtains a test or CI that
has correct asymptotic size in quite a few cases where the FCV, subsample, or both
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methods have incorrect asymptotic size. Examples are given below. Furthermore, the
paper shows that the hybrid method has the feature that relative to a subsample method
either (i) the subsample method has correct size asymptotically and the subsample and
hybrid critical values are the same asymptotically or (ii) the subsample method has
incorrect size asymptotically and the hybrid method reduces the magnitude of over-
rejection for at least some parameter values, sometimes eliminating size distortion.

The hybrid test also can be applied with a b < n bootstrap critical value in place
of a subsample critical value. The reason is that the b < n bootstrap can be viewed as
subsampling with replacement and the difference between sampling with and without
replacement is asymptotically negligible if b2/n → 0, see Politis, Romano, and Wolf
(1999, p. 48).

The second method considered in the paper is a size-correction (SC) method. This
method can be applied to FCV, subsample, and hybrid procedures. The basic idea is
to use the formulae given in AG1 for the asymptotic sizes of these procedures and to
increase the magnitudes of the critical values (by adding a constant or reducing the
nominal level) to achieve a test whose asymptotic size equals the desired asymptotic
level. Closed form solutions are obtained for the SC values (based on adding a constant).
Numerical work in a number of different examples shows that computation of the SC
values is tractable. However, the more complicated is an example, the more difficult
is computation. The computation of the SC values in a very complicated model could
be difficult or intractable. The same SC values are applicable when one uses a b < n
bootstrap critical value in place of a subsample critical value (provided b2/n→ 0).

The paper provides some analytical comparisons of the asymptotic power of differ-
ent SC tests and finds that the SC hybrid test has advantages over FCV and subsample
methods in most cases, but it does not dominate the SC subsample method. In Ap-
pendix B, we introduce a SC combined method that has power at least as good as that
of the SC subsample and hybrid tests. But, it reduces to the SC hybrid test in most
examples and, hence, may be of more interest theoretically than practically.

The SC methods that we consider are not asymptotically conservative, but typically
are asymptotically non-similar. That is, for tests, the limit of the supremum of the
finite-sample rejection probability over points in the null hypothesis equals the nominal
level, but the limit of the infimum over points in the null hypothesis is less than the
nominal level. Usually power can be improved in such cases by reducing the magnitude
of asymptotic non-similarity. To do so, we introduce “plug-in” size-correction (PSC)
methods for FCV, subsample, and hybrid tests. These methods are applicable if there
is a parameter sub-vector that affects the asymptotic distribution of the test statistic
under consideration and is consistently estimable. The PSC method makes the size-
correction value depend on a consistent estimator of the parameter sub-vector. Closed-
form solutions for the PSC values are given. In some examples, the PSC method is
found to be very effective.

The asymptotic results for subsample methods derived in AG1, and utilized here
for size correction, do not depend on the choice of subsample size b provided b → ∞
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and b/n→ 0 as n→∞. One would expect that this may lead to poor approximations
in some cases. To improve the approximations, the paper introduces finite-sample
adjustments to the asymptotic rejection probabilities of subsample and hybrid tests.
The adjustments depend on the magnitude of δn = b/n. The adjusted formulae for
the asymptotic rejection probabilities are used to define adjusted SC (ASC) values and
adjusted PSC (APSC) values. In some examples these adjustments are found to work
very well, but in some others they do not perform well due to under-correction.

The bulk of the paper considers tests that reject the null hypothesis when a test
statistic is large. This covers upper and lower one-sided t tests, symmetric two-sided
t tests and tests based on likelihood ratio and Lagrange multiplier statistics, among
others. In the non-regular cases considered here, asymptotic distributions often are not
symmetric and equal-tailed t tests are of interest. We show how the methods outlined
above can be generalized to equal-tailed t tests.

For expositional purposes, the focus of much of the paper is on tests, rather than
CIs. CIs are very important, so we show how the results for tests extend to CIs that
are obtained by inverting tests. We note that results for CIs do not follow immediately
from the results for tests because CIs require uniformity in the asymptotics over all
parameters in the parameter space for correct asymptotic size, while tests only require
uniformity over all parameters in the null hypothesis. Nevertheless, using the same
notational/definitional adjustments as described in AG1, the paper extends the test
results to CIs in a succinct fashion.

We now discuss the literature that is related to the methods considered in this
paper. The work of Politis and Romano (1994) and Politis, Romano, and Wolf (1999)
on subsampling is quite relevant, as is the literature on the b < n bootstrap, see AG1
for references. We are not aware of any methods in the literature that are analogous
to the hybrid test or that consider size-correction of subsample or b < n bootstrap
methods. Nor are we aware of any general methods of size-correction for FCV tests
for the type of non-regular cases considered in this paper. For specific models in the
class considered here, however, some methods are available. For example, for CIs based
on post-conservative model selection estimators in regression models, Kabaila (1998)
suggests a method of size-correction. For models with weak instruments, Anderson and
Rubin (1949), Dufour (1997), Staiger and Stock (1997), Kleibergen (2002), Moreira
(2001, 2003), Guggenberger and Smith (2005), and Otsu (2006) suggest methods. A
variant of Moreira’s method also is applicable in predictive regressions with nearly
integrated regressors, see Jansson and Moreira (2006). In autoregressive models, CI
methods of Stock (1991), Andrews (1993), Horowitz (1997), and Hansen (1999) can
be used in place of the least squares estimator combined with normal critical values
or subsample critical values. Mikusheva (2005) shows that the former methods yield
correct asymptotic size under normality and non-normality of the innovations. (She
does not consider Horowitz’s method.)

The paper considers three examples in detail. The objectives are to illustrate how
the general results of the paper are applied in several models, to determine the as-
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ymptotic behavior of subsample, hybrid, and FCV methods in these models, and to
see how well these methods and the size-corrected methods work in small samples. In
each example, (i) the assumptions required for the general results to hold are verified,
(ii) asymptotic and adjusted asymptotic sizes of tests or CIs are computed, (iii) SC,
PSC, ASC, and/or APSC values are computed where applicable, and (iv) finite-sample
rejection/coverage probabilities are computed. We summarize the main results here.

The first example concerns tests when a nuisance parameter may be near a boundary
of the parameter space. Asymptotic results for FCV and subsample tests for this
example are considered in AG1. Here we consider hybrid tests, PSC and APSC tests,
and finite-sample results. Subsample tests are found to have substantial asymptotic
and finite-sample size distortions. For nominal 5% tests the asymptotic (respectively,
finite-sample for n = 120 and b = 12) sizes of upper, symmetric, and equal-tailed tests
are 50.2 (49.8), 10.1 (8.4), and 52.3% (52.7%), respectively.

In this example, hybrid tests have asymptotically correct size for all types of tests
and have finite-sample sizes that range from 3.4 to 5.2%. FCV tests have asymptotic size
distortions only for upper tests and the distortions are very small: 5.8% compared to the
nominal size of 5%. PSC and APSC subsample and PSC FCV tests are available based
on the usual sample autocorrelation estimator. The upper PSC FCV test has finite-
sample size of 5.2%. The PSC subsample tests also perform very well: the finite-sample
sizes of the upper, symmetric, and equal-tailed tests are 5.3, 5.1, and 5.5%, respectively.
The symmetric APSC subsample test performs well, but the upper and equal-tailed
tests over-reject (with finite-sample sizes of 13.5 and 13.5%). To conclude, in this
example, subsample tests display poor asymptotic and finite-sample size performance.
On the other hand, hybrid, FCV, and PSC subsample tests perform quite well.

The second example concerns CIs in a first-order autoregressive (AR(1)) model with
a root that may be near unity. Romano and Wolf (2001) also consider subsampling
in this model. We consider two models: model 1 includes an intercept, and model 2
includes an intercept and time trend. The CIs considered are based on the least squares
t statistic. In this example, we show that the upper and equal-tailed subsample and
lower and two-sided FCV CIs have asymptotic size distortions with the distortions being
larger in model 2 than in model 1. (In independent work, Mikusheva (2005) shows that
equal-tailed subsample CIs have size-distortions in a no-intercept AR(1) model with
normal innovations. Her results do not provide an expression for the asymptotic size.)
On the other hand, symmetric subsample tests are shown to have correct asymptotic
size. (An explanation is given below.) All types of hybrid tests have correct asymptotic
size. We find that the asymptotic approximations for subsample CIs are very poor for
a sample size of n = 130 and b = 12, but the adjusted asymptotic approximations
are quite good. For example, the asymptotic, adjusted asymptotic, and finite-sample
sizes of nominal 95% equal-tailed subsample CIs in model 1 are 60.1, 86.1, and 86.7%,
respectively. In model 1, the finite-sample sizes of the hybrid tests are 94.8, 92.7,
92.7, and 95.6% for upper, lower, symmetric, and equal-tailed CIs, respectively. All
of the CIs that have incorrect asymptotic size can be size-corrected. For example, the
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ASC subsample upper and equal-tailed CIs have finite-sample sizes of 95.3 and 94.9%,
respectively, in model 1.

None of the CIs discussed in the previous paragraph are similar asymptotically or
in finite samples. Hence, we expect that these CIs are longer on average than other
CIs that are asymptotically similar, see the references above.

The third example is a post-conservative model selection (CMS) example. We
consider a LS t test concerning a regression parameter after model selection is used
to determine whether another regressor should be included in the model. The model
selection procedure uses a LS t test with nominal level 5%. This procedure, which
is closely related to AIC, is conservative (i.e., it chooses a correct model, but not
necessarily the most parsimonious model, with probability that goes to one). In this
example, results for CIs are exactly the same as for tests because of location invariance
of the tests. The asymptotic results for FCV tests in the CMS example are variations
of those of Leeb (2006) and Leeb and Pötscher (2005) (and other papers referenced in
these two papers).

In the CMS example, nominal 5% subsample, FCV, and hybrid tests have asymp-
totic and adjusted-asymptotic sizes between 90 and 96% for upper, symmetric, and
equal-tailed tests.1 The finite-sample sizes of these tests for n = 120 and b = 12 are
close to the asymptotic values. This is especially true of the adjusted-asymptotic sizes
for which the largest deviations are 1.8%. Most plug-in size-corrected tests perform
very well in this example. For example, the 5% PSC hybrid and APSC hybrid tests
have finite-sample size of 4.8% for upper, lower, and symmetric tests. Also, the PSC
FCV tests have finite-sample sizes of 5.1, 5.3, and 5.2% for upper, lower, and symmetric
tests, respectively. Hence, the PSC methods of this paper are quite successful in the
CMS example.

Andrews and Guggenberger (2005b) applies the results of AG1 and this paper to
two additional examples. The first is a weak instrumental variables (IV) example.
This example considers tests based on the two-stage least squares (2SLS) estimator
of a single included right-hand side (rhs) endogenous variable in a single equation IV
regression model when the IVs may be weakly correlated with the rhs endogenous
variable. Subsample tests and CIs are shown to have incorrect size asymptotically,
but they can be size-corrected. The latter result is of particular interest given Dufour’s
(1997) result that the 2SLS CI based on a fixed critical value (as well as any CI that has
finite length with probability one) has a finite-sample size of zero for all sample sizes.
Subsample and size-corrected subsample tests are shown to have infinite length with
positive probability in the weak IV example. Hence, the stated results are consistent
with those of Dufour.

In the IV example, the asymptotic sizes of the subsample tests are found to provide
poor approximations to the finite-sample sizes, but the adjusted asymptotic sizes are
accurate. In consequence, the ASC subsample tests perform well. The hybrid test has

1This is for a parameter space of [−.995, .995] for the (asymptotic) correlation between the LS
estimators of the two regressors.
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correct asymptotic size for all types of test in the IV example.
The second example considered in Andrews and Guggenberger (2005b) concerns

CIs when the parameter of interest may be near a boundary in a regression model. In
contrast to the first example discussed above, the parameter of interest, rather than a
nuisance parameter, may be near a boundary. In this example, we find that lower one-
sided and equal-tailed two-sided subsample CIs have asymptotic size far below their
nominal level. Size-correction of these subsample CIs is possible. However, these CIs
exhibit a relatively high degree of non-similarity, which is not desirable from a power
perspective. Hybrid and FCV CIs are shown to have correct asymptotic size in this
example, but these CIs are not asymptotically similar. The asymptotic results for this
example can be generalized to a wide variety of nonlinear models using results in the
literature, such as Andrews (1999, 2001).

In conclusion, the examples considered in the paper and in Andrews and Guggen-
berger (2005b) show that the general results of the paper apply to a wide variety of
different models and test statistics. In many models, the hybrid test has correct as-
ymptotic size and finite-sample size that is close to its nominal size. In most models
either the asymptotic or adjusted asymptotic results provide good approximations to
the finite-sample quantities of interest. In consequence, either the unadjusted or the
adjusted size-correction methods introduced in the paper perform quite well. Thus,
the examples demonstrate the usefulness of the methods analyzed in the paper.

Throughout the paper α ∈ (0, 1) is a given constant.
The remainder of the paper is outlined as follows. Section 2 introduces the hybrid

tests. Section 3 introduces the size-corrected tests. Section 4 compares the asymptotic
power of size-corrected FCV, subsample, and hybrid tests. Section 5 introduces the
plug-in size-corrected tests. Section 6 introduces the finite-sample adjustments to the
asymptotic sizes of subsample and hybrid tests and the adjusted size-corrected tests.
Section 7 extends the hybrid and size-correction results to equal-tailed tests. Section 8
extends all of the testing results to confidence intervals. Sections 9 and 10 provide the
results for the autoregressive and post-conservative model selection examples. Appen-
dix A provides (i) some assumptions not stated in the text, (ii) size-correction results
for equal-tailed tests, and (iii) proofs of the general results. Appendix B gives (i) re-
sults for the combined size-corrected subsample and hybrid test and (ii) proofs for the
examples, including the verification of assumptions.

2 Hybrid Tests

In this section, we define a hybrid test that is useful when a test statistic has a limit
distribution that is discontinuous in some parameter and an FCV or subsample test
over-rejects asymptotically under the null hypothesis. The critical value of the hybrid
test is the maximum of the subsample critical value and a certain fixed critical value.
The hybrid test is quite simple to compute, in some situations has asymptotic size
equal to its nominal level α, and in other situations over-rejects the null asymptotically
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less than either the standard subsample test or the fixed critical value test at some null
parameter values. In addition, at least in some scenarios, the power of the hybrid test
is quite good relative to FCV and subsample tests, see Section 4 below.

We suppose the following assumption holds.

Assumption K. The asymptotic distribution Jh in Assumption B2 of AG1 is the same
(proper) distribution, call it J∞, for all h = (h1, h2) ∈ H for which h1,m = +∞ or −∞
for m = 1, ..., p, where h1 = (h1,1, ..., h1,p)�.

For notational simplicity, in Assumption K and below we write (h1, h2), rather than
(h�1, h�2)�, even though h = (h1, h2) is a p+ q column vector. In examples, Assumption
K often holds when Tn(θ0) is a studentized statistic (i.e., Assumption t1 holds, but t2
does not) or a likelihood ratio (LR), Lagrange multiplier (LM), or Wald statistic. In
such cases, J∞ typically is a standard normal, absolute standard normal, or chi-square
distribution. Let c∞(1− α) denote the 1− α quantile of J∞.

The hybrid test with nominal level α rejects the null hypothesis H0 : θ = θ0 when

Tn(θ0) > c
∗
n,b(1− α), where

c∗n,b(1− α) = max{cn,b(1− α), c∞(1− α)}. (2.1)

The hybrid test simply takes the critical value to be the maximum of the usual sub-
sample critical value and the critical value from the J∞ distribution, which is usually
known.2 Hence, it is straightforward to compute. Obviously, the rejection probability
of the hybrid test is less than or equal to those of the standard subsample test and the
FCV test with cFix(1− α) = c∞(1− α). Hence, the hybrid test over-rejects less often
than either of these two tests. Furthermore, it is shown in Lemma 2 below that the
hybrid test of nominal level α has asymptotic level α (i.e., AsySz(θ0) ≤ α) provided
the quantile function c(h1,h2)(1 − α) is maximized at a boundary point of h1 for each
h2. For example, this occurs if ch(1 − α) is monotone increasing or decreasing in h1
for each fixed h2 ∈ H2, where h = (h1, h2) (i.e., c(h1,h2)(1− α) ≤ c(h∗1,h2)(1− α) when
h1 ≤ h∗1 element by element or c(h1,h2)(1− α) ≥ c(h∗1,h2)(1− α) when h1 ≤ h∗1).

Define

Max−Hyb(α) = sup
(g,h)∈GH

[1− Jh(max{cg(1− α), c∞(1− α)}−)]. (2.2)

Define MaxHyb(α) analogously, but without “−” at the end of the expression.
The following Corollary to Theorems 1(b) and 2(b) of AG1 establishes the asymp-

totic size of the hybrid test. By definition, h0 = (0, h2).

2Hybrid tests can be defined even when Assumption K does not hold. For example, we can define
c∗n,b(1−α) = max{cn,b(1−α), suph∈H ch∞(1−α)}, where ch∞(1−α) is the 1−α quantile of Jh∞ and,
given h = (h1, h2) ∈ H, h∞ = (h∞1,1, ..., h

∞
1,p, h

∞
2 ) ∈ H is defined by h∞1,j = +∞ if h1,j > 0, h∞1,j = −∞

if h1,j < 0, h∞1,j = +∞ or −∞ (chosen so that h∞ ∈ H) if h1,j = 0 for j = 1, ..., p, and h∞2 = h2.
When Assumption K holds, this reduces to the hybrid critical value in (2.1). We utilize Assumption
K because it leads to a particularly simple form for the hybrid test.
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Corollary 1 (a) Suppose Assumptions A1, B1, C-E, F1, G1, and K hold. Then,

Pθ0,γn,h(Tn(θ0) > c
∗
n,b(1− α))

→ [1− Jh(max{ch0(1− α), c∞(1− α)}), 1− Jh(max{ch0(1− α), c∞(1− α)}−)].
(b) Suppose Assumptions A2, B2, C-E, F2, G2, and K hold. Then, the hybrid test

based on Tn(θ0) has AsySz(θ0) ∈ [MaxHyb(α),Max−Hyb(α)].
Comments. 1. If 1− Jh(max{ch0(1− α), c∞(1− α)}) > α, then the hybrid test has
AsySz(θ0) > α.

2. Assumption K is not actually needed for the results of Corollary 1 to hold–in
the definition of c∗n,b(1− α)), c∞(1− α) could be any constant. Assumption K is just
used to motivate the particular choice of c∞(1− α) given above, as the 1− α quantile
of J∞. Assumption K also is used in results given below concerning the properties of
the hybrid test.

3. Corollary 1 holds by the proofs of Theorems 1(b) and 2(b) of AG1 with cn,b(1−α)
replaced by max{cn,b(1−α), c∞(1−α)} throughout using a slight variation of Lemma
3(b) in Appendix A of AG1.

The following result shows that the hybrid test has better size properties than the
subsample test.

Lemma 1 Suppose Assumptions A2, B2, C-E, F2, G2, and K hold. Then, either
(i) the addition of c∞(1−α) to the subsample critical value is irrelevant asymptotically
(i.e., ch(1−α) ≥ c∞(1−α) for all h ∈ H, Max−Hyb(α) =Max−Sub(α), andMaxHyb(α) =
MaxSub(α)), or (ii) the nominal level α subsample test over-rejects asymptotically (i.e.,
AsySz(θ0) > α) and the hybrid test reduces the asymptotic over-rejection for at least
some parameter values.

Next, we show that the hybrid test has correct size asymptotically if ch(1 − α) is
maximized at h∞ or is maximized at h0 and p = 1, where p is the dimension of h1 and
h∞ = (∞, h2) or (−∞, h2) for h = (h1, h2). For example, the maximization condition
is satisfied if ch(1 − α) is monotone increasing or decreasing in h1, is bowl-shaped in
h1, or is wiggly in h1 with global maximum at 0 or ±∞. The precise condition is the
following. (Here, “Quant” abbreviates “quantile.”)

Assumption Quant0. (i) (a) for all h ∈ H, c∞(1−α) ≥ ch(1−α) and (b) suph∈H [1−
Jh(c∞(1 − α)−)] = suph∈H [1 − Jh(c∞(1 − α))]; or (ii) (a) p = 1, (b) for all h ∈ H,
ch0(1 − α) ≥ ch(1 − α), (c) J∞(c∞(1 − α)−) = J∞(c∞(1 − α)), and (d) suph∈H [1 −
Jh(ch(1− α)−)] = suph∈H [1− Jh(ch(1− α))].

The main force of Assumption Quant0 is parts (i)(a), (ii)(a), and (ii)(b). Parts (i)(b),
(ii)(c), and (ii)(d) only require suitable continuity of Jh.

Lemma 2 Suppose Assumptions A2, B2, C-E, F2, G2, K, and Quant0 hold. Then,
the hybrid test based on Tn(θ0) has AsySz(θ0) ≤ α.
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(Alternative sufficient conditions for the Hybrid test to have AsySz(θ0) ≤ α are given
in Theorem 2 in Section 4 below, see Comment 1 to Theorem 2).

Figure 1 illustrates the asymptotic critical value (cv) functions of the hybrid, FCV,
and subsample tests for the case where γ = γ1 ∈ R+, (i.e., no subvectors γ2 or γ3
appear, p = 1, and H = R+,∞). The argument of the cv functions is g ∈ H. For
example, the asymptotic subsample cv function is cg(1−α) for g ∈ H. In Figure 1, the
curved line is the subsample cv function, the horizontal line is the FCV cv function,
i.e., the constant c∞(1− α), and the hybrid cv function is the maximum of the two.

In Figure 1(a), the subsample and hybrid cv functions are the same and the corre-
sponding tests have the desired asymptotic size α. (The latter holds because c∞(1−α)
is ≤ the cv function at g for all g ∈ R+ and c0(1 − α) is ≥ the cv function at g for
all g ∈ R+ and these two conditions are necessary and sufficient for a test to have
asymptotic size α assuming continuity of Jh(·) by Theorem 2 of AG1). On the other
hand, in Figure 1(a), the FCV test has asymptotic size > α. In Figures 1(b) and 1(d),
the hybrid cv function equals the FCV cv function, both of these tests have asymptotic
size α, whereas the subsample test has asymptotic size > α. Figures 1(a) and 1(b)
illustrate the results of Lemma 1(i) and 1(ii), respectively.

Figure 1(c) illustrates a case where the hybrid test has asymptotic size α, but
both the FCV and subsample tests have asymptotic size > α. In Figures 1(a)-(d),
Assumption Quant0 holds, so the hybrid test has correct asymptotic size, as established
in Lemma 2.

Figures 1(e) and 1(f) illustrate cases in which the function cg(1− α) is maximized
at an interior point g ∈ (0,∞). In these cases, the hybrid, FCV, and subsample tests
all have asymptotic size > α. Figures 1(e) and 1(f) illustrate the results of Lemma 1(ii)
and 1(i), respectively. In particular, in Figure 1(e), the over-rejection of the subsample
test for g close to zero is reduced for the hybrid test because its cv function is larger.

Example 1. This example is a continuation of Example 1 of AG1. It is a testing
problem where a nuisance parameter may be on the boundary of the parameter space
under the null hypothesis. The observations are {Xi ∈ R2 : i ≤ n}, which are i.i.d.
with distribution F, Xi = (Xi1,Xi2)�, EFXi = (θ,μ)�, and (Xi1,Xi2) have correlation
ρ. The null hypothesis is H0 : θ = 0, i.e., θ0 = 0. The parameter space for the nuisance
parameter μ is [0,∞). The test statistic Tn(θ0) equals T ∗n(θ0), −T ∗n(θ0), or |T ∗n(θ0)|,
where T ∗n(θ0) is a t statistic based on the Gaussian quasi-ML estimator of θ that
imposes the restriction that μ ∈ [0,∞), see AG1 for details. In AG1, Assumptions A2,
B2, C-E, F2, and G2 are verified.

Table I reports maximum (over h1 = limn→∞ n1/2μn,h/σn,h,2) null rejection prob-
abilities (×100) for several fixed values of h2 (= limn→∞ ρn,h) for hybrid and several
other nominal 5% tests.3 Depending on the column, the probabilities are asymptotic

3The results in Table I are based on 20, 000 simulation repetitions. For the asymptotic re-
sults, the search over h1 is done with stepsize 0.05 on [0, 10] and also includes the two values
h1 = ±9, 999, 999, 999. For the finite-sample results, the search over h1 is done with stepsize .001
on [0, 0.5], with stepsize 0.05 on [0.5, 1.0], and with stepsize 1.0 on [1.0, 10]. Calculations indicate that
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or finite-sample. The finite-sample results are for the case of n = 120 and b = 12
with eσn1, eσn2, and eρn being the sample standard deviations and correlation of Xi1 and
Xi2. To dramatically increase computational speed, here and in all of the tables below,
finite-sample subsample and hybrid results are based on qn = 119 subsamples of con-
secutive observations.4 Hence, only a small fraction of the “120 choose 12” available
subsamples are used. In cases where subsample and hybrid tests have correct asymp-
totic size, their finite-sample performance is expected to be better when all available
subsamples are used than when only qn = 119 are used. This should be taken into
account when assessing the results of the tables. Panels (a), (b), and (c) of Table I
give results for upper one-sided, symmetric two-sided, and equal-tailed two-sided tests,
respectively. The results for lower one-sided tests are the same as for the upper tests
with the sign of h2 changed (by symmetry) and, hence, are not given. For convenience,
results for equal-tailed hybrid tests are given in Table I and are discussed here even
though such tests are only defined in Section 7 below. (The definitions are analogous
to those of one-sided and symmetric two-sided hybrid tests.) The rows labelled Max
give the size (asymptotic or n = 120) of the test considered. For brevity, we refer below
to the numbers given in the tables as though they are precise, but of course they are
subject to simulation error.

Column 2 of Table I shows that subsample tests have very large asymptotic size
distortions for upper one-sided and equal-tailed two-sided tests (nominal 5% tests have
asymptotic levels 50.2 and 52.5, respectively), and moderate size distortions for sym-
metric two-sided tests (the nominal 5% test has asymptotic level 10.1). (These are a
subset of results given in Table I of AG1.) Also, column 7 of Table I shows that the
FCV tests have very small asymptotic size distortions for upper one-sided tests (the
nominal 5% test has asymptotic level 5.8), and no size distortions for symmetric and
equal-tailed two-sided tests.

Column 10 of Table I shows that the nominal 5% hybrid test has asymptotic size
of 5% for upper, symmetric, and equal-tailed tests. So, the hybrid test has correct
asymptotic size for all three types of tests in this example.

Finite-sample results for the Sub, FCV, and Hyb tests are given in columns 4, 8,
and 12 of Table I, respectively. For Hyb tests, the asymptotic approximations are
fairly accurate, but tend to over-estimate the finite-sample rejection rates somewhat
for some values of h2 with finite-sample values varying between 3.4 and 5.2 compared to
the asymptotic values of 5.0. For FCV tests, the asymptotic approximations are found
to be very accurate for upper tests and quite accurate for symmetric and equal-tailed

these stepsizes are sufficiently small to yield accuracy to within ±.1.
4This includes 10 “wrap-around” subsamples that contain observations at the end and beginning of

the sample, for example, observations indexed by (110, ..., 120, 1). The choice of qn = 119 subsamples
is made because this reduces rounding errors when qn is small when computing the sample quantiles of
the subsample statistics. The values να that solve να/(qn + 1) = α for α = .025, .95, and .975 are the
integers 3, 114, and 117. In consequence, the .025, .95, and .975 sample quantiles are given by the 3rd,
114th, and 117th largest subsample statistics. See Hall (1992, p. 307) for a discussion of this choice in
the context of the bootstrap.

10



tests.
The asymptotic approximations for the Sub test are found to be quite good for

h2 values where the (maximum) asymptotic probabilities (×100) equal 5.0. But, for
h2 values where they exceed 5.0, they tend to over-estimate the finite-sample values–
sometimes significantly so, e.g., 33.8 versus 25.6 for h2 = −.95 with upper Sub tests.
Nevertheless, in the worst case scenarios (i.e., for h2 values of 1.0 or −1.0, which yield
the greatest asymptotic rejection probabilities), the asymptotic approximations are
quite good. Hence, the asymptotic sizes and finite-sample sizes are close–50.2 versus
49.8, 10.1 versus 8.4, and 52.3 versus 52.7 for upper, symmetric, and equal-tailed tests,
respectively.

The results in Table I for the columns headed Adj-Asy, PSC-Sub, APSC-Sub, ...
are discussed below.

3 Size-Corrected Tests

In this section, we use Theorem 2 of AG1 to define size-corrected (SC) FCV, sub-
sample, and hybrid tests. The SC tests only apply when Assumption B2 holds. Typi-
cally they do not apply if the asymptotic size of the FCV, subsample, or hybrid test is
one. The methods of this section apply to CIs as well, see Section 8 below.

The size-corrected fixed critical value (SC-FCV), subsample (SC-Sub), and hybrid
(SC-Hyb) tests with nominal level α are defined to reject the null hypothesisH0 : θ = θ0
when

Tn(θ0) > cv(1− α),

Tn(θ0) > cn,b(1− α) + κ(α) and

Tn(θ0) > max{cn,b(1− α), c∞(1− α) + κ∗(α)}, (3.1)

respectively, where

cv(1− α) = sup
h∈H

ch(1− α),

κ(α) = sup
(g,h)∈GH

[ch(1− α)− cg(1− α)],

κ∗(α) = sup
h∈H∗

ch(1− α)− c∞(1− α), and (3.2)

H∗ = {h ∈ H : for some (g, h) ∈ GH, cg(1− α) < ch(1− α)}.
If H∗ is empty, then κ∗(α) = −∞ by definition.

Size correction by the use of additive constants, as in (3.1), is possible under the
following assumption.

Assumption L. (i) suph∈H ch(1− α) <∞ and (ii) infh∈H ch(1− α) > −∞.
Assumption L is satisfied in most, but not all, examples. Assumption L(i) is a

necessary and sufficient condition for size correction of the FCV test based on a non-
random critical value. Necessary and sufficient conditions for size correction of the Sub
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and Hyb tests are given in Andrews and Guggenberger (2005b). These conditions are
weaker than Assumption L, but more complicated (which is why they are not stated
here). Even these conditions are violated in some examples, e.g., in the consistent
model selection/super-efficient example in AG1. Size correction of FCV, Sub, and Hyb
tests is not possible in that example (by the type of size correction considered here).

It is possible that the FCV test cannot be size-corrected (by the method considered
here) because cv(1 − α) = ∞, but the SC-Sub and SC-Hyb tests still exist and have
correct asymptotic size. Also, it is possible that the SC-FCV and SC-Hyb tests exist
while the SC-Sub test does not (because κ(α) = ∞). Surprisingly, both cases arise
in the IV example considered in Andrews and Guggenberger (2005b) (depending upon
whether one considers symmetric two-sided or upper one-sided tests with H2 = [−1, 0]).
These cases are covered by the necessary and sufficient conditions in Andrews and
Guggenberger (2005b).

Next we introduce some fairly mild continuity conditions.

Assumption MF. (i) For some h∗ ∈ H, ch ∗(1−α) = suph∈H ch(1−α) and (ii) for all
h∗ ∈ H that satisfy the condition in part (i), Jh∗(x) is continuous at x = ch ∗(1− α).

Assumption MS. (i) For some (g∗, h∗) ∈ GH, ch ∗(1− α)− cg∗(1− α) = sup(g,h)∈GH
[ch(1− α)− cg(1− α)] and (ii) for all (g∗, h∗) ∈ GH that satisfy the condition in part
(i), Jh∗(x) is continuous at x = ch ∗(1− α).

Assumption MH. (i) WhenH∗ is non-empty, for some h∗ ∈ H∗, ch ∗(1−α) = suph∈H∗
ch(1−α) and (ii) for all (g, h) ∈ GH withmax{cg(1−α), c∞(1−α)+κ∗(α)} = ch(1−α),
Jh(x) is continuous at x = ch (1− α).

The following result shows that the SC tests have AsySz(θ0) equal to their nominal
level under suitable assumptions.

Theorem 1 (a) Suppose Assumptions A2, B2, L, and MF hold. Then, the SC-FCV
test has AsySz(θ0) = α.

(b) Suppose Assumptions A2, B2, C-E, F2, G2, L, and MS hold. Then, the SC-Sub
test has AsySz(θ0) = α.

(c) Suppose Assumptions A2, B2, C-E, F2, G2, K, L, and MH hold. Then, the
SC-Hyb test has AsySz(θ0) = α.

Comments. 1. The proof of Theorem 1 can be altered slightly to prove that limn→∞
supγ∈Γ Pθ0,γ(Tn(θ0) > cv(1−α)) = α for the SC-FCV test under the given assumptions
(which is a stronger result than AsySz(θ0) = lim supn→∞ supγ∈Γ Pθ0,γ(Tn(θ0) > cv(1−
α)) = α) and analogous results hold for the SC-Sub and SC-Hyb tests.

2. The proof of Theorem 1 shows that the SC-FCV, SC-Sub, and SC-Hyb tests
satisfy AsySz(θ0) ≤ α without imposing Assumptions MF(i), MS(i), and MH(i), re-
spectively.

To compute cv(1 − α) = suph∈H ch(1 − α), one needs to be able to compute the
1 − α quantile of Jh for each h ∈ H and to find the maximum of the quantiles over
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h ∈ H. Computation of quantiles can be done analytically in some cases, by numerical
integration if the density of Jh is available, or by simulation if simulating a random
variable with distribution Jh is possible. The maximization step may range in difficulty
from being very easy to nearly impossible depending on how many elements of h affect
the asymptotic distribution Jh, the shape and smoothness of ch(1−α) as a function of
h, and the time needed to compute ch(1− α) for any given h.

Computation of κ(α) = sup(g,h)∈GH [ch(1 − α) − cg(1 − α)] for the SC-Sub test is
similar to that of cv(1− α) except the maximization is over the larger set GH rather
than H. This makes the maximization somewhat more difficult. The maximization
step may range in difficulty from being very easy to nearly impossible depending on
the factors listed above plus the complexity of GH.

Computation of κ∗(α) for the SC-Hyb test is analogous to computation of cv(1−α)
except that one also has to determine H∗. That is, one has to maximize ch(1−α) over
h ∈ H subject to the restriction that h satisfies: for some (g, h) ∈ GH, cg(1 − α) <
ch(1− α).

For a given example, one can tabulate cv(1−α), κ(α), and κ∗(α) for selected values
of α. Once this is done, the SC-FCV, SC-Sub, and SC-Hyb tests are as easy to apply
as the corresponding non-corrected tests.

An alternative method of size-correcting subsample and hybrid tests to that de-
scribed above is to adjust the quantile of the test rather than to increase the critical
value by a fixed quantity. Specifically, one can define quantile-adjusted SC-Sub and
SC-Hyb tests with nominal level α to reject the null hypothesis H0 : θ = θ0 when

Tn(θ0) > cn,b(1− ξ(α)), and

Tn(θ0) > c
∗
n,b(1− ξ∗(α)), (3.3)

respectively, where ξ(α) (∈ (0,α]), and ξ∗(α) (∈ (0,α]) are the largest constants5 that
satisfy

sup
(g,h)∈GH

(1− Jh(cg(1− ξ(α))−)) ≤ α and

sup
(g,h)∈GH

(1− Jh (max{cg(1− ξ∗(α)), c∞(1− ξ∗(α))}−)) ≤ α. (3.4)

In many cases, the two different methods of size correction give similar results. For
many examples, we prefer the method based on (3.1)-(3.2) to that of (3.3)-(3.4) because
the former are based on the explicit formulae for the adjustment factors κ(α) and κ∗(α)
given in (3.2).

5 If no such largest value exists, we take some value that is arbitrarily close to the supremum of the
values that satisfy (3.4).
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4 Power Comparisons of Size-Corrected Tests

In this section, we compare the asymptotic power of the SC-FCV, SC-Sub, and SC-
Hyb tests. Since all three tests employ the same test statistic Tn(θ0), the asymptotic
power comparison is based on a comparison of the magnitudes of cv(1 − α), cn,b(1 −
α) + κ(α), and max{cn,b(1 − α), c∞(1 − α) + κ∗(α)} for n large. The first of these
is fixed. The latter two are random and their large sample behavior depends on the
particular sequence {γn ∈ Γ : n ≥ 1} of true parameters and may depend on whether
the null hypothesis is true or not. We focus on the case in which they do not depend
on whether the null hypothesis is true or not. This typically holds when the subsample
statistics are defined to satisfy Assumption Sub1 of AG1 (and fails when they satisfy
Assumption Sub2 of AG1).

From the definitions of the critical values of the SC-Sub and SC-Hyb tests and
Lemma 4(e) in Appendix A of AG1, the possible limits of the critical values under
sequences {γn,h} are

cg(1− α) + κ(α) & max{cg(1− α), c∞(1− α) + κ∗(α)} for g ∈ H. (4.1)

Hence, we are interested in the relative magnitudes of cv(1− α) and the quantities in
(4.1). These relative magnitudes are determined by the shapes of the quantiles cg(1−α)
as functions of g ∈ H.

The first result is that the SC-Hyb test is always at least as powerful as the SC-FCV
test. This holds because for all g ∈ H,

max{cg(1− α), c∞(1− α) + κ∗(α)} = max{cg(1− α), sup
h∈H∗

ch(1− α)}
≤ sup

h∈H
ch(1− α) = cv(1− α). (4.2)

The same is not true of the SC-Sub test vis-a-vis the SC-FCV test.
Next, Theorem 2 below shows that (a) if ch(1−α) ≤ cg(1−α) for all (g, h) ∈ GH,

then the SC-Sub, SC-Hyb, Sub, and Hyb tests are equivalent asymptotically and are
more powerful than the SC-FCV test, see Figure 2(a); (b) if ch(1 − α) ≥ cg(1 − α)
for all (g, h) ∈ GH, then the SC-FCV, SC-Hyb, FCV, and Hyb tests are equivalent
asymptotically and are more powerful than the SC-Sub test, see Figure 2(b); and (c) if
H = H1 = R+,∞ and ch(1−α) is uniquely maximized at h∗ ∈ (0,∞), then the SC-FCV
and SC-Hyb tests are asymptotically equivalent and are either (i) more powerful than
the SC-Sub test, see Figure 2(e), or (ii) more powerful than the SC-Sub test for some
values of (g, h) ∈ GH but less powerful for other values of (g, h) ∈ GH, see Figure 2(f).

Figure 2(c) illustrates the case where cg(1− α) is not monotone but is maximized
at g = 0, the Hyb and SC-Hyb cv functions are the same, the Hyb cv function is lower
than both the SC-Sub and SC-FCV cv functions, and so the Hyb test is more powerful
than the SC-Sub and SC-FCV tests. Figure 2(d) illustrates the case where cg(1 − α)
is not monotone but is maximized at g =∞, the Hyb, SC-Hyb, FCV, and SC-FCV cv
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functions are the same, the Hyb cv function is lower than the SC-Sub cv function, and
so the Hyb test is more powerful than the SC-Sub test.

These results show that the SC-Hyb test has some nice power properties. When
the SC-Sub test dominates the SC-FCV test, the SC-Hyb test behaves like the SC-Sub
test. When the SC-FCV test dominates the SC-Sub test, SC-Hyb test behaves like
SC-FCV test. In none of the cases considered is the SC-Hyb test dominated by either
the SC-FCV or SC-Sub tests.

We now consider three alternative assumptions concerning the shape of ch(1− α),
which correspond to cases (a)-(c) above. (“Quant” refers to “quantile.”)

Assumption Quant1. cg(1− α) ≥ ch(1− α) for all (g, h) ∈ GH.
Assumption Quant2. cg(1−α) ≤ ch(1−α) for all (g, h) ∈ GH with strict inequality
for some (g, h).

Assumption Quant3. (i) H = H1 = R+,∞, (ii) ch(1− α) is uniquely maximized at
h∗ ∈ (0,∞), and (iii) ch(1− α) is minimized at h = 0 or h =∞.

Theorem 2 Suppose Assumptions K, L, MF, MS, and MH hold.
(a) Suppose Assumption Quant1 holds. Then, (i) cv(1−α) = suph2∈H2 c(0,h2)(1−α),

(ii) κ(α) = 0, (iii) κ∗(α) = −∞, (iv) max{cg(1− α), c∞(1−α) + κ∗(α)} = cg(1− α) +
κ(α), and (v) cg(1− α) + κ(α) ≤ cv(1− α) for all g ∈ H.

(b) Suppose Assumption Quant2 holds. Then, (i) cv(1 − α) = c∞(1 − α), (ii)
κ∗(α) = 0, (iii) max{cg(1− α), c∞(1− α) + κ∗(α)} = cv(1− α), and (iv) cv(1− α) ≤
cg(1− α) + κ(α) for all g ∈ H.

(c) Suppose Assumption Quant3 holds. Then, (i) cv(1 − α) = ch∗(1 − α), (ii)
κ(α) = ch∗(1− α) − c0(1− α), (iii) κ∗(α) = ch∗(1 − α) − c∞(1 − α), (iv) max{cg(1 −
α), c∞(1 − α) + κ∗(α)} = cv(1 − α) for all g ∈ H, (v) cv(1 − α) ≤ cg(1 − α) + κ(α)
for all g ∈ H such that cg(1 − α) ≥ c0(1 − α) (such as g = h∗), and likewise with
strict inequalities, and (vi) cv(1 − α) > cg(1 − α) + κ(α) for all g ∈ H such that
cg(1− α) < c0(1− α) (which is an empty set if ch(1− α) is minimized at h = 0).

Comments. 1. Theorem 2(a)(ii) shows that the standard subsample test (without
size correction) has correct asymptotic size when Assumption Quant1 (and other as-
sumptions) hold. Theorem 2(a)(iii) does likewise for the hybrid test. Theorem 2(b)(ii)
shows that the hybrid test has correct asymptotic size when Assumption Quant2 (and
other assumptions) hold.

2. If Assumption Quant1 holds with a strict inequality for (g, h) = (h0, h) for some
h = (h1, h2) ∈ H, where h0 = (0, h2) ∈ H, then Theorem 2(a)(v) holds with a strict
inequality with g equal to this value of h. If Assumption Quant2 holds with a strict
inequality for (g, h) = (h0, h) for some h = (h1, h2) ∈ H, where h0 = (0, h2) ∈ H, then
the inequality in Theorem 2(b)(iv) holds with a strict inequality with g equal to this
value of h.

3. Theorem 2(c)(iv)-(v) shows that under Assumption Quant3 the SC-Hyb and
SC-FCV tests are asymptotically equivalent and are always more powerful than the
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SC-Sub test at some (g, h) ∈ GH. On the other hand, Theorem 2(c)(vi) shows that
under Assumption Quant3 the SC-Sub test can be more powerful than the SC-Hyb and
SC-FCV tests at some (g, h) ∈ GH though not if ch(1− α) is minimized at h = 0.

The results above are relevant when the subsample statistics satisfy Assumption
Sub1 of AG1 (because then their asymptotic distribution is the same under the null
and the alternative). On the other hand, if Assumption Sub2 holds, then the subsample
critical values typically diverge to infinity under fixed alternatives (at rate b1/2n << n1/2

when Assumption t1 holds). Hence, in this case, the SC-FCV test is more powerful
asymptotically than the SC-Sub and SC-Hyb tests for fixed alternatives. For brevity,
we do not investigate the relative magnitudes of the critical values of the SC-FCV,
SC-Sub, and SC-Hyb tests for local alternatives when Assumption Sub2 holds.

5 Plug-in Size-Corrected Tests

In this section, we introduce improved size-correction methods that exploit the
fact that in many models it is possible to consistently estimate the parameter γ2. As
defined in AG1, γ2 is a parameter that does not determine how close γ is to a point of
discontinuity (of the limit distribution Jh of the test statistic of interest), but it affects
the limit distribution Jh. Given a consistent estimator eγn,2 of γ2, one can size correct
a test differently for different values of eγn,2, rather than size correcting by a value that
is sufficiently large to work uniformly for all γ2 ∈ Γ2. By size correcting based on eγn,2,
one obtains critical values that are smaller for some values of γ2 and, hence, this yields
a more powerful test.

The estimator eγn,2 is assumed to satisfy the following assumption.
Assumption N. eγn,2 − γn,2 →p 0 under all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ :
n ≥ 1}.
Assumption N holds in most models when a parameter γ2 appears in γ. However, it
does not hold in an IV regression model with IVs that may be weak because γ2 equals
the correlation between the structural equation error and the reduced form error in
this case, and this correlation is not consistently estimable under weak IVs.

Define

cvh2(1− α) = sup
h1∈H1

c(h1,h2)(1− α),

κh2(α) = sup
g1,h1∈H1:((g1,h2),(h1,h2))∈GH

(c(h1,h2)(1− α)− c(g1,h2)(1− α)), and

κ∗h2(α) = sup
h1∈H∗h2

c(h1,h2)(1− α)− c∞(1− α), where

H∗h2 = {h1 ∈ H1 : for some g1 ∈ H1, (g, h) = ((g1, h2), (h1, h2)) ∈ GH,
& cg(1− α) < ch(1− α)}. (5.1)
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If H∗h2 is empty, then κ
∗
h2
(α) = −∞. The PSC-FCV, PSC-Sub, and PSC-Hyb tests are

defined as in (3.1) with cv(1− α), κ(α), and κ∗(α) replaced by cveγn,2(1− α), κeγn,2(α),
and κ∗eγn,2(α), respectively.

Clearly, cveγn,2(1−α) ≤ cv(1−α) (with strict inequality whenever eγn,2 takes a value
that does not maximize cvh2(1−α) over h2 ∈ H2). In consequence, the PSC-FCV test
is asymptotically more powerful than the SC-FCV test. Analogous results hold for the
critical values and asymptotic power of the PSC-Sub and PSC-Hyb tests relative to
the SC-Sub and SC-Hyb tests.

For brevity, some continuity conditions, denoted Assumptions OF, OS, and OH,
that are used in Theorem 3 below, are stated in the Appendix A. Parts (ii) and (iii)
of these conditions are analogous to Assumptions MF, MS, and MH. These conditions
are not restrictive in most examples.

Theorem 3 (a) Suppose Assumptions A2, B2, L, and OF hold. Then, (i) cveγn,2(1 −
α) − cvγn,2(1 − α) →p 0 under all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1}, and
(ii) the PSC-FCV test satisfies AsySz(θ0) = α.

(b) Suppose Assumptions A2, B2, C-E, F2, G2, L, and OS hold. Then, (i) κeγn,2(1−
α) − κγn,2(1 − α) →p 0 under all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1}, and
(ii) the PSC-Sub test satisfies AsySz(θ0) = α.

(c) Suppose Assumptions A2, B2, C-E, F2, G2, K, L, and OH hold. Then, (i)
κ∗eγn,2(1−α)−κ∗γn,2(1−α)→p 0 under all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1},
and (ii) the PSC-Hyb test satisfies AsySz(θ0) = α.

Example 1 (cont.). The upper, symmetric, and equal-tailed subsample tests and
the upper FCV test need size-correction in this example. Plug-in size correction is
possible because estimation of the correlation parameter ρ is straightforward using the
usual sample correlation estimator. Columns 5 and 9 of Table I provide the finite-
sample (maximum) rejection probabilities (×100) of the nominal 5% PSC-Sub and
PSC-FCV tests. Results for the symmetric and equal-tailed PSC-FCV tests are not
given because the PSC-FCV and FCV tests are the same in these cases since the FCV
test has correct asymptotic size. Results for the PSC-Hyb test are not given because
it is the same as the Hyb test.

The results for the PSC-Sub tests are impressive. The finite-sample sizes of the
upper, symmetric, and equal-tailed tests are 5.3, 5.1, and 5.5%, respectively, whereas
the finite-sample sizes of the Sub tests are 49.8, 8.4, and 52.7%. The plug-in feature
of the size-correction method yields (maximum) rejection probabilities (×100) across
different h2 values that are all reasonably close to 5.0–ranging from 3.1 to 5.5, with
most being between 4.5 and 5.5. Having these values all close to 5% is desirable from
a power perspective.

The upper FCV test only requires minor size-correction given that its asymptotic
and finite-sample size is 5.8%. The PSC-FCV test provides improvement. Its finite-
sample size is 5.2%.
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6 Finite-Sample Adjustments

In this section, we introduce a finite-sample adjustment to the AsySz(θ0) of sub-
sample and hybrid tests. It is designed to give a better approximation to the actual
finite-sample sizes of these tests than does AsySz(θ0). The adjustments are used to
construct finite-sample adjusted size-corrected (ASC) subsample and hybrid tests, both
with and without plug-in estimation of h2. The idea of the adjustment is to retain the
actual ratio δn = bn/n of the subsample size to the full-sample size in the approxima-
tion to the finite-sample size of the tests, rather than to use its asymptotic limit, which
is zero.

The adjustment method is described roughly as follows. For simplicity, consider
the case in which γ does not contain subvectors γ2 or γ3, p = 1, and Γ = [0, d] for
some 0 < d < ∞. Under Assumption B2, the distribution of Tn(θ0) under γ can be
approximated by Jhn , where hn = n

rγ. Hence, the distribution of Tbn(θ0) under γ can
be approximated by Jh∗n , where h

∗
n = brnγ = (bn/n)

rhn = δrnhn. In turn, the 1 − α
subsample quantile cn,b(1 − α) under γ can be approximated by the 1 − α quantile
of Jh∗n = Jδrnhn , viz., cδrnhn(1 − α). This leads to the approximation of Pθ0,γ(Tn(θ0) >
cn,b(1− α)) by

1− Jhn(cδrnhn(1− α)). (6.1)

And it leads to the approximation of supγ∈Γ Pθ0,γ(Tn(θ0) > cn,b(1− α)) by

AsySzn(θ0) = sup
h∈H

�
1− Jh(cδrnh(1− α))

�
. (6.2)

Suppose Jh(cg(1 − α)) is a continuous function of (g, h) at each (g, h) ∈ GH and
Assumption C(ii) holds, i.e., δn = bn/n → 0. Then, as n → ∞ the quantity in (6.1)
approaches 1 − Jh(c0(1 − α)) if hn → h ∈ [0,∞). It approaches 1 − J∞(cg(1 − α)) if
hn →∞ and δrnhn → g ∈ [0,∞]. Hence, for any (g, h) ∈ GH, limn→∞(1−Jhn(cδrnhn(1−
α))) = 1− Jh(cg(1− α)) for a suitable choice of {hn ∈ H : n ≥ 1}. This suggests that

lim
n→∞ suph∈H

(1− Jh(cδrnh(1− α))) = sup
(g,h)∈GH

(1− Jh(cg(1− α))) = AsySz(θ0). (6.3)

It is shown below that (6.3) does hold, which implies that AsySzn(θ0) is an asymptot-
ically valid finite-sample adjustment to AsySz(θ0).

We now consider the general case in which γ may contain subvectors γ2 and γ3
and p ≥ 1. In this case, only the subvector γ1 affects whether γ is near a discontinuity
point of the limit distribution. In consequence, only h1, and not h2, is affected by the
δrn rescaling that occurs above. For a subsample test, we define

AsySzn(θ0) = sup
h=(h1,h2)∈H

�
1− Jh(c(δrnh1,h2)(1− α))

�
. (6.4)

We use the following continuity assumptions.
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Assumption P. (i) The function (g, h) → Jh(cg(1 − α)) for (g, h) ∈ H × H is con-
tinuous at all (g, h) ∈ GH and (ii) MaxSub(α) = Max−Sub(α), where MaxSub(α) and
Max−Sub(α) are defined in (6.3) of AG1.

Under the assumptions of Theorem 2(b) of AG1 and Assumption P(ii), the subsample
test has AsySz(θ0) = α by Theorem 2(b) of AG1.

The following result shows that AsySzn(θ0) provides an asymptotically valid finite-
sample adjustment to AsySz(θ0) that depends explicitly on the ratio δn = bn/n.

Theorem 4 Suppose Assumptions A2, B2, C-E, F2, G2, and P hold. Then, a sub-
sample test satisfies

lim
n→∞AsySzn(θ0) = AsySz(θ0).

Comment. An analogous result holds for the hybrid test with c(δrh1,h2)(1−α) replaced
by max{c(δrh1,h2)(1− α), c∞(1− α)} in (6.4).

Next, we use the finite-sample adjustment to construct adjusted SC-Type and PSC-
Type tests for Type = Sub and Hyb, which are denoted ASC-Type and APSC-Type
tests. For δ ∈ (0, 1) and h2 ∈ H2, define

κ(δ,α) = sup
h=(h1,h2)∈H

[c(h1,h2)(1− α)− c(δrh1,h2)(1− α)],

κh2(δ,α) = sup
h1∈H1

[c(h1,h2)(1− α)− c(δrh1,h2)(1− α)],

κ∗(δ,α) = sup
h∈H∗(δ)

ch(1− α)− c∞(1− α), and (6.5)

κ∗h2(δ,α) = sup
h1∈H∗h2 (δ)

c(h1,h2)(1− α)− c∞(1− α), where

H∗(δ) = {h ∈ H : c(δrh1,h2)(1− α) < c(h1,h2)(1− α) for h = (h1, h2)},
H∗h2(δ) = {h1 ∈ H1 : c(δrh1,h2)(1− α) < c(h1,h2)(1− α)}.

If H∗(δ) is empty, then κ∗(δ,α) = −∞. If H∗h2(δ) is empty, then κ∗h2(δ,α) = −∞.
The ASC-Sub and ASC-Hyb tests are defined as in (3.1) with κ(α) and κ∗(α) replaced
by κ(δn,α) and κ∗(δn,α), respectively, where δn = bn/n. The APSC-Sub and APSC-
Hyb tests are defined as in (3.1) with κ(α) and κ∗(α) replaced by κeh2,n(δn,α) and
κ∗eh2,n(δn,α), respectively.

We employ the following assumptions.

Assumption Q. ch(1− α) is continuous in h on H.

Assumption R. Either H∗ is non-empty and suph∈H† ch(1−α) ≤ suph∈H∗ ch(1−α),
where H† = {h ∈ H : h = limk→∞ hvk for some subsequence {vk} and some hvk ∈
H∗(δvk) for all k ≥ 1}, or H∗ is empty and H∗(δ) is empty for all δ > 0 sufficiently
close to zero.
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Assumption S. For all h2 ∈ H2, either H∗h2 is non-empty and suph1∈H†
h2

c(h1,h2)(1−α)
≤ suph1∈H∗h2(δ) c(h1,h2)(1 − α), where H†

h2
= {h1 ∈ H1 : h1 = limk→∞ hvk,1 for some

subsequence {vk} and some hvk,1 ∈ H∗γvk,2(δvk) for all k ≥ 1, where limk→∞ γvk,2 = h2},
or H∗h2 is empty and H

∗
h2
(δ) is empty for all δ > 0 sufficiently close to zero.

Assumptions Q, R, and S are not restrictive in most examples. Whether Assump-
tions R and S hold depends primarily on the shape of ch(1 − α) as a function of h.
It is possible for Assumptions R and S to be violated, but only for quite specific and
unusual shapes for ch(1−α). For example, Assumption R is violated in the case where
p = 1 and no parameter h2 exists if for some h∗ ∈ (0,∞) the graph of ch(1− α) is (i)
bowl-shaped for h ∈ [0, h∗] with c0(1− α) = ch∗(1− α) and (ii) strictly decreasing for
h > h∗ with c∞(1−α) < ch(1−α) for all 0 ≤ h <∞. In this case, we have H∗ is empty
(because ch(1− α) takes on its minimum for h = ∞ and its maximum at h = 0), but
h∗ ∈ H∗(δ) for all δ ∈ (0, 1), which contradicts Assumption R.

The ASC and APSC tests have AsySz(θ0) = α, as desired, by the following Theo-
rems.

Theorem 5 Suppose Assumptions A2, B2, C-E, F2, G2, K, L, and Q hold.
(a) Suppose Assumption MS holds. Then, (i) limn→∞ κ(δn,α) = κ(α) and (ii) the

ASC-Sub test satisfies AsySz(θ0) = α.
(b) Suppose Assumption MH holds. Then, (i) lim infn→∞ κ∗(δn,α) ≥ κ∗(α), (ii)

the ASC-Hyb test satisfies AsySz(θ0) ≤ α, and (iii) if Assumption R also holds, then
limn→∞ κ∗(δn,α) = κ∗(α) and the ASC-Hyb test satisfies AsySz(θ0) = α.

Theorem 6 Suppose Assumptions A2, B2, C-E, F2, G2, K, L, N, and Q hold.
(a) Suppose Assumption OS holds. Then, (i) κeγn,2(δn,α) − κγn,2(α) →p 0 under

all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1} and (ii) the APSC-Sub test satisfies
AsySz(θ0) = α.

(b) Suppose Assumptions OH and S hold. Then, (i) κ∗eγn,2(δn,α) − κ∗γn,2(α) →p 0

under all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1}, and (ii) the APSC-Hyb test
satisfies AsySz(θ0) = α.

Comment. Assumption R is a necessary and sufficient condition for the first result
of Theorem 5(b)(iii) to hold given the other assumptions.

Example 1 (cont.). Column 3 of Table I gives the finite-sample adjusted asymp-
totic rejection probabilities (×100) of the subsample test. These values are noticeably
closer to the finite-sample values given in column 4 than are the (unadjusted) asymp-
totic rejection probabilities given in column 2. For example, for the upper subsample
test and h2 = −.95, the values for Adj-Asy, n = 120, and Asy are 22.9, 25.6, and 33.8%,
respectively. Hence, the adjustment works pretty well for the subsample test here. For
the hybrid test, the adjusted asymptotic and unadjusted asymptotic rejection rates are
all 5.0%. So, the adjustment makes no difference for the hybrid test in this example.
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Column 6 of Table I reports the finite-sample rejection probabilities of the APSC-
Sub test. For upper and equal-tailed tests, the adjustment leads to over-correction of
the Sub test when the finite-sample correlation, denoted here by h2, is close to −1 and
1, respectively, and appropriate size-correction for other values of h2. In consequence,
for these cases the PSC-Sub test (see column 5) has better finite-sample size (viz., 5.3
and 5.5%) than the APSC-Sub test (13.5 and 13.5%). For symmetric tests, both of
these size-corrected tests perform well.

In conclusion, in this example, the hybrid and PSC-Sub tests perform quite well in
terms of finite-sample size for upper, symmetric, and equal-tailed tests. The APSC-Sub
test performs well for symmetric test, but not so well for upper and equal-tailed tests.

7 Equal-Tailed Tests

This section considers equal-tailed two-sided hybrid t tests. For brevity, equal-
tailed size-corrected t tests and finite-sample-adjusted asymptotics for equal-tailed tests
are discussed in Appendix A. We suppose Assumption t1(i) holds, so that Tn(θ0) =
τn(eθn − θ0)/eσn.

An equal-tailed hybrid t test of H0 : θ = θ0 versus H1 : θ 9= θ0 of nominal level α
(∈ (0, 1/2)) rejects H0 when

Tn(θ0) > c∗n,b(1− α/2) or Tn(θ0) < c∗∗n,b(α/2), where
c∗n,b(1− α/2) = max{cn,b(1− α/2), c∞(1− α/2)} and

c∗∗n,b(α/2) = min{cn,b(α/2), c∞(α/2)}. (7.1)

Define Maxr−ET,Hyb(α) and Max
�−
ET,Hyb(α) as Max

r−
ET,Sub(α) and Max

�−
ET,Sub(α) are

defined in Section 7 of AG1, but with max{cg(1 − α/2), c∞(1 − α/2)} in place of
cg(1− α/2) and with min{cg(α/2), c∞(α/2)} in place of cg(α/2).

The proofs of Theorems 1 and 2 of AG1 can be adjusted straightforwardly to yield
the following results for equal-tailed hybrid t tests.

Corollary 2 Let α ∈ (0, 1/2) be given. Let Tn(θ0) be defined as in Assumption t1(i).
(a) Suppose Assumptions A1, B1, C-E, G1, J1, and K hold. Then, an equal-tailed

hybrid test satisfies

Pθ0,γn,h(Tn(θ0) > c
∗
n,b(1− α/2) or Tn(θ0) < c∗∗n,b(α/2))

→ [1− Jh(max{ch0(1− α/2), c∞(1− α/2)}) + Jh(min{ch0(α/2), c∞(α/2)}−),
1− Jh(max{ch0(1− α/2), c∞(1− α/2)}−) + Jh(min{ch0(α/2), c∞(α/2)}].

(b) Suppose Assumptions A2, B2, C-E, G2, J2, and K hold. Then, an equal-tailed
hybrid t test satisfies

AsySz(θ0) ∈ [Maxr−ET,Hyb(α),Max�−ET,Hyb(α)] and
AsyMinRP (θ0) ∈ [Minr−ET,Hyb(α),Min�−ET,Hyb(α)].
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8 Confidence Intervals

This section introduces hybrid CIs and size-corrected CIs.
Hybrid CIs are defined just as subsample CIs are defined in (8.1) and (8.2) of AG1

with the critical value cn,b(1 − α) replaced by the hybrid critical value max{cn,b(1 −
α), c∞(1 − α)}. When analyzing the properties of these CIs the parameters (θ, γ) are
adjusted as in Section 8 of AG1 so that θ is a subvector of γ, rather than a separate
parameter, in order to recycle the assumptions and results obtained for tests and apply
them to CIs. The assumptions are adjusted correspondingly as described in Section
8.1 of AG1.

Hybrid CIs satisfy the following results.

Corollary 3 Let the assumptions be adjusted for CIs as in Section 8 of AG1.
(a) Suppose Assumptions A1, B1, C-E, F1, G1, and K hold. Then, the hybrid CI

satisfies Pγn,h(Tn(θn,h) ≤ c∗n,b(1 − α)) → [Jh(max{ch0(1 − α), c∞(1 − α)}−),
Jh(max{ch0(1− α), c∞(1− α)})].

(b) Suppose Assumptions A2, B2, C-E, F2, G2, and K hold. Then, the hybrid CI
satisfies AsyCS ∈ [inf(g,h)∈GH Jh(max{cg(1 − α), c∞(1 − α)}−), inf(g,h)∈GH
Jh(max{cg(1− α), c∞(1− α)})].

An equal-tailed hybrid t CI for θ of nominal level α is defined as in (8.5) of AG1
with the critical values c1−α/2 and cα/2 given by c∗n,b(1−α/2) and c∗∗n,b(α/2), defined in
(7.1), respectively. We have the following result for such CIs.

Corollary 4 Let α ∈ (0, 1/2) be given. Let the assumptions be adjusted for CIs as
described in Section 8 of AG1. Suppose Assumptions A2, B2, C-E, G2, J2, and K
hold. Then, the equal-tailed hybrid t CI satisfies

AsyCS ∈ [1−Max�−ET,Hyb(α), 1−Maxr−ET,Hyb(α)].

An analogue of Theorem 4 holds regarding the finite-sample-adjusted asymptotic
sizes of subsample and hybrid CIs. In this case, AsyCSn is defined as AsySzn is defined
in (6.4) (or as in (12.5) for equal-tailed tests) but with suph∈H replaced by infh∈H and
Jh replaced by 1− Jh. For example, for upper, lower, and symmetric subsample tests,
AsyCSn = infh=(h1,h2)∈H Jh(c(δrnh1,h2)(1− α)).

Next, we consider size-corrected CIs. Size-corrected FCV, subsample, and hybrid
CIs are defined as FCV, subsample, and hybrid CIs are defined in (8.1)-(8.2) of AG1,
but with their critical values, c1−α, defined as in (3.1)-(3.2) for SC tests. The SC CIs
satisfy the following properties, which follow from Theorem 1 using the same sort of
argument as in Section 8 of AG1.

Corollary 5 Let the assumptions be adjusted for CIs as in Section 8 of AG1.
(a) Suppose Assumptions A2, B2, L, and MF hold. Then, the SC-FCV CI has

AsyCS = 1− α.
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(b) Suppose Assumptions A2, B2, C-E, F2, G2, L, and MS hold. Then, the SC-Sub
CI has AsyCS = 1− α.

(c) Suppose Assumptions A2, B2, C-E, F2, G2, K, L, and MH hold. Then, the
SC-Hyb CI has AsyCS = 1− α.

Definitions and results for CIs of the form PSC-Type for Type = FCV, Sub, and
Hyb, and ASC-Type and APSC-Type for Type = Sub and Hyb are analogous to those
just stated for SC CIs but with critical values as defined in Sections 5 and 6, rather
than as in Section 3. Size-corrected equal-tailed CIs are defined as in (8.5) of AG1 with
critical values c1−α/2 and cα/2 given by the equal-tailed SC, PSC, ASC, and/or APSC
critical values for tests given in Appendix A.

9 CI for an Autoregressive Parameter

We now consider an example of the general results above. We consider FCV,
subsample, and hybrid CIs for the autoregressive parameter ρ in a first-order autore-
gressive (AR(1)) model with ρ ∈ [−1 + ε, 1] for some 0 < ε < 2. We also consider
size-corrected versions of these CIs. The CIs are based on inverting a (studentized) t
statistic constructed using the LS estimator of ρ.

Given that the parameter space for ρ includes a unit root and near unit roots,
standard FCV methods for constructing CIs based on a standard normal approximation
to the t statistic are known to be problematic. As an alternative, Romano and Wolf
(2001) propose subsample CIs for ρ. Mikusheva (2005, Theorem 4) shows that equal-
tailed versions of such subsample CIs under-cover the true value asymptotically (i.e.,
AsyCS < 1 − α). Her results do not provide an expression for AsyCS. Also, they
do not apply to symmetric subsample CIs. In contrast, Corollary 3 allows one to
explicitly calculate AsyCS for subsample CIs–both equal-tailed and symmetric–as
well as for FCV and hybrid CIs. Thus, one can quantify the magnitude of the problem
with the standard FCV CI based on the normal approximation, as well as determine
the properties of subsample CIs. Furthermore, we can size-correct the subsample CIs
based on both the unadjusted and finite-sample-adjusted asymptotic formulae given in
Section 8. (Also note that Mikusheva (2005) considers a model with no intercept or
time trend, whereas we consider models with an intercept and an intercept and time
trend.)

We consider two versions of the AR(1) model–model 1, which has an intercept, and
model 2, which has an intercept and time trend. We consider upper and lower one-sided
and symmetric and equal-tailed two-sided CIs for ρ.We summarize the asymptotic and
finite-sample results for this example here. (1) Lower one-sided and two-sided FCV CIs
and upper one-sided and equal-tailed two-sided subsample CIs have asymptotic sizes
far below their nominal level. The sizes are noticeably lower for model 2 than model
1. (2) Upper FCV, all types of hybrid CIs, and lower and symmetric subsample CIs
have asymptotic sizes equal to their nominal levels (up to simulation error). (3) The
finite-sample-adjusted asymptotic sizes for the subsample CIs that under-cover the true
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parameter provide much better approximations to the actual finite-samples sizes when
n = 130 and b = 12 than do the unadjusted asymptotic sizes. (4) All of the CIs
that have incorrect asymptotic size can be size-corrected. The ASC-Sub, SC-FCV,
and hybrid CIs all have finite-sample sizes that are good. For model 1, the sizes vary
between 92.7 and 95.3 for 95% CIs. For model 2, they vary between 92.4 and 95.8%.

We note that the same sort of issues that arise with subsampling in the AR(1)
model also arise in vector autoregressive models with roots that may be near unity.
For example, they arise with subsample tests of Granger causality in such models, see
Choi (2005).

We now provide the details concerning the AR(1) example. We use the unobserved
components representations of the two AR(1) models. The observed time series {Yi :
i = 0, ..., n} is based on a latent no-intercept AR(1) time series {Y ∗i : i = 0, ..., n}:

Yi = α+ βi+ Y ∗i ,
Y ∗i = ρY ∗i−1 + Ui, for i = 1, ..., n, (9.1)

where {Ui : i = 0,±1,±2, ...} are i.i.d. with mean 0, variance σ2U ∈ (0,∞), and
distribution F. The distribution of Y ∗0 is the distribution that yields strict stationarity
for {Y ∗i : i ≤ n} when ρ < 1, i.e., Y ∗0 =

S∞
j=0 ρ

jU−j , and is arbitrary when ρ = 1.
Model 1 is obtained by setting β = 0. Model 2 is as in (9.1). In the notation of AG1,
we have θ = 1− ρ ∈ Θ = [0, 2− ε].

Models 1 and 2 can be rewritten as

(1) Yi = hα+ ρYi−1 + Ui, where hα = α(1− ρ), and (9.2)

(2) Yi = α+ βi+ ρYi−1 + Ui, where α = α(1− ρ) + ρβ and β = β(1− ρ),

for i = 1, ..., n.6

Under the null hypothesis that ρ = ρn = 1− θn, the studentized t statistic is given
by

T ∗n(θn) = τn(eρ− ρn)/eσ, (9.3)

where τn = n1/2, eρ is the LS estimator of ρ in model 1 or 2 in (9.2), and eσ is the
usual LS standard deviation estimator. Specifically, eσ2 is the diagonal element ofeσ2U (n−1Sn

i=1XiX
�
i)
−1corresponding to Yi−1, where Xi is the ith regressor vector in

model 1 or 2 of (9.2), and eσ2U is the sum of squared residuals divided by n− k, where
k is the number of regressors in the model. For upper one-sided, lower one-sided, and
symmetric two-sided tests or CIs concerning ρ, we take Tn(θn) = T ∗n(θn), −T ∗n(θn), and
|T ∗n(θn)|, respectively.

We assume that b2n/n = O(1) and n/b
2
n = O(1). (These assumptions are used below

to establish Assumptions HH and E and EE, respectively.)

6The advantage of writing the model as in (9.1) becomes clear here. For example, in model 1, the
case ρ = 1 and hα �= 0 is automatically ruled out by model (9.1). This is a case where Yi is dominated
by a deterministic trend and the LS estimator of ρ converges at rate n3/2.
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In the notation of AG1, the vector of parameters is γ = (γ1, γ3), where γ1 = θ
(= 1 − ρ), in model 1 γ3 = (α, F ), and in model 2 γ3 = (α,β, F ). (Note that AG1
discusses CIs for θ, which is an element of γ, whereas here we consider CIs for ρ = 1−θ,
which is not an element of γ. However, a CI for θ immediately yields one for ρ.) No
parameters γ2, θ2, η1, or η2 appear in this example. The distribution of the initial
condition Y ∗0 does not appear in γ3 because under strict stationarity it equals the
stationary marginal distribution of Ui and that is completely determined by F and γ1
and in the unit root case is irrelevant. The parameter spaces are Γ1 = Θ = [0, 2 − ε]
and Γ3 = B1 ×F , and Γ3 = B2 ×F in models 1 and 2, respectively, where B1 and B2
are bounded subsets of R and R2, respectively, and F is the parameter space for the
distribution F of Ui.7 In particular, we have

F = {F : EFUi = 0, σ2U = EFU2i > 0, EF |Ui/σU |4 ≤M} (9.4)

for some M < ∞. (Note that Γ3 does not depend on γ1 in this example.) In the
definition of γn,h, we take r = 1. In Appendix B we verify the assumptions of Corollaries
3 and 4 using Lemma 2 of AG1 to verify Assumption G2. (For brevity, we verify
Assumptions E and EE only for model 1.)

In this example, H = R+,∞. Therefore, to establish Assumption BB2, we have
to consider sequences {γn,h = (γn,h,1, γn,h,3)

� : n ≥ 1} when the true autoregressive
parameter ρ = ρn equals 1 − γn,h,1 where (i) h = ∞ and (ii) 0 ≤ h < ∞. Case (i)
is studied by Park (2002), Giraitis and Phillips (2006), and Phillips and Magdalinos
(2007). Case (ii) is the “near integrated” case that has been studied by Bobkowski
(1983), Cavanagh (1985), Chan and Wei (1987), Phillips (1987), Elliott (1999), Elliott
and Stock (2001), and Müller and Elliott (2003). The latter three papers consider the
situation of interest here in which the initial condition Y ∗0 yields a stationary process.
Specifically, what is relevant here is the triangular array case with row-wise strictly
stationary observations {Y ∗i : i ≤ n} and ρ that depends on n. Note that case (ii)
contains as a special case the unit root model ρ = 1. We do not consider an AR
model here without an intercept, but such a model can be analyzed using the results
of Andrews and Guggenberger (2006). Interestingly, the asymptotic distributions in
this case are quite different than in the models with an intercept or intercept and time
trend.

For model 1, we have

T ∗n(θn)→d J
∗
h under γn,h, where

J∗h is the N(0, 1) distribution for h =∞,

J∗h is the distribution of
1U
0

I∗D,h(r)dW (r)/(
1U
0

I∗D,h(r)
2dr)1/2 for 0 ≤ h <∞,

I∗D,h(r) = I
∗
h(r) −

1U
0

I∗h(s)ds,

7The parameter space B1 is taken to be bounded, because otherwise there are sequences αn →∞,
ρn → 1 for which hαn < 0. For analogous reasons, B2 is taken to be bounded.
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I∗h(r) = Ih(r) +
1√
2h
exp(−hr)Z for h > 0 and I∗h(r) =W (r) for h = 0,

Ih(r) =
rU
0

exp(−(r − s)h)dW (s), (9.5)

W (·) is a standard Brownian motion, and Z is a standard normal random variable that
is independent of W (·). As defined, Ih(r) is an Ornstein-Uhlenbeck process.

For model 2, (9.5) holds except that for 0 ≤ h <∞ J∗h is the distribution ofU 1
0

k
I∗D,h(r)− 12

U 1
0 I
∗
D,h(s)sds · (r − 1/2)

l
dW (r)�U 1

0

k
I∗D,h(r)− 12

U 1
0 I
∗
D,h(s)sds · (r − 1/2)

l2
dr

�1/2 (9.6)

(where 12 appears in the formula because
�U 1

0(r − 1/2)2dr
�−1

= 12).

Figure 3 provides .95 quantile graphs of J∗h, −J∗h, and |J∗h|. All of these graphs are
monotone in h. The graph for J∗h is monotone increasing in h because its upper tail
gets thinner as h gets smaller. In consequence, the upper one-sided and equal-tailed
two-sided subsample CIs under-cover the true value asymptotically and the upper FCV
CI has correct size asymptotically. The graph for −J∗h is decreasing in h because the
lower tail of J∗h gets thicker as h gets smaller. The graph for |J∗h| is decreasing in h
because the lower tail of J∗h gets thicker as h gets smaller at a faster rate than the upper
tail of J∗h gets thinner. Because the graphs of −J∗h and |J∗h| are decreasing in h, the
lower and symmetric subsample CIs have correct asymptotic size, while the lower FCV
CI under-covers the true value asymptotically. These results explain the seemingly
puzzling result (quantified in Table II below) that the equal-tailed subsample CI has
incorrect size while the symmetric subsample CI has correct size asymptotically.

Table II reports the asymptotic, finite-sample-adjusted asymptotic, and finite-sample
sizes (×100) of nominal 95% CIs for model 1 for various upper and lower one-sided and
symmetric and equal-tailed two-sided CIs, see the rows labeled Min. The parameter
space for ρ is taken to be [−0.9, 1.0].8 Also reported are the finite-sample coverage prob-
abilities of the CIs for several values of ρ.9 The asymptotic and finite-sample-adjusted

8The parameter space for ρ is taken to be [−0.9, 1.0] to minimize the effect of the choice of the
lower bound on the finite-sample sizes of the upper FCV and hybrid CIs because in most practical
applications in economics, the parameter interval (−1.0,−0.9] is not of interest. If the parameter
space is taken to be [−0.999, 1.0], then the finite-sample sizes of the upper FCV and hybrid CIs are
determined by their behavior when ρ is in [−0.999,−0.9] and they equal 91.1 and 93.8, respectively,
in model 1, rather than 93.6 and 94.8. No other CIs are affected by the choice of lower bound of the
parameter space.

9Table II does not report asymptotic probabilities for specific values of ρ–it only gives the Min.
The reason is that the asymptotic results depend on h and there is no unique transformation from h
to ρ. For example, one could take ρ = 1 − h/n or ρ = exp(−h/n) (and note that neither of these is
satisfactory for all ρ in (−1, 1]). Hence, it would be misleading to compare asymptotic results for ρ
based on an arbitrary choice of transformation with the finite sample results for ρ.
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asymptotic results are calculated using the results of Section 8.10 The finite-sample
results are for the case of n = 130, b = 12, i.i.d. standard normal innovations Ui, and
qn = 119 subsamples of consecutive observations. Table B-I in Appendix B reports
analogous results for model 2.

In models 1 and 2, the lower one-sided and the two-sided FCV CIs (based on
the standard normal distribution, which yields equality of the symmetric and equal-
tailed CIs) strongly and severely under-cover asymptotically, respectively, see column
7 of the rows labeled Min. For example, for model 1, the two-sided FCV CI has
AsyCS (×100) = 68.9. The results for upper one-sided and equal-tailed two-sided
subsample CIs are similar, but somewhat worse, see column 2 of the rows labeled Min.
For example, for model 1, the equal-tailed subsample CI has AsyCS (×100) = 60.1.
Hence, subsample CIs can have very poor asymptotic performance. On the other hand,
symmetric subsample CIs have correct AsyCS in both models, see column 2 of the row
labeled Min in panel (c) of Table II.

The upper, lower, symmetric, and equal-tailed hybrid CIs all have correct AsyCS in
models 1 and 2, see column 10 of the rows labeled Min in Table II. This occurs because
in every case either the critical value of the FCV CI or the subsample CI is suitable.
Hence, the maximum of the two is a critical value that delivers correct asymptotic size.

The discussion above of the quantile graphs in Figure 3 leads to the following results.
The two-sided FCV CI under-covers because its upper endpoint is farther away from
1 than it should be. Hence, it misses the true value of ρ too often to the left. On the
other hand, the equal-tailed subsample CI under-covers ρ because its lower endpoint is
closer to 1 than it should be. Hence, it misses the true ρ to the right too often.

The finite-sample adjusted asymptotic results for δn = bn/n = 12/130 show much
less severe under-rejection for the subsample CIs than the unadjusted asymptotic
results–for the cases where the subsample CIs under-reject–compare columns 2 and
3 for the rows labeled Min. For example, the equal-tailed subsample CI has adjusted
asymptotic size of 86.1, rather than 60.1, in model 1. The finite-sample sizes of the
subsample CIs for n = 130 and b = 12 are much closer to the adjusted asymptotic sizes
than the unadjusted asymptotic sizes for those cases where the subsample CI under-
covers, compare columns 2, 3, and 4 of the rows labeled Min. For the equal-tailed
subsample CI, the finite-sample size is 86.7, compared to adjusted and unadjusted as-
ymptotic sizes of 86.1 and 60.1, respectively. Hence, it is apparent that the asymptotic
size of the upper and equal-tailed subsample CIs is approached slowly as n → ∞ and
is obtained only with large sample sizes. In consequence, increases in the sample size

10The results of Table II are based on 20, 000 simulation repetitions. The search over h to determine
the Min is done on the interval [−.90, 1] with stepsize 0.01 on [−.90, .90] and stepsize .001 on [.90, 1.0].
The asymptotic results are computed using a discrete approximation to the continuous stochastic
process on [0, 1] with 10, 000 grid points. The size-correction values cv(1 − α), κ(α), and κ(α, δ) for
model 1 of the AR(1) example are as follows: for upper tests, κ(.05) = 1.69 & κ(.05, .10) = 0.84; for
lower tests, cv(.95) = 2.89; for symmetric tests, cv(.95) = 2.89; and for equal-tailed tests, cv(.95) = 0.93,
κ(.05) = 1.38, & κ(.05, .10) = 0.53. The finite-sample results in model 1 are invariant to the true values
of α and σ2U and, hence, these are taken to be 0 and 1, respectively.
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from n = 130 makes the upper and equal-tailed subsample CIs perform worse rather
than better.

The upper and equal-tailed subsample CIs can be size-corrected, as can the lower
and two-sided FCV CIs. The ASC-Sub CI performs much better than the SC-Sub CI
because the latter is based on the unadjusted asymptotic distribution, which is highly
inaccurate and over-corrects, see columns 5 and 6 in Table II. The upper and equal-
tailed ASC-Sub CIs have finite-sample sizes of 95.3 and 94.9, see column 6 of the rows
labeled Min. The lower and two-sided SC-FCV CIs both have finite-sample size of 95.2,
see column 9 of the rows labeled Min. (No SC-Sub or ASC-Sub results are reported for
the symmetric Sub test because its asymptotic size is 94.8%, which is within simulation
error of 95%. Hence, the symmetric Sub test does not require size-correction.)

The hybrid CI needs no size-correction in any of the cases considered. Its finite-
sample sizes for n = 130 and b = 12 for upper, lower, symmetric, and equal-tailed
CIs are 94.8, 92.7, 92.7, and 95.6, respectively, in model 1, see column 11 of the rows
labelled Min. These CIs, like the ASC-Sub CIs, are not similar asymptotically or in
finite samples, see columns 6 and 11 of the rows of Table II for specific values of ρ.

10 Post-Conservative Model Selection Inference

In this example, we consider inference concerning a parameter in a linear regression
model after a “conservative” model selection procedure has been applied to determine
whether another regressor should enter the model. A “conservative” model selection
procedure is one that chooses a correct model, but not the most parsimonious correct
model, with probability that goes to one as the sample size n goes to infinity. Examples
are model selection based on a test whose critical value is independent of the sample
size and the Akaike information criterion (AIC).

The results for this example are summarized as follows. The nominal 5% subsample,
FCV, and hybrid tests have asymptotic and adjusted-asymptotic sizes that are very
large–between 90 and 96–for upper, symmetric, and equal-tailed tests. (This is for
the parameter space H2 = [−.995, .995] for the (asymptotic) correlation h2 between the
LS estimators of the two regressors.) Finite-sample sizes of these tests for n = 120 and
b = 12 are close to the asymptotic values. Hence, the asymptotic results provide good
approximations.

Plug-in size-correction methods work very well in this example (with the exception
of the APSC-Sub test). The PSC-Hyb and APSC-Hyb tests work particularly well.
Their finite-sample size for normal errors is 4.8 for upper, lower, and symmetric tests
(for H2 as above).11 The PSC-FCV test also works very well. Its finite-sample sizes
are 5.1, 5.3, and 5.2 for upper, lower, and symmetric tests, respectively. Note that the
definitions of the plug-in size-correction tests do not depend on the specification of H2
11Strictly speaking, h2 denotes the asymptotic correlation between the LS estimators and H2 denotes

its parameter space. For simplicity, when discussing the finite-sample results, we let h2 denote the
finite-sample correlation between the LS estimators and we let H2 denote its parameter space.
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(because we do not restrict the estimator eγn,2 to lie in H2).
The results above are for the parameter space H2 bounded away from 1.0 by a very

small amount: .005. Bounding H2 away from 1.0 is necessary for the asymptotic results
to hold. Furthermore, finite-sample results for |h2| extremely close to one indicate that
this condition is not superfluous. When |h2| = .999, the size-corrected tests have
finite-sample sizes between 6.9 and 7.4–still pretty good. For |h2| = .9999, however,
their finite-sample sizes are between 71 and 83. So, the size-corrected tests do not have
correct size when the parameter space for h2 is the unrestricted interval [−1.0,−1.0]. For
practical purposes, this is not too much of a problem because (i) h2 can be consistently
estimated, so one has a good idea of whether |h2| is close to 1.0 and (ii) |h2| can be
very close to 1.0 before the size-corrected tests display any adverse behavior.

The asymptotic results of this section for FCV tests are closely related to those
of Leeb (2006) and Leeb and Pötscher (2005) (and other papers referenced in these
two papers). No papers in the literature, that we are aware of, consider subsample
methods for post-model selection inference. For FCV tests, the main differences from
Leeb (2006) are that here we consider (i) model selection among two models, (ii) errors
that may be non-normal, (iii) i.i.d. regressors, (iv) t statistics, and (v) we prove the
asymptotic results directly. In contrast, Leeb (2006) considers (i) multiple models, (ii)
normal errors, (iii) fixed regressors, (iv) normalized estimators, and (v) he proves the
asymptotic results by establishing finite-sample results and taking their limits. The
results in Leeb and Pötscher (2005) are a two-model special case of those given in Leeb
(2006). The PSC-FCV test/CI considered here is closely related to, but different from,
the modified CI of Kabaila (1998).

The model we consider is

yi = x∗1iθ + x
∗
2iβ2 + x

∗�
3iβ3 + σεi for i = 1, ..., n, where

x∗i = (x∗1i, x
∗
2i, x

∗�
3i)
� ∈ Rk, β = (θ,β2,β�3)� ∈ Rk, (10.1)

x∗1i, x
∗
2i, θ,β2,σ, εi ∈ R, and x∗3i,β3 ∈ Rk−2. The observations {(yi, x∗i ) : i = 1, ..., n} are

i.i.d. The scaled error εi has mean 0 and variance 1 conditional on x∗i .
We are interested in testing H0 : θ = θ0 after carrying out a model selection

procedure to determine whether x∗2i should enter the model. The model selection
procedure is based on a t test of H∗0 : β2 = 0 that employs a critical value c that does
not depend on n. Because the asymptotic distribution of the test statistic is invariant to
the value of θ0, the testing results immediately yield results for a CI for θ obtained by
inverting the test–without any need to adjust the assumptions as described in Section
8 of AG1.

The inference problem described above covers the following (seemingly more gen-
eral) inference problem. Consider the model

yi = z�iτ + σεi for i = 1, ..., n, where

zi = (z�1i, z2i)
� ∈ Rk, τ = (τ �1, τ2)� ∈ Rk, (10.2)
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z1i, τ1 ∈ Rk−1, and z2i, τ2 ∈ R. We are interested in testing H0 : a
�τ = θ0 for a given

vector a ∈ Rk with a 9= ek, where ek = (0, ..., 0, 1)�, after using a (fixed critical value)
t test to determine whether z2i should enter the model. This testing problem can be
transformed into the former one by writing

θ = a�τ ,β2 = τ2, β3 = B
�τ , (10.3)

for some matrix B ∈ Rk×(k−2) such that D = [a : ek : B] ∈ Rk×k is nonsingular. As
defined, β = D�τ . Define x∗i = D

−1zi. Then, x∗�i β = z
�
iτ and H0 : θ = θ0 is equivalent

to H0 : a
�τ = θ0.

We now return to the model in (10.1). We consider upper and lower one-sided
and symmetric and equal-tailed two-sided nominal level α FCV tests of H0 : θ = θ0.
Each test is based on a studentized test statistic Tn(θ0), where Tn(θ0) equals T ∗n(θ0),
−T ∗n(θ0), |T ∗n(θ0)|, and T ∗n(θ0), respectively, and T ∗n(θ0) is defined below. The FCV
tests use critical values z1−α, z1−α, z1−α/2, and (−z1−α/2, z1−α/2), respectively. The
subsample critical values are defined as in AG1 using Assumption Sub1. In particular,
the subsample statistics are defined by {Tn,b,j(θ) : j = 1, ..., qn}, where θ is the “model-
selection” estimator of θ defined below and Tn,b,j(θ0) is defined just as Tn(θ0) is defined
but using the jth subsample of size b in place of the full sample of size n.

To define the test statistic T ∗n(θ0), we write the variables in matrix notation and
define the first and second regressors after projecting out the remaining regressors using
finite-sample projections:

Y = (y1, ..., yn)
�,

X∗j = (x∗j1, ..., x
∗
jn)

� ∈ Rn for j = 1, 2,
X∗3 = [x∗31 : ... : x

∗
3n]
� ∈ Rn×(k−2),

Xj = MX∗3X
∗
j ∈ Rn for j = 1, 2, and

X = [X1 : X2] ∈ Rn×2, (10.4)

where MX∗3 = In − PX∗3 and PX∗3 = X∗3 (X∗�3 X∗3 )−1X∗�3 . The n-vectors X1 and X2
correspond to the n-vectors X∗1 and X∗2 , respectively, with X∗3 projected out.

The restricted and unrestricted least squares (LS) estimators of θ and the unre-
stricted LS estimator of β2 arehθ = (X �1X1)

−1X �1Y,eθ = (X �1MX2X1)
−1X �1MX2Y, andeβ2 = (X �2MX1X2)
−1X �2MX1Y. (10.5)

The model selection test rejects H∗0 : β2 = 0 if

|Tn,2| =
����� n1/2eβ2eσ(n−1X �2MX1X2)

−1/2

����� > c, whereeσ2 = (n− k)−1Y �M[X∗1 :X
∗
2 :X

∗
3 ]
Y (10.6)
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and c > 0 is a given critical value that does not depend on n. Typically, c = z1−α/2
for some α > 0. The estimator eσ2 of σ2 is the standard (unrestricted) unbiased LS
estimator.

The test statistic, T ∗n(θ0), for testing H0 : θ = θ0 is a t statistic based on the
restricted LS estimator of θ when the null hypothesis H∗0 : β2 = 0 is not rejected and
the unrestricted LS estimator when it is rejected:

T ∗n(θ0) = hTn,1(θ0)1(|Tn,2| ≤ c) + eTn,1(θ0)1(|Tn,2| > c), where
hTn,1(θ0) = n1/2(hθ − θ0)eσ(n−1X �1X1)−1/2 andeTn,1(θ0) = n1/2(eθ − θ0)eσ(n−1X �1MX2X1)

−1/2 . (10.7)

Note that both hTn,1(θ0) and eTn,1(θ0) are defined using the unrestricted estimator eσ
of σ. One could define hTn,1(θ0) using the restricted LS estimator of σ, but this is
not desirable because it leads to an inconsistent estimator of σ under sequences of
parameters {β2 = β2n : n ≥ 1} that satisfy β2n → 0 and n1/2β2n < 0 as n → ∞.
For subsample tests, one could define hTn,1(θ0) and eTn,1(θ0) with eσ deleted because the
scale of the subsample statistics offsets that of the original sample statistic. This does
not work for hybrid tests because Assumption K fails if eσ is deleted.

The “model-selection” estimator, θ, of θ is

θ = hθ1(|Tn,2| ≤ c) + eθ1(|Tn,2| > c). (10.8)

This estimator is used to recenter the subsample statistics. (One could also use the
unrestricted estimator eθ to recenter the subsample statistics.)

We now show how the testing problem above fits into the general framework of
AG1 and verify the assumptions of AG1. First, we define regressors x⊥1i and x

⊥
2i that

correspond to x∗1i and x
∗
2i, respectively, with x

∗
3i projected out using the population

projection. Let G denote the distribution of (εi, x∗i ). Let

Q∗ = EGx∗ix
∗�
i ∈ Rk×k and write Q∗ =

⎡⎣ Q∗11 Q∗12 Q∗13
Q∗21 Q∗22 Q∗23
Q∗31 Q∗32 Q∗33

⎤⎦ , (10.9)

where Q∗11, Q∗21, Q∗22 ∈ R, Q∗31, Q∗32 ∈ R(k−2), and Q∗33 ∈ R(k−2)×(k−2). Define
x⊥ji = x∗ji − x∗�3i(Q∗33)−1Q∗3j for j = 1, 2,

Q = EGx
⊥
i x

⊥�
i , where x

⊥
i = (x

⊥
1i, x

⊥
2i)
�, and Q−1 =

�
Q11 Q12

Q12 Q22

�
. (10.10)

In the notation of AG1, the parameter vector γ = (γ1, γ2, γ3) is given by

γ1 =
β2

σ(Q22)1/2
, γ2 =

Q12

(Q11Q22)1/2
, and γ3 = (θ,β2,β3,σ, G). (10.11)
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Note that γ2 = ρ = AsyCorr(eθ, eβ2). The parameter spaces for γ1, γ2, and γ3 are
Γ1 = R, Γ2 = [−1 + ζ, 1− ζ] for some ζ > 0, and

Γ3(γ1, γ2) =
q
(θ,β2,β3,σ, G) : θ,β2 ∈ R, β3 ∈ Rk−2, σ > 0, and for

Q = EGx
⊥
i x

⊥�
i and Q−1 =

�
Q11 Q12

Q12 Q22

�
, (i)

β2
σ(Q22)1/2

= γ1,

(ii)
Q12

(Q11Q22)1/2
= γ2, (iii) λmin(Q) ≥ κ, (iv) λmin(EGx∗3ix

∗�
3i) ≥ κ,

(v) EG||x∗i ||2+δ ≤M, (vi) EG||εix∗i ||2+δ ≤M,
(vii) EG(εi|x∗i ) = 0 a.s., and (viii) EG(ε2i |x∗i ) = 1 a.s.

�
(10.12)

for some κ, δ > 0 and M <∞. The parameter γ2 is bounded away from one and minus
one because otherwise the LS estimators of θ and β2 could have a distribution that is
arbitrarily close to being singular.

The rate of convergence parameter r of AG1 equals 1/2. The localization parameter
h of AG1 satisfies h = (h1, h2) ∈ H = H1×H2, whereH1 = R∞ andH2 = [−1+ζ, 1−ζ].

Let ∆(a, b) = Φ(a+ b) − Φ(a − b), where Φ(·) is the standard normal distribution
function. Note that ∆(a, b) = ∆(−a, b).

Calculations in Appendix B establish that the asymptotic distribution J∗h of T
∗
n(θ0)

under a sequence of parameters {γn = (γn,1, γn,2, γn,3) : n ≥ 1} as in AG1 (where
n1/2γn,1 → h1, γn,2 → h2, and γn,3 ∈ Γ3(γn,1, γn,2) for all n) is

J∗h(x) = Φ(x+ h1h2(1− h22)−1/2)∆(h1, c)
+

] x

−∞

�
1−∆

�
h1 + h2t

(1− h22)1/2
,

c

(1− h22)1/2
��

φ(t)dt (10.13)

when |h1| <∞. When |h1| =∞, J∗h(x) = Φ(x) (which equals the limit as |h1|→∞ of
J∗h(x) defined in (10.13)). For upper one-sided, lower one-sided, and symmetric two-
sided tests, the asymptotic distribution Jh of Tn(θ0) is given by J∗h, −J∗h, and |J∗h|,
respectively. (If Y ∼ J∗h, then by definition, −Y ∼ −J∗h and |Y | ∼ |J∗h|.) This verifies
Assumption B2 of AG1.

Assumptions A2, D, and E of AG1 hold automatically. Assumption C of AG1 holds
by choice of {bn : n ≥ 1}. Assumption F2 of AG1 holds because J∗h(x) is continuous
in x for all h ∈ H. Assumption G2 of AG1 is verified in Appendix B using the proof
of Lemma 4 in Appendix A of AG1. Assumption K holds with J∗∞ being a N(0, 1)
distribution. Assumption L holds because ch(1 − α) is continuous in h ∈ H and has
finite limits as |h1|→∞ and/or |h2|→ 1− ζ. Assumptions MF, MS, and MH hold by
the continuity of ch(1−α) in h ∈ H plus the shape of ch(1−α) as a function of h1 for
each |h2| ≤ 1 − ζ, see Figure 4. Given the assumptions just verified, the main results
of AG1 and the present paper apply to this example.

Figure 4 provides graphs of the quantiles, ch(1−α), of |J∗h| as a function of h1 ≥ 0
for several values of h2 ≥ 0. (The quantile graphs are invariant to the signs of h1 and
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h2.) The corresponding quantile graphs for J∗h are remarkably similar to those for |J∗h|
and, hence, are not given. In Figure 4, the graphs are hump shaped with the size of the
hump increasing in |h2|. Based on the shape of the graphs, one expects the subsample,
FCV, and hybrid tests all to over-reject the null hypothesis asymptotically and in finite
samples and by a substantial amount when |h2| is large.

Table III provides null rejection probability results that are analogous to those in
Table I but for the present example.12 The finite-sample results in Table III are for
n = 120, b = 12, qn = 119, and a model with standard normal errors, and k = 3
regressors, where x∗1,i and x

∗
2,i are independent standard normal random variables and

x∗3,i = 1. The asymptotic results for the Sub, FCV, and Hyb tests show that all of these
tests perform very similarly. They are found to over-reject the null hypothesis very
substantially for the upper, symmetric, and equal-tailed cases when the absolute value
of the correlation, |h2|, is large. When the parameter space H2 for h2 is [−.995, .995],
the asymptotic sizes of these nominal 5% tests range from 93 to 96 (see columns 2, 7,
and 10). Even for |h2| = .8, the maximum (over h1) asymptotic rejection probabilities
(×100) of these tests range from 36 to 44.

Table III shows that the adjusted asymptotic sizes of the nominal 5% Sub and Hyb
tests (for H2 = [−.995, .995]) are slightly lower than the unadjusted ones, but they are
still in the range of 90 to 92 (see columns 3 and 11).

The finite-sample sizes of the nominal 5% Sub, FCV, and Hyb tests are very high
and reflect the asymptotic results (see columns 4, 8, and 12). They range from 91 to 95
(for H2 = [−.995, .995]). The asymptotic results provide quite good approximations for
the upper and equal-tailed tests, but less accurate ones for symmetric tests (compare
column 2 with column 4, 7 with 8, and 10 with 12). The adjusted asymptotic results
are particularly good for symmetric tests, but less good for upper and equal-tailed tests
(compare column 3 with column 4 and 11 with 12).

In sum, the Sub, FCV, and Hyb tests all have very poor finite-sample size properties.
The asymptotic results work quite well in approximating the finite-sample results.

Next, we consider size-corrected tests. For PSC and APSC methods, we use the
following consistent estimator of γn,2:

eγn,2 = −n−1X �1X2
(n−1X �1X1n−1X �2X2)1/2

. (10.14)

The choice of this estimator is based on the equality γn,2 = Q12n /(Q
11
n Q

22
n )

1/2 =

−Qn,12/(Qn,11Qn,22)1/2, where Qjmn and Qn,jm denote the (j,m) elements of Q−1n and

12The results in Table III are based on 20, 000 simulation repetitions. For the finite-sample results,
the search over |β2| is done on the interval [0, 10] with stepsizes 0.0025, 0.025, and .25, respectively on
the intervals [0.0, 0.8], [0.8, 3], and [3, 10] and also includes the value |β2| = 999, 999. For the asymptotic
results the search over |h1| is done in the interval [−10, 10] with stepsize 0.01. The Max is taken over
|h2| values in {0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99, 0.995}. For the plug-in size-correction values, the grid
of |γ2| values in [0, 1] has stepsizes .01, .001, .0001, and .00002, respectively, on the intervals [0.0, 0.7],
[0.7, 0.99], [0.99, 0.996], and [0.996, 1.0].
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Qn, respectively, for j,m = 1, 2 (see the second equality in (16.11) below). Consistency
of eγn,2 (i.e., eγn,2 − γn,2 →p 0 under {γn : n ≥ 1}) follows from a Lemma in Appendix
B. Thus, Assumption N holds.

The PSC and APSC tests do not depend on the specification of the parameter space
for h2.

Table III reports finite-sample rejection probabilities of the PSC and APSC tests.
The PSC-Sub, PSC-FCV, PSC-Hyb, and APSC-Hyb tests (see columns 5, 9, 13, and 14)
all perform very well. The finite-sample sizes of these tests (for H2 = [−0.995, 0.995])
are all in the range of 4.8 to 6.2 for upper, symmetric, and equal-tailed tests. (If one
omits the equal-tailed PSC-Sub test, the range is 4.8 to 5.3.) For all of these tests the
maximum rejection rates (over h1) do not vary too much with |h2|, which is the objective
of the “plug-in” approach. Hence, the “plug-in” approach works well in this example.
The PSC-Hyb and APSC-Hyb tests perform the same and perform particularly well.
Their sizes are 4.8 for upper, symmetric, and equal-tailed tests. The PSC-FCV test
also performs exceptionally well with finite-sample sizes of 5.1, 5.3, and 5.2 for upper,
symmetric, and equal-tailed tests, respectively.

The only size-corrected test that does not perform well is the APSC-Sub test, which
has sizes 25, 22, and 24 for upper, symmetric, and equal-tailed tests.

For H2 = [−.999, .999], the finite-sample sizes of the PSC tests lie between 6.9 and
7.4 and those of the APSC-Hyb test lie between 7.1 and 7.4. For H2 = [−.9999, .9999],
all of the SC tests have finite-sample sizes between 71 and 83. Hence, it is clear that
bounding |h2| away from 1.0 is not only sufficient for the asymptotic SC results to hold,
but it is necessary for the SC tests to have good finite-sample size. Nevertheless, |h2|
can be very close to 1.0 (i.e., .995 or less) and the SC tests still perform very well in
finite samples.
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Appendix A

This Appendix provides (i) some assumptions that are not stated in the text for
brevity, (ii) size-correction results for equal-tailed tests, and (iii) proofs of the general
results of the paper.

11 Assumptions

In Section 5, we use the following assumptions.

Assumption OF. (i) cvh2(1 − α) is uniformly continuous in h2 on H2, (ii) for each
h2 ∈ H2, there exists some h∗1 ∈ H1 such that c(h∗1,h2)(1 − α) = cvh2(1 − α), and (iii)
for all h = (h1, h2) ∈ H for which ch(1 − α) = cvh2(1 − α), Jh(x) is continuous at
x = cvh2(1− α).

Assumption OS. (i) κh2(α) is uniformly continuous in h2 on H2, (ii) for each h2 ∈
H2, there exists some g∗1, h∗1 ∈ H1 such that (g∗, h∗) = ((g∗1, h2), (h∗1, h2)) ∈ GH and
c(h∗1,h2)(1 − α) − c(g∗1 ,h2)(1 − α) = κh2(1 − α), and (iii) for all (g, h) ∈ GH for which
ch(1 − α) − cg(1 − α) = κh2(1 − α), where h = (h1, h2), Jh(x) is continuous at x =
cg(1− α) + κh2(1− α).

Assumption OH. (i) κ∗h2(α) is uniformly continuous in h2 onH2, (ii) for each h2 ∈ H2,
when H∗h2 is non-empty, we have: for some h

∗
1 ∈ H∗h2 , c(h ∗1,h2)(1 − α) − c∞(1 − α) =

κ∗h2(1−α), and (iii) for all h = (h1, h2) ∈ H for which ch(1−α)−c∞(1−α) = κ∗h2(1−α),
Jh(x) is continuous at x = max{cg(1− α), c∞(1− α) + κ∗h2(1− α)}.

12 Equal-Tailed Size-Corrected Tests

This section introduces equal-tailed size-corrected FCV, subsample, and hybrid t
tests. It also introduces finite-sample-adjusted asymptotics for equal-tailed tests. We
suppose Assumption t1(i) holds, so that Tn(θ0) = τn(eθn − θ0)/eσn.

Equal-tailed (i) SC-FCV, (ii) SC-Sub, and (iii) SC-Hyb tests are defined by (7.1)
with the critical values c∗n,b(1 − α/2) and c∗∗n,b(α/2) replaced by (i) cFix(1 − α/2) +
κET,Fix(α) and cFix(α/2) − κET,Fix(α), (ii) cn,b(1 − α/2) + κET (α) and cn,b(α/2) −
κET (α), and (iii)max{cn,b(1−α/2), c∞(1−α/2)+κ∗ET (α)} andmin{cn,b(α/2), c∞(α/2)−
κ∗ET (α)}, respectively.

By definition, the SC factors κET,Fix(α) (∈ [0,∞)), κET (α) (∈ [0,∞)), and κ∗ET (α)
(∈ {−∞} ∪ [0,∞)), respectively, are the smallest values that satisfy

sup
h∈H

[1− Jh((cFix(1− α/2) + κET,Fix(α))−) + Jh(cFix(α/2)− κET,Fix(α))] ≤ α,

sup
(g,h)∈GH

[1− Jh((cg(1− α/2) + κET (α))−) + Jh(cg(α/2)− κET (α))] ≤ α, and
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sup
(g,h)∈GH

[1− Jh(max{cg(1− α/2), c∞(1− α/2) + κ∗ET (α)}−) +

Jh(min{cg(α/2), c∞(α/2)− κ∗ET (α)})] ≤ α. (12.1)

(If no such smallest value exists, we take some value that is arbitrarily close to the
infimum.)

For each test, the condition in (12.1) guarantees that the “overall” asymptotic size of
the test is less than or equal to α. It does not guarantee that the maximum (asymptotic)
rejection probability in each tail is less than or equal to α/2. If the latter is desired,
then one should size correct the lower and upper critical values of the equal-tailed test
in the same way as one-sided t tests are size corrected in Section 3. (This can yield the
overall size of the test to be strictly less than α if the (g, h) vector that maximizes the
rejection probability is different for the lower and upper critical values.)

Given SC factors that satisfy (12.1), the equal-tailed SC-FCV, SC-Sub, and SC-Hyb
t tests have AsySz(θ0) ≤ α under the assumptions in Corollary 2(c) of AG1, Corollary
2(d) of AG1, and Corollary 2(b) above, respectively. Under continuity conditions on
Jh(x) at suitable values of x and h, such that the inequalities in (12.1) hold as equalities,
these tests have AsySz(θ0) = α.

An alternative way of size-correcting equal-tailed tests is the following method.
This method has the advantage that if it is possible to produce an equal-tailed size-
corrected test, then the procedure does so. Its disadvantage is that it is somewhat more
complicated to implement.

First, let κET,Fix,1(α) ∈ [0,∞), κET,1(α) ∈ [0,∞), and κ∗ET,1(α) ∈ {−∞} ∪ [0,∞)
denote the smallest values such that

sup
h∈H

[1− Jh((cFix(1− α/2) + κET,Fix,1(α))−)] ≤ α/2,

sup
(g,h)∈GH

(1− Jh((cg(1− α/2) + κET,1(α))−)) ≤ α/2, and

sup
(g,h)∈GH

�
1− Jh

�
max{cg(1− α/2), c∞(1− α/2) + κ∗ET,1(α)}−

�� ≤ α/2. (12.2)

Next, let κET,Fix,2(α) ∈ R, κET,2(α) ∈ R, and κ∗ET,2(α) ∈ {−∞} ∪ R denote the
smallest values such that

sup
h∈H

[1− Jh((cFix(1− α/2) + κET,Fix,1(α))−) + Jh(cFix(α/2)− κET,Fix,2(α))] ≤ α,

sup
(g,h)∈GH

[1− Jh((cg(1− α/2) + κET,1(α))−) + Jh(cg(α/2)− κET,2(α))] ≤ α, and

sup
(g,h)∈GH

[1− Jh(max{cg(1− α/2), c∞(1− α/2) + κ∗ET,1(α)}−) +

Jh(min{cg(α/2), c∞(α/2)− κ∗ET,2(α)})] ≤ α. (12.3)

The “alternative” SC equal-tailed FCV test rejects H0 if Tn(θ0) > cFix(1 − α/2) +
κET,Fix,1(α) or Tn(θ0) < cFix(α/2) − κET,Fix,2(α). The “alternative” SC equal-tailed
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Sub and Hyb tests are defined analogously. We use “alternative” SC equal-tailed tests
in the Parameter of Interest Near a Boundary Example given in Andrews and Guggen-
berger (2005b). For all of the other examples, we use the SC equal-tailed tests defined
in (12.1).

If a parameter γ2 appears in γ and γ2 is consistently estimable, then PSC tests
are more powerful asymptotically than SC tests (because they lead to smaller critical
values under some distributions but still have correct asymptotic size). Equal-tailed (i)
PSC-FCV, (ii) PSC-Sub, and (iii) PSC-Hyb tests are defined as the SC versions are de-
fined above, but with κET,Fix(α), κET (α), and κ∗ET (α) replaced by κET,Fix,eγn,2(α),
κET,eγn,2(α), and κ∗ET,eγn,2(α), respectively. Here, the PSC factors κET,Fix,h2(α) (∈
[0,∞)), κET,h2(α) (∈ [0,∞)), and κ∗ET,h2(α) (∈ {−∞} ∪ [0,∞)) are defined to be
the smallest values that satisfy:

sup
h1∈H1

[1− J(h1,h2)((cFix(1− α/2) + κET,Fix,h2(α))−) +

J(h1,h2)(cFix(α/2)− κET,Fix,h2(α))] ≤ α,

sup
g1,h1∈H1:((g1,h2),(h1,h2))∈GH

[1− J(h1,h2)((c(g1,h2)(1− α/2) + κET,h2(α))−) +

J(h1,h2)(c(g1,h2)(α/2)− κET,h2(α))] ≤ α, and

sup
g1,h1∈H1:((g1,h2),(h1,h2))∈GH

[1− J(h1,h2)(max{c(g1,h2)(1− α/2), c∞(1− α/2) +

κ∗ET,h2(α)}−) + J(h1,h2)(min{c(g1,h2)(α/2), c∞(α/2)− κ∗ET,h2(α)})] ≤ α. (12.4)

The PSC-FCV, PSC-Sub, and PSC-Hyb tests all have AsySz(θ0) ≤ α under Assump-
tion N and the assumptions of Corollary 2(c) of AG1, Corollary 2(d) of AG1, and
Corollary 2(b) above, respectively. (The proof is analogous to the proof of Theorem
3(a)(i), 3(b)(i), and 3(c)(i) combined with the proof of Theorem 1.) These tests have
AsySz(θ0) = α provided the inequalities in (12.4) hold as equalities.

The finite-sample adjustments introduced in Section 6 do not cover equal-tailed
tests. For equal-tailed subsample tests, we define the following finite-sample adjustment
to AsySz(θ0):

AsySzn(θ0) = sup
h∈H

[1− Jh(c(δrnh1,h2)(1− α/2)−) + Jh(c(δrnh1,h2)(α/2))]. (12.5)

With the function that appears in Assumption P(i) altered to (g, h) → Jh(cg(1 −
α/2)−)−Jh(cg(α/2)) and withMaxr−ET,Sub(α) =Max�−ET,Sub(α) in place of Assumption
P(ii), the result of Theorem 4, viz., AsySzn(θ0) → AsySz(θ0), holds for equal-tailed
subsample tests.

Based on (12.5), we introduce finite-sample adjustments that can improve the as-
ymptotic approximations upon which the equal-tailed SC and PSC subsample and
hybrid tests rely. Equal-tailed ASC and APSC subsample and hybrid tests are defined
just as SC subsample and hybrid tests are defined, but using κET (δn,α), κ

∗
ET (δn,α),

κET,eγn,2(δn,α) and κ∗ET,eγn,2(δn,α) in place of κET (α) and κ∗ET (α). The ASC factors
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κET (δ,α) (∈ [0,∞)) and κ∗ET (δ,α) (∈ {−∞} ∪ [0,∞)) are defined to be the smallest
values that satisfy:

sup
(h1,h2)∈H

[1− J(h1,h2)((c(δrh1,h2)(1− α/2) + κET (δ,α))−) +

J(h1,h2)(c(δrh1,h2)(α/2)− κET (δ,α))] ≤ α and

sup
(h1,h2)∈H

[1− J(h1,h2)(max{c(δrh1,h2)(1− α/2), c∞(1− α/2) + κ∗ET (δ,α)}−) +

J(h1,h2)(min{c(δrh1,h2)(α/2), c∞(α/2)− κ∗ET (δ,α)})] ≤ α. (12.6)

The APSC factors κET,h2(δ,α) (∈ [0,∞)) and κ∗ET,h2(δ,α) (∈ {−∞} ∪ [0,∞)) are
defined to be the smallest values that satisfy:

sup
h1∈H1

[1− J(h1,h2)((c(δrh1,h2)(1− α/2) + κET,h2(δ,α))−) +

J(h1,h2)(c(δrh1,h2)(α/2)− κET,h2(δ,α))] ≤ α and

sup
h1∈H1

[1− J(h1,h2)(max{c(δrh1,h2)(1− α/2), c∞(1− α/2) + κ∗ET,h2(δ,α)}−) +

J(h1,h2)(min{c(δrh1,h2)(α/2), c∞(α/2)− κ∗ET,h2(δ,α)})] ≤ α. (12.7)

The ASC and APSC tests have AsySz(θ0) = α under conditions that are similar
to those given in Section 6. For brevity, we do not give details.

13 Proofs

For notational simplicity, throughout this section, we let cg, ch, c∞, cn,b, and cv
abbreviate cg(1− α), ch(1− α), c∞(1− α), cn,b(1− α), and cv(1− α), respectively.

Proof of Lemma 1. If ch ≥ c∞ for all h ∈ H, then Max−Hyb(α) = Max−Sub(α) and
MaxHyb(α) =MaxSub(α) follows immediately. On the other hand, suppose “ch ≥ c∞
for all h ∈ H” does not hold. Then, for some g ∈ H, cg < c∞. Given g, define
h1 = (h1,1, ..., h1,p)

� ∈ H1 by h1,m = +∞ if g1,m > 0, h1,m = −∞ if g1,m < 0,
h1,m = +∞ or −∞ (chosen so that (g, h) ∈ GH) if g1,m = 0 for m = 1, ..., p, and define
h2 = g2. Let h = (h1, h2). By construction, (g, h) ∈ GH. By Assumption K, ch = c∞.
Hence, we have

MaxSub(α) ≥ 1− Jh(cg) > α, (13.1)

where the second inequality holds because cg < c∞ = ch and ch is the infimum of
values x such that Jh(x) ≥ 1− α or, equivalently, 1− Jh(x) ≤ α. Equation (13.1) and
Theorem 2(b) of AG1 imply that AsySz(θ0) > α for the subsample test. The hybrid
test reduces the asymptotic over-rejection of the subsample test at (g, h) from being at
least 1 − Jh(cg) > α to being at most 1 − Jh(c∞) = 1 − Jh(ch) ≤ α (with equality if
Jh(·) is continuous at ch).
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Proof of Lemma 2. Suppose Assumption Quant0(i) holds. Then, we have

Max−Hyb(α) = sup
(g,h)∈GH

[1− Jh(max{cg, c∞}−)] = sup
h∈H

[1− Jh(c∞−)]

= sup
h∈H

[1− Jh(c∞)] ≤ sup
h∈H

[1− Jh(ch)] ≤ α, (13.2)

where the second equality and first inequality hold by Assumption Quant0(i)(a), the
third equality holds by Assumption Quant0(i)(b), and the last inequality holds by the
definition of ch.

Next, suppose Assumption Quant0(ii) holds. By Assumption Quant0(ii)(a), p = 1.
Hence, given (g, h) ∈ GH either (I) |h1,1| = ∞ or (II) |h1,1| < ∞. When (I) holds,
Jh = J∞ by Assumption K and

1− Jh(max{cg, c∞}−) ≤ 1− J∞(c∞−) = 1− J∞(c∞) ≤ α, (13.3)

where the equality holds by Assumption Quant0(ii)(c). When (II) holds, g must equal
h0 by the definition of GH. Hence,

1−Jh(max{cg, c∞}−) ≤ 1−Jh(ch0−) ≤ sup
h∈H

[1−Jh(ch−)] = sup
h∈H

[1−Jh(ch)] ≤ α, (13.4)

where the second inequality holds because ch0 ≥ ch by Assumption Quant0(ii)(b) and
the equality holds by Assumption Quant0(ii)(d).

Proof of Theorem 1. First we note that Assumption L implies that cv(1−α), κ(α),
and κ∗(α) are well-defined (i.e., finite).

Below we show that cv(1− α), κ(α), and κ∗(α) satisfy

sup
h∈H

[1− Jh(cv(1− α)−)] ≤ α,

sup
(g,h)∈GH

(1− Jh((cg(1− α) + κ(α))−)) ≤ α and

sup
(g,h)∈GH

(1− Jh (max{cg(1− α), c∞(1− α) + κ∗(α)}−)) ≤ α, (13.5)

respectively. Given (13.5), Theorem 2(a) of AG1 applied with cFix(1−α) = cv implies
that the SC-FCV test satisfies AsySz(θ0) ≤ suph∈H [1−Jh(cv−)] ≤ α, where the second
inequality holds by (13.5). Theorem 2(b) of AG1 with cn,b+κ(α) in place of cn,b implies
that the SC-Sub test satisfies AsySz(θ0) ≤ sup(g,h)∈H [1−Jh((cg+κ(α))−)] ≤ α, where
the second inequality holds by (13.5). Corollary 1(b) withmax{cn,b, c∞+κ∗(α)} in place
of max{cn,b, c∞} implies that the SC-Hyb test satisfies AsySz(θ0) ≤ sup(g,h)∈H [1 −
Jh(max{cg, c∞ + κ∗(α)}−)] ≤ α, where the second inequality holds by (13.5). Hence,
AsySz(θ0) ≤ α for SC-FCV, SC-Sub, and SC-Hyb tests. Below we show that the
reverse inequality also holds.
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We now show that the first inequality in (13.5) holds. For h ∈ H, if ch <
suph†∈H ch† , then

Jh

#
sup
h†∈H

ch†−
$
≥ Jh(ch) ≥ 1− α, (13.6)

where the first inequality holds because Jh is nondecreasing and the second inequality
holds by the definition of ch. For h ∈ H, if ch = suph†∈H ch† , then

Jh

#
sup
h†∈H

ch†−
$
= Jh(ch−) = 1− α, (13.7)

where the last equality holds by Assumption MF(ii). For cv defined in (3.2), (13.6)
and (13.7) combine to give

sup
h∈H

[1− Jh(cv−)] = sup
h∈H

[1− Jh( sup
h†∈H

ch†−)] ≤ α. (13.8)

Hence, cv satisfies (13.5).
Next, we prove that the second inequality in (13.5) holds. For (g, h) ∈ GH, if

ch < cg + sup(g†,h†)∈GH [ch† − cg† ], then we have

Jh ((cg + κ(α))−) = Jh
#
(cg + sup

(g†,h†)∈GH
[ch† − cg† ])−

$
≥ Jh (ch) ≥ 1− α, (13.9)

where the first inequality holds by the condition on (g, h) and the fact that Jh is
nondecreasing.

For (g, h) ∈ GH, if ch = cg + sup(g†,h†)∈GH [ch† − cg† ], then we have

Jh ((cg + κ(α))−) = Jh
#
(cg + sup

(g†,h†)∈GH
[ch† − cg† ])−

$
= Jh (ch−) = 1− α, (13.10)

where the second equality holds by the condition on (g, h) and the last equality holds
by Assumption MS(ii). Combining (13.9) and (13.10) gives sup(g,h)∈GH [1 − Jh((cg +
κ(α))−)] ≤ α, as desired.

The third inequality in (13.5) holds by the following argument. Because c∞ +
κ∗(α) = suph∗∈H∗ ch∗ ,we need to show that sup(g,h)∈GH [1−Jh(max{cg, suph∗∈H∗ ch∗}−)]
≤ α. For all (g, h) ∈ GH, we have max{cg, suph∗∈H∗ ch∗} ≥ ch because max{cg,
suph∗∈H∗ ch∗} < ch implies that cg < ch, which implies that h ∈ H∗, which implies
that suph∗∈H∗ ch∗ ≥ ch, which is a contradiction. Now, for any (g, h) ∈ GH with
max{cg, suph∗∈H∗ ch∗} > ch, we have 1−Jh(max{cg, suph∗∈H∗ ch∗}−) ≤ 1−Jh(ch) ≤ α,
as desired. For any (g, h) ∈ GH with max{cg, suph∗∈H∗ ch∗} = ch, Assumption MH(ii)
implies that Jh(x) is continuous at x = ch. Hence, 1 − Jh(max{cg, c∞ + κ∗(α)}−) =
1 − Jh(ch−) = 1 − Jh(ch) = α, which completes the proof of the third inequality of
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(13.5). This concludes the proof that AsySz(θ0) ≤ α for the SC-FCV, SC-Sub, and
SC-Hyb tests.

We now prove that these tests satisfy AsySz(θ0) ≥ α. By Theorem 2(a) of AG1
applied with cFix(1 − α) = cv, the SC-FCV test satisfies AsySz(θ0) ≥ suph∈H [1 −
Jh(cv)]. Using (3.2) and Assumption MF(i), cv = suph∈H ch = ch ∗ for some h∗ ∈ H.
Hence,

sup
h∈H

[1− Jh(cv)] = sup
h∈H

[1− Jh(ch∗)] ≥ 1− Jh∗(ch∗) = α, (13.11)

where the last equality holds by Assumption MF(ii). In consequence, for the SC-FCV
test, AsySz(θ0) ≥ α.

Next, by Theorem 2(b) of AG1 with cn,b + κ(α) in place of cn,b, the SC-Sub test
satisfies AsySz(θ0) ≥ sup(g,h)∈GH [1−Jh(cg+κ(α))]. Using (3.2) and Assumption MS(i),
κ(α) = ch ∗ − cg∗ for some (g∗, h∗) ∈ GH as in Assumption MS(i). Hence,

sup
(g,h)∈GH

[1−Jh(cg+κ(α))] = sup
(g,h)∈GH

[1−Jh(cg+ch ∗−cg∗)] ≥ 1−Jh∗(ch∗) = α, (13.12)

where the last equality holds by Assumption MS(ii). In consequence, for the SC-Sub
test, AsySz(θ0) ≥ α.

Lastly, Corollary 1(b) with max{cn,b, c∞+κ∗(α)} in place of max{cn,b, c∞} implies
that the SC-Hyb test satisfies

AsySz(θ0) ≥ sup
(g,h)∈GH

[1− Jh(max{cg, c∞ + κ∗(α)})]. (13.13)

If H∗ is not empty, then using (3.2) and Assumption MH(i), κ∗(α) = ch∗−c∞ for some
h∗ ∈ H∗ as in Assumption MH(i). By the definition of H∗, there exists g∗ such that
(g∗, h∗) ∈ GH and cg∗ < ch∗ . In consequence, the right-hand side of (13.13) equals

sup
(g,h)∈GH

[1− Jh(max{cg, ch∗})] ≥ 1− Jh∗(max{cg∗ , ch∗}) = 1− Jh∗(ch∗) = α, (13.14)

where the first equality uses cg∗ < ch∗ and last equality holds by Assumption MH(ii)
because (g∗, h∗) ∈ GH satisfies ch∗ = suph∈H∗ ch = max{cg∗ , suph∈H∗ ch}. Combining
(13.13) and (13.14) gives AsySz(θ0) ≥ α.

If H∗ is empty, then κ∗(α) = −∞, (h0, h0) ∈ GH, where h0 = (0, h2)� for arbitrary
h2 ∈ H2, and we have

sup
(g,h)∈GH

[1− Jh(max{cg, c∞ + κ∗(α)})]

= sup
(g,h)∈GH

[1− Jh(cg)] ≥ 1− Jh0(ch0) = α, (13.15)

where the last equality holds by Assumption MH(ii) because ch0 = max{ch0 , c∞ +
κ∗(α)}. Combining (13.13)—(13.15) gives AsySz(θ0) ≥ α for the SC-Hyb test.
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Proof of Theorem 2. Part (a)(i) follows from the definition of cv in (3.2) and
Assumption Quant1. Part (a)(ii) holds by definition of κ(α) in (3.2) and the fact
that ch − cg ≤ 0 for all (g, h) ∈ GH by Assumption Quant1 (with equality for some
(g, h) ∈ GH). Part (a)(iii) holds by the definition of κ∗(α) in (3.2) for the case where
H∗ is empty, because H∗ is empty by Assumption Quant1. Part (a)(iv) follows from
parts (a)(ii) and (a)(iii). Part (a)(v) follows from part (a)(ii) and the definition of cv
in (3.2).

Next, we prove part (b)(i). Given any g = (g1, g2) = (g1,1, ..., g1,p, g2) ∈ H, let
g∞ = (g∞1 , g2) = (g∞1,1, ..., g∞1,p, g2) ∈ H be such that g∞1,m = +∞ if g1,m > 0, g∞1,m = −∞
if g1,m < 0, g∞1,m = +∞ or −∞ (chosen so that g∞ ∈ H) if g1,m = 0 for m = 1, ..., p.
By Assumption Quant2, cg ≤ cg∞ because (g, g∞) ∈ GH. By Assumption K, cg∞ = c∞
for all g ∈ H. Hence, cv = suph∈H ch = c∞, which proves part (b)(i).

We now prove part (b)(ii). By Assumptions Quant2 and K, H∗ is not empty and
suph∈H∗ ch = c∞. In consequence, κ∗(α) = 0 by definition of κ∗(α) in (3.2). Part
(b)(iii) follows from parts (b)(i) and (b)(ii) and cg ≤ c∞ by Assumptions Quant2 and
K. We now prove part (b)(iv). By part (b)(i), it suffices to show that cg + κ(α) ≥ c∞
for all g ∈ H. By the definition of κ(α) in (3.2) and Assumptions Quant2 and K,
κ(α) = c∞− infh2∈H2 c(0,h2). Hence, cg +κ(α) = cg + c∞− infh2∈H2 c(0,h2) ≥ c∞, where
the inequality uses Assumption Quant2. This establishes part (b)(iv).

Part (c)(i) holds by Assumption Quant3(ii). Part (c)(ii) holds by definition of κ(α)
in (3.2) and Assumptions Quant3(ii) and Quant3(iii). Part (c)(iii) holds by definition
of κ∗(α) in (3.2) and Assumption Quant3(ii). Part (c)(iv) holds because max{cg, c∞+
κ∗(α)} = max{cg, ch∗} = ch∗ = cv using parts (c)(i) and (c)(iii). Parts (c)(v) and
(c)(vi) hold because cv = ch∗ by part (c)(i) and cg+κ(α) = ch∗+cg−c0 by part (c)(ii).

Proof of Theorem 3. The results of parts (a)(i), (b)(i), and (c)(i) hold by an
extension of Slutsky’s Theorem (to allow γn,2 to depend on n) using Assumption N
and the uniform continuity of the functions in Assumptions OF(i), OS(i), and OH(i),
respectively. The proof of parts (a)(ii), (b)(ii), and (c)(ii) is split into two steps. In
the first step, we consider the PSC tests with eγn,2 replaced by the true value γn,2.
In this case, using parts (ii) and (iii) of Assumptions OF, OS, and OH, the results of
parts (a)(ii), (b)(ii), and (c)(ii) hold by a very similar argument to that given in the
proof of Theorem 1. In the second step, the results of parts (a)(i), (b)(i), and (c)(i) are
combined with the results of the first step to obtain the desired results. This step holds
because the results of parts (a)(i), (b)(i), and (c)(i) lead to the same limit distributions
for the statistics in question whether they are based on eγn,2 or the true value γn,2 by
the argument used in the proof of Theorem 2(b) of AG1.
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Proof of Theorem 4. Under Assumptions A2, B2, C-E, F2, and G2, Theorem 2 of
AG1 combined with Assumption P(ii) shows that

AsySz(θ0) = sup
(g,h)∈GH

(1− Jh(cg(1− α))). (13.16)

First, we show that

lim inf
n→∞ AsySzn(θ0) ≥ AsySz(θ0). (13.17)

Given (g, h) = ((g1, h2), (h1, h2)) ∈ GH, we construct a sequence {hn = (hn,1, hn,2)
∈ H : n ≥ 1} such that (gn, hn) → (g, h) as n → ∞, where gn = (gn,1, gn,2) =
(δrnhn,1, hn,2). Define hn,2 = h2 for all n ≥ 1. We write h1 = (h1,1, ..., h1,p)� and hn,1 =
(hn,1,1, ..., hn,1,p)

�. For m = 1, ..., p, define

hn,1,m = h1,m if g1,m = 0 & |h1,m| <∞
hn,1,m = (n/bn)

r/2 if g1,m = 0 & h1,m =∞
hn,1,m = −(n/bn)r/2 if g1,m = 0 & h1,m = −∞
hn,1,m = (n/bn)

rg1,m if g1,m ∈ (0,∞) & h1,m =∞
hn,1,m = (n/bn)

rg1,m if g1,m ∈ (−∞, 0) & h1,m = −∞
hn,1,m = (n/bn)

2r if g1,m =∞ & h1,m =∞
hn,1,m = −(n/bn)2r if g1,m = −∞ & h1,m = −∞.

(13.18)

As defined, (gn,1, hn,1) = (δrnhn,1, hn,1)→ (g1, h1) and (gn, hn)→ (g, h).
We now have

lim inf
n→∞ AsySzn(θ0) = lim inf

n→∞ sup
h=(h1,h2)∈H

(1− Jh(c(δrnh1,h2)(1− α)))

≥ lim inf
n→∞ (1− Jhn(c(δrnhn,1,hn,2)(1− α)))

= lim inf
n→∞ (1− Jhn(cgn(1− α)))

= 1− Jh(cg(1− α)), (13.19)

where the second equality holds by definition of gn and the last equality holds by
Assumption P because (gn, hn)→ (g, h). Given (13.16), this establishes (13.17) because
(13.19) holds for all (g, h) ∈ GH.

Next, we show that lim sup
n→∞

AsySzn(θ0) ≤ AsySz(θ0). For h = (h1, h2) ∈ H, let

τn(h) = 1− Jh(c(δrnh1,h2)(1− α)). (13.20)

By definition, AsySzn(θ0) = suph∈H τn(h). There exists a sequence {hn ∈ H : n ≥ 1}
such that

lim sup
n→∞

sup
h∈H

τn(h) = lim sup
n→∞

τn(hn). (13.21)

There exists a subsequence {un} of {n} such that
lim sup
n→∞

τn(hn) = lim
n→∞ τun(hun). (13.22)
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There exists a subsequence {vn} of {un} such that

(hvn,1, hvn,2, δ
r
vnhvn,1)→ (h∗1, h

∗
2, g

∗
1) (13.23)

for some h∗1 ∈ H1, h∗2 ∈ H2, g∗1 ∈ H1, where (g∗, h∗) = ((g∗1, h∗2), (h∗1, h∗2)) ∈ GH.
Hence, we have

lim sup
n→∞

AsySzn(θ0) = lim
n→∞ τun(hun) = lim

n→∞ τvn(hvn)

= lim
n→∞

�
1− Jhvn (c(δrvnhvn,1,hvn,2)(1− α))

�
= 1− Jh∗(cg∗(1− α))

≤ sup
(g,h)∈GH

(1− Jh(cg(1− α))) = AsySzn(θ0), (13.24)

where the fourth equality holds by Assumption P and (13.23). This completes the
proof.

Proof of Theorem 5. Part (a)(i) holds by the proof of Theorem 4 with 1 −
Jh(c(δrnh1,h2)) and 1 − Jh(cg) replaced by c(h1,h2) − c(δrnh1,h2) and ch − cg, respectively,
using Assumption Q in place of Assumption P. Next, we show part (a)(ii). Using part
(a)(i), by the same argument as used to prove Theorem 2(b) of AG1, AsySz(θ0) for
the ASC-Sub test equals AsySz(θ0) for the SC-Sub test. By Theorem 1(b) above, the
latter equals α.

Now, we prove part (b)(i). If H∗ is empty, then lim infn→∞ suph∈H∗(δn) ch ≥ −∞ =
suph∈H∗ ch. If H∗ is non-empty, for any (g, h) ∈ GH such that h ∈ H∗, define (gn, hn) ∈
GH as in (13.18). By (gn, hn) → (g, h), Assumption Q, and cg − ch < 0, we obtain
cgn − chn < 0 and hn ∈ H∗(δn) for all n sufficiently large. Hence,

lim inf
n→∞ sup

h∈H∗(δn)
ch ≥ lim inf

n→∞ chn = ch, (13.25)

where the equality uses hn → h and Assumption Q. This inequality holds for all h ∈ H∗.
Hence, lim infn→∞ suph∈H∗(δn) ch ≥ suph∈H∗ ch and part (b)(i) holds.

Next, we show part (b)(ii). Using part (b)(i), by the same argument as used to
prove Theorem 2(b) of AG1, AsySz(θ0) for the ASC-Hyb test is less than or equal to
AsySz(θ0) for the SC-Hyb test. By Theorem 1(c), the latter equals α.

To show that the first result of part (b)(iii) holds, first suppose that H∗ is empty.
Then, κ∗(α) = −∞, H∗(δ) is empty for δ > 0 close to zero by Assumption R, and
κ∗(δn,α) = −∞ for n sufficiently large. Next, suppose that H∗ is non-empty. Then,
using Assumption R, it suffices to show that lim supn→∞ suph∈H∗(δn) ch ≤ suph∈H† ch.
As in (13.20)-(13.23), there exists a sequence {hn ∈ H∗(δn) : n ≥ 1}, a subsequence
{un} of {n}, and a subsequence {vn} of {un} such that

lim sup
n→∞

sup
h∈H∗(δn)

ch = lim
n→∞ chvn , (13.26)

(hvn,1, hvn,2)→ (h∗1, h
∗
2) = h

∗, and (δrvnhvn,1, hvn,2)→ (g∗1, h
∗
2) = g

∗
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for some (g∗, h∗) ∈ GH. Since hvn = (hvn,1, hvn,2) ∈ H∗(δvn) for all n, we have h∗ ∈ H†

by definition of H†. This, (13.26), and Assumption Q yield

lim sup
n→∞

sup
h∈H∗(δn)

ch = lim
n→∞ chvn = ch

∗ ≤ sup
h∈H†

ch, (13.27)

which establishes that part (b)(i) holds with ≥ replaced by = . Given this, part (b)(ii)
holds with ≥ replaced by = by the same argument as given for part (b)(ii) above.
Hence, part (b)(iii) holds.

Proof of Theorem 6. We use the result that a sequence of random variables {Xn :
n ≥ 1} satisfies Xn →p 0 iff for every subsequence {un} of {n} there is a subsequence
{vn} of {un} such that Xvn → 0 a.s. To prove part (a)(i), we apply this result with
Xn = κeγn,2(δn,α) − κγn,2(α). Hence, it suffices to show that given any {un} there
exists a subsequence {vn} of {un} such that Xvn → 0 a.s. Given {un}, we apply the
above subsequence result a second time with Xn = eγn,2 − γn,2 to guarantee that there
is a subsequence {vn} of {un} for which eγvn,2 − γvn,2 → 0 a.s. using Assumption
N. The subsequence {vn} can be chosen such that γvn,2 → h2 for some h2 ∈ H2
because every sequence in H2 has a convergent subsequence given that H2 is compact.
Now, the argument in the proof of Theorem 4 applied to the subsequence {vn}, with
1−Jh(c(δrvnh1,h2)) and 1−Jh(cg) replaced by c(h1,h2)− c(δrvnh1,h2) and ch− cg, and using
Assumption Q in place of Assumption P, gives the desired result.

Part (b)(i) holds using similar subsequence arguments to those above combined with
variations of the proofs of parts (b)(i) and (b)(iii) of Theorem 5 with H∗, H∗(δn), H†,
and Assumption R replaced by H∗h2 , H

∗
γn,2
(δn), H

†
h2
, and Assumption S, respectively.

Given the results of parts (a)(i) and (b)(i), parts (a)(ii) and (b)(ii) are proved using
the same argument as used to prove part (b)(ii) of Theorem 3.
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Appendix B

In this Appendix, we provide three sets of results. First, we define a size-
corrected combined (SC-Com) test that combines the SC-Sub and SC-Hyb tests. Sec-
ond, we provide a table of asymptotic and finite sample results for model 2 of the
Autoregressive Parameter Example. Third, we verify assumptions for the Autoregres-
sive Parameter Example and Conservative Model Selection Example considered in the
paper.

14 Size-Corrected Combined Test

Theorem 2(c)(iv)-(vi) and Figure 2(f) show that in some contexts the SC-Hyb test
can be more powerful than the SC-Sub test for some (g, h) ∈ GH and vice versa for
other (g, h) ∈ GH. This implies that a test that combines the SC-Hyb and SC-Sub tests
can be more powerful than both. In this Section, we introduce such a test. It is called
the size-corrected combined (SC-Com) test. This test has power advantages over the
SC-Hyb and SC-Sub tests. This is illustrated in Figure 2(f) where the critical value
function of the SC-Com test is the minimum of the upper horizontal SC-Hyb critical
value function and the upper curved SC-Sub critical value function. On the other hand,
the SC-Com test has computational disadvantages because it requires computation of
the critical values for both the SC-Sub and SC-Hyb tests, which requires calculation of
κ(α) and κ∗(α) in cases where both the subsample and hybrid tests need size correction.
Furthermore, in most contexts, the SC-Hyb test is more powerful than the SC-Sub for
all (g, h) ∈ GH, so the SC-Com test just reduces to the SC-Hyb test. For example,
this occurs in the cases illustrated in Figures 2(a)-(e).

The size-corrected combined (SC-Com) test rejects H0 : θ = θ0 when

Tn(θ0) > cn,Com(1− α), where (14.1)

cn,Com(1− α) = min{cn,b(1− α) + κ(α),max{cn,b(1− α), c∞(1− α) + κ∗(α)}},

where the constants κ(α) and κ∗(α) are defined in (3.2).
The following result shows that the SC-Com test has AsySz(θ0) = α.

Theorem 7 Suppose Assumptions A2, B2, C-E, F2, G2, K, L, MS, and MH hold.
Then, the SC-Com test satisfies AsySz(θ0) = α.

Comments. 1. By definition, the critical value, cn,Com(1−α), of the SC-Com test is
less than or equal to those of the SC-Sub and SC-Hyb tests. By (4.2), it is less than
or equal to that of the SC-FCV test as well. Hence, the SC-Com test is at least as
powerful as the SC-Sub, SC-Hyb, and SC-FCV tests.

2. A PSC-Com test can be defined as in (14.1) with κ(α) and κ∗(α) replaced by
κeγn,2(α), and κ∗eγn,2(α).
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3. An ASC-Com test can be defined as in (14.1) with κ(α) and κ∗(α) replaced
by κ(δn,α) and κ∗(δn,α), respectively. Suppose Assumptions A2, B2, C-E, F2, G2,
K, Q, L, MS, and MH hold. Then, the ASC-Com test satisfies AsySz(θ0) = α. This
holds by the argument in the proof of Theorem 7 using the results of parts (a)(i) and
(b)(i). (Note that the result of part (b)(iii) is not needed for this argument and, hence,
Assumption R is not needed for the result stated.)

4. An APSC-Com test can be defined as in (14.1) with κ(α) and κ∗(α) replaced by
κeγ2,n(δn,α) and κ∗eγ2,n(δn,α), respectively. Suppose Assumptions A2, B2, C-E, F2, G2,
K, N, Q, L, OS, OH, and R hold. Then, the APSC-Com test satisfies AsySz(θ0) = α.
The proof of this follows from parts (a) and (b) of Theorem 6 and its proof.

Proof of Theorem 7. By the same argument as in the proof of Theorem 2(b) of
AG1, the SC-Com test satisfies

AsySz(θ0) (14.2)

≤ sup
(g,h)∈GH

[1− Jh(min{cg(1− α) + κ(α),max{cg(1− α), c∞(1− α) + κ∗(α)}}−)].

By the proof of Theorem 1, the constants κ(α) and κ∗(α) defined in (3.2) are such that
(13.5) holds and hence for all (g, h) ∈ GH,

1− Jh(cg(1− α) + κ(α)−) ≤ α and

1− Jh(max{cg(1− α), c∞(1− α) + κ∗(α)}−) ≤ α. (14.3)

Equations (14.2) and (14.3) combine to give AsySz(θ0) ≤ α.
The SC-Com test has AsySz(θ0) ≥ α because its AsySz(θ0) is greater than or

equal to that of the SC-Sub test (because its critical value is no larger) and the latter
equals α by Theorem 1(b).

15 CI for an Autoregressive Parameter

This section provides (i) Table B-I, which is analogous to Table II but for model 2
instead of model 1,13 and (ii) verification of the assumptions for this example.

The general features of Tables II and B-I are the same. The primary difference
between these tables is that the asymptotic, adjusted asymptotic, and finite-sample
sizes of the upper and equal-tailed FCV and Sub CIs are noticeably lower for model 2

13The results are based on 20, 000 simulation repetitions. The search over h to determine Min is
done on the interval [−.90, 1.00] with stepsize 0.01 on [−.90, .90] and stepsize .001 on [.90, 1.0]. The
asymptotic results are computed using a discrete approximation to the continuous stochastic process
on [0, 1] with 10, 000 grid points. The size-correction values cv(1 − α), κ(α), and κ(α, δ) for model 2
of the AR(1) example are as follows: for upper tests, κ(.05) = 2.55 & κ(.05, .10) = 1.27; for lower
tests, cv(.95) = 3.41; for symmetric tests, cv(.95) = 3.41; and for equal-tailed tests, cv(.95) = 1.43,
κ(.05) = 2.30, & κ(.05, .95) = 1.00. The finite-sample results in model 1 are invariant to the true values
of α and σ2U and, hence, these are taken to be 0 and 1, respectively.
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than model 1. For example, the finite-sample sizes of nominal 95% equal-tailed FCV
CIs are 69.7 in model 1 and 38.8 in model 2. For Sub CIs, the corresponding sizes
are 86.7 and 79.4. The Hyb CI and the ASC CIs perform well in terms of size in both
models 1 and 2.

15.1 Verification of Assumptions

Here we verify the assumptions of Corollaries 3(b), 4, and 5 which apply to CIs,
viz., Assumptions A2, B2, C-E, F2, G2, J2, K, L, MF, MS, and MH, for the AR(1)
Example. We use Lemma 2 of AG1 to verify Assumption G2. Lemma 2 of AG1 requires
verification of Assumptions t1, Sub1, A2, BB2, C, DD, EE, and HH. These assumptions
also imply Assumptions B2 and D.

The statements in this section hold for both models 1 and 2. Assumption t1 holds
with τn = n1/2 by definition of T ∗n(θ0). Assumptions Sub1 and A2 clearly hold. As-
sumption C holds by the choice of bn. Assumption DD holds when the AR parameter
is less than one by the assumption of a strictly stationary initial condition. In the unit
root case, it holds by the i.i.d. assumption on the innovations for i = 1, ..., n and the
fact that the test statistic T ∗n(θ0) is invariant to the initial condition. Verifications of
Assumptions E and EE are given in Sections 15.3 and 15.4 below for model 1. For
brevity, we do not verify these assumptions for model 2. Assumption F2 holds for
Jh = J∗h and Jh = −J∗h because J∗h is continuous on R and has support R for all
h ∈ H. Assumption F2 holds for Jh = |J∗h| because |J∗h| is continuous on R+ and has
support R+ for all h ∈ H. For the same reason, Assumption J2 holds for Jh = J∗h and
Assumptions MF(ii), MS(ii), and MH(ii) hold for Jh = J∗h,−J∗h, and |J∗h|.

Assumption K holds trivially because H = R+,∞ so there is only one h ∈ H for
which h = ±∞.

Assumption L holds by properties of the Ornstein-Uhlenbeck process. Numerical
calculations indicate that the supremum and infimum in this assumption are attained
at h = 0 or h = ∞ (depending upon whether the supremum or infimum is being
considered and whether Jh = J∗h, −J∗h, or |J∗h|). This indicates that Assumption MF(i)
holds. Numerical calculations also indicate that the supremum in Assumption MS(i) is
attained at h = 0 or h =∞ and hence this assumption holds. Assumption MH(i) holds
because ch(1 − α) is monotone in h (based on numerical calculations), which implies
that either H∗ is empty or H∗ = {x : x > 0} depending on whether Jh = J∗h, −J∗h, or
|J∗h|. When H∗ is non-empty, suph∈H∗ ch(1− α) is attained at h =∞.

The normalization constants an and dn that appear in Assumptions BB2, EE, and
HH depend on γn,h and are denoted an(γn,h) and dn(γn,h). They are defined as follows.
Let {wn : n ≥ 1} be any subsequence of {n}. Let {γn ∈ Γ : n ≥ 1} be a sequence for
which wnγn →∞ or wnγn → h <∞. Let ρn = 1− γn. Define

awn(γn) =

+
w
1/2
n (1− ρ2n)

−1/2 if wnγn →∞
wn if wnγn → h <∞. and
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dwn(γn) =

+
(1− ρ2n)

−1/2 if wnγn →∞
w
1/2
n if wnγn → h <∞. (15.1)

Note that when the wn = n, the definitions in (15.1) coincide with those in Theorem 8
below, which is used to verify Assumption BB2. Given these definitions, Assumption
HH holds by the following calculations. For all sequences {γn,h : n ≥ 1} for which
bnγn,h → g for some g ∈ R+,∞, if bnγn,h → g =∞, then

abn(γn,h)

an(γn,h)
=
b
1/2
n (1− ρ2n,h)

−1/2

n1/2(1− ρ2n,h)
−1/2 =

�
bn
n

�1/2
→ 0, (15.2)

where ρn = 1− γn,h and using Assumption C(ii). If nγn,h → h =∞ and bnγn,h → g <
∞, then

abn(γn,h)

an(γn,h)
=

bn
n1/2(1− ρ2n,h)

−1/2 =
�
b2n
n

�1/2
(1− ρ2n,h)

1/2 → 0, (15.3)

where b2n/n = O(1) by assumption and 1 − ρ2n,h → 0 because bnγn,h → g < ∞. If
nγn,h → h <∞, then

abn(γn,h)

an(γn,h)
=
b
1/2
n (1− ρ2n,h)

−1/2

n1/2(1− ρ2n,h)
−1/2 =

�
bn
n

�1/2
→ 0. (15.4)

Given the definitions of an(·) and dn(·), τn = an(γn,h)/dn(γn,h) = n1/2 does not
depend on γn,h, as is required.

Assumption BB2(ii) holds because Pγ(eσn,bn,j > 0) = 1 for all n, bn ≥ 4, j = 1, ..., qn,
and γ ∈ Γ. Assumptions BB2(i) and BB2(iii) are verified in the next section.

15.2 Verification of Assumption BB2

In this section, we verify Assumptions BB2(i) and BB2(iii) of AG1 for the AR(1)
Example. Given the assumption of a stationary initial condition when ρ < 1, the results
given here are closely related to results in Elliott (1999), Elliott and Stock (2001), and
Müller and Elliott (2003). (The results are also related to those of Bobkowski (1983),
Cavanagh (1985), Chan and Wei (1987), and Phillips (1987), who consider the AR(1)
model with an initial condition that is not stationary.)

Based on the definition of F , under a sequence {γn,h : n ≥ 1}, the innovations
Ui = Un,i satisfy the following assumption.

Assumption INOV. For each n ≥ 1, {Un,i : i = 0,±1,±2, ...} are i.i.d. with mean 0,
variance σ2Un > 0, and supn≥1E|Un,i/σUn|2+δ <∞ for some δ > 0.

Define hn by γn,h,1 = hn/n. Then, hn → h as n → ∞ because nγn,h,1 → h. In this
example, hn = 0 corresponds to a unit root, i.e., ρn = 1 − γn,h,1 = 1 − hn/n = 1. If
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hn = 0, then the initial condition Y ∗n is arbitrary. If hn > 0, then the initial condition
satisfies the following assumption:

Assumption STAT. Y ∗n,0 =
S∞
j=0 ρ

j
nUn,−j , where ρn = 1− hn/n.

Let W (·) be a standard Brownian motion on [0, 1] and Z an independent standard
normal. By definition,

Ih(r) =
rU
0

exp(−(r − s)h)dW (s),

I∗h(r) = Ih(r) +
1√
2h
exp(−hr)Z, and

I∗D,h(r) = I
∗
h(r) −

1U
0

I∗h(s)ds, (15.5)

Assumptions BB2(i) and (iii) are verified by the results given in the following The-
orem (with Qh playing the role of Wh in Assumption BB2).

Theorem 8 Suppose Assumption INOV holds, Assumption STAT holds when ρn < 1,
ρn ∈ [−1 + ε, 1] for some 0 < ε < 2, and ρn = 1− hn/n where hn → h ∈ [0,∞]. Then,

an(eρn − ρn)→d Vh and dneσ →d Qh,

where an, dn, Vh, and Qh are defined as follows.
(a) In model 1, we have (i) for h ∈ [0,∞), an = n, dn = n1/2, Vh is the distribution of

1U
0

I∗D,h(r)dW (r)/
1U
0

I∗D,h(r)
2dr, (15.6)

and Qh is the distribution of �
1U
0

I∗D,h(r)
2dr

�−1/2
, (15.7)

and (ii) for h =∞, an = (1− ρ2n)
−1/2n1/2, dn = (1− ρ2n)

−1/2, Vh is a N(0, 1) distribu-
tion, and Qh is a pointmass at one distribution.
(b) In model 2, we have (i) for h ∈ [0,∞), an = n, dn = n1/2, Vh is the distribution ofU 1

0[I
∗
D,h(r)− 12

U 1
0 I
∗
D,h(s)sds · (r − 1/2)]dW (r)U 1

0[I
∗
D,h(r)− 12

U 1
0 I
∗
D,h(s)sds · (r − 1/2)]2dr

, (15.8)

and Qh is the distribution of�
1U
0

[I∗D,h(r)− 12
1U
0

I∗D,h(s)sds · (r − 1/2)]2dr
�−1/2

, (15.9)

and (ii) for h =∞, an, dn, Vh, and Qh are as in part (ii) for model 1.
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Comment. The definitions of the normalization constants an and dn in Theorem
8 correspond to those given in (15.1) with an = an(γn) and dn = dn(γn), where
γn = 1− ρn.

The proof of Theorem 8 uses several lemmas that deal with the case of h ∈ [0,∞).
In integral expressions below, we often leave out the lower and upper limits zero

and one, the argument r, and dr to simplify notation when there is no danger of
confusion. For example,

U 1
0 Ih(r)

2dr is typically written as
U
I2h. By “ ⇒ ” we denote

weak convergence as n→∞.

Lemma 3 Suppose Assumptions INOV and STAT hold, ρn ∈ (−1, 1) and ρn = 1 −
hn/n where hn → h ∈ [0,∞) as n→∞. Then,

(2hn/n)
1/2Y ∗n,0/σUn →d Z ∼ N(0, 1).

Define h∗n ≥ 0 by ρn = exp(−h∗n/n). As shown in the proof of Lemma 3, h∗n/hn → 1
when h ∈ [0,∞). By recursive substitution, we have

Y ∗n,i = hYn,i + exp(−h∗ni/n)Y ∗n,0, wherehYn,i = Si
j=1 exp(−h∗n(i− j)/n)Uj . (15.10)

The next lemma shows that Lemma 1 in Phillips (1987) continues to hold under
our more general assumptions, namely (i) innovations {Un,i : i = 0,±1, ...} as in our
Assumption INOV that depend on n and (ii) sequences ρn = exp(−h∗n/n) where h∗n →
h ∈ [0,∞), rather than the sequences ρn = exp(c/n) used in Phillips (1987), where c
does not depend on n.

Lemma 4 Suppose Assumption INOV holds, ρn ∈ (−1, 1], and ρn = 1 − hn/n where
hn → h ∈ [0,∞). Then, the following results hold jointly,
(a) n−1/2 hYn,[nr]/σUn ⇒ Ih(r) for r ∈ [0, 1],
(b) n−3/2

Sn
i=1

hYn,i−1/σUn ⇒ U
Ih,

(c) n−2
Sn
i=1

hY 2n,i−1/σ2Un ⇒ U
I2h, and

(d) n−1
Sn
i=1

hYn,i−1Ui/σ2Un ⇒ U
Ih(r)dW (r).

The following result is proved using Lemmas 3 and 4. Part (a) is similar to equation
(3) of Elliott and Stock (2001). Let Y

∗
n = n

−1Sn
i=1 Y

∗
n,i−1.

Lemma 5 Suppose Assumption INOV holds, Assumption STAT holds when ρn < 1,
ρn ∈ (−1, 1], and ρn = 1 − hn/n where hn → h ∈ [0,∞). Then, the following results
hold jointly,
(a) n−1/2(Y ∗n,[nr] − Y

∗
n)/σUn ⇒ I∗h(r)−

U
I∗h = I

∗
D,h(r),

(b) n−2
Sn
i=1(Y

∗
n,i−1 − Y

∗
n)
2/σ2Un ⇒

U
(I∗h −

U
I∗h)

2 =
U
(I∗D,h)

2,

(c) n−1
Sn
i=1(Y

∗
n,i−1 − Y

∗
n)Un,i/σ

2
Un ⇒

U
(I∗h(r)−

U
I∗h)dW (r) =

U
I∗D,h(r)dW (r), and

(d) eσ2Un/σ2U →p 1 in models 1 and 2.
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In the proofs below we typically leave out the subindex n; for example, instead of
Yn,i,αn,βn, ρn,σ

2
Un, and Un,i we simply write Yi,α,β, ρ,σ

2
U , and Ui. We do not drop

n from hn because hn and h are different quantities.

Proof of Theorem 8. In model 1, eρ and eσ can be written as
eρ− ρn =

#
n[
i=1

(Y ∗i−1 − Y ∗n)2
$−1 n[

i=1

(Y ∗i−1 − Y ∗n)Ui and

eσ = #
n−1

n[
i=1

(Y ∗i−1 − Y ∗n)2
$−1/2 eσUn. (15.11)

Hence, for h ∈ [0,∞), Lemma 5(b)-(d) implies that part (a)(i) of the Theorem holds
with an = n and dn = n1/2.

For model 2, by the partitioned regression formula, we have

eρ− ρ = ((Y−1 − Y )�MD(Y−1 − Y ))−1(Y−1 − Y )�MDU, (15.12)

where Y−1 = (Y0, ..., Yn−1)�, MD = In −D(D�D)−1D�, D is the demeaned time trend
n-vector whose ith element equals i − n−1Sn

j=1 j, and Y is an n-vector with all ele-
ments equal to n−1

Sn
j=1 Yj−1. Easy calculations show that n−3D�D = 12−1 + o(1).

Furthermore, by arguments as in the proof of Lemma 1 in Phillips (1987), we have (up
to lower order terms)

n−1/2MD(Y−1 − Y )/σU = n−1/2(Y−1 − Y )/σU − 12n−1D[n−5/2D�(Y−1 − Y )/σU ],
n−5/2D�(Y−1 − Y )/σU = n−5/2

Sn
i=1 i(Y

∗
i−1 − n−1

Sn
j=1 Y

∗
j−1)/σU ⇒

U
sI∗D,h(s)ds,

(15.13)

where in the second term of the second equation we can write i instead of i−Sn
j=1 j/n

because
Sn
i=1(Y

∗
i−1 − Y

∗
n) = 0. We have n−1([rn] − n−1Sn

j=1 j) → r − 1/2 and, by
Lemma 5(a), n−1/2(Y ∗[nr] − Y

∗
n)/σU ⇒ I∗D,h(r). Combining these results with (15.13)

and using steps as in the proof of Lemma 1(c) in Phillips (1987) we obtain the limit
for the (normalized) denominator in (15.12):

n−2(Y−1 − Y )�MD(Y−1 − Y )/σ2U ⇒
1U
0

�
I∗D,h(r)− 12

1U
0

I∗D,h(s)sds · (r − 1/2)
�2
dr.

(15.14)
The numerator in (15.12) is handled similarly as in the proof of Lemma 1(d) in Phillips
(1987). This gives

n−1(Y−1 − Y )�MDU ⇒
1U
0

�
I∗D,h(r)− 12

1U
0

I∗D,h(s)sds · (r − 1/2)
�
dW (r). (15.15)
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For h ∈ [0,∞), the combination of (15.14), (15.15), and Lemma 5(d) establishes
part (b)(i) for model 2 with an = n and dn = n1/2.

It remains to consider the case where h = ∞, i.e., parts (a)(ii) and (b)(ii) of
the Theorem. These results follow from results given in Giraitis and Phillips (2006)
generalized in the following ways: (i) from a no-intercept model to models 1 and 2, (ii) to
a case in which the innovation distribution depends on n, and (iii) to cover the standard
deviation estimator as well as the LS estimator itself. Each of these generalizations can
be carried out using the same methods as in Giraitis and Phillips (2006). When the
innovation distribution depends on n, Assumption A.2 in the Corrigendum to Giraitis
and Phillips (2006) can be written as EY ∗2n0 /σ2Un = o(n). Note that for h =∞, it follows
from Assumption STAT that EY ∗2n0 /σ2Un = 1/(1− ρ2n) = 1/(2hn/n− (hn/n)2) = o(n),
as desired.

Proof of Lemma 3. We have: ρn = 1 − hn/n and hn = O(1) implies that ρn →
1. Hence, exp(−h∗n/n) = ρn → 1 and h∗n = o(n). By a mean-value expansion of
exp(−h∗n/n) about 0,

0 = ρn − ρn = exp(−h∗n/n)− (1− hn/n) = hn/n− exp(−h∗∗n /n)h∗n/n, (15.16)

where h∗∗n = o(n) given that h∗n = o(n). Hence, hn− (1+ o(1))h∗n = 0, h∗n /hn → 1, and
it suffices to prove the result with h∗n in place of hn.

Let {mn : n ≥ 1} be a sequence such that mnh
∗
n/n → ∞. By Assumption STAT

(which holds because ρn < 1), we can write (2h∗n/n)1/2Y ∗0 /σU = A1n + A2n for
A1n = (2h∗n/n)1/2

Smn
j=0 ρ

jU−j/σU and A2n = (2h∗n/n)1/2
S∞
j=mn+1

ρjU−j/σU . Note
that EA2n = 0 and

var(A2n) = (2h
∗
n/n)

S∞
j=mn+1

ρ2j = (2h∗n/n)ρ
2(mn+1)/(1− ρ2) (15.17)

= (2h∗n/n)ρ
2(mn+1)/((2h∗n/n)(1 + o(1))) = O(exp(−2(mn + 1)h∗n/n)) = o(1),

where the third equality holds because ρ2 = exp(−2h∗n/n) = 1− (2h∗n/n)(1+o(1)) by a
mean value expansion and the last equality holds becausemnh

∗
n/n→∞ by assumption.

Therefore, A2n →p 0.
The result now follows from A1n →d Z which holds by the CLT in Corollary 3.1 in

Hall and Heyde (1980) with their Xn,i being equal to (2h∗n/n)1/2ρiU−i/σU . To apply
their Corollary 3.1 we have to verify their (3.21), a Lindeberg condition, and a condi-
tional variance condition. For all i=0,±1,±2, ..., set F0,i = ∅ and define recursively
Fn+1,i = σ(Fn,i ∪ σ(Un+1,j : j = 0,−1, ...,−i)) for n ≥ 1. Then, (3.21) in Hall and
Heyde (1980) holds automatically. To check the remaining two conditions, note first
that

Smn
i=0E(X

2
n,i|Fn,i−1) =

Smn
i=0EX

2
n,i = 2h∗n

Smn
i=0 ρ

2i/n → 1 which holds becauseSmn
i=0 ρ

2i = (1− ρ2(mn+1))/(1− ρ2), ρ2(mn+1) = exp(−2h∗n(mn + 1)/n)→ 0, and

n(1− ρ2) = n(1− ρ)(1 + ρ) = hn(1 + ρ)→ 2h. (15.18)
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Secondly, for ε > 0,Smn
i=0E(X

2
n,iI(|Xni| > ε)|Fn,i−1)

=
Smn
i=0EX

2
n,iI(|Xn,i| > ε)

≤ (2h∗n/n)
Smn
i=0 ρ

2iE((U2n,−i/σ
2
Un)I(2h

∗
nU

2
n,−i/(nσ

2
Un) > ε2))

= (2h∗n/n)[
Smn
i=0 ρ

2i]E((U2n,0/σ
2
Un)I(2h

∗
nU

2
n,0/σ

2
Un > nε

2))

= O(1)o(1), (15.19)

where the second equality holds because the U−i have identical distributions. For the
last equality, write Wn = (U2n,0/σ

2
Un). For any α > 0, WnI((2h

∗
nWn/(nε

2))α > 1) ≤
W 1+α
n (2h∗n/(nε2))α and the result follows from Assumption INOV which implies that

(2h∗n/(nε2))α EW 1+α
n = O(n−α).

Proof of Lemma 4. Define

Sn(r) = n
−1/2σ−1Un

S[nr]
i=1 Un,i. (15.20)

By Theorem 3.1 of De Jong and Davidson (2000), Assumption INOV implies that

Sn ⇒W (15.21)

as processes indexed by r ∈ [0, 1]. (This theorem is applied with their Xni, Kn, r, and
cni equal to n−1/2σ−1UnUn,i, n, 2 + δ, and n−1/2, respectively.)

The proof of the Lemma follows from the proof of Lemma 1 in Phillips (1987) by
using (i) the functional central limit theorem in (15.21) and (ii) an application of the
extended continuous mapping theorem (CMT), see Thm. 1.11.1 in van der Vaart and
Wellner (1996) rather than the CMT used in Phillips (1987). The extended CMT is
needed because the continuous function depends on n. For illustration, we prove part
(a). By (15.10), we have

n−1/2hY[nr]/σU =
S[nr]
j=1 exp(−h∗n([nr]− j)/n)Uj/(n1/2σU )

=
S[nr]
j=1 exp(−h∗n([nr]− j)/n)

U j/n
(j−1)/n dSn(s)

=
S[nr]
j=1

U j/n
(j−1)/n exp(−h∗n(r − s))dSn(s) + op(1)

=
U r
0 exp(−h∗n(r − s))dSn(s) + op(1)

= Sn(r) + h
∗
n

U r
0 exp(−h∗n(r − s))Sn(s)ds+ op(1)

⇒ W (r) + h
U r
0 exp(−h(r − s))W (s)ds

= Ih(r), (15.22)

where the second to last equality uses integration by parts, the convergence statement
uses (15.21) and the extended CMT. The function gn : Dn → E in Thm. 1.11.1 of
van der Vaart and Wellner (1996) is given by gn(x)(r) = h∗n

U r
0 exp(−h∗n(r − s))xds,
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where Dn = D[0, 1] is the (not separable) metric space of CADLAG functions on the
interval [0, 1] equipped with the uniform metric and E = C[0, 1] is the set of continuous
functions on the interval [0, 1] also equipped with the uniform metric. Their set D0 is
also chosen as D[0, 1]. If xn → x in D[0, 1], then gn(xn)→ g(x) in C[0, 1] because the
function h∗n exp(−h∗n(r− s)) converges uniformly (in r ∈ [0, 1]) to h exp(−h(r− s)) and
any function in D[0, 1] is bounded.

Proof of Lemma 5. For h ∈ (0,∞), we have
n−1/2Y ∗[nr]/σU = n−1/2hY[nr]/σU + n−1/2 exp(−h∗n[nr]/n)Y0/σU

⇒ Ih(r) + (2h)
−1/2 exp(−rh)Z = I∗h(r), (15.23)

where the equality holds by (15.10), and the convergence holds by Lemma 4(a), Lemma
3, and exp(−hn[nr]/n) → exp(−rh) uniformly in r ∈ [0, 1]. By (15.10), Z and the
Brownian motion W are clearly independent. For h ∈ (0,∞), part (a) of the Lemma
holds by (15.23) and the CMT, as in Lemma 1(b) of Phillips (1987).

For h = 0, by (15.10), we have

n−1/2(Y ∗[nr] − Y
∗
n)/σU = n−1/2(hY[nr] − n−1Sn

i=1
hYi−1)/σU (15.24)

+ (h∗n)
−1/2(ρ[nr] − n−1Sn

i=1 ρ
i−1)(h∗n/n)

1/2Y ∗0 /σU .

For h = 0, by a mean value expansion, we have

max
0≤j≤2n

|1− ρj | = max
0≤j≤2n

|1− exp(−h∗nj/n)| = max
0≤j≤2n

|1− (1− h∗nj exp(mj)/n)|

≤ 2h∗n max
0≤j≤2n

| exp(mj)| = O(h∗n), (15.25)

for 0 ≤ |mj | ≤ h∗nj/n ≤ 2h∗n → 0. From (15.25), we have ρ[nr]−n−1Sn
i=1 ρ

i−1 = O(h∗n).
This, together with Lemma 3 and h∗n/hn → 1, implies that the second summand
on the right-hand side of (15.24) is op(1) for any sequence {ρn : n ≥ 1} for which
ρn = 1 − hn/n < 1 for n ≥ 1 and hn → 0. On the other hand, if ρn = 1 for any n,
then the second summand on the right-hand side of (15.24) is exactly zero. Hence, for
h = 0, whether or not ρn = 1 for any n, the second summand on the right-hand side of
(15.24) is op(1). In consequence, part (a) of the Lemma for h = 0 follows from Lemma
4(a) and (b).

Given part (a), parts (b) and (c) of the Lemma are proved using the same sort of
arguments as in Lemma 1 in Phillips (1987).

To prove part (d) for model 1, we write

eσ2U/σ2U = (eρ− ρ)2(n− 2)−1Sn
i=1(Y

∗
i−1 − Y ∗n)2/σ2U (15.26)

+2(eρ− ρ)(n− 2)−1Sn
i=1(Y

∗
i−1 − Y ∗n)Ui/σ2U + (n− 2)−1

Sn
i=1 U

2
i /σ

2
U .

For h ∈ [0,∞), by the expression for eρ− ρn given in (15.11) and Lemma 5(b) and (c),
we have n(eρ− ρn) = Op(1). Combining this with Lemma 5(b) and (c) shows that the
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first two summands in (15.26) are Op(n−1). The third summand in (15.26) is 1+ op(1)
by Markov’s inequality. Specifically, for Mn,i = (U2n,i/σ

2
U ) − 1 and δ > 0, Markov’s

inequality yields

P (|n−1Sn
i=1 U

2
i /σ

2
U − 1| > ε) = P (|n−1Sn

i=1Mi| > ε) = O(n−(1+δ))E|Sn
i=1Mi|1+δ.

(15.27)
By Assumption INOV and Minkowski’s inequality, we have E|Sn

i=1Mi|1+δ = Op(n)
for δ small enough, which proves the claim. Similar arguments, using results in Giraitis
and Phillips (2006), establish the result of part (d) when h =∞ in model 1. For model
2, similar arguments as those given above establish part (d).

15.3 Verification of Assumption E

In this section, we verify Assumption E for model 1. As argued in the next para-
graph, it is enough to show that for all x ∈ R, Un,bn(x) − Eθ0,γnUn,bn(x) →p 0 under
{γn : n ≥ 1} for all sequences {γn = 1 − ρn ∈ Γ : n ≥ 1} that satisfy n(1 − ρn) → h
and b(1− ρn)→ g for (g, h) ∈ GH.

To show Un,bn(x) − Eθ0,γnUn,bn(x) →p 0 under an arbitrary sequence {γn ∈ Γ :
n ≥ 1} it is enough to show that for any subsequence {tn} there is a sub-subsequence
{sn} such that Usn,bsn (x)−Eθ0,γsn

Usn,bsn (x)→p 0 under {γsn ∈ Γ : n ≥ 1}. Given any
subsequence {tn} we can always construct a sub-subsequence {sn} such that sn(1 −
ρsn)→ h and bsn(1− ρsn)→ g for (g, h) ∈ GH. Proceeding as in the proof of Lemma
4(c) in AG1, we can define a sequence {γ∗n : n ≥ 1} such that n(1 − ρ∗n) → h and
b(1 − ρ∗n) → g and γ∗sn = γsn . It follows that Un,bn(x) − Eθ0,γnUn,bn(x) →p 0 holds
under {γ∗n : n ≥ 1} and therefore Usn,bsn (x) − Eθ0,γsn

Usn,bsn (x) →p 0 holds under
{γsn ∈ Γ : n ≥ 1}.

For notational simplicity, in the rest of this section we let ρ denote ρn.
It is sufficient to show that for any given x ∈ R, var(Un,bn(x)) → 0 under all

sequences {γn ∈ Γ : n ≥ 1} as described above. Recall that Tn,b,k(ρ) denotes the
studentized t statistic based on the k−th subsample, where the full-sample version is
defined in (9.3).14 We write Tn,k instead of Tn,b,k(ρ) to simplify notation. Define

Ib,k = 1{Tn,k ≤ x}. (15.28)

Stationarity of Ib,k in k implies that

var(Un,bn(x)) = q
−1
n var(Ib,0) + 2q

−2
n

qn−1S
k=1

(qn − k)Cov(Ib,0, Ib,k). (15.29)

In this example, qn = n− b+ 1. Thus, it suffices to show n−1
Sn
k=0 |Cov(Ib,0, Ib,k)|

→ 0. This is implied by
sup
k≥kn

|Cov(Ib,0, Ib,k)|→ 0 (15.30)

14Here we deal with the upper one-sided case, so that Tn,b,k(ρ) = T ∗n,b,k(ρ). The lower one-sided and
symmetric two-sided cases can be dealt with using the same approach.
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as n→∞ for some sequence kn →∞ such that kn/n→ 0.
Below we show that for all k ≥ kn we can write

Tn,k = hTn,k + ηn,k, (15.31)

for some random variables hTn,k and ηn,k that satisfy hTn,k and Tn,0 are independent and
ηn,k = op(1) uniform in k ≥ kn (by which we mean that ∀ε > 0, supk≥kn Pr(|ηn,k| >
ε)→ 0). (Likewise, for an array an,k of real numbers, we say that an,k is o(1) uniform
in k ≥ kn, if supk≥kn |an,k|→ 0 as n→∞.)

Using (15.31), we show below that

sup
k≥kn

|P (hTn,k ≤ x)− P (Tn,k ≤ x)| → 0 and

sup
k≥kn

|P (Tn,0 ≤ x & Tn,k ≤ x)− P (Tn,0 ≤ x & hTn,k ≤ x)| → 0. (15.32)

Using these results, we obtain

Cov(Ib,0, Ib,k) = EIb,0Ib,k −EIb,0EIb,k
= P (Tn,0 ≤ x & Tn,k ≤ x)− P (Tn,0 ≤ x)P (Tn,k ≤ x)
= P (Tn,0 ≤ x & hTn,k ≤ x)− P (Tn,0 ≤ x)P (hTn,k ≤ x) + o(1)
= o(1), (15.33)

where third equality holds by (15.32), the last equality holds by independence of Tn,0
and hTn,k, and the o(1) expression is uniform in k ≥ kn by (15.32). Therefore (15.30)
holds and the proof is complete except for the verifications of (15.31) and (15.32).

Equation (15.32) is established as follows. Equation (15.31) and P (Tn,k ≤ x) →
Jh(x) as n→∞ where Jh is continuous (by Theorem 8 above) imply that for all ε > 0
there exist δ > 0 and n0 ∈ N such that for n ≥ n0 we have

sup
k≥kn

P (|hTn,k − Tn,k| > δ) < ε/2,

P (Tn,k ≤ x+ δ) ≤ P (Tn,k ≤ x) + ε/2, and

P (Tn,k ≤ x) ≤ P (Tn,k ≤ x− δ) + ε/2. (15.34)

The latter two inequalities hold for all k because Tn,k is identically distributed across
k. These results lead to

sup
k≥kn

|P (hTn,k ≤ x)− P (Tn,k ≤ x)|
= sup

k≥kn
max{P (hTn,k ≤ x)− P (Tn,k ≤ x),−P (hTn,k ≤ x) + P (Tn,k ≤ x)}

≤ sup
k≥kn

max{P (hTn,k ≤ x)− P (Tn,k ≤ x+ δ),

−P (hTn,k ≤ x) + P (Tn,k ≤ x− δ)}+ ε/2
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≤ sup
k≥kn

P (|hTn,k − Tn,k| > δ) + ε/2

≤ ε, (15.35)

which proves the first result in (15.32). The second result in (15.32) can be proved in
the same way. For example, the analogue of the third equation in (15.34) holds because

P (Tn,0 ≤ x & Tn,k ≤ x)− P (Tn,0 ≤ x & Tn,k ≤ x− δ)

≤ P (x− δ < Tn,k ≤ x) = P (x− δ < Tn,0 ≤ x) < ε/2 (15.36)

for all k, for δ > 0 small enough. This completes the proof of (15.32).
It remains to establish (15.31). The statistic Tn,k can be written as

Tn,k = b1/2(eρn,b,k − ρ)/eσn,b,k = S1,k/(S1/22,k S3,k), where

S1,k = nγ

b[
i=1

(Y ∗k+i−1 − Y ∗b,k)Uk+i/σ2U ,

S2,k = n2γ

b[
i=1

(Y ∗k+i−1 − Y ∗b,k)2/σ2U ,

S3,k = eσU,b,k/σU , Y ∗b,k = b−1 b[
i=1

Y ∗k+i−1, (15.37)

eσ2U,b,k is the sum of squared residuals divided by b − 2 based on a block of data of
length b that starts at observation k, and {nγ : n ≥ 1} is a normalization sequence that
depends on the specific sequence γn,h and is such that S1,k = Op(1) and S

−1
2,k = Op(1).

15

We show below that S1,k and S2,k can be written as

S1,k = hS1,k + ξ1,k and S2,k = hS2,k + ξ2,k, wherehS1,k and hS2,k are independent of S1,0 and S2,0 for all k ≥ kn,
ξ1,k = op(1), ξ2,k = op(1), (15.38)

and the op(1) terms hold uniformly for all k ≥ kn for some sequence kn →∞ such that
kn/n → 0. In addition, we have S3,k − 1 = op(1) by Lemma 5(d) and the op(1) term
holds uniformly for all k by stationarity across k. This, (15.37), and (15.38) combine
to show that (15.31) holds with hTn,k = hS1,k/(hS2,k)1/2. (15.39)

It remains to establish (15.38). We separately analyze four cases: (i) b(1−ρ)→∞,
(ii) b(1− ρ)→ g ∈ (0,∞), (iii) b(1− ρ)→ 0 & n(1− ρ)→∞, and (iv) n(1− ρ)→ h ∈
[0,∞).
15Strictly speaking, all sums over i = 1, ..., b should be over i = 1, ..., b− 1 because one observation

from a block of length b is used as an initial observation given that lagged Yi is a regressor. For
notational simplicity, here and below, we sum to b rather than b− 1.
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Proof of (15.38) for case (i): b(1− ρ)→∞.
From Theorem 2.2 and Lemmas 2.1 and 2.2 in Giraitis and Phillips (2006), we have

(1− ρ)b−1/2
b[
i=1

Y ∗k+i−1/σU →d N(0, 1),

(1− ρ2)1/2b−1/2
b[
i=1

Y ∗k+i−1Uk+i/σ
2
U →d N(0, 1), and

(1− ρ2)b−1
b[
i=1

Y ∗2k+i−1/σ
2
U →p 1. (15.40)

By stationarity across k, these results hold uniformly in k.
In consequence, using Y ∗i =

S∞
j=0 ρ

jUi−j , we define

hS1,k = nγ

b[
i=1

k+i−b−2[
j=0

ρjUk+i−1−jUk+i/σ2U ,

nγ =
(1− ρ2)1/2

b1/2
,

ξ1,k = ξ11,k − ξ12,k,

ξ11,k = nγ

b[
i=1

∞[
j=k+i−b−1

ρjUk+i−1−jUk+i/σ2U ,

ξ12,k = nγY
∗
b,k

b[
i=1

Uk+i/σ
2
U ,

hS2,k = 1, and

ξ2,k = n2γ

b[
i=1

(Y ∗k+i−1 − Y ∗b,k)2/σ2U − 1. (15.41)

As defined, for k > b, hS1,k depends only on innovations Ut for t > b and S1,0 and S2,0
depend only on innovations Ut for t ≤ b. Hence, for k > b, hS1,k is independent of S1,0
and S2,0. Obviously, hS2,k is independent of S1,0 and S2,0.

Equation (15.40) and b(1− ρ)→∞ give

(1− ρ2)Y
∗2
b,k/σ

2
U =

1 + ρ

b(1− ρ)

#
(1− ρ)b−1/2

b[
i=1

Y ∗k+i−1/σU

$2
= op(1) (15.42)

uniformly in k. This and (15.40) combine to give

ξ2,k = (1− ρ2)b−1
b[
i=1

Y ∗2k+i−1/σ
2
U − (1− ρ2)Y

∗2
b,k/σ

2
U − 1 = op(1) and
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ξ12,k = (1− ρ2)1/2Y
∗
b,kσ

−1
U

#
b−1/2

b[
i=1

Uk+i/σU

$
= op(1) (15.43)

uniformly in k.
It remains to show ξ11,k = op(1). By change of indices,

ξ11,k = ρk−b−1
(1− ρ2)1/2

b1/2

b[
i=1

∞[
j=0

ρj+iUb−jUk+i/σ2U . (15.44)

By Markov’s inequality, for any ε > 0,

P (|ξ11,k| > ε)

≤ ε−2ρ2(k−b−1)(1− ρ2)b−1
b[

i1,i2=1

∞[
j1,j2=0

ρj1+i1+j2+i2EUk+i1Ub−j1Uk+i2Ub−j2/σ
4
U

= O(1)(1− ρ2)b−1
b[
i=1

∞[
j=0

ρ2j+2iEU2k+iU
2
b−j/σ

4
U

= O(1)(1− ρ2)b−1
b[
i=0

ρ2i
∞[
j=0

ρ2j

= O(1)b−1(1− ρ2(b+1))(1− ρ2)−1

= O(1)(b(1− ρ))−1(1 + ρ)−1 = o(1), (15.45)

where the first equality uses the fact that there are no indices i1 ≥ 1, j1 ≥ 0, and j2 ≥ 0
such that k+ i1 = b− j1 or k+ i1 = b− j2 and similarly for k+ i2 (which holds because
b− j1 < k + i1 for k > b) and the last equality uses b(1− ρ)→∞ and the fact that ρ
is bounded away from −1 by the definition of the parameter space.

Proof of (15.38) for case (ii): b(1− ρ)→ h ∈ (0,∞).
In this case, we set nγ = b−1. Straightforward but tedious calculations show that

when ρ < 1

Y ∗k+i−1 − Y ∗b,k =
�
ρi−1 − 1− ρb

b(1− ρ)

� ∞[
j=0

ρjUk−j +
b−1[
j=1

ci,jUk+j , where

ci,j = 1(j ≥ i)ρi−j−1 − 1− ρb−j

b(1− ρ)
. (15.46)

Therefore, we define

hS1,k = b−1σ−2U
b[
i=1

⎡⎣�ρi−1 − 1− ρb

b(1− ρ)

�
Uk+i

k−b−1[
j=0

ρjUk−j + Uk+i
b−1[
j=1

ci,jUk+j

⎤⎦ and
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ξ1,k = b−1σ−2U
b[
i=1

�
ρi−1 − 1− ρb

b(1− ρ)

�
Uk+i

∞[
j=k−b

ρjUk−j

= b−1σ−2U ρk−b
b[
i=1

�
ρi−1 − 1− ρb

b(1− ρ)

�
Uk+i

∞[
j=0

ρjUb−j . (15.47)

For k > b, hS1,k depends only on innovations Ut for t > b and S1,0 and S2,0 depend only
on innovations Ut for t ≤ b. Thus, for k > b, hS1,k is independent of S1,0 and S2,0.

We now show that ξ1,k = op(1) uniformly for k ≥ kn for some sequence kn → ∞
such that kn/n→ 0. By Markov’s inequality, we have

P (|ξ1,k| > ε)

≤ ε−2ρ2(k−b)M(ρ, b)b−1
∞[
j=0

ρ2jEU2k+iU
2
b−j/σ

4
U = ε−2ρ2(k−b)

M(ρ, b)

b(1− ρ2)
, where

M(ρ, b) = b−1
b[
i=1

�
ρi−1 − 1− ρb

b(1− ρ)

�2
=

1− ρ2b

b(1− ρ)(1 + ρ)
− (1− ρb)2

b2(1− ρ)2

=
b(1− ρ)(1− ρ2b)− (1 + ρ)(1− ρb)2

b2(1− ρ)2(1 + ρ)
(15.48)

and the inequality uses EUk+i1Uk+i2Ub−j1Ub−j2 = 0 for k > b and i1, i2, j1, j2 ≥ 0
unless i1 = i2 and j1 = j2.

Define h∗n by ρ = exp(−h∗n/n). Because b(1−ρ)→ h ∈ (0,∞), we have h∗n →∞. In
consequence, there exists a sequence {kn : n ≥ 1} such that kn/b→∞, kn/n→ 0 and
h∗nkn/n→∞. For this sequence, h∗n(kn− b)/n→∞, ρkn−b = exp(−h∗n(kn− b)/n)→ 0,
and supk≥kn ρ

2(k−b) → 0. In addition, b(1 − ρ) → h implies that ρb → exp(−h) and
ρ2b → exp(−2h). Hence, we have

M(ρ, b)→ h(1− exp(−2h))− 2(1− exp(−h))2
2h2

. (15.49)

Combining these results implies that the right-hand side (rhs) of the inequality in
(15.48) is o(1) uniformly for k ≥ kn. Hence, ξ1,k = op(1) uniformly for k ≥ kn.

Next, based on (15.46), we define

hS2,k = b−2
b[
i=1

⎛⎝�ρi−1 − 1− ρb

b(1− ρ)

� k−b−1[
j=0

ρjUk−j +
b−1[
j=1

ci,jUk+j

⎞⎠2 /σ2U and
ξ2,k = b−1σ−2U M(ρ, b)

∞[
j1,j2=k−b

ρj1+j2Uk−j1Uk−j2

+2b−2σ−2U
b[
i=1

�
ρi−1 − 1− ρb

b(1− ρ)

� ∞[
j1=k−b

ρj1Uk−j1
b−1[
j2=1

ci,j2Uk+j2
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+2b−1σ−2U M(ρ, b)
∞[

j1=k−b
ρj1Uk−j1

k−b−1[
j2=0

ρj2Uk−j2

= ξ21,k + ξ22,k + ξ23,k. (15.50)

Independence of hS2,k from S1,0 and S2,0 for k > b holds by the same argument as above.
We now show ξ21,k = op(1) uniformly for k ≥ kn. By a change of indices, we have

∞[
j1,j2=k−b

ρj1+j2Uk−j1Uk−j2 = ρ2(k−b)
∞[

j1,j2=0

ρj1+j2Ub−j1Ub−j2 . (15.51)

Markov’s inequality now gives

P (|ξ21,k| > ε) = P

⎛⎝������b−1σ−2U ρ2(k−b)M(ρ, b)
∞[

j1,j2=0

ρj1+j2Ub−j1Ub−j2

������ > ε

⎞⎠
≤ ε−2M(ρ, b)2max{EU4i /σ4U , 1}ρ4(k−b)b−2

∞[
j1,j2=0

ρ2j1ρ2j2

= O(1)ρ4(k−b)
M(ρ, b)2

b2(1− ρ)2(1 + ρ)2
. (15.52)

The rhs is o(1) because ρ4(k−b) → 0 uniformly for k ≥ kn by the argument preceding
(15.49), M(ρ, b) = O(1) by (15.49), and b2(1− ρ)2(1 + ρ)2 → 4h2 > 0. Hence, ξ21,k =
op(1) uniformly for k ≥ kn.

Next, we show ξ22,k = op(1) uniformly for k ≥ kn. By a change of indices (as in
(15.51)), we can write

ξ22,k = 2ρ
k−bb−2σ−2U

∞[
j1=0

b−1[
j2=1

dj2ρ
j1Ub−j1Uk+j2 for dj2 =

b[
i=1

�
ρi−1 − 1− ρb

b(1− ρ)

�
ci,j2 .

(15.53)
Note that dj2 = O(b) uniformly in j2. By Markov’s inequality, we have

P (|ξ22,k| > ε) = P

⎛⎝������2ρk−bb−2σ−2U
∞[
j1=0

b−1[
j2=1

dj2ρ
j1Ub−j1Uk+j2

������ > ε

⎞⎠
≤ 4ε−2ρ2(k−b)b−4

∞[
j1=0

b−1[
j2=1

d2j2ρ
2j1EU2b−j1U

2
k+j2/σ

4
U

≤ 4ε−2ρ2(k−b)b−1(1− ρ2)−1b−3
b−1[
j2=1

d2j2 , (15.54)

where the first inequality holds for k > b because b − j1 < k + j2 for all j1, j2 ≥ 0.
The rhs of (15.54) is o (1) because ρ2(k−b) → 0 for k ≥ kn, b(1 − ρ2) → 2h > 0, and
b−3

Sb−1
j2=1

d2j2 = O(1).
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To show ξ23,k = op(1) uniformly for k ≥ kn, by Markov’s inequality and a change
of indices (as in (15.51)), we have

P (|ξ23,k| > ε) = P

⎛⎝������2b−1σ−2U ρk−bM(ρ, b)
∞[
j1=0

ρj1Ub−j1
k−b−1[
j2=0

ρj2Uk−j2

������ > ε

⎞⎠
≤ 4ρ2(k−b)M(ρ, b)2b−2

∞[
j1=0

ρ2j1EU2b−j1

k−b−1[
j2=0

ρ2j2EU2k−j2/σ
4
U

= ρ2(k−b)M(ρ, b)2O
�

1

b2(1− ρ2)2

�
. (15.55)

The rhs is o(1) because ρ2(k−b) = o(1), M(ρ, b) = O(1), and b(1− ρ2)→ 2h > 0.
This completes the proof for case (ii).

Proof of (15.38) for case (iii): b(1− ρ)→ 0 & n(1− ρ)→∞.
Define S1,k, nγ , ξ1,k, S2,k, and ξ2,k as in case (ii). To show ξ1,k = op(1), it suffices to

show the rhs of the inequality in (15.48) is o(1).
Define h∗n and hn by ρ = exp(−h∗n/n) and ρ = 1− hn/n. Let tn = bh∗n/n. Then, we

have

ρb = exp(−bh∗n/n) = exp(−tn), 1 + ρ = 2− hn/n,
b(1− ρ) = bhn/n = tn(hn/h

∗
n). (15.56)

We have: b(1−ρ)→ 0⇒ ρ→ 1⇒ h∗n/n→ 0⇒ h∗n/hn → 1, where the last implication
follows from a mean-value expansion of exp(−h∗n/n) about 0 as in (15.16). In addition,
b(1− ρ) → 0 ⇒ bhn/n → 0. Combining these results gives tn = (bhn/n)(h∗n/hn) → 0.
Also, n(1− ρ)→∞ implies that hn →∞ and h∗n →∞.

Because bhn/n = b(1 − ρ) → 0 it follows that hn = o(n/b). This and h∗n /hn → 1
yields h∗n = o(n/b). By a mean-value expansion of exp(−h∗n/n) about 0, we obtain

0 = ρ− ρ = exp(−h∗n/n)− (1− hn/n) = hn/n− exp(−h∗∗n /n)h∗n/n, (15.57)

where h∗∗n /n = o(1/b) because h∗n = o(n/b). Hence, hn/h∗n = exp(−h∗∗n /n) = 1+o(1/b).
Using the above results, the rhs of the inequality in (15.48) equals ε−2ρ2(k−b) times

M(ρ, b)

b(1− ρ2)
=
[1− exp(−2tn)]tn(hn/h∗n)− [1− exp(−tn)]2(2− hn/n)

t3n(hn/h
∗
n)
3(2− hn/n)2 . (15.58)

Using l’Hopital’s rule three times, it is straightforward to show that

t−3n ([1− exp(−2tn)]tn − [1− exp(−tn)]22)→ 0. (15.59)
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Furthermore,

t−3n
�
[1− exp(−2tn)]tn(hn/h∗n − 1) + [1− exp(−tn)]2hn/n

�
= t−2n

�
[1− exp(−2tn)](hn/h∗n − 1) + [1− exp(−tn)]2hn/(h∗nb)

�
= t−2n

�
[2tn exp(λn)](hn/h

∗
n − 1) + [tn exp(λ�n)]2hn/(h∗nb)

�
= 2t−1n exp(λn)(hn/h

∗
n − 1) + o(1)

= 2
n

bh∗n
(1 + op(1))o(b

−1) + o(1)

= o(1), (15.60)

where the second equality uses mean value expansions for exp(−2tn) and exp(−tn)
about tn = 0 and λn ∈ [−2tn, 0] and λ�n ∈ [−tn, 0], the second last equality uses the
result of (15.57) that hn/h∗n = 1 + o(b−1), and the last equality uses the assumption
that nb−2 = O(1) and the fact that h∗n →∞.

Hence, we conclude that the expression in (15.58) is o(1). In addition, ρ2(k−b) = O(1)
uniformly for k ≥ kn for kn = b+1. This implies that the rhs of the inequality in (15.48)
is o(1) uniformly in k ≥ kn.

We have ξ21,k = op(1) and ξ23,k = op(1) uniformly for k ≥ kn by (15.52), (15.55),
and the above results for case (iii) that M(ρ, b) = o(b(1 − ρ2)) and ρ4(k−b) = O(1)
uniformly for k ≥ kn.

We now show ξ22,k = op(1). By the Cauchy-Schwarz inequality, we have

b−2d2j2 ≤M(ρ, b)b−1
b[
i=1

c2i,j2 = o
�
b(1− ρ2)

�
O(1) (15.61)

uniformly for j2 ≤ b because c2i,j2 = O(1) uniformly in i ≥ 1 and j2 ∈ {1, ..., b}. The
latter holds because

1− ρb−j

b(1− ρ)
=
1− exp(−h∗n(b− j)/n)

bhn/n
=
(h∗n(b− j)/n) exp(λ)

bhn/n
≤ exp(λ)h∗n/hn → 1

(15.62)
for some mean value λ = o(1). Combining (15.54) and (15.61) yields ξ22,k = op(1)
uniformly for k ≥ kn. This completes the proof for case (iii).

Proof of (15.38) for case (iv): n(1− ρ)→ h ∈ [0,∞).
When ρ = 1 (which may occur in case (iv)), in place of (15.46) we have

Y ∗k+i−1 − Y ∗b,k =
b−1[
j=1

ci,jUk+j , ci,j = 1(j ≥ i)− b− j
b
. (15.63)

This implies that Tn,k is independent of Tn,0 for k > b. Thus, if ρ = 1 for all n,
(15.30) holds immediately. This leads us to consider the case where ρ < 1 for all n.
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(Sequences in which ρ = 1 for some n and ρ < 1 for some n can be handled by analyzing
subsequences.)

Define S1,k, nγ , ξ1,k, S2,k, and ξ2,k as in case (ii).
To show ξ1,k = op(1), by (15.48), it is enough to show that the expression in (15.58)

is o(1) because ρ2(k−b) = O(1) uniformly in k ≥ kn = b+ 1.
Because n(1 − ρ) = hn → h < ∞, it follows that hn = O(1). By an analysis as in

(15.16), it follows that h∗n /hn → 1 and, hence, h∗n = O(1) and tn = bh∗n/n → 0. From
(15.57) with |h∗∗n /n| ≤ |h∗n/n|, we obtain hn/h∗n = exp(−h∗∗n /n) = 1 +O(h∗n/n). Given
(15.59), to show the expression in (15.58) is o(1), it is enough to show that

t−3n
�
[1− exp(−2tn)]tnO(h∗n/n) + [1− exp(−tn)]2hn/n

�
= o(1). (15.64)

The latter holds l’Hopital’s rule applied to t−1n [1−exp(−2tn)] and to t−2n [1−exp(−tn)]2
combined with O(h∗n/n)t−1n = o(1) and (hn/n)t−1n = o(1) because b → ∞. Hence,
ξ1,k = op(1) uniformly in k ≥ kn for kn = b+ 1.

The proofs of ξm,k = op(1) uniformly for k ≥ kn for m = 1, 2, 3 are the same as in
case (iii) given the proof above that the expression in (15.58) is o(1) in case (iv).

This completes the verification of Assumption E for Model 1.

15.4 Verification of Assumption EE

In this section, we verify Assumption EE for model 1. We verify Assumption EE us-
ing the same argument as for Assumption E given above, but with Tn,k = S1,kS

−1/2
2,k S−13,k

replaced by dbn(γn,h)eσn,bn,k, where dbn(γn,h) is the normalization constant that ap-
pears in Assumption BB2 and is defined in (15.1). Let ρn,h = 1 − γn,h. Suppose
bn(1 − ρn,h) → ∞, then dbn(γn,h) = (1 − ρ2n,h)

−1/2 and some calculations show that

dbn(γn,h)eσn,bn,k = S−1/22,k S3,k, where the latter is defined in (15.37) with nγ defined in

(15.41). Similarly, if bn(1 − ρn,h) → g < ∞, then dbn(γn,h) = b
1/2
n and some calcu-

lations yield dbn(γn,h)eσn,bn,k = S
−1/2
2,k S3,k, where the latter is defined in (15.37) with

nγ = b−1n . Hence, in both cases, dbn(γn,h)eσn,bn,k = S
−1/2
2,k S3,k. In consequence, As-

sumption EE holds by the same argument as for Assumption E, but with the statistic
Tn,k = S1,kS

−1/2
2,k S−13,k replaced by S

−1/2
2,k S3,k.

16 Conservative Model Selection Example

Here we establish the asymptotic distribution of the test statistic T ∗n(θ0) and verify
Assumption G for this example.

16.1 Proof of the Asymptotic Distributions of the Test Statistics

In this section, we establish the asymptotic distribution J∗h of T
∗
n(θ0) under a se-

quence of parameters {γn = (γn,1, γn,2, γn,3) : n ≥ 1} as in AG1 (where n1/2γn,1 → h1,
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γn,2 → h2, and γn,3 ∈ Γ3(γn,1, γn,2) for all n). Parts of the proof are closely related to
calculations in Leeb (2006) and Leeb and Pötscher (2005).

Using the definition of T ∗n(θ0) in this example, we have

Pθ0,γn(T
∗
n(θ0) ≤ x) = Pθ0,γn(

hTn,1(θ0) ≤ x & |Tn,2| ≤ c)
+Pθ0,γn(

eTn,1(θ0) ≤ x & |Tn,2| > c). (16.1)

Hence, it suffices to determine the limits of the two summands on the right-hand side.
With this in mind, we show below that under {γn : n ≥ 1}, when |h1| <∞,� hTn,1(θ0)

Tn,2

�
→d

� hZh,1
Zh,2

�
∼ N

�� −h1h2(1− h22)−1/2
h1

�
,

�
1 0
0 1

��
and� eTn,1(θ0)

Tn,2

�
→d

� eZh,1
Zh,2

�
∼ N

��
0
h1

�
,

�
1 h2
h2 1

��
. (16.2)

Given this, we have

Pθ0,γn(
hTn,1(θ0) ≤ x & |Tn,2| ≤ c)

→ P ( hZh,1 ≤ x & |Zh,2| ≤ c)
= Φ(x+ h1h2(1− h22)−1/2)∆(h1, c), where
∆(a, b) = Φ(a+ b)− Φ(a− b), (16.3)

the equality uses the independence of hZh,1 and Zh,2 and the normality of their distrib-
utions, and ∆(a, b) = ∆(−a, b). In addition, we have

Pθ0,γn(
eTn,1(θ0) ≤ x & |Tn,2| > c)→ P ( eZh,1 ≤ x & |Zh,2| > c). (16.4)

Next, we calculate the limiting probability in (16.4). Let f(z2|z1) denote the condi-
tional density of Zh,2 given eZh,1. Let φ(z1) denote the standard normal density. Given
that � eZh,1

Zh,2

�
∼ N

��
0
h1

�
,

�
1 h2
h2 1

��
, (16.5)

the conditional distribution of Zh,2 given eZh,1 = z1 is N(h1 + h2z1, 1− h22). We have
P ( eZh,1 ≤ x & |Zh,2| > c)

=

] x

−∞

]
|z2|>c

f(z2|z1)φ(z1)dz2dz1

=

] x

−∞

#
1−

]
|z2|≤c

(1− h22)−1/2φ
�
z2 − (h1 + h2z1)
(1− h22)1/2

�
dz2

$
φ(z1)dz1

=

] x

−∞

#
1−

]
|z2|≤c(1−h22)−1/2

φ

�
z2 − h1 + h2z1

(1− h22)1/2
�
dz2

$
φ(z1)dz1

=

] x

−∞

�
1−∆

�
h1 + h2z

(1− h22)1/2
,

c

(1− h22)1/2
��

φ(z)dz, (16.6)
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where the second equality holds by (16.5), the third equality holds by change of variables
with z2 = z2(1− h22)−1/2, and the last equality holds by the definition of ∆(a, b).

Combining (16.3), (16.4), and (16.6) gives the desired result:

J∗h(x) = Φ(x+ h1h2(1− h22)−1/2)∆(h1, c)
+

] x

−∞

�
1−∆

�
h1 + h2t

(1− h22)1/2
,

c

(1− h22)1/2
��

φ(t)dt (16.7)

when |h1| <∞. When |h1| =∞, J∗h(x) = Φ(x) (which equals the limit as |h1|→∞ of
J∗h(x) defined in (16.7)). The proof of the latter result is given below in the paragraph
containing (16.21).

We now show that under {γn : n ≥ 1}, when |h1| < ∞, (16.2) holds. Let X⊥j =

(x⊥j1, ..., x
⊥
jn)

� ∈ Rn for j = 1, 2 and X⊥ = (X⊥1 ,X⊥2 )� ∈ Rn×2. We use the following
Lemma.

Lemma 6 Given the assumptions stated in Section 10, under a sequence of parameters
{γn = (γn,1, γn,2, γn,3) : n ≥ 1} (where n1/2γn,1 → h1, γn,2 → h2, and γn,3 ∈ Γ3(γ1, γ2)
for all n), and for Q = Qn as defined in (10.10) with the (j,m) element denoted Qn,jm,
we have
(a) n−1X �X−Qn →p 0, (b) n−1X �2MX1X2−(Qn,22−Q2n,12Q−1n,11)→p 0, (c) n−1X �1MX2X1

−(Qn,11−Q2n,12Q−1n,22)→p 0, (d) eσ/σn →p 1, (e) n−1/2X �jε = n
−1/2X⊥�j ε+op(1) = Op(1)

for j = 1, 2.

Proof of Lemma 6. The proofs of parts (a)-(d) are standard using a weak law of large
numbers (WLLN) for L1+δ-bounded independent random variables for some δ > 0 and
taking into account the fact that Xj =MX∗3X

∗
j for j = 1, 2.

Next, we prove part (e). By definition of Xj , we have

n−1/2X �jε = n−1/2X∗�j ε− n−1X∗�j X∗3 (n−1X∗�3 X∗3 )−1n−1/2X∗�3 ε
= n−1/2X∗�j ε−Q∗j3(Q∗33)−1n−1/2X∗�3 ε+ op(1)
= n−1/2X⊥j

�ε+ op(1), (16.8)

where the second equality holds by the same WLLN as above combined with the Lin-
deberg triangular array central limit theorem (CLT) applied to n−1/2X∗�3 ε, which yields
n−1/2X∗�3 ε = Op(1), and the third equality uses the fact that x⊥ji = x

∗
ji−Q∗j3(Q∗33)−1x∗3i.

The second equality of part (e) holds by the Lindeberg CLT. The Lindeberg condition
is implied by a Liapounov condition, which holds by the moment bound in Γ3(γ1, γ2).

We now prove the first result of (16.2) (which assumes |h1| <∞). Using (10.5) and
(10.6), we have

Tn,2 =
n1/2β2/σn + (n

−1X �2MX1X2)
−1n−1/2X �2MX1ε

(eσ/σn)(n−1X �2MX1X2)
−1/2
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= n1/2
β2

σn(Q22n )
1/2
(1 + op(1)) + (Q

22
n )

1/2n−1/2X �2(In − PX1)ε(1 + op(1))

= n1/2γn,1(1 + op(1)) + (Q
22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1/2X �ε(1 + op(1)),
= h1 + (Q

22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1/2X⊥�ε+ op(1), (16.9)

where ε = (ε1, ..., εn)�, e1 = (1, 0)�, e2 = (0, 1)�, the second equality uses Lemma 6(b)
and (d), the fact that Q22n = (Qn,22−Q2n,12Q−1n,11)−1, and the fact that λmin(Qn) ≥ κ > 0
by definition of Γ3(γ1, γ2), the third equality uses the definition of γn,1 and Lemma
6(a), and the fourth equality holds by the assumption that n1/2γn,1 → h1 and Lemma
6(e).

Using (10.5) and (10.7), we have

hTn,1(θ0) = n1/2(n−1X �1X1)−1n−1X �1X2β2/σn + (n−1X �1X1)−1n−1/2X �1ε
(eσ/σn)(n−1X �1X1)−1/2

= n1/2
Qn,12β2

σnQ
1/2
n,11

(1 + op(1)) +Q
−1/2
n,11 n

−1/2e�1X
�ε(1 + op(1))

= h1
Qn,12(Q

22
n )

1/2

Q
1/2
n,11

+Q
−1/2
n,11 n

−1/2e�1X
⊥�ε+ op(1), (16.10)

where the second equality uses Lemma 6(a) and (d) and the third equality uses the
assumption that n1/2γn,1 = n

1/2β2/(σ
2
nQ

22
n )

1/2 → h1, and Lemma 6(e).
We have

Q−1n =
1

Qn,11Qn,22 −Q2n,12

�
Qn,22 −Qn,12
−Qn,12 Qn,11

�
and so

γn,2 =
Q12n

(Q11n Q
22
n )

1/2
=

−Qn,12
(Qn,11Qn,22)1/2

and

Q22n =
Qn,11

Qn,11Qn,22 −Q2n,12
= (Qn,22)

−1(1− γ2n,2)
−1, (16.11)

where the first equality in the second line holds by the definition of γn,2 in (10.11).
This yields

Qn,12(Q
22
n )

1/2

Q
1/2
n,11

=
Qn,12(1− γ2n,2)

−1/2

Q
1/2
n,11Q

1/2
n,22

= −γn,2(1− γ2n,2)
−1/2 = −h2(1− h22)−1/2 + o(1).

(16.12)
Combining (16.9), (16.10), and (16.12) gives� hTn,1(θ0)

Tn,2

�
=

#
−h1h2(1− h22)−1/2 +Q−1/2n,11 n

−1/2e�1X⊥�ε
h1 + (Q

22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1/2X⊥�ε

$
+ op(1). (16.13)
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The first result of (16.2) holds by (16.13), the Lindeberg CLT, and the Cramér-Wold
device. The Lindeberg condition is implied by a Liapounov condition, which holds
by the moment bound in Γ3(γ1, γ2). The asymptotic covariance matrix is I2 by the
following calculations. The (1, 2) element of the asymptotic covariance matrix equals

EGnQ
−1/2
n,11 e

�
1n
−1X⊥�X⊥(e2 −Qn,12Q−1n,11e1)(Q22n )1/2

= Q
−1/2
n,11 e

�
1Qn(e2 −Qn,12Q−1n,11e1)(Q22n )1/2 = 0, (16.14)

where the first equality holds because EGnx
⊥
i x

⊥�
i = Qn and the second equality holds

by algebra. The (1, 1) element equals

EGnQ
−1/2
n,11 e

�
1n
−1X⊥�X⊥e1Q

−1/2
n,11 = Q

−1/2
n,11 e

�
1Qne1Q

−1/2
n,11 = 1. (16.15)

The (2, 2) element equals

EGn(Q
22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1X⊥�X⊥(e2 −Qn,12Q−1n,11e1)(Q22n )1/2
= (Q22n )

1/2(e2 −Qn,12Q−1n,11e1)�Qn(e2 −Qn,12Q−1n,11e1)(Q22n )1/2
= (Q22n )

1/2(Qn,22(1− γ2n,2))(Q
22
n )

1/2 = 1, (16.16)

where the second equality holds by algebra and the definition of γn,2 and the third
equality holds by the third result in (16.11). This completes the proof of the first result
in (16.2).

Next, we prove the second result in (16.2). Using (10.7), we have

eTn,1(θ0) = (n−1X �1MX2X1)
−1n−1/2X �1MX2ε

(eσ/σn)(n−1X �1MX2X1)
−1/2

= (Q11n )
1/2(e1 −Qn,12Q−1n,22e2)�n−1/2X⊥�ε+ op(1), (16.17)

where the second equality holds analogously to (16.9). Combining (16.9) and (16.17)
gives� eTn,1(θ0)

Tn,2

�
=

#
(Q11n )

1/2(e1 −Qn,12Q−1n,22e2)�n−1/2X⊥�ε
h1 + (Q

22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1/2X⊥�ε

$
+ op(1). (16.18)

The second result of (16.2) holds by (16.18), the Lindeberg CLT, and the Cramér-
Wold device. The Lindeberg condition holds as above. The 2×2 asymptotic covariance
matrix has off-diagonal element h2 and diagonal elements equal to one by the following
calculations. The (1, 2) element equals

EGn(Q
11
n )

1/2(e1 −Qn,12Q−1n,22e2)�n−1X⊥�X⊥(e2 −Qn,12Q−1n,11e1)(Q22n )1/2
= (Q11n )

1/2(e1 −Qn,12Q−1n,22e2)�Qn(e2 −Qn,12Q−1n,11e1)(Q22n )1/2
= (Q11n )

1/2(−Qn,12(1−Q2n,12Q−1n,11Q−1n,22))(Q22n )1/2
= (Qn,11(1− γ2n,2))

−1/2(−Qn,12(1− γ2n,2))(Qn,22(1− γ2n,2))
−1/2

=
−Qn,12

(Qn,11Qn,22)1/2
=

Q12n
(Q11n Q

22
n )

1/2
= γn,2 = h2 + o(1), (16.19)
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where the second equality holds by algebra, the third equality holds by the second and
third results of (16.11) and the third result of (16.11) with 22 and 11 interchanged, and
the fifth and sixth equalities hold by the second result of (16.11).

The (1, 1) element equals

EGn(Q
11
n )

1/2(e1 −Qn,12Q−1n,22e2)�n−1X⊥�X⊥(e1 −Qn,12Q−1n,22e2)(Q11n )1/2
= (Q11n )

1/2(e1 −Qn,12Q−1n,22e2)�Qn(e1 −Qn,12Q−1n,22e2)(Q11n )1/2 = 1, (16.20)

where the second equality holds by an analogous argument to that in (16.16). The
(2, 2) element equals one by (16.16). This completes the proof of the second result in
(16.2).

Finally, we show that J∗h(x) = Φ(x) when |h1| =∞. Equations (16.17) and (16.20)
hold in this case, so eTn,1(θ0)→d N(0, 1) under {γn : n ≥ 1}. The first three equalities
of (16.9) hold when |h1| = ∞ and show that |Tn,2| →p ∞. These results combine to
yield

Pθ0,γn(
hTn,1(θ0) ≤ x & |Tn,2| ≤ c) = o(1) and (16.21)

Pθ0,γn(
eTn,1(θ0) ≤ x & |Tn,2| > c) = Pθ0,γn(

eTn,1(θ0) ≤ x) + o(1)→ Φ(x)
for all x ∈ R. This and (16.1) combine to give Pθ0,γn(T ∗n(θ0) ≤ x)→ Φ(x) and J∗h(x) =
Φ(x) when |h1| =∞.

16.2 Verification of Assumption G2

Assumption G2 of AG1 is verified in the conservative model selection example by
using a variant of the argument in the proof of Lemma 2 in Appendix A of AG1 with
τn = an = n

1/2 and dn = 1. In the present case, (10.24) of AG1 holds with

Rn(t) = q−1n
qn[
j=1

1(|b1/2n (θ − θ0)/eσ(1)n,b,j | ≥ t)
+q−1n

qn[
j=1

1(|b1/2n (θ − θ0)/eσ(2)n,b,j | ≥ t), where
eσ(1)n,b,j = eσn,b,j(b−1n X �1,n,b,jX1,n,b,j)−1/2,eσ(2)n,b,j = eσn,b,j(b−1n X �1,n,b,jMX2,n,b,jX1,n,b,j)

−1/2, (16.22)

and (X1,n,b,j , X2,n,b,j , eσn,b,j) denotes (X1,X2, eσ) based on the jth subsample rather
than the full sample. (Equation (10.24) of AG1 holds with Rn(t) defined as in (16.22)
for all three versions of the tests: Tn(θ0) = T ∗n(θ0), −T ∗n(θ0), and |T ∗n(θ0)|.) As in the
proof of Lemma 2 of AG1, it suffices to show that Rn(t) converges in probability to
zero under all sequences {γn,h : n ≥ 1} for all t > 0. The assumption that bn/n → 0
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and the result established below that n1/2(θ − θ0)/σn = Op(1) under all sequences
{γn,h : n ≥ 1} imply that for all δ > 0, wp→ 1,

Rn(t) ≤ R(1)n (δ, t) +R(2)n (δ, t), where R(m)n (δ, t) = q−1n
qn[
j=1

1(δσn/eσ(m)n,b,j ≥ t) (16.23)

for m = 1, 2. The variance of R(m)n (δ, t) goes to zero under {γn,h : n ≥ 1} by the same
U-statistic argument for i.i.d. observations as used to establish Assumption E of AG1 in
the i.i.d. case, see AG1. The expectation of R(m)n (δ, t) equals Pθ0,γn,h(eσ(m)n,b,j/σn ≤ δ/t).
We have

eσ(1)n,b,j/σn = (eσn,b,j/σn)[(b−1n X �1,n,b,jX1,n,b,j)−1/2 −Q−1/2n,11 +Q
−1/2
n,11 ] = Q

−1/2
n,11 + op(1),

(16.24)
where the second equality holds by Lemma 6 (or, more precisely, by the same argument
as used to prove to Lemma 6). In addition, Q−1/2n,11 is bounded away from zero as

n → ∞ by the definition of Γ3(γ1, γ2). In consequence, the expectation of R
(1)
n (δ, t)

goes to zero for all δ sufficiently small. Since the mean and variance of R(1)n (δ, t) go
to zero, R(1)n (δ, t) →p 0 for δ > 0 sufficient small. An analogous argument shows that

R
(2)
n (δ, t) →p 0 for δ > 0 sufficient small. These results and (16.23) yield Rn(t) →p 0

under all sequences {γn,h : n ≥ 1}, as desired.
It remains to show that n1/2(θ−θ0)/σn = Op(1) under all sequences {γn,h : n ≥ 1}.

We consider two cases: |h1| =∞ and |h1| <∞. First, suppose |h1| =∞. Then, the first
three equalities of (16.9) hold and show that |Tn,2|→p ∞. In addition, n1/2(eθ−θ0)/σn =
(eσ/σn)(n−1X �1MX2X1)

−1/2 eTn,1(θ0) = Op(1) by (16.2), Lemma 6(c), and the definition
of Γ3(γ1, γ2). Combining these results gives: when |h1| =∞,

n1/2(θ − θ0)/σn = [n1/2(hθ − θ0)/σn]1(|Tn,2| ≤ c) + [n1/2(eθ − θ0)/σn]1(|Tn,2| > c))
= op(1) +Op(1). (16.25)

Next, suppose |h1| < ∞, then eTn,1(θ0) = Op(1) and hTn,1(θ0) = Op(1) by (16.2).
In addition, eσ/σn →p 1, (n

−1X �1X1)−1/2 = Op(1), and (n−1X �1MX2X1)
−1/2 = Op(1)

by Lemma 6 and the definition of Γ3(γ1, γ2). Combining these results gives: when
|h1| <∞,

n1/2(θ − θ0)/σn = [n1/2(hθ − θ0)/σn]1(|Tn,2| ≤ c) + [n1/2(eθ − θ0)/σn]1(|Tn,2| > c))
= (eσ/σn)(n−1X �1X1)−1/2 hTn,1(θ0)1(|Tn,2| ≤ c)

+(eσ/σn)(n−1X �1MX2X1)
−1/2 eTn,1(θ0)1(|Tn,2| > c))

= Op(1), (16.26)

which completes the verification of Assumption G2.
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TABLE II

AR(1) EXAMPLE MODEL 1: CONFIDENCE INTERVAL COVERAGE PROBABILITIES
(×100) FORDIFFERENTVALUES OF THEAR(1) PARAMETER ρ FORVARIOUSNOMINAL
95% CIs,WHERETHEPROBABILITIESAREASYMPTOTIC, FINITE-SAMPLE-ADJUSTED
ASYMPTOTIC, AND FINITE SAMPLE FOR n = 130 AND b = 12

(a) Upper 1-Sided CIs
Test: Sub Sub Sub SC-Sub ASC-Sub FCV FCV SC-FCV Hyb Hyb

ρ Prob: Asy Adj-Asy n=130 n=130 n=130 Asy n=130 n=130 Asy n=130
-.90 92.0 99.8 98.5 93.6 94.8
.00 88.1 99.7 97.3 95.7 95.8
.70 82.3 99.4 95.7 97.6 97.6
.80 81.9 99.4 95.4 98.1 98.1
.90 83.2 99.5 96.0 98.9 98.9
.97 90.0 99.8 98.2 99.7 99.7
1.00 96.8 100.0 99.7 100.0 100.0
Min 47.5 78.7 81.9 99.4 95.3 95.0 93.6 - 95.0 94.8

(b) Lower 1-Sided CIs
-.90 94.2 96.6 99.9 97.1
.00 94.0 94.1 99.7 95.6
.70 96.5 91.4 99.5 96.6
.80 96.7 90.0 99.5 96.8
.90 97.0 87.4 99.2 97.0
.97 96.1 78.9 98.3 96.1
1.00 92.7 54.2 95.2 92.7
Min 95.0 95.0 92.1 - - 54.6 54.2 95.2 95.0 92.7

(c) Symmetric 2-Sided CIs
-.90 93.0 94.9 99.6 95.9
-.50 91.4 94.9 99.7 95.7
.00 92.6 94.9 99.6 96.0
.70 96.3 94.3 99.5 97.0
.80 96.7 93.8 99.4 97.1
.90 97.0 92.2 99.2 97.1
.97 96.2 87.0 98.3 96.2
1.00 92.7 69.7 95.2 92.7
Min 94.8 95.0 91.3 - - 68.9 69.6 95.2 95.0 92.7

(d) Equal-Tailed 2-Sided CIs
-.90 92.1 99.7 97.4 94.9 99.6 96.0
-.50 89.1 99.5 96.2 94.9 99.7 95.6
.00 88.0 99.4 95.6 94.9 99.6 95.8
.70 86.8 99.3 95.0 94.3 99.5 97.1
.80 86.9 99.3 94.9 93.8 99.4 97.5
.90 88.1 99.5 95.6 92.2 99.2 97.9
.97 92.4 99.7 97.6 87.0 98.3 97.9
1.00 94.9 99.8 98.5 69.7 95.2 96.3
Min 60.1 86.1 86.7 99.3 94.9 69.7 69.6 95.2 95.0 95.6
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TABLE B-I

AR(1) EXAMPLE MODEL 2: CONFIDENCE INTERVAL COVERAGE PROBABILITIES
(×100) FOR DIFFERENT VALUES OF THE AR(1) PARAMETER ρ FOR VARIOUS NOMINAL
95%CIs, WHERE THE PROBABILITIES ARE ASYMPTOTIC, FINITE-SAMPLE-ADJUSTED
ASYMPTOTIC, AND FINITE SAMPLE FOR n = 130 AND b = 12

(a) Upper 1-Sided CIs
Test: Sub Sub Sub SC-Sub ASC-Sub FCV FCV SC-FCV Hyb Hyb

ρ Prob: Asy Adj-Asy n=130 n=130 n=130 Asy n=130 n=130 Asy n=130
-.90 90.4 100.0 99.3 94.0 94.6
.00 83.1 100.0 98.2 96.5 96.5
.70 72.4 99.8 95.9 98.6 98.6
.80 71.6 99.8 95.6 99.0 99.0
.90 74.5 99.9 96.6 99.6 99.6
.97 87.2 100.0 99.1 100.0 100.0
1.00 97.5 100.0 99.9 100.0 100.0
Min 17.7 63.3 71.6 99.8 95.6 95.0 94.0 - 95.0 94.6

(b) Lower 1-Sided CIs
-.90 94.5 96.4 100.0 97.0
.00 95.1 93.1 99.9 95.8
.70 97.7 87.9 99.9 97.7
.80 97.9 84.9 99.8 97.9
.90 97.9 78.1 99.5 97.9
.97 96.7 57.4 98.5 96.7
1.00 92.4 23.4 94.6 92.4
Min 95.0 95.0 92.4 - - 23.1 23.4 94.6 95.0 92.4

(c) Symmetric 2-Sided CIs
-.90 92.5 95.1 99.9 95.8
-.50 91.7 95.0 99.9 95.8
.00 94.3 94.8 99.9 96.3
.70 97.7 92.4 99.9 97.7
.80 97.9 90.8 99.8 97.9
.90 97.9 86.1 99.5 97.9
.97 96.7 71.0 98.5 96.7
1.00 92.4 38.8 94.6 92.4
Min 94.8 95.0 91.1 - - 37.5 38.8 94.6 95.0 92.4

(d) Equal-Tailed 2-Sided CIs
-.90 91.1 100.0 99.0 95.1 99.9 96.0
-.50 87.2 100.0 98.4 95.0 99.9 95.7
.00 84.9 100.0 97.8 94.8 99.9 96.2
.70 79.6 99.9 96.0 92.4 99.9 98.2
.80 79.4 99.8 95.8 90.8 99.7 98.6
.90 81.9 99.9 96.7 86.1 99.5 98.9
.97 91.0 100.0 99.0 71.0 98.5 98.4
1.00 94.8 100.0 99.4 38.8 94.4 96.1
Min 24.9 73.1 79.4 99.8 95.8 38.8 38.8 94.4 95.0 95.6
















