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Abstract

This paper considers inference based on a test statistic that has a limit distribution
that is discontinuous in a nuisance parameter or the parameter of interest. The paper
shows that subsample, bn < n bootstrap, and standard fixed critical value tests based
on such a test statistic often have asymptotic size–defined as the limit of the finite-
sample size–that is greater than the nominal level of the tests. We determine precisely
the asymptotic size of such tests under a general set of high-level conditions that are
relatively easy to verify. The high-level conditions are verified in several examples.
Analogous results are established for confidence intervals.

The results apply to tests and confidence intervals (i) when a parameter may be
near a boundary, (ii) for parameters defined by moment inequalities, (iii) based on
super-efficient or shrinkage estimators, (iv) based on post-model selection estimators,
(v) in scalar and vector autoregressive models with roots that may be close to unity,
(vi) in models with lack of identification at some point(s) in the parameter space, such
as models with weak instruments and threshold autoregressive models, (vii) in pre-
dictive regression models with nearly-integrated regressors, (viii) for non-differentiable
functions of parameters, and (ix) for differentiable functions of parameters that have
zero first-order derivative.

Examples (i)-(iii) are treated in this paper. Examples (i) and (iv)-(vi) are treated in
sequels to this paper, Andrews and Guggenberger (2005a, b). In models with uniden-
tified parameters that are bounded by moment inequalities, i.e., example (ii), certain
subsample confidence regions are shown to have asymptotic size equal to their nominal
level. In all other examples listed above, some types of subsample procedures do not
have asymptotic size equal to their nominal level.

Keywords: Asymptotic size, b < n bootstrap, finite-sample size, over-rejection, size
correction, subsample confidence interval, subsample test.

JEL Classification Numbers: C12, C15.



1 Introduction

The topic of this paper is subsampling. Subsampling is a very general method for
carrying out inference in econometric and statistical models, see Politis and Romano
(1994). Also see Shao and Wu (1989), Wu (1990), Sherman and Carlstein (1996), and
Politis, Romano, and Wolf (1999) (hereafter PRW).2 Minimal conditions are needed for
subsample tests and confidence intervals (CIs) to have desirable asymptotic properties,
such as asymptotically correct rejection rates and coverage probabilities under standard
asymptotics based on a fixed true probability distribution for the observations, see
PRW. On the other hand, subsample methods have the disadvantage of not providing as
good approximations in regular models as other methods, such as standard fixed critical
value (FCV) methods based on first-order asymptotics and bootstrap procedures. In
consequence, subsample methods are most useful in models that are non-regular (in
the sense that test statistics of interest do not have asymptotic normal or chi-square
distributions and the bootstrap is inconsistent).

This paper deals with the properties of subsampling in a broad class of non-regular
models. In particular, it considers cases in which a test statistic has a discontinuity
in its asymptotic distribution as a function of the true distribution that generates the
observations. Numerous problems in econometrics and other areas of statistics exhibit
this feature. For such problems, standard FCV procedures and bootstrap procedures
typically do not provide asymptotically valid inference. In consequence, for such prob-
lems, subsample and b < n bootstrap methods (where b is the bootstrap sample size)
often have been advocated.

In this paper, we show that if a sequence of test statistics has an asymptotic null
distribution that is discontinuous in a nuisance parameter, then a subsample test based
on the test statistic does not necessarily yield the desired asymptotic level. Specifically,
the limit of the finite-sample size of the test can exceed its nominal level. The same is
shown to be true for a b < n bootstrap test and a standard fixed critical value (FCV)
test. Analogous potential problems arise with confidence sets based on subsample,
b < n bootstrap, and FCV methods. We note that the potential problem is not just a
small sample problem–it arises with all sample sizes.

The intuition for the result stated above for a subsample test is roughly as follows.
Suppose for a parameter θ we are interested in testingH0 : θ = θ0, a nuisance parameter
γ appears under the null hypothesis, and the asymptotic distribution of the test statistic
of interest is discontinuous at γ = 0. Then, a subsample test statistic based on a
subsample of size bn << n behaves like it is closer to the discontinuity point γ = 0
than does the full-sample test statistic. This occurs because the variability of the
subsample statistic is greater than that of the full-sample statistic and, hence, its
behavior at a fixed value γ 9= 0 is harder to distinguish from its behavior at γ = 0.
In consequence, the subsample statistic can have a distribution that is close to the
asymptotic distribution for γ = 0, whereas the full-sample statistic has a distribution

2Shao and Wu (1989) and Wu (1990) refer to subsampling as the delete d jackknife.
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that is close to the asymptotic distribution for γ 9= 0. If the asymptotic distribution of
the test statistic for γ 9= 0 is more disperse than for γ = 0, then the subsample critical
value is too small and the subsample test over-rejects the null hypothesis. On the other
hand, if the asymptotic distribution of the test statistic for γ 9= 0 is less disperse than
for γ = 0, then the subsample critical value is too large and the subsample test is not
asymptotically similar. In fact, the limit of the finite-sample size of a subsample test
depends on the whole range of behavior of the test statistic and the subsample statistic
for parameter values close to γ = 0.

The intuition laid out in the previous paragraph is made rigorous by considering
the behavior of subsample tests under asymptotics in which the true parameter, γn,
drifts to the point of discontinuity γ = 0 as n → ∞. Since the finite-sample size of a
test is based on the supremum of the null rejection rate over all parameter values γ for
given n, the limit of the finite-sample size of a test is always greater than or equal to
its limit under a drifting sequence {γn : n ≥ 1}. Hence, if the limit of the null rejection
rate under a drifting sequence exceeds the nominal level, then the limit of the exact
finite-sample null rejection rate exceeds the nominal level. Analogously, if the limit of
the null rejection rate under a drifting sequence is less than the nominal level, then the
test is not asymptotically similar.

We show that there are two different rates of drift such that over-rejection or under-
rejection can occur. The first rate is one under which the full-sample test statistic
has an asymptotic distribution that depends on a localization parameter, h, and the
subsample critical values behave like the critical value from the asymptotic distribution
of the statistic under γ = 0. (Under such parameter drifts, the distribution of the data
typically is contiguous to their distribution under γ = 0.) The second rate is one under
which the full-sample test statistic has an asymptotic distribution that is the same as
for fixed γ 9= 0 and the subsample critical values behave like the critical value from
the asymptotic distribution of the full-sample statistic under a drifting sequence with
localization parameter h. (Under this second type of parameter drift, the distribution
of the data typically is not contiguous to their distribution under γ = 0.)

The paper shows that sequences of these two types determine the limit of the finite-
sample size of the test. In particular, we obtain an explicit expression for the limit of
the finite-sample size of the test. This yields necessary and sufficient conditions for the
limit to exceed the nominal level of the test.

The paper gives corresponding results for standard tests that are based on fixed
critical values. The asymptotic results given here for subsample tests also apply to
b < n bootstrap tests applied to i.i.d. observations provided b2/n → 0. The reason is
that subsampling based on subsamples of size b can be viewed as bootstrapping without
replacement, which is not too different from bootstrapping with replacement when b2/n
is small.3 The subsample results apply to both i.i.d. and time series observations,

3 In an i.i.d. scenario, the distribution of a subsample of size b is the same as the conditional
distribution of a nonparametric bootstrap sample of size b conditional on there being no duplicates of
observations in the bootstrap sample. If b2/n → 0, then the probability of no duplicates goes to one
as n→∞, see PRW, p. 48. In consequence, b < n bootstrap tests and subsample tests have the same
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whereas the b < n bootstrap results apply only to i.i.d. observations.
The potential problems of subsample, b < n bootstrap, and FCV tests outlined

above carry over with some adjustments to confidence intervals (CIs) by the usual
duality between tests and CIs. Some adjustments are needed because the limit of the
finite-sample level of a CI depends on uniformity over θ ∈ Θ and γ ∈ Γ, where Θ and Γ
are the parameter spaces of θ and γ, respectively, whereas the limit of the finite-sample
size of a test of H0 : θ = θ0 only depends on uniformity over γ ∈ Γ for fixed θ0.

In examples considered in the paper, the asymptotic sizes of subsample tests and
CIs are found to vary widely depending on the particular model and statistic considered
and on the type of inference considered, e.g., upper or lower one-sided or symmetric or
equal-tailed two-sided tests or CIs. For example, a subsample CI of nominal level 1−α
based on a post-model-selection/super-efficient estimator is found to have asymptotic
level of zero. In a model with a nuisance parameter near a boundary, lower one-sided,
upper one-sided, symmetric two-sided, and equal-tailed two-sided subsample tests with
nominal level .05 are found to have asymptotic sizes of (about) .50, .50, .10, and .525,
respectively. In models with unidentified parameters that are bounded by moment
inequalities, certain subsample confidence regions are shown to have asymptotic size
equal to their nominal level. In an autoregressive model with an intercept and time
trend, equal-tailed and symmetric two-sided subsample CIs of nominal level .95 are
found to have asymptotic sizes of (about) .25 and .95, respectively, see Andrews and
Guggenberger (2005a).

The results above show that a subsample test can have an asymptotic null rejection
rate that equals its nominal level under any fixed true distribution, but still the limit
of its finite-sample size can be greater than its nominal level. This is due to a lack of
uniformity in the pointwise asymptotics. In the context of subsampling and the b < n
bootstrap, the only other papers in the literature (that we are aware of) that raise the
issue of uniformity (in the sense discussed in this paper) are Andrews (2000) in the
context of problems due to a parameter being near a boundary, Mikusheva (2005) and
Andrews and Guggenberger (2005a) in the context of first-order autoregressive models
with a root that may be near unity, and Romano and Shaikh (2005a,b) in the context
of inference based on moment inequalities–also see Section 9 below regarding this
case. Beran (1997, p. 15) mentions that the pointwise b < n bootstrap convergence
typically is not locally uniform at parameter points that are not locally asymptotically
equivariant, but does not discuss the consequences.

On the other hand, problems arising from lack of uniformity in asymptotics have
long been recognized in the wider statistical literature. For example, Hodge’s super-
efficient estimator was used to show that uniformity is important in the context of
asymptotic efficiency results, see LeCam (1953). The importance of uniformity to en-
able asymptotic results to provide good finite-sample approximations has been pointed
out in many papers including Rao (1963, 1973), Hájek (1971), Pfanzagl (1973), Loh
(1985), and Kabaila (1995). Related references include Bahadur and Savage (1956),

first-order asymptotic properties.
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Gleser and Hwang (1987), Hall and Jing (1995), Dufour (1997), and Pötscher (2002).
Romano (1989) addresses uniformity issues for some bootstrap procedures.

A sampling of references in the literature where issues of uniformity arise in appli-
cations to which the results of this paper apply is as follows: (i) for inference based
on super-efficient and shrinkage estimators, see Sen and Saleh (1987), Kabaila (1995),
and Leeb and Pötscher (2006), (ii) for inference based on moment inequalities, see
Imbens and Manski (2004) and Romano and Shaikh (2005a), (iii) for post-model selec-
tion inference, see Sen (1979), Sen and Saleh (1987), Kabaila (1995), Leeb and Pötscher
(2005), and additional references cited therein, (iv) for autoregressive models with roots
that may be near unity, see Stock (1991), Andrews (1993), and Mikusheva (2005), (v)
for predictive regressions with nearly integrated regressors, see Cavanagh, Elliot, and
Stock (1995), (vi) for weak instruments, see Staiger and Stock (1997), Dufour (1997),
and papers referenced in Andrews and Stock (2006), and (vii) for inference in thresh-
old autoregressive models, see Anatolyev (2004). Other applications that are covered
by the results of this paper for which uniformity (of the type discussed in this pa-
per) does not seem to have been discussed explicitly in the literature include (i) tests
of Granger causality in vector autoregressive models, see Choi (2005), (ii) inference
for non-differentiable functions of parameters, which includes inference concerning the
eigenvalues of a variance matrix, see Beran and Srivastava (1985, 1987), Eaton and
Tyler (1991), Dümbgen (1993), and Shao (1994), (iii) inference for differentiable func-
tions of parameters with zero first-order derivative, see Babu (1984) and Shao (1994),
(iv) tests of stochastic dominance for random variables with finite support, see Linton,
Maasoumi, and Whang (2005), and (v) one-sided Kolmogorov-Smirnov tests of incom-
plete models for random variables with finite support, see Galichon and Henry (2006).
To treat cases (iv) and (v) for random variables with infinite support, the results of
this paper need to be extended to allow the parameter h1, defined below, to be infinite
dimensional. This is a topic of future research.

The b < n bootstrap has been considered in a variety of different non-regular cases
including many of those listed above, e.g., see Bretagnolle (1983), Shao (1994, 1996),
Beran (1997), Bickel, Götze, and van Zwet (1997), and Andrews (2000).

The results in the paper apply to some non-regular cases where the limit distribution
of a test statistic is “continuous” in a nuisance parameter. For such cases, sufficient
conditions are given under which subsample, b < n bootstrap, and FCV tests and CIs
have asymptotic levels equal to their nominal levels. To the best of our knowledge,
results of this sort are not available in the literature. An example is the case where the
parameter of interest is the lower bound on the support of a random variable. This
example is treated in Appendix B. The bootstrap (typically) is not consistent in this
case, see Bickel and Freedman (1981) and Loh (1984). Asymptotic results concerning
the b < n bootstrap for this example are pointwise results, see Shao (1994) and Bickel,
Götze, and van Zwet (1997). This example is a special case of some production frontier
and auction models that are of interest in econometrics, see Hirano and Porter (2003)
and Chernozhukov and Hong (2004).
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The present paper considers general test statistics, including t, likelihood ratio
(LR), and Lagrange multiplier (LM) statistics. The results cover one-sided, symmetric
two-sided, and equal-tailed two-sided t tests and corresponding confidence intervals.
The t statistics may be studentized (i.e., of the form τn(eθn − θ0)/eσn for an estimatoreθn, a scale estimator eσn, and a normalization factor τn) or non-studentized (i.e., of the
form τn(eθn − θ0)). Non-studentized t statistics are often considered in the subsample
literature, see PRW. But, studentized t statistics are needed in certain testing situa-
tions in which non-studentized statistics have rates of convergence that are parameter
dependent. This occurs with unit root tests, see Romano and Wolf (2001), and with
tests in the presence of weak instruments, see Guggenberger and Wolf (2004).

The main results given in the paper employ high-level assumptions. These assump-
tions are verified in examples concerning (i) a test with a nuisance parameter that
may be near a boundary, (ii) a CI based on a post-“consistent”-model-selection/super-
efficient estimator, (iii) a confidence set for an unidentified parameter that is bounded
by moment inequalities, as in Chernozhukov, Hong, and Tamer (2002), Romano and
Shaikh (2005a), Rosen (2005), and Soares (2005), and (iv) a CI for the lower end-
point of the support of a distribution. In addition, Andrews and Guggenberger (2005a)
verify the high-level conditions in examples concerning (v) tests and CIs based on a
post-“conservative”-model-selection estimator and (vi) a CI for an autoregressive pa-
rameter that may be near unity. Andrews and Guggenberger (2005b) do likewise in
examples concerning (vii) a test in an instrumental variables (IVs) regression model
with IVs that may be weak and (viii) a CI where the parameter of interest may be near
a boundary.

Andrews and Guggenberger (2005a) utilize the results of this paper to introduce and
analyze various new procedures including (i) hybrid subsample/FCV, (ii) size-corrected
FCV, (iii) size-corrected subsample, and (iv) size-corrected hybrid tests and CIs (and
analogous b < n bootstrap procedures). These procedures extend the applicability of
subsample, b < n bootstrap, and FCV methods to a wide variety of models whose
asymptotic distributions are discontinuous in some parameter.

The remainder of the paper is organized as follows. Section 2 illustrates the basic
problem with subsampling in a simple parameter near-a-boundary example. Section
3 describes the basic set-up for tests. Section 4 conveys the main ideas and results
of the paper in a simple model. Although the assumptions of this model are too
restrictive for many applications, the ideas and results are much easier to comprehend
than in a more general framework. Sections 5 and 6 specify the general assumptions and
asymptotic results of the paper for one-sided and symmetric two-sided tests. Sections 7
and 8 extend the results to equal-tailed two-sided tests and CIs, respectively. Section 9
provides several examples of the general results. Appendix A gives sufficient conditions
for a technical high-level assumption that arises with studentized t statistics, provides
verification of assumptions in several examples, provides proofs of the results stated in
the paper, and provides an improvement of the main results of the text that is useful in
some examples. Appendix B provides a proof of a simplified version of the main result
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of the paper. This proof is more transparent than the proof of the general result given
in the paper. Appendix B also provides an example in which the parameter of interest
is the lower bound on the support of a random variable.

Throughout the paper α ∈ (0, 1) denotes a given constant.

2 Illustration of a Problem with Subsampling

Here we illustrate a potential problem with subsampling using a simple boundary
example. (The same problem arises with the b < n bootstrap.) In this example,
a parameter θ0 is restricted to be non-negative. Suppose Xi ∼ i.i.d. N(θ0, 1) for
i = 1, ..., n and θ0 ≥ 0. The maximum likelihood estimator of θ0 is eθn = max{Xn, 0},
where Xn = n

−1Sn
i=1Xi. The distribution of eθn iseθn ∼ max{Zn, 0}, where Zn ∼ N(θ0, n−1). (2.1)

The jth subsample estimator based on a subsample of size bn = o(n) is eθbn,j =
max{Xbn,j , 0}, where Xbn,j = b

−1
n

Sj+bn−1
i=j Xi. Its distribution is

eθbn,j ∼ max{Zbn , 0}, where Zbn ∼ N(θ0, b−1n ). (2.2)

Figure 1 shows the densities of Zn and Zbn for the case where θ0 = .15, n = 100,
bn/n = 1/10. The estimators eθn and eθbn,j have densities for x > 0 that are given by the
peaked and flatter curves, respectively. The estimators equal zero with probabilities
given by the areas under the peaked and flatter curves for x < 0. It is clear that
the probability that eθn = 0 is much smaller than the probability that eθbn,j = 0. In
consequence, the distribution of eθbn,j does not properly mimic the distribution of eθn.
The reason this occurs is that the subsample estimator behaves as though it is closer to
the boundary of the parameter space than the full sample estimator because it is much
more variable. In consequence, the effect of the boundary on the subsample estimator
is noticeably larger than on the full-sample estimator.

Obviously, a subsample estimator has a different scale than a full-sample estimator.
In consequence, one uses the distribution of a re-centered and re-scaled subsample es-
timator to approximate the corresponding distribution of the re-centered and re-scaled
full-sample estimator. Although suggestive, Figure 1 does not make this comparison
completely clear. In the present example, the re-centered and re-scaled full-sample and
subsample estimators are

Tn = n
1/2(eθn − θ0) = n1/2(max{Xn, 0}− θ0)

= max{n1/2(Xn − θ0),−n1/2θ0}
∼ max{Z,−h}, (2.3)

where Z ∼ N(0, 1) and h = n1/2θ0, and

Tbn,j = b
1/2
n (eθbn,j − θ0) = b1/2n (max{Xbn,j , 0}− θ0)
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= max{b1/2n (Xbn,j − θ0),−b1/2n θ0}
∼ max{Z, − (bn/n)1/2 h}. (2.4)

The densities of Tn and Tbn,j are graphed in Figure 2 for h = 1.5 and bn/n = 1/10.
The vertical lines at −1.5 and −0.5 show the probabilities that Tn and Tbn,j take on
these two values. Clearly, the subsample distribution gives a very good approximation
of the full-sample distribution in the right tail, but a poor one in the left-tail. Hence,
an upper one-sided subsample CI for θ0, which relies on a subsample critical value from
the right tail of the subsample distribution, will perform well. But a subsample lower
one-sided CI will perform poorly. Furthermore, equal-tailed and symmetric two-sided
subsample CIs will perform poorly.

The finite-sample problem illustrated in Figure 2 is maintained in the limit as
n→∞ provided h = n1/2θ0 is a constant for all n (or converges to a constant). Hence,
for asymptotic results to properly capture the finite-sample behavior of the subsample
method when θ0 is near the boundary, one needs to consider true values θ0 that drift
to zero as n→∞:

θ0 = θ0,n = h/n
1/2. (2.5)

Such sequences capture the non-uniform convergence of the statistics Tn and Tbn,j .
(Results below show that one also has to consider sequences that drift to zero at a
slower rate than 1/n1/2, i.e., non-contiguous sequences, in order to cover cases in which
Tn behaves as though it is relatively far from the boundary but Tbn,j behaves as though
it is near the boundary.) Asymptotic results that only consider fixed θ0 values are
misleading because they fail to reveal the effects of non-uniform convergence. The
formal set-up below allows for the case where the parameter drifts to zero. Often, the
limit of the finite-sample size of a subsample test or CI is determined by its behavior
along sequences of this type.

A complete treatment of the boundary example considered above, generalized to
regression models, is given in Andrews and Guggenberger (2005b) based on the results
of this paper.

3 Basic Testing Set-up

We are interested in tests concerning a parameter θ ∈ Rd in the presence of a
nuisance parameter γ ∈ Γ. Often d = 1, but the results allow for d > 1. The null
hypothesis of interest is H0 : θ = θ0. The alternative hypothesis of interest may be
one-sided or two-sided.

3.1 Test Statistic

Let Tn(θ0) denote a test statistic based on a sample of size n for testing H0 : θ = θ0
for some θ0 ∈ Rd. The leading case that we consider is when Tn(θ0) is a t statistic, but
the results also allow Tn(θ0) to be an LR, LM, or some other statistic. Large values of
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Tn(θ0) indicate evidence against the null hypothesis, so a test based on Tn(θ0) rejects
the null hypothesis when Tn(θ0) exceeds some critical value.

When Tn(θ0) is a t statistic, it is defined as follows. Let eθn be an estimator of a
scalar parameter θ based on a sample of size n. Let eσn (∈ R) be an estimator of the
scale of eθn. For alternatives of the sort (i) H1 : θ > θ0, (ii) H1 : θ < θ0, and (iii)
H1 : θ 9= θ0, respectively, the t statistic is defined as follows:

Assumption t1. (i) Tn(θ0) = T ∗n(θ0), or (ii) Tn(θ0) = −T ∗n(θ0), or (iii) Tn(θ0) =
|T ∗n(θ0)|, where T ∗n(θ0) = τn(eθn−θ0)/eσn and τn is some known normalization constant.
In many cases, τn = n1/2. For example, this is true in boundary examples and even in
a unit root example. Note that τn is not uniquely defined because eσn could be scaled
up or down to counteract changes in the scale of τn. In practice this is usually not an
issue because typically there is a natural definition for eσn, which determines its scale.

A common case considered in the subsample literature is when Tn(θ0) is a non-
studentized t statistic, see PRW. In this case, Assumption t1 and the following as-
sumption hold.

Assumption t2. eσn = 1.
There are cases, however, where a non-studentized test statistic has an asymptotic

null distribution with a normalization factor τn that depends on a nuisance parameter
γ. This causes problems for the standard theory concerning subsample methods, see
PRW, Ch. 8. In such cases, a studentized test statistic often has the desirable property
that the normalization factor τn does not depend on the nuisance parameter γ. This
occurs with tests concerning unit roots in time series, see Romano and Wolf (2001), and
with tests in the presence of weak instruments, see Guggenberger and Wolf (2004). The
set-up that we consider allows for both non-studentized and studentized test statistics.
Note that under Assumption t2 the order of magnitude of τn is uniquely determined.

The focus of this paper is on the behavior of tests when the asymptotic null dis-
tribution of Tn(θ0) depends on the nuisance parameter γ and is discontinuous at some
value(s) of γ. Without loss of generality, we take the point(s) of discontinuity to be γ
values for which some subvector of γ is 0.

We now introduce a running example that is used for illustrative purposes.

Example 1. We consider a testing problem where a nuisance parameter may be
near a boundary of the parameter space under the null hypothesis. Suppose {Xi ∈ R2 :
i ≤ n} are i.i.d. with distribution F,

Xi =

�
Xi1
Xi2

�
, EFXi =

�
θ
μ

�
, and V arF (Xi) =

�
σ21 σ1σ2ρ
σ1σ2ρ σ22

�
. (3.1)

The null hypothesis is H0 : θ = 0, i.e., θ0 = 0. (The results below are invariant to
the choice of θ0.) The parameter space for the nuisance parameter μ is [0,∞). We
consider lower and upper one-sided tests and symmetric and equal-tailed two-sided
tests of nominal level α. Each test is based on a studentized test statistic Tn(θ0), where
Tn(θ0) = T

∗
n(θ0),−T ∗n(θ0), or |T ∗n(θ0)|, T ∗n(θ0) = τn(eθn − θ0)/eσn1 and τn = n

1/2.
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The estimators (eθn, eσn1) of (θ,σ1) are defined as follows. Let eσn1, eσn2, and eρn denote
any consistent estimators of σ1,σ2, and ρ.We suppose that eσn1 is scale equivariant, i.e.,
the distribution of eσn1/σ1 does not depend on σ1, as is true of most estimators of σ1.
Define (eθn, eμn) to be the Gaussian quasi-ML estimator of (θ,μ) under the restriction
that eμn ≥ 0 and under the assumption that the standard deviations and correlation of
Xi equal eσn1, eσn2, and eρn. This allows for the case where (eθn, eμn, eσn1, eσn2,eρn) is the
Gaussian quasi-ML estimator of (θ,μ,σ1,σ2, ρ) under the restriction eμn ≥ 0. Alterna-
tively, eσn1, eσn2, and eρn could be the sample standard deviations and correlation of Xi1
and Xi2. A Kuhn-Tucker maximization shows thateθn = Xn1 − (eρneσn1)min(0,Xn2/eσn2), where

Xnj = n−1
Sn
i=1Xij for j = 1, 2. (3.2)

3.2 Fixed Critical Values

We consider two types of critical values for use with the test statistic Tn(θ0). The
first is a fixed critical value (FCV) and is denoted cFix(1− α), where α ∈ (0, 1) is the
nominal size of the FCV test. The FCV test rejects H0 when

Tn(θ0) > cFix(1− α). (3.3)

The results below allow cFix(1− α) to be any constant. However, if the discontinuity
(or discontinuities) of the asymptotic null distribution of Tn(θ0) is (are) not taken into
account, one typically defines

cFix(1− α) = c∞(1− α), (3.4)

where c∞(1− α) denotes the 1− α quantile of J∞ and J∞ is the asymptotic null dis-
tribution of Tn(θ0) when γ is not a point of discontinuity. For example, for studentized
tests when Assumption t1(i), (ii), or (iii) holds, c∞(1− α) typically equals z1−α, z1−α,
or z1−α/2, respectively, where z1−α denotes the 1− α quantile of the standard normal
distribution. If Tn(θ0) is an LR, LM, or Wald statistic, then c∞(1−α) typically equals
the 1− α quantile of a χ2d distribution, denoted χ2d(1− α).

On the other hand, if a discontinuity at γ = h0 is recognized, one might take the
FCV to be

cFix(1− α) = max{c∞(1− α), ch0(1− α)}, (3.5)

where ch0(1 − α) denotes the 1 − α quantile of Jh0 and Jh0 is the asymptotic null
distribution of Tn(θ0) when γ = h0. The FCV test based on this FCV is not likely
to be asymptotically similar, but one might hope that it has asymptotic level α. The
results given below show that often the latter is not true.

Example 1 (cont.). The FCVs employed in this example are the usual standard
normal critical values that ignore the fact that μ may be on the boundary. They are
z1−α, z1−α, and z1−α/2, respectively, for the upper, lower, and symmetric versions of
the test.

9



3.3 Subsample Critical Values

The second type of critical value that we consider is a subsample critical value. Let
{bn : n ≥ 1} be a sequence of subsample sizes. For brevity, we sometimes write bn as
b. Let {eTn,b,j : j = 1, ..., qn} be certain subsample statistics that are based primarily on
subsamples of size bn rather than the full sample. For example, with i.i.d. observations,
there are qn = n!/((n− bn)!bn!) different subsamples of size bn and eTn,b,j is determined
primarily by the observations in the jth such subsample. With time series observations,
say {X1, ...,Xn}, there are qn = n− bn + 1 subsamples of bn consecutive observations,
e.g., Yj = {Xj , ...,Xj+bn−1}, and eTn,b,j is determined primarily by the observations in
the jth subsample Yj .

Let Ln,b(x) and cn,b(1 − α) denote the empirical distribution function and 1 − α

sample quantile, respectively, of the subsample statistics {eTn,b,j : j = 1, ..., qn}. They
are defined by

Ln,b(x) = q−1n
qn[
j=1

1(eTn,b,j ≤ x) for x ∈ R and
cn,b(1− α) = inf{x ∈ R : Ln,b(x) ≥ 1− α}. (3.6)

The subsample test rejects H0 : θ = θ0 if

Tn(θ0) > cn,b(1− α). (3.7)

We now describe the subsample statistics {eTn,b,j : j = 1, ..., qn} in more detail. Let
{Tn,b,j(θ0) : j = 1, ..., qn} be subsample statistics that are defined exactly as Tn(θ0) is
defined, but based on subsamples of size bn rather than the full sample. For example,
suppose Assumption t1 holds. Let (eθn,b,j , eσn,b,j) denote the estimators (eθb, eσb) applied
to the jth subsample. In this case, we have

(i) Tn,b,j(θ0) = τ b(eθn,b,j − θ0)/eσn,b,j , or
(ii) Tn,b,j(θ0) = −τ b(eθn,b,j − θ0)/eσn,b,j , or
(iii) Tn,b,j(θ0) = |τ b(eθn,b,j − θ0)/eσn,b,j |. (3.8)

Below we make use of the empirical distribution of {Tn,b,j(θ0) : j = 1, ..., qn} defined
by

Un,b(x) = q
−1
n

qn[
j=1

1(Tn,b,j(θ0) ≤ x). (3.9)

In most cases, subsample critical values are based on a simple adjustment to the
statistics {Tn,b,j(θ0) : j = 1, ..., qn}, where the adjustment is designed to yield subsam-
ple statistics that behave similarly under the null and the alternative hypotheses. In
particular, {eTn,b,j : j = 1, ..., qn} often are defined to satisfy the following condition.
Assumption Sub1. eTn,bn,j = Tn,bn,j(eθn) for all j ≤ qn, where eθn is an estimator of θ.
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The estimator eθn is usually chosen to be a consistent estimator of θ whether or not the
null hypothesis holds. Assumption Sub1 can be applied to t statistics as well as to LR
and LM statistics, among others.

If consistent estimation of θ is not possible at the point of discontinuity, say when
γ = h0, as occurs when θ is not identified when γ = h0, then taking {eTn,bn,j} to satisfy
Assumption Sub1 is not desirable because eθn is not necessarily close to θ0 when γ is
close to γ0. For example, this occurs in the weak IV example, see Guggenberger and
Wolf (2004). In such cases, it is preferable to take {eTn,bn,j} to satisfy the following
assumption.4

Assumption Sub2. eTn,bn,j = Tn,bn,j(θ0) for all j ≤ qn.
The results given below for subsample tests allow for subsample statistics {eTn,b,j}

that satisfy Assumption Sub1 or Sub2 or are defined in some other way.

Example 1 (cont.). The subsample critical values in this example are given by
cn,b(1 − α) obtained from the subsample statistics {Tn,b,j(eθn) : j ≤ qn} that satisfy
Assumption Sub1. (The same results as given below hold under Assumption Sub2.)

3.4 Asymptotic Size

The exact size, ExSzn(θ0), of an FCV or subsample test is the supremum over
γ ∈ Γ of the null rejection probability under γ:

ExSzn(θ0) = sup
γ∈Γ

RPn(θ0, γ), where RPn(θ0, γ) = Pθ0,γ(Tn(θ0) > c1−α),

c1−α = cFix(1− α) or c1−α = cn,b(1− α), (3.10)

and Pθ,γ(·) denotes probability when the true parameters are (θ, γ).5
We are interested in the “asymptotic size” of the test defined by

AsySz(θ0) = lim sup
n→∞

ExSzn(θ0). (3.11)

This definition should not be controversial. Our interest is in the exact finite-sample
size of the test. We use asymptotics to approximate this. Uniformity over γ ∈ Γ, which
is built into the definition of AsySz(θ0), is necessary for the asymptotic size to give a
good approximation to the finite-sample size.6

If AsySz(θ0) > α, then the nominal level α test has asymptotic size greater than
α and the test does not have correct asymptotic level.

4When Assumption t1 holds, subsample statistics {eTn,bn,j} that satisfy Assumption Sub2 typically
yield nontrivial power because the normalization constant τn satisfies τbn/τn → 0.

5We remind the reader that the size of a test is equal to the supremum of its rejection probability
under the null hypothesis and a test is of level α if its size is less than or equal to α.

6Note that the definition of the parameter space Γ is flexible. In some cases, one might want to
define Γ so as to bound γ away from points in Rp that are troublesome. This is reasonable, of course,
only if one has prior information that justifies the particular definition of Γ.
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To a lesser extent, we are also interested in the minimum rejection probability of
the test and its limit:

MinRPn(θ0) = inf
γ∈Γ

RPn(θ0, γ) and AsyMinRP (θ0) = lim inf
n→∞ MinRPn(θ0). (3.12)

The quantity α−MinRPn(θ0) is the maximum amount of under-rejection of the test
over points in the null hypothesis for fixed n. If α − AsyMinRP (θ0) > 0, then the
subsample test is not asymptotically similar and, hence, may sacrifice power.

4 Simple Model and Results

In this section, we use a simple model to illustrate the ideas behind the general
results that are given below. We are interested in testing H0 : θ = θ0 in the presence of
a nuisance parameter γ. The main simplifying assumptions made in this section are that
γ is a scalar, Assumption Sub2 holds, and all asymptotic distributions are continuous
and strictly increasing at their 1− α quantiles. These assumptions are too restrictive
for most examples of practical interest, but imposing them is useful to illustrate the
ideas. We suppose that the parameter space for γ is one-sided, i.e., Γ = (0, b] or [0, b] for
some 0 < b <∞. The asymptotic distribution of the test statistic, Tn(θ0), is assumed
to be discontinuous at γ = 0 as defined precisely in Assumption B2 below.

Let r > 0 denote a rate of convergence index. When the sequence of true parameter
values {γn : n ≥ 1} satisfies nrγn → h ∈ [0,∞], then the test statistic Tn(θ0) is
assumed to have an asymptotic distribution that depends on the localization parameter
h, see Assumption B2 below. In most examples with i.i.d. observations, r = 1/2. The
parameter space for the localization parameter h is H = [0,∞]. Given r > 0 and h ∈ H,
let {γn,h ∈ Γ : n ≥ 1} denote a sequence that satisfies nrγn,h → h. The upper curve
in Figure 3(a) illustrates such a sequence for the case where h < ∞–the sequence
decreases at rate n−r for r = 1/2. The upper curve in Figure 3(b) illustrates such a
sequence for the case where h =∞–the sequence decreases at a rate slower than n−r
for r = 1/2. Note that a sequence {γn,h : n ≥ 1} that is bounded away from zero also
satisfies nrγn,h → h with h =∞.

We make the following assumption.

Assumption B2. For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1}, and some
distributions Jh, Tn(θ0)→d Jh under {γn,h : n ≥ 1}.

This assumption only requires verification of pointwise convergence of Tn(θ0)–no
uniformity over γ parameters is required. Hence, verification can be carried out by the
usual methods for determining the asymptotic distribution of a test statistic. Verifi-
cation of Assumption B2 requires that one determines the asymptotic distributions of
Tn(θ0) under various sequences of true parameters, rather than under a fixed true para-
meter. But, this is done routinely for local power calculations. Assumption B2 requires
that one considers all possible convergent sequences (possibly to ∞) of parameters in
Γ, rather than just sequences of the form γn = h/n

r for some h.
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For a fixed critical value test, no further assumptions are needed to determine
AsySz(θ0). For subsample tests, we use the following additional assumption.

Assumption S. (i) bn → ∞, (ii) bn/n → 0, (iii) {Tn,bn,j(θ0) : j = 1, ..., qn} and
Tbn(θ0) are identically distributed under any γ ∈ Γ for all n ≥ 1, (iv) for all sequences
{γn ∈ Γ : n ≥ 1}, Un,bn(x) − Eθ0,γnUn,bn(x) →p 0 under {γn : n ≥ 1} for all x ∈ R,
(v) for all h ∈ H, Jh(x) is continuous and strictly increasing at its 1 − α quantile
ch(1− α), and (vi) Assumption Sub2 holds.

Assumptions S(i)-S(iii) are standard assumptions in the subsample literature. As-
sumption S(iv) automatically holds for i.i.d. observations (by a U-statistic inequality of
Hoeffding as in PRW, p. 44). It also holds under stationary strong mixing observations
given conditions on the mixing numbers, see below. Assumptions S(v) and S(vi) are
imposed in this section for simplicity. They can be restrictive, so they are relaxed in
the general results given below.

The asymptotic size of a subsample test is determined by the asymptotic distrib-
utions of the full-sample statistic Tn(θ0) and the subsample statistic Tn,bn,j(θ0) under
sequences {γn,h : n ≥ 1}. By Assumption B2, the asymptotic distribution of Tn(θ0) is
Jh. The asymptotic distribution of Tn,bn,j(θ0) under {γn,h : n ≥ 1} is shown below to
be Jg for some g ∈ H. Under {γn,h : n ≥ 1} for h ∈ H, not all g ∈ H are possible
indices for the asymptotic distribution of Tn,bn,j(θ0). The set of all possible pairs of
localization parameters (g, h) is denoted GH and is defined by

GH = {(g, h) ∈ H ×H : g = 0 if h <∞ & g ∈ [0,∞] if h =∞}. (4.1)

Note that g ≤ h for all (g, h) ∈ GH.
Figure 3 provides an explanation for the form ofGH and for the asymptotic behavior

of the subsample test statistics. The upper curve in Figure 3(a) is the graph of (n, γn,h)
for n > 0 when γn,h = h/n

r for 0 < h <∞ and r = 1/2. The asymptotic distribution of
Tn(θ0) under this sequence is Jh. The question is “What is the asymptotic distribution
of Tn,bn,j(θ0) under {(γn,h : n ≥ 1}?” Because Tn,bn,j(θ0) has the same distribution as
Tbn(θ0) by Assumption S(iii), the answer can be determined using Assumption B2 by
considering the relationship between γn,h and bn.

For specificity, suppose bn = n1/2. (In practice bn must be an integer, but for
simplicity we ignore this in the present discussion.) The lower curve in Figure 3(a) is the
graph of the pairs (bn, γn,h) = (n

1/2, h/n1/2) for n > 0 and h = 1 or, equivalently, the
pairs (n, h/n) for n > 0. The asymptotic distribution of Tbn(θ0) under {h/n1/2 : n ≥ 1}
is the same as the asymptotic distribution of Tn(θ0) under {h/n : n ≥ 1} because both
correspond to the lower curve in Figure 3(a). The asymptotic distribution is J0 by
Assumption B2 because nr(h/n) = h/n1/2 → 0. Hence, if Tn(θ0)→d Jh for 0 < h <∞,
then Tn,bn,j(θ0) →d Jg for g = 0. This explains the condition in GH that g = 0 if
0 < h <∞.

Figure 3(a) illustrates the case in which (g, h) = (0, h) for 0 < h < ∞. Figure
3(b) illustrates an important second case in which (g, h) = (g,∞) for 0 < g < ∞.
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In Figure 3(b) the upper curve is the graph of (n, γn,h) = (n, g/n1/4) for n > 0 and
g = 1, and the lower curve is the graph of the pairs (bn, γn,h) = (n1/2, g/n1/4) for
n > 0 or, equivalently, the pairs (n, g/n1/2) for n > 0. (Note that distributions under
the parameters {γn,h = g/n1/4 : n ≥ 1} typically are not contiguous to those under
γ = 0.) The lower curve in Figure 3(b) is the same as the upper curve in Figure 3(a).
The asymptotic distribution of Tbn(θ0) under {g/n1/4 : n ≥ 1} is the same as the
asymptotic distribution of Tn(θ0) under {g/n1/2 : n ≥ 1} because both correspond to
the lower curve in Figure 3(b). This asymptotic distribution is Jg by Assumption B2
because nr(g/n1/2) = g → g. In consequence, in this case, Tn(θ0)→d Jh for h =∞ and
Tn,bn,j(θ0)→d Jg for 0 < g <∞. Thus, if h =∞, then g can take any value in (0,∞),
as is allowed in GH. (By considering the sequences γn,h = 1/n, 1/n

1/3, and 1/n1/5, one
can show that the pairs (g, h) = (0, 0), (0,∞) and (∞,∞) also are possible and, hence,
are contained in GH.)

In sum, under a sequence {γn,h : n ≥ 1}, the asymptotic distributions of Tn(θ0) and
Tn,bn,j(θ0) are given by Jh and Jg, respectively, where g = limn→∞ brnγn,h. The possible
(g, h) pairs are those contained in the localization parameter space GH.

Using the heuristics given above, Corollary 1 below shows that the asymptotic sizes
of FCV and subsample tests are given by the following quantities:

MaxFix(α) = sup
h∈H

[1− Jh(cFix(1− α))] and

MaxSub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α))], (4.2)

respectively, where cg(1 − α) denotes the 1 − α quantile of Jg. The Corollary applies
to the simple model considered in this section. It is a special case of Theorem 2 below.
For the reader’s convenience, a proof of Corollary 1 is given in Appendix B. This proof
is simpler than that of Theorem 2 but contains the main ideas of the latter.

Corollary 1 Suppose Assumption B2 holds and Γ = (0, b] or [0, b] for some 0 < b <∞.
Then,

(a) AsySz(θ0) =MaxFix(α) for an FCV test, and
(b) AsySz(θ0) =MaxSub(α) for a subsample test provided Assumption S holds.

Comments. 1. A key question concerning nominal level α FCV and subsample tests
is whether AsySz(θ0) ≤ α. For an FCV test, Corollary 1 shows that this holds if and
only if (iff) cFix(1 − α) is greater than or equal to the 1 − α quantile of Jh, denoted
ch(1− α), for all h ∈ H.

2. For a subsample test, Corollary 1 shows that AsySz(θ0) ≤ α iff cg(1 − α) ≥
ch(1 − α) for all (g, h) ∈ GH (because in the latter case 1 − Jh(cg(1 − α)) ≤ 1 −
Jh(ch(1 − α)) = α). In consequence, a graph of ch(1 − α) as a function of h is very
informative concerning the asymptotic size of a subsample test. Figure 4 provides
four examples of possible shapes of ch(1 − α) as a function of h (each of which arises
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in real applications of interest). In Figure 4(a), ch(1 − α) is strictly decreasing in h.
Hence, cg(1 − α) ≥ ch(1 − α) for all (g, h) ∈ GH (since g ≤ h) and AsySz(θ0) ≤ α.
In contrast, in Figures 4(b), 4(c), and 4(d), there are pairs (g, h) ∈ GH for which
cg(1 − α) < ch(1 − α) and, hence, AsySz(θ0) > α. In Figure 4(b), this is true for all
(g, h) with g = 0 and 0 < h <∞ or 0 ≤ g <∞ and h =∞ because ch(1−α) is strictly
increasing in h. In Figure 4(c), it is true for all (g, h) with 0 < g <∞ and h = ∞. In
Figure 4(d), it is true for all (g, h) with g = 0 and 0 < h <∞. Figure 4(c) illustrates a
case in which subsampling does not lead to over-rejection for alternatives that typically
are contiguous, i.e., those with h <∞, but leads to over-rejection for alternatives that
typically are not contiguous, i.e., h =∞. In general, by looking at a graph of ch(1−α)
as a function of h, one can see which values of h lead to over- or under-rejection of the
null. The shape of the graph determines whether AsySz(θ0) ≤ α for a subsample test.

3. Typically AsySz(θ0) for an FCV test is relatively easy to compute by simulation
of Jh(cFix(1−α)) for all h ∈ H. Similarly, for subsample tests, usually one can calculate
AsySz(θ0) via simulation without great difficulty.

5 Assumptions

The previous section provides assumptions and results for a simple model for il-
lustrative purposes. In this section, we introduce the general assumptions that are
employed in the paper. The assumptions are verified in several examples below.

5.1 Parameter Space

First, we introduce some notation. Let e denote the left endpoint of an interval that
may be open or closed at the left end. Define f analogously for the right endpoint. Let
R+ = {x ∈ R : x ≥ 0}, R− = {x ∈ R : x ≤ 0}, R+,∞ = R+∪{∞}, R−,∞ = R−∪{−∞},
R∞ = R∪ {±∞}, Rp+ = R+× ...×R+ (with p copies), and R

p∞ = R∞× ...×R∞ (with
p copies).

The model is indexed by a parameter γ that has up to three components: γ =
(γ1, γ2, γ3). The points of discontinuity of the asymptotic distribution of the test sta-
tistic of interest are determined by the first component, γ1 ∈ Rp. Through reparame-
trization we can assume without loss of generality that the discontinuity occurs when
one or more elements of γ1 equal zero. The value of γ1 affects the limit distribution of
the test statistic of interest. The parameter space for γ1 is Γ1 ⊂ Rp.

The second component, γ2 (∈ Rq), of γ also affects the limit distribution of the
test statistic, but does not affect the distance of the parameter γ to the point of
discontinuity. The parameter space for γ2 is Γ2 ⊂ Rq.7

The third component, γ3, of γ does not affect the limit distribution of the test
statistic. It is assumed to be an element of an arbitrary space T3. Hence, it may be finite

7The extension to the case where γ2 is infinite dimensional is straightforward. In the examples we
consider, γ2 is finite dimensional. So, for simplicity, we take it to be so here.
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or infinite dimensional. For example, in a linear model, a test statistic concerning one
regression parameter may be invariant to the value of some other regression parameters.
The latter parameters are then part of γ3. Infinite dimensional γ3 parameters also arise
frequently. For example, error distributions are often part of γ3. Due to the operation
of the central limit theorem (CLT) it is often the case that the asymptotic distribution
of a test statistic does not depend on the particular error distribution–only on whether
the error distribution has certain moments finite. Such error distributions are part of
γ3. The parameter space for γ3 is Γ3(γ1, γ2) (⊂ T3), which as indicated may depend on
γ1 and γ2.

The parameter space for γ is

Γ = {(γ1, γ2, γ3) : γ1 ∈ Γ1, γ2 ∈ Γ2, γ3 ∈ Γ3(γ1, γ2)}. (5.1)

In Section 6 below we provide two main theorems. The first theorem relies on
weaker assumptions than the second, but gives weaker results. An assumption label
that ends with 1 is used in Theorem 1. An assumption label that ends in 2 is used
in Theorem 2 and is stronger than a corresponding assumption that ends in 1. (For
example, Assumption A2 implies Assumption A1.) All other assumptions are used in
both Theorems 1 and 2.

Assumption A1. Γ satisfies (5.1), where Γ1 ⊂ Rp, Γ2 ⊂ Rq, and Γ3(γ1, γ2) ⊂ T3 for
some arbitrary space T3.
Assumption A2. (i) Assumption A1 holds and (ii) Γ1 =

Tp
m=1 Γ1,m, where Γ1,m =

eam, bmf for some −∞ ≤ am < bm ≤ ∞ that satisfy am ≤ 0 ≤ bm for m = 1, ..., p.

Under Assumption A2, the parameter space Γ1 includes values γ1 that are arbitrar-
ily close to 0.8

Example 1 (cont.). In this example, the vector of nuisance parameters γ =
(γ1, γ2, γ3) is defined by γ1 = μ/σ2, γ2 = ρ, and γ3 = (σ1,σ2, F ). In Assumption A2,
set Γ1 = R+, Γ2 = (−1, 1), and Γ3(γ1, γ2) = (0,∞)× (0,∞)×F(μ, ρ,σ1,σ2), where

F(μ, ρ,σ1,σ2) = {F : EF ||Xi||2+δ ≤M, EFXi = (0,μ)�, V arF (Xi1) = σ21,

V arF (Xi2) = σ22, & CorrF (Xi1,Xi2) = ρ} (5.2)

for some M <∞ and δ > 0.9 Then, Assumption A2 holds.
The null distribution of T ∗n(θ0) is invariant to σ21 because eσn1 is scale equivariant.

Hence, without loss of generality, when analyzing the asymptotic properties of the
tests in this example, we assume that σ21 = 1 for all n and Γ3(γ1, γ2) = {1} × (0,∞)×
F(μ, ρ,σ1,σ2).

8The results below allow for the case where there is no subvector γ1 of γ, i.e., p = 0. In this case,
there is no discontinuity of the asymptotic distribution of the test statistic of interest, see below.

9The condition EF ||Xi||2+δ ≤M in F(μ, ρ,σ1,σ2) ensures that the Liapunov CLT applies in (5.5)-
(5.7) below. In F(μ, ρ,σ1,σ2), EFXi1 = 0 because the results given are all under the null hypothesis.
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5.2 Convergence Assumptions

This subsection and the next introduce the high-level assumptions that we employ.
The high-level assumptions are verified in several examples below.

Throughout this section, the true value of θ is the null value θ0 and all limits are
as n → ∞. For an arbitrary distribution G, let G(·) denote the distribution function
(df) of G and let C(G) denote the continuity points of G(·). Define the 1−α quantile,
q(1−α), of a distribution G by q(1−α) = inf{x ∈ R : G(x) ≥ 1−α}. For a df G(·), let
G(x−) = limε�0G(x− ε), where “limε�0 ” denotes the limit as ε > 0 declines to zero.
Note that G(x+) = limε�0G(x+ ε) equals G(x) because dfs are right continuous. The
distributions Jh and Jh0 considered below are distributions of proper random variables
that are finite with probability one.

For a sequence of constants {κn : n ≥ 1}, let κn → [κ1,∞,κ2,∞] denote that κ1,∞ ≤
lim infn→∞ κn ≤ lim supn→∞ κn ≤ κ2,∞.

Let r > 0 denote a rate of convergence index such that when the true value of γ1
satisfies nrγ1 → h1, then the test statistic Tn(θ0) has an asymptotic distribution that
depends on the localization parameter h1. In most examples, r = 1/2, but in the unit
root example considered in Andrews and Guggenberger (2005a) r = 1.

Next, we define the index set for the different asymptotic null distributions of the
test statistic Tn(θ0) of interest. Let

H = {h = (h1, h2) ∈ Rp+q∞ : ∃ {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1}
such that nrγn,1 → h1 and γn,2 → h2}. (5.3)

For notational simplicity, in the definition of H and below, we write (h1, h2), rather
than (h�1, h�2)�, even though h is a p+q column vector. Under Assumption A2, it follows
that

H = H1 ×H2, H1 =
p\

m=1

⎧⎨⎩
R+,∞ if am = 0
R−,∞ if bm = 0
R∞ if am < 0 and bm > 0,

and H2 = cl(Γ2), (5.4)

where cl(Γ2) is the closure of Γ2 with respect to R
q∞. For example, if p = 1, a1 = 0,

and Γ2 = Rq, then H1 = R+,∞, H2 = Rq∞, and H = R+,∞ ×Rq∞.
Definition of {γn,h : n ≥ 1}: Given r > 0 and h = (h1, h2) ∈ H, let {γn,h =
(γn,h,1, γn,h,2, γn,h,3) : n ≥ 1} denote a sequence of parameters in Γ for which nrγn,h,1 →
h1 and γn,h,2 → h2.

The sequence {γn,h : n ≥ 1} is defined such that under {γn,h : n ≥ 1}, the asymptotic
distribution of Tn(θ0) depends on h and only h, see Assumptions B1 and B2 below. For
a given model, there is a single fixed r > 0. Hence, for notational simplicity, we do not
index {γn,h : n ≥ 1} by r. In addition, the limit distributions under {γn,h : n ≥ 1} of
the test statistics of interest do not depend on γn,h,3, so we do not make the dependence
of γn,h on γn,h,3 explicit.
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In models in which the asymptotic distribution of the test statistic of interest is
continuous in the model parameters, we apply the results below with no parameter γ1
(or γn,h,1), i.e., p = 0. We refer to this as the continuous limit case. In the continuous
limit case, the asymptotic distribution of the test statistic is the same for all sequences
of true parameters that converge to the same point. On the other hand, in the discon-
tinuous limit case, which is the case of main interest in this paper, we apply the results
with p ≥ 1.

Given any h = (h1, h2) ∈ H, define h0 = (0, h2).
We use the following assumptions.

Assumption B1. (i) For some r > 0, some h ∈ H ∩ Rp+q such that h0 ∈ H, some
sequence {γn,h : n ≥ 1}, and some distribution Jh, Tn(θ0)→d Jh under {γn,h : n ≥ 1}
and (ii) for all sequences {γn,h0 : n ≥ 1} and some distribution Jh0 , Tn(θ0) →d Jh0
under {γn,h0 : n ≥ 1}.
Assumption B2. For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1}, and some
distributions Jh, Tn(θ0)→d Jh under {γn,h : n ≥ 1}.

If γn,h does not depend on n (which necessarily requires h1 = 0), Assumption B1(i)
is a standard assumption in the subsample literature. For example, it is imposed in
the basic theorem in PRW, Thm. 2.2.1, p. 43, for subsampling with i.i.d. observations
and in their Thm. 3.2.1, p. 70, for stationary strong mixing observations. If γn,h
does depend on n, Assumption B1(i) usually can be verified using the same sort of
argument as when it does not. Similarly, Assumption B1(ii) usually can be verified
using the same sort of argument and, hence, is not restrictive.

Assumption B2 holds in many examples, but it can be restrictive. It is for this
reason that we introduce Assumption B1. Theorem 1 only requires Assumption B1,
whereas Theorem 2 requires Assumption B2. In the “continuous limit” case (where
Assumption B2 holds with p = 0 and H = H2), the asymptotic distribution Jh may
depend on h but is continuous in the sense that one obtains the same asymptotic
distribution for any sequence {γn,h : n ≥ 1} for which γn,h,2 converges to h2 ∈ H2.

Example 1 (cont.). In this example, r = 1/2 and H = R+,∞ × [−1, 1] because
Γ1 = R+ and Γ2 = (−1, 1). We now verify Assumption B2 for this example. For more
complicated boundary examples, results of Andrews (1999, 2001) can be used to verify
Assumption B2. The following results are all under the null hypothesis, so the true
parameter θ equals zero. For any h = (h1, h2) ∈ H with h1 < ∞ and any sequence
{γn,h : n ≥ 1} of true parameters, consistency of (eσn1, eσn2,eρn) and the CLT imply that�

n1/2Xn1/eσn1
n1/2Xn2/eσn2

�
→d

�
0
h1

�
+ Zh2 , (5.5)

where Zh2 = (Zh2,1, Zh2,2)
� ∼ N(0, Vh2) and Vh2 is a 2×2matrix with diagonal elements

1 and off-diagonal elements h2. (For this and the results below, we assume that eσn1, eσn2,
and eρn are consistent in the sense that eσnj/σj,n,h →p 1 for j = 1, 2 and eρn− ρn,h →p 0
under {γn,h = (μn,h/σ2,n,h, ρn,h, (σ1,n,h,σ2,n,h, Fn,h)) : n ≥ 1}.)
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By the continuous mapping theorem, we obtain

T ∗n(θ0) = n
1/2eθn/eσn1 = n1/2Xn1/eσn1 − eρnmin(0, n1/2Xn2/eσn2))→d J

∗
h (5.6)

under {γn,h}, where J∗h is the distribution of

Zh2,1 − h2min(0, Zh2,2 + h1). (5.7)

Note that J∗h is stochastically increasing (decreasing) in h1 for h2 < 0 (h2 ≥ 0). Likewise,
−J∗h is stochastically decreasing (increasing) in h1 for h2 < 0 (h2 ≥ 0).

For h ∈ H with h1 = ∞, we have eθn = Xn1 with probability that goes to one
(wp→1) under {γn,h} because n1/2Xn2/eσn2 →p ∞ under {γn,h}. (The latter holds
because n1/2γn,h,1 = n1/2μn,h/σ2,n,h → ∞, n1/2(Xn2 −EXn2)/eσn2 = Op(1) by the
CLT and eσn2/σn2 →p 1, and n1/2EXn2/eσn2 = n1/2μn/eσn2 →p ∞.) Therefore, under
{γn,h} with h1 =∞, we have

T ∗n(θ0)→d J
∗
∞, where J

∗
∞ is the N(0, 1) distribution. (5.8)

Note that the limit distributions J∗h and J
∗∞ do not depend on γ3 = (σ

2
1,σ

2
2, F ).

For Tn(θ0) = T ∗n(θ0),−T ∗n(θ0), and |T ∗n(θ0)|, we have Tn(θ0) → Jh under {γn,h},
where Jh = J∗h,−J∗h, and |J∗h|, respectively. (If Y ∼ J∗h, then by definition, −Y ∼ −J∗h
and |Y | ∼ |J∗h|.) Hence, Assumption B2 holds for upper, lower, and symmetric tests.

Figure 5 provides .95 quantile graphs of J∗h and |J∗h| as functions of h1 ≥ 0 for
several values of h2 ∈ [−1, 1]. As discussed in Comment 2 to Corollary 1, these graphs
provide considerable qualitative information concerning the null rejection probabilities
of subsample and FCV tests as a function of h1 (= limn→∞ n1/2μn,h/σ2,n,h) and h2
(= limn→∞ ρn,h).

The quantile graphs for J∗h indicate that the upper one-sided subsample test over-
rejects for negative values of h2 for all (g1, h1) pairs with g1 < h1 (because the graphs
are increasing in h1) with the greatest degree of over-rejection being quite large and
occurring for (g1, h1) = (0,∞) and h2 close to−1. On the other hand, for positive values
of h2, the upper subsample test under-rejects (because the graphs are decreasing in h1)
with the greatest degree of under-rejection being relatively small and occurring for
(g1, h1) = (0,∞) and h2 around .5. In sum, the quantile graphs indicate qualitatively
that the size of the upper subsample test exceeds .05 by a substantial amount.

In contrast, the graphs for J∗h compared with the standard fixed critical value of
1.64 show that the upper one-sided FCV test under-rejects for negative values of h2 for
all values of h1 (because the graphs lie below 1.64) with the greatest degree of under-
rejection being quite large and occurring for h2 close to −1. Note that the maximum
null rejection probability over h1 ∈ [0,∞) for any given h2 ≤ 0 is .05 because the
quantile graphs are maximized at h1 = ∞ and asymptote to 1.64 as h1 → ∞. For
positive values of h2, the upper FCV test over-rejects (because the graphs lie above
1.64) with the greatest degree of over-rejection being relatively small and occurring for
h1 = 0 and h2 around .5. Hence, the graphs indicate that the size of the upper FCV
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test is greater than .05, but by a modest amount. (The results for lower one-sided
subsample and FCV tests are analogous to those for upper one-sided tests with h2
replaced by −h2.)

The quantile graphs for |J∗h| indicate that the symmetric two-sided subsample test
over-rejects for non-zero values of h2 for all values of h1 (because the graphs are in-
creasing in h1) with the greatest degree of over-rejection being moderate and occurring
for (g1, h1) = (0,∞) and |h2| close to 1. (Note that the graphs for |J∗h| are invariant
to the sign of h2.) The graphs indicate that the size of the symmetric subsample test
exceeds .05 by a moderate amount.

The graphs for |J∗h| compared with the standard fixed critical value of 1.96 show
that the symmetric two-sided FCV test under-rejects for non-zero values of h2 for all
finite values of h1 (because the graphs lie below 1.96) with the greatest degree of under-
rejection being modest and occurring for h1 = 0 and |h2| close to 1. The maximum null
rejection probability over h1 ∈ [0,∞) for any given h2 ≤ 0 is .05 (for the same reason
as given above for Jh). The graphs indicate that the asymptotic size of the symmetric
FCV test is .05, as desired, but the test is not asymptotically similar.

5.3 Subsample Assumptions

The assumptions above are all that are needed for FCV tests. For subsample tests,
we require the following additional assumptions:

Assumption C. (i) bn →∞ and (ii) bn/n→ 0.

Assumption D. (i) {Tn,bn,j(θ0) : j = 1, ..., qn} are identically distributed under any
γ ∈ Γ for all n ≥ 1 and (ii) Tn,bn,j(θ0) and Tbn(θ0) have the same distribution under
any γ ∈ Γ for all n ≥ 1.
Assumption E. For all sequences {γn ∈ Γ : n ≥ 1}, Un,bn(x) − Eθ0,γnUn,bn(x) →p 0
under {γn : n ≥ 1} for all x ∈ R.
Assumption F1. For all ε > 0, Jh0(ch0(1− α) + ε) > 1− α, where ch0(1− α) is the
1− α quantile of Jh0 and h

0 is as in Assumption B1(ii).

Assumption F2. For all ε > 0 and h ∈ H, Jh(ch(1−α)+ ε) > 1−α, where ch(1−α)
is the 1− α quantile of Jh.

Assumption G1. For the sequence {γn,h : n ≥ 1} in Assumption B1(i), Ln,bn(x) −
Un,bn(x)→p 0 for all x ∈ C(Jh0) under {γn,h : n ≥ 1}.
Assumption G2. For all h = (h1, h2) ∈ H and all sequences {γn,h : n ≥ 1} for which
brnγn,h,1 → g1 for some g1 ∈ Rp∞, if Un,bn(x) →p Jg(x) under {γn,h : n ≥ 1} for all
x ∈ C(Jg) for g = (g1, h2) ∈ Rp+q∞ , then Ln,bn(x)− Un,bn(x)→p 0 under {γn,h : n ≥ 1}
for all x ∈ C(Jg).

Assumptions C and D are standard assumptions in the subsample literature, e.g.,
see PRW, Thm. 2.2.1, p. 43, and are not restrictive. The sequence {bn : n ≥ 1} can
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always be chosen to satisfy Assumption C. Assumption D necessarily holds when the
observations are i.i.d. or stationary and subsamples are constructed in the usual way
(described above).

Assumption E holds quite generally. For i.i.d. observations, the condition in
Assumption E when γn,1 = 0 and (γn,2, γn,3) does not depend on n (where γn =
(γn,1, γn,2, γn,3)) is verified by PRW, p. 44, using a U-statistic inequality of Hoeffding.
It holds for any triangular array of row-wise i.i.d. [0,1]-valued random variables by the
same argument. Hence, Assumption E holds automatically when the observations are
i.i.d. for each fixed γ ∈ Γ when the subsample statistics are defined as above.

For stationary strong mixing observations, the condition in Assumption E when
γn,1 = 0 and (γn,2, γn,3) does not depend on n (where γn = (γn,1, γn,2, γn,3)) is verified
by PRW, pp. 71-72, by establishing L2 convergence using a strong mixing covariance
bound. It holds for any sequence {γn ∈ Γ : n ≥ 1} and, hence, Assumption E holds,
by the same argument as in PRW provided

sup
γ∈Γ

αγ(m)→ 0 as m→∞, (5.9)

where {αγ(m) : m ≥ 1} are the strong mixing numbers of the observations when the
true parameters are (θ0, γ).

Assumptions F1 and F2 are designed to avoid the requirement that Jh(x) is con-
tinuous in x because this assumption is violated in some applications, such as with
super-efficient estimators and some boundary problems, for some values of h and some
values of x. Assumptions F1 and F2 hold in all of the examples that we have consid-
ered. In particular, Assumption F1 holds if either (i) Jh0(x) is strictly increasing at
x = ch0(1−α) or (ii) Jh0(x) has a jump at x = ch0(1−α) with Jh0(ch0(1−α)) > 1−α.
Condition (i) holds in most examples. But, if Jh0 is a pointmass, as occurs with the
example of a CI based on a super-efficient estimator with constant a = 0 (see Section
9.1 below), then condition (i) fails, but condition (ii) holds. Sufficient conditions for
Assumption F2 are the same with h0 replaced by h for all h ∈ H.

Assumptions G1 and G2 hold automatically when {eTn,bn,j} satisfy Assumption
Sub2. To verify that Assumption G1 or G2 holds when {eTn,bn,j} satisfy Assumption
Sub1 and Tn(θ0) is a non-studentized t statistic (i.e., Assumptions t1 and t2 hold), we
use the following assumption.

Assumption H. τ bn/τn → 0.

This is a standard assumption in the subsample literature, e.g., see PRW, Thm. 2.2.1,
p. 43. In the leading case where τn = ns for some s > 0, Assumption H follows from
Assumption C(ii) because τ bn/τn = (bn/n)

s → 0.

Lemma 1 (a) Assumptions B1(i), t1, t2, Sub1, and H imply Assumption G1.
(b) Assumptions B2, t1, t2, Sub1, and H imply Assumption G2.

Comment. Lemma 1 is a special case of Lemma 2, which is stated in Appendix A for
expositional convenience. Lemma 2 does not impose Assumption t2 and, hence, covers
studentized t statistics.
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Example 1 (cont.). We now verify Assumptions C-F2 for this example. Assump-
tions C and D clearly hold. Assumption E holds by the general argument given above.
For α < 1/2, Assumption F2 holds for Jh = J∗h (defined above in (5.7)-(5.8)) because
for h2 9= −1, J∗h(x) is strictly increasing for positive x and Jh(0) = 1/2. For h2 = −1,
J∗h(x) is strictly increasing for x ≤ h1 and J∗h(x) = 1 for x ≥ h1. Assumption F2 holds
by analogous reasoning for Jh = −J∗h. Finally, it holds for Jh = |J∗h| because |J∗h(x)| is
strictly increasing in x for all h2 ∈ [−1, 1] (where for |h2| = 1, |J∗h(x)| has a jump at
x = h1 of height Pr(Z ≥ h1) for Z ∼ N(0, 1)). Assumption G2 is verified in Appendix
A following the statement of Lemma 2.

6 Asymptotic Results

The first result of this section concerns the asymptotic null behavior of FCV and
subsample tests under a single sequence {γn,h : n ≥ 1}.

Theorem 1 (a) Suppose Assumption B1(i) holds. Then,

Pθ0,γn,h(Tn(θ0) > cFix(1− α))→ [1− Jh(cFix(1− α)), 1− Jh(cFix(1− α)−)].

(b) Suppose Assumptions A1, B1, C-E, F1, and G1 hold. Then,

Pθ0,γn,h(Tn(θ0) > cn,b(1− α))→ [1− Jh(ch0(1− α)), 1− Jh(ch0(1− α)−)].

Comments. 1. If 1 − Jh(cFix(1 − α)) > α, then the FCV test has AsySz(θ0) > α,
i.e., its asymptotic size exceeds its nominal level α.

2. Analogously, for the subsample test, if 1− Jh(ch0(1−α)) > α, then the test has
AsySz(θ0) > α.

3. If 1 − Jh(cFix(1 − α)−) < α, then the FCV test has AsyMinRP (θ0) < α and
it is not asymptotically similar. Analogously, if 1 − Jh(ch0(1 − α)−) < α, then the
subsample test has AsyMinRP (θ0) < α and it is not asymptotically similar.

4. If Jh(x) is continuous at x = cFix(1− α) (which typically holds in applications
for most values h but not necessarily all), then the result of Theorem 1(a) becomes
Pθ0,γn,h(Tn(θ0) > cFix(1−α))→ 1−Jh(cFix(1−α)). Analogously, if Jh(x) is continuous
at x = ch0(1− α), then the result of Theorem 1(b) becomes Pθ0,γn,h(Tn(θ0) > cn,b(1−
α))→ 1− Jh(ch0(1− α)).

5. In the “continuous limit” case, h0 = h because no parameter γ1 appears. Hence,
the result of Theorem 1(b) for the subsample test is Pθ0,γn,h(Tn(θ0) > cn,b(1−α))→ α,
provided Jh(x) is continuous at x = ch(1− α). That is, the pointwise asymptotic null
rejection rate is the desired nominal rate α.

6. Typically Assumption B1(i) holds for an infinite number of values h, say h ∈ H∗
(⊂ Rp). In this case, Comments 1-5 apply for all h ∈ H∗.

We now use the stronger Assumptions A2, B2, F2, and G2 to establish more pre-
cisely the asymptotic sizes and asymptotic minimum rejection probabilities of sequences
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of FCV and subsample tests. For FCV tests, we define

MaxFix(α) = sup
h∈H

[1− Jh(cFix(1− α))] and

Max−Fix(α) = sup
h∈H

[1− Jh(cFix(1− α)−)]. (6.1)

Define MinFix(α) and Min
−
Fix(α) analogously with “ inf ” in place of “ sup .”

For subsample tests, define

GH = {(g, h) ∈ H ×H : g = (g1, g2), h = (h1, h2), g2 = h2 and for m = 1, ..., p,

(i) g1,m = 0 if |h1,m| <∞, (ii) g1,m ∈ R+,∞ if h1,m = +∞, and
(iii) g1,m ∈ R−,∞ if h1,m = −∞}, (6.2)

where g1 = (g1,1, ..., g1,p)
� ∈ H1 and h1 = (h1,1, ..., h1,p)

� ∈ H1. Note that for (g, h) ∈
GH, we have |g1,m| ≤ |h1,m| for all m = 1, ..., p. In the “continuous limit” case (where
there is no γ1 component of γ) GH simplifies considerably: GH = {(g2, h2) ∈ H2×H2 :
g2 = h2}.

Define

MaxSub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α))] and

Max−Sub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α)−)]. (6.3)

Define MinSub(α) and Min
−
Sub(α) analogously with “ inf ” in place of “ sup .” In the

“continuous limit” case, MaxSub(α) simplifies to suph∈H [1 − Jh(ch(1 − α))], which is
less than or equal to α by the definition of ch(1− α).

Theorem 2 (a) Suppose Assumptions A2 and B2 hold. Then, an FCV test satisfies

AsySz(θ0) ∈ [MaxFix(α),Max−Fix(α)] and
AsyMinRP (θ0) ∈ [MinFix(α),Min−Fix(α)].

(b) Suppose Assumptions A2, B2, C-E, F2, and G2 hold. Then, a subsample test
satisfies

AsySz(θ0) ∈ [MaxSub(α),Max−Sub(α)] and
AsyMinRP (θ0) ∈ [MinSub(α),Min−Sub(α)].

Comments. 1. If Jh(x) is continuous at the appropriate value(s) of x, thenMaxFix(α)
=Max−Fix(α) and MaxSub(α) =Max

−
Sub(α) and Theorem 2 gives the precise value of

AsySz(θ0) and analogously for AsyMinRP (θ0). Even for FCV tests, we are not aware
of general results in the literature that establish the limit of the finite-sample size of a
test based on a test statistic whose limit distribution depends on nuisance parameters.
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2. Given Theorem 2(b) and the definition of Max−Sub(α), sufficient conditions
for a nominal level α subsample test to have asymptotic level α are the following:
(a) cg(1 − α) ≥ ch(1 − α) for all (g, h) ∈ GH and (b) Max−Sub(α) = MaxSub(α).

10

Condition (a) necessarily holds in “continuous limit” examples and it holds in some
“discontinuous limit” examples. But, it often fails in “discontinuous limit” examples.
Condition (b) holds in most examples.

3. The same argument as used to prove Theorem 2 can be used to prove slightly
stronger results than those of Theorem 2. Namely, for FCV and subsample tests,

ExSzn(θ0)→ [MaxType(α),Max
−
Type(α)] (6.4)

for Type = Fix and Sub, respectively. (These results are stronger because they imply
that lim infn→∞ExSzn(θ0) ≥MaxType(α), rather than just AsySz(θ0) = lim supn→∞
ExSzn(θ0) ≥MaxType(α).) Hence, when MaxType(α) =Max−Type(α), we have

lim
n→∞ExSzn(θ0) =MaxType(α) for Type = Fix and Sub. (6.5)

4. The upper bound on AsySz(θ0) in Theorem 2(b) can be improved in some cases,
see the fourth section of Appendix A.

Example 1 (cont.). The size properties of the tests in this example are given
in Table I (which is described in more detail below) and are summarized as follows.
For upper and lower one-sided tests, we find large asymptotic size distortions for the
subsample tests and very small size distortions for the FCV tests for all nominal sizes
α ∈ [.01, .2] that we consider. (Only results for α = .05 are reported.) The upper
(lower) one-sided subsample test over-rejects the null most when the correlation h2 (=
limn→∞ ρn,h) is close to −1 (respectively, 1). Monte Carlo simulations of its asymptotic
null rejection probabilities show that its asymptotic size is about 1/2 for all nominal
sizes α ∈ [.01, .2] that we consider.

The symmetric two-sided subsample test also is found to be size-distorted, but
by a much smaller amount. The Monte Carlo simulations for α ∈ [.01, .2] show that
AsySz(θ0) is about 2α for the symmetric subsample test. In contrast, the two-sided
FCV test is found to have asymptotic size equal to its nominal level, although this
test is not asymptotically similar. All of the quantitative results discussed above are
consistent with the qualitative results obtained from the quantile graphs and discussed
in Section 5.2.

The results described above are determined as follows. First, for upper one-sided,
lower one-sided, and symmetric two-sided tests, Max−Type(α) = MaxType(α) for any
α ∈ (0, 1) for Type = Fix and Sub. This is shown at the end of the first section of
Appendix A.

10Under these conditions, Max−Sub(α) =MaxSub(α) = sup(g,h)∈GH [1−Jh(cg(1−α))] ≤ suph∈H [1−
Jh(ch(1− α))] ≤ α.
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Second, we discuss upper one-sided tests. Given that Jh = J∗h is stochastically
increasing (decreasing) in h1 for fixed h2 < 0 (h2 ≥ 0), one can show that

MaxFix(α) = sup
h∈H

[1− Jh(cFix(1− α))] = sup
h2∈[0,1]

(1− J(0,h2)(z1−α)) and

MaxSub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α))] = sup
h2∈[−1,0]

(1− J∞(c(0,h2)(1− α))),(6.6)

where J(0,h2) is the distribution of Zh2,1 − h2min(0, Zh2,2), (Zh2,1, Zh2,2) is bivariate
normal with means zero, variances one, and correlation h2, and J∞ is the standard
normal distribution. See Appendix A for proofs. The results for lower one-sided tests
are analogous with h2 ∈ [0, 1] and h2 ∈ [−1, 0] replaced by h2 ∈ [−1, 0] and h2 ∈ [0, 1],
respectively.

The values of MaxFix(α) and MaxSub(α) for the upper and lower one-sided tests
are obtained by simulation. (All simulation results are based on 50,000 simulation
repetitions and when maximization over h1 (= limn→∞ n1/2μn,h/σ2,n,h) is needed the
upper bound is 12 and a grid of size 0.05 is used.) Table I reports 1 − J(0,h2)(z1−α)
and 1−J∞(c(0,h2)(1−α)) for FCV and subsample tests, respectively, for various values
of h2 (= limn→∞ ρn,h) and α = .05 for upper one-sided tests. Because the results for
lower one-sided tests are the same, but with h2 replaced by −h2, the results for lower
one-sided tests are not reported in Table I. The last row of Table I gives the AsySz(θ0)
of each test, which is maximum of the numbers in each column. For one-sided tests,
simulation of AsySz(θ0) is very fast because the two-dimensional maximization over
(h1, h2) has been reduced to a one-dimensional maximization over h2 in (6.6).

Third, for the symmetric two-sided case, where Jh = |J∗h|, we have

MaxFix(α) = sup
h∈H

[1− Jh(z1−α/2)] and

MaxSub(α) = max{ sup
h1∈[0,∞),h2∈[−1,1]

[1− Jh(c(0,h2)(1− α))],

sup
h1∈[0,∞],h2∈[−1,1]

[1− J∞(c(h1,h2)(1− α))]}. (6.7)

We use Monte Carlo simulation to calculate these quantities. For the FCV test, Table
I reports the values of suph1∈[0,∞][1 − J(h1,h2)(z1−α/2)] appearing in MaxFix(α) for a
range of h2 values in [−1, 1] and α = .05. Note that these are the maximum asymptotic
null rejection probabilities given h2, where the maximum is over h1 with h2 fixed.
Table I also reports the analogous expressions that depend on h2 for the subsample
tests. Table I shows that AsySz(θ0) is about 2α for the symmetric two-sided subsample
tests and α for the FCV tests.

In conclusion, the one-sided subsample test has very large size-distortion, whereas
the one-sided FCV test has very small size distortion. The symmetric two-sided sub-
sample test has moderate size distortion, whereas symmetric FCV has no size distortion.
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7 Equal-tailed t Tests

This section considers equal-tailed two-sided t tests. There are two reasons for
considering such tests. First, equal-tailed tests and CIs are preferred to symmetric
procedures by some statisticians, e.g., see Efron and Tibshirani (1993). Second, given
the potential problems of symmetric t tests documented in Section 6, it is of interest
to see whether equal-tailed tests are subject to the same problems and, if so, whether
the problems are more or less severe than for symmetric procedures.

We suppose Assumption t1(i) holds, so that Tn(θ0) = τn(eθn − θ0)/eσn. An equal-
tailed FCV or subsample t test of H0 : θ = θ0 versus H1 : θ 9= θ0 of nominal level α
(∈ (0, 1/2)) rejects H0 when

Tn(θ0) > c1−α/2 or Tn(θ0) < cα/2, (7.1)

where c1−α is defined in (3.10) for FCV and subsample tests.
The exact size, ExSzn(θ0), of the equal-tailed t test is

ExSzn(θ0) = sup
γ∈Γ

�
Pθ0,γ(Tn(θ0) > c1−α/2) + Pθ0,γ(Tn(θ0) < cα/2)

�
. (7.2)

The asymptotic size of the test is AsySz(θ0) = lim supn→∞ExSzn(θ0). The minimum
rejection probability, MinRPn(θ0), of the test is the same as ExSzn(θ0) but with
“ sup ” replaced by “ inf ” and AsyMinRP (θ0) = lim infn→∞MinRPn(θ0).

For equal-tailed subsample t tests, we replace Assumptions F1 and F2 by the fol-
lowing assumptions, which are not very restrictive.

Assumption J1. For all ε > 0, Jh0(ch0(τ) + ε) > τ for τ = α/2 and τ = 1 − α/2,
where ch0(τ) is the τ quantile of Jh0 and h

0 is as in Assumption B1.

Assumption J2. For all ε > 0 and h ∈ H, Jh(ch(τ) + ε) > τ for τ = α/2 and
τ = 1− α/2, where ch(τ) is the τ quantile of Jh.

Define

Maxr−ET,Fix(α) = sup
h∈H

[1− Jh(cFix(1− α/2)) + Jh(cFix(α/2)−)],

Max�−ET,Fix(α) = sup
h∈H

[1− Jh(cFix(1− α/2)−) + Jh(cFix(α/2))],

Maxr−ET,Sub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α/2)) + Jh(cg(α/2)−)], and

Max�−ET,Sub(α) = sup
(g,h)∈GH

[1− Jh(cg(1− α/2)−) + Jh(cg(α/2))]. (7.3)

Here “r − ” denotes that the limit from the left “−” appears in the right summand in
the expression forMaxr−ET,Fix(α). Analogously, “c−” denotes that it appears in the left
summand in the expression for Max�−ET,Fix(α). Define Min

r−
ET,Fix(α), ...,Min

�−
ET,Sub(α)

analogously with “ inf ” in place of “ sup .”
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In the “continuous limit” case, Maxr−ET,Sub(α) simplifies to suph∈H [1 − Jh(ch(1 −
α/2)) + Jh(ch(α/2)−)] and likewise for Max�−ET,Sub(α).

The proofs of Theorems 1 and 2 can be adjusted straightforwardly to yield the
following results for equal-tailed FCV and subsample t tests.

Corollary 2 Let α ∈ (0, 1/2) be given. Let Tn(θ0) be defined as in Assumption t1(i).
(a) Suppose Assumption B1(i) holds. Then, an equal-tailed FCV t test satisfies

Pθ0,γn,h(Tn(θ0) > cFix(1− α/2) or Tn(θ0) < cFix(α/2))

→ [1− Jh(cFix(1− α/2)) + Jh(cFix(α/2)−),
1− Jh(cFix(1− α/2)−) + Jh(cFix(α/2))].

(b) Suppose Assumptions A1, B1, C-E, G1, and J1 hold. Then, an equal-tailed
subsample t test satisfies

Pθ0,γn,h(Tn(θ0) > cn,b(1− α/2) or Tn(θ0) < cn,b(α/2))

→ [1− Jh(ch0(1− α/2)) + Jh(ch0(α/2)−), 1− Jh(ch0(1− α/2)−) + Jh(ch0(α/2))].

(c) Suppose Assumptions A2 and B2 hold. Then, an equal-tailed FCV t test satisfies

AsySz(θ0) ∈ [Maxr−ET,Fix(α),Max
�−
ET,Fix(α)] and

AsyMinRP (θ0) ∈ [Minr−ET,Fix(α),Min
�−
ET,Fix(α)].

(d) Suppose Assumptions A2, B2, C-E, G2, and J2 hold. Then, an equal-tailed
subsample t test satisfies the result of part (c) with Sub in place of Fix.

Comments. 1. If Jh(x) is continuous at the appropriate value(s) of x, then
Maxr−ET,Fix(α) = Max�−ET,Fix(α) etc. and Corollary 2 gives the precise value of
AsySz(θ0).

2. By Corollary 2(d) and the definition of Max�−ET,Sub(α), sufficient conditions
for a nominal level α equal-tailed subsample test to have asymptotic level α are the
following: (a) cg(1−α/2) ≥ ch(1−α/2) for all (g, h) ∈ GH, (b) cg(α/2) ≤ ch(α/2) for all
(g, h) ∈ GH, and (c) suph∈H [1−Jh(ch(1−α/2)−)+Jh(ch(α/2))] = suph∈H [1−Jh(ch(1−
α/2))+Jh(ch(α/2)−)]. Conditions (a) and (b) automatically hold in “continuous limit”
cases. They also hold in some “discontinuous limit” cases, but often fail in such cases.
Condition (c) holds in most examples. (Note that conditions (a)-(c) are not necessary
for a subsample test to have asymptotic level α.)

3. Theorems 1 and 2 give results concerning the null rejection rates for each tail
separately of an equal-tailed t test. If one is interested in an equal-tailed t test, rather
than a symmetric t test, such rates are of interest.

Example 1 (cont.). The critical values (cα/2, c1−α/2) for the equal-tailed FCV
and subsample tests are (zα/2, z1−α/2) and (cn,b(α/2), cn,b(1− α/2)), respectively. For
α < 1/2, Assumption J2 holds by the same sort of argument as used above to verify
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Assumption F2. In addition, Maxr−ET,Type(α) = Max�−ET,Type(α) for Type = Fix and
Sub. See the end of the first section of Appendix A for proofs of these claims.

We calculate Maxr−ET,Type(α) in (7.3) for Type = Fix and Sub via simulation.
Table I reports the maximum asymptotic null rejection probabilities for the equal-

tailed tests given h2 for a range of h2 values in [−1, 1] and α = .05. (The maximum
is over h ∈ H or (g, h) ∈ GH with h2 fixed.) We find a very large size distortion for
the equal-tailed subsample test, i.e., AsySz(θ0) is about 1/2 + α/2 = .525, and no
size distortion for the two-sided FCV test, i.e., AsySz(θ0) is about α = .05. But, the
two-sided FCV test is not asymptotically similar.

8 Confidence Intervals

In this section, we consider CIs for a parameter θ ∈ Rd when nuisance parameters
η ∈ Rs and γ3 ∈ T3 may appear. To avoid considerable repetition, we recycle the
definitions, assumptions, and results given in earlier sections for tests, but with θ and η
defined to be part of the vector γ. In previous sections, θ and γ are separate parameters.
Here, θ is a sub-vector of γ. The reason for making this change is that the confidence
level of a CI for θ by definition depends on uniformity over both the nuisance parameters
η and γ3 and the parameter of interest θ. In contrast, the level of a test concerning θ
only depends on uniformity over the nuisance parameters and not over θ (because θ
is fixed under the null hypothesis). By making θ a sub-vector of γ, the results from
previous sections, which are uniform over γ ∈ Γ, give the uniformity results that we
need for CIs for θ. Of course, with this change, the index parameter h, the asymptotic
distributions {Jh : h ∈ H}, and the assumptions are different in any given model in
this CI section from the earlier test sections.

Specifically, we partition θ into (θ�1, θ
�
2)
�, where θj ∈ Rdj for j = 1, 2, and we

partition η into (η�1, η�2)�, where ηj ∈ Rsj for j = 1, 2. Then, we consider the same
set-up as in Section 5 where γ = (γ1, γ2, γ3), but with γ1 = (θ

�
1, η

�
1)
� and γ2 = (θ

�
2, η

�
2)
�,

where p = d1 + s1 and q = p2 + s2. Thus, θ and η are partitioned such that θ1 and η1
determine whether γ is close to the point of discontinuity of the asymptotic distribution
of the test statistic Tn(θ), whereas θ2 and η2 do not, but they still may affect the limit
distribution of Tn(θ). In most examples, either no parameter θ1 or θ2 appears (i.e.,
d1 = 0 or d2 = 0) and either no parameter η1 or η2 appears (i.e., s1 = 0 or s2 = 0).

8.1 Basic Results for Confidence Intervals

We consider the same test statistic Tn(θ0) for testing the null hypothesisH0 : θ = θ0
as above. Fixed and subsample critical values are defined as above. We obtain CIs
for θ by inverting tests based on Tn(θ0). When a fixed critical value is employed, this
yields an FCV CI. When a subsample critical value is employed, it yields a subsample
CI. Let Θ (⊂ Rd) denote the parameter space for θ and let Γ denote the parameter
space for γ. The CI for θ contains all points θ0 ∈ Θ for which the test of H0 : θ = θ0
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fails to reject the null hypothesis:

CIn = {θ0 ∈ Θ : Tn(θ0) ≤ c1−α}, (8.1)

where c1−α is a critical value equal to cFix(1− α) or cn,b(1− α).
For example, suppose Tn(θ0) is a (i) upper one-sided, (ii) lower one-sided, or (iii)

symmetric two-sided t test of nominal level α (i.e., Assumption t1(i), (ii), or (iii) holds).
Then, the corresponding CI of nominal level α is defined by

CIn = [eθn − τ−1n eσnc1−α,∞),
CIn = (−∞,eθn + τ−1n eσnc1−α], or
CIn = [eθn − τ−1n eσnc1−α,eθn + τ−1n eσnc1−α], (8.2)

respectively.
The coverage probability of the CI defined in (8.1) when γ is the true parameter

vector is
Pγ(θ ∈ CIn) = Pγ(Tn(θ) ≤ c1−α) := 1−RPn(γ), (8.3)

where probabilities are indexed by γ = ((θ�1, η�1)�, (θ
�
2, η

�
2)
�, γ3) here, whereas they are

indexed by (θ, γ) in earlier sections. The exact and asymptotic confidence sizes of CIn
are

ExCSn = inf
γ∈Γ
(1−RPn(γ)) and AsyCS = lim inf

n→∞ ExCSn, (8.4)

respectively. Note that the confidence size depends on uniformity over both θ and η
because γ = (γ1, γ2, γ3) = ((θ

�
1, η

�
1)
�, (θ�1, η�1)�, γ3).

We employ the same assumptions as in Section 5 but with the following changes.

Assumption Adjustments for CIs: (i) θ is a sub-vector of γ, rather than a separate
parameter from γ. In particular, γ = (γ1, γ2, γ3) = ((θ�1, η�1)�, (θ

�
2, η

�
2)
�, γ3) for θ =

(θ�1, θ
�
2)
� and η = (η�1, η�2)�.

(ii) Instead of the true probabilities under a sequence {γn,h : n ≥ 1} being
{Pθ0,γn,h(·) : n ≥ 1}, they are {Pγn,h(·) : n ≥ 1}.

(iii) The test statistic Tn(θ0) is replaced in the assumptions under a true sequence
{γn,h : n ≥ 1} by Tn(θn,h), where γn,h = (γn,h,1, γn,h,2, γn,h,3)

� = ((θ�n,h,1, η�n,h,1)
�,

(θ�n,h,2, η�n,h,2)
�, γn,h,3) and θn,h = (θ

�
n,h,1, θ

�
n,h,2)

�.
(iv) In Assumption D, θ0 in Tn,bn,j(θ0) and Tbn(θ0) is replaced by θ, where θ =

(θ�1, θ
�
2)
� and γ = (γ1, γ2, γ3) = ((θ

�
1, η

�
1)
�, (θ�2, η�2)�, γ3).

(v) θ0 is replaced in the definition of Un,b(x) in (3.9) by θn when the true parameter
is γn = (γn,1, γn,2, γn,3) = ((θ

�
n,1, η

�
n,1)

�, (θ�n,2, η�n,2)�, γn,3) and θn = ((θ
�
n,1, θ

�
n,2)

�.

With these changes in the assumptions and corresponding changes in the proofs,
the proofs of Theorems 1 and 2 go through.11 This yields the following results for FCV
and subsample CIs.
11 In the proofs of Corollary 3(c) and (d), AsySz(θ0) is replaced by 1 − AsyCS, RPn(θ0, γ) is re-

placed by RPn(γ), and one makes use of the fact that infh∈H Jh(cFix(1 − α)−) = 1 −Max−Fix(α),
inf(g,h)∈GH Jh(cg(1− α)−) = 1−Max−Sub(α), etc.
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Corollary 3 Let the assumptions be adjusted as stated above.
(a) Suppose Assumption B1(i) holds. Then, Pγn,h(Tn(θn,h) ≤ cFix(1 − α)) →

[Jh(cFix(1− α)−), Jh(cFix(1− α))].
(b) Suppose Assumptions A1, B1, C-E, F1, and G1 hold. Then, Pγn,h(Tn(θn,h) ≤

cn,b(1− α))→ [Jh(ch0(1− α)−), Jh(ch0(1− α))].
(c) Suppose Assumptions A2 and B2 hold. Then, the FCV CI satisfies AsyCS ∈

[infh∈H Jh(cFix(1− α)−), infh∈H Jh(cFix(1− α))].
(d) Suppose Assumptions A2, B2, C-E, F2, and G2 hold. Then, the subsample CI

satisfies AsyCS ∈ [inf(g,h)∈GH Jh(cg(1− α)−), inf(g,h)∈GH Jh(cg(1− α))].

Comments. 1. The result of part (a) shows that if Jh(cFix(1 − α)) < 1 − α for
some h ∈ Rp+q, then the FCV CI has asymptotic confidence size less than its nominal
level 1− α: AsyCS < 1− α. Similarly, if Jh(ch0(1− α)) < 1− α, then part (b) shows
that the subsample CI has asymptotic confidence size less than its nominal level 1−α:
AsyCS < 1− α. Parts (c) and (d) establish AsyCS precisely.

2. The lower bound on AsyCS in Corollary 3(d) can be improved in some cases,
see the fourth section of Appendix A.

8.2 Equal-tailed t Confidence Intervals

An equal-tailed FCV or subsample t CI for θ of nominal level α is defined by

CIn = [eθn − τ−1n eσnc1−α/2,eθn − τ−1n eσncα/2], (8.5)

where cτ = cFix(τ) for τ = α/2, 1−α/2 for an FCV CI and cτ = cn,b(τ) for a subsample
CI. The following result for such CIs follows from Corollary 2(c)-(d) for equal-tailed t
tests, but with the assumptions adjusted as above. For brevity, we do not give analogues
of Corollary 2(a)-(b) for CIs.

Corollary 4 Let α ∈ (0, 1/2) be given. Let the assumptions be adjusted as described
above Corollary 3.

(a) Suppose Assumptions A2 and B2 hold. Then, an equal-tailed FCV t CI satisfies

AsyCS ∈ [1−Max�−ET,Fix(α), 1−Max
r−
ET,Fix(α)].

(b) Suppose Assumptions A2, B2, C-E, G2, and J2 hold. Then, an equal-tailed
subsample t CI satisfies the result of part (a) with Sub in place of Fix.

9 Examples

9.1 CI Based on a Post-Model-Selection/Super-Efficient Estimator

Here we consider a subsample CI that is based on an estimator that can be viewed
either as a post-model-selection estimator based on a consistent model selection proce-
dure or as a super-efficient estimator. We show that the subsample CI (of nominal level
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1−α for any α ∈ (0, 1)) has AsyCS = 0 in a very simple regular model. The same result
holds for the bn < n bootstrap provided b2n/n→ 0. Similar results hold in much more
complicated models than that considered below. Subsampling a super-efficient estima-
tor has been suggested in PRW. Using the bn < n bootstrap for a post-model-selection
estimator has been suggested by Shao (1994).

Kabaila (1995) shows that an FCV CI based on a super-efficient estimator has
AsyCS = 0, see Leeb and Pötscher (2005) for related results. Hence, we do not consider
FCV CIs here. Results of Leeb and Pötscher (2006) show that no uniformly consistent
estimator of the distribution of a super-efficient estimator exists. The results below are
not a special case of their result, because a uniformly consistent estimator of the null
distribution of a test statistic is not necessary to obtain a test of level α; it is sufficient
to have an estimator of the null distribution that yields an asymptotically uniformly
conservative critical value. Section 9.2 below gives an important example where the
latter exists, but the former does not. The literature on post-model-selection inference
has been growing recently, see Leeb and Pötscher (2005) for references.

The model is

Xi = θ + Ui, where Ui ∼ i.i.d. N(0, 1) for i = 1, ..., n. (9.1)

For the model selection problem, model 1 has θ = 0 and model 2 has θ 9= 0. Model
selection is carried out using a likelihood ratio test that selects model 1 if n1/2|Xn| ≤ κn
and model 2 otherwise, where κn > 0 is a critical value. If κn → ∞ and κn/n

1/2 → 0
as n → ∞, the model selection procedure is consistent. (That is, when θ0 = 0, model
1 is chosen with probability that goes to one as n → ∞, and when θ0 9= 0, model 2
is chosen with probability that goes to one as n → ∞, where θ0 is fixed and does not
depend on n.) For the results that follow we only use the condition κn → ∞. When
κn =

s
log(n), this model selection procedure is BIC. The AIC criterion is not covered

by the results given below because it corresponds to κn =
√
2 ∞. The post-model

selection estimator of θ0 equals zero if model 1 is selected and Xn if model 2 is selected.
This estimator is a super-efficient estimator whenever κn → ∞ and κn/n

1/2 → 0. It
corresponds to Hodges super-efficient estimator when κn = n

1/4.
The post-model-selection/super-efficient estimator, eθn, of θ and the test statistic,

Tn(θ0), are defined by

eθn = �
Xn if n1/2|Xn| > κn
aXn if n1/2|Xn| ≤ κn,

where Xn = n
−1

n[
i=1

Xi,

Tn(θ0) = |n1/2(eθn − θ0)|, (9.2)

κn > 0, and 0 ≤ a < 1. A post-model-selection estimator is obtained by taking a = 0.
Hodges’ super-efficient estimator is obtained by taking κn = n1/4. For a super-efficient
estimator, the constant a is a tuning parameter that determines the magnitude of
shrinkage. The test statistic is a two-sided non-studentized t statistic, so that Assump-
tions t1(iii) and t2 hold with τn = n

1/2.
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The CI for θ is given by the third equation in (8.2) with c1−α equal to the subsample
critical value cn,b(1 − α) based on subsample statistics {Tn,bn,j(eθn) : j = 1, ..., qn}
defined in equation (iii) of (3.8) with eσn,b,j = 1. Note that Assumption Sub1 holds.
(The results given below also hold if Assumption Sub2 holds.) We take {bn : n ≥ 1} so
that Assumption C holds.

We apply Corollary 3(b) with γ = γ1 = θ = θ1 ∈ R, p = d = 1, and Γ = Γ1 =
Θ = R. (No γ2, γ3, θ2, or η parameters appear in this example.) The assumptions of
Corollary 3(b) are verified below. We take r = 1/2 and γn,h (= θn,h) = hn

−1/2, where
h ∈ R, in Assumption B1. When the true value is θn,h, eθn = aXn wp→ 1, see (10.5)
in Appendix A. Hence, wp→ 1, we have

Tn(θn,h) = |n1/2(aXn − θn,h)|
= |an1/2(Xn − θn,h) + (a− 1)h|
→d |aZ + (a− 1)h| ∼ Jh, where Z ∼ N(0, 1) and (9.3)

Jh(x) =

�
Φ(a−1(x+ (1− a)h))− Φ(a−1(−x+ (1− a)h)) if a ∈ (0, 1)
1(x ≥ |h|) if a = 0

,

using the CLT. Given that p = d = 1, we have h0 = 0 and Jh0 = J0. For a = 0,
J0(x) = 1(x ≥ 0) and ch0(1 − α) = c0(1 − α) = 0. For a ∈ (0, 1), we have J0(x) =
Φ(a−1x)− Φ(−a−1x) and ch0(1− α) = c0(1− α) = az1−α/2.

For a = 0, Corollary 3(b) implies that the limit of the coverage probability of the
subsample CI under γn,h (= θn,h) = hn

−1/2 is

Jh(ch0(1− α)) = Jh(0) = 1(0 ≥ |h|) = 0 for |h| > 0. (9.4)

Hence, for a = 0, AsyCS = 0 for the subsample CI.
For a ∈ (0, 1), the limit of the coverage probability of the subsample CI under γn,h

(= θn,h) = hn
−1/2 is

Jh(ch0(1− α)) = Jh(az1−α/2). (9.5)

Using (9.3), for a ∈ (0, 1), we have

lim
h→∞

Jh(az1−α/2) = 0. (9.6)

Hence, for a ∈ (0, 1) and h sufficiently large, the asymptotic coverage probability of the
symmetric two-sided subsample CI is arbitrarily close to zero. Since h ∈ R is arbitrary,
this implies that AsyCS = 0 for this CI.

We obtain the same result that AsyCS = 0 if one-sided CIs or equal-tailed two-
sided CIs are considered. Furthermore, the size-correction methods of Andrews and
Guggenberger (2005a) do not work in this example because Assumptions LF, LS, and
LH of that paper fail. (For example, Assumption LF fails when a = 0 because H = R∞,
ch(1− α) = |h|, and suph∈R∞ |h| =∞.)

It remains to verify Assumptions A1, B1, C-E, F1, and G1 for arbitrary choice of
the parameter h. This is done in Appendix A.
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9.2 Confidence Region Based on Moment Inequalities

Here we consider a confidence region (CR) for a true parameter θ0 (∈ Θ ⊂ Rd)
that is defined by moment inequalities and equalities. The true value need not be
identified. The CR is obtained by inverting tests that are based on a generalized
method of moments-type (GMM) criterion function. This method is introduced by
Chernozhukov, Hong, and Tamer (2002) (CHT), who use subsampling to obtain a
critical value.12 Romano and Shaikh (2005a) also considers this method and shows
that the limit of finite-sample size is the nominal level in one-sample and two-sample
mean problems when a subsample critical value is employed.13 In this section, we
show that this result holds quite generally for subsample CRs of this type–no specific
assumptions concerning the form of the moment functions are necessary even though
the asymptotic distribution of the test statistic is discontinuous (in the sense discussed
above). Note that the results given here are for CRs for the true parameter, rather
than for the “identified set.”

We also consider CRs based on fixed and “plug-in” critical values–defined below.
These critical values are bounded above as n→ ∞, whereas subsample critical values
diverge to infinity at a rate that depends on the subsample size bn. The plug-in critical
values (PCV) lead to more powerful tests and smaller CRs than the fixed critical values
(FCV).

The test statistic considered below is similar to those considered by (i) Moon and
Schorfheide (2004), who consider an empirical likelihood version of the GMM criterion
function and assume identification of θ0, (ii) Soares (2005), who allows for the plug-in
of preliminary estimators in a GMM and/or empirical likelihood criterion function,
and (iii) Rosen (2005), who considers a minimum distance version of the test statistic.
By similar arguments to those given below, one can show that the limit of the finite-
sample size of a subsample CR based on any one of these test statistics equals its
nominal level. The results for fixed and plug-in critical values also extend to these test
statistics. Hence, for these versions of the test statistics as well, we find that the PCV
has the best properties. For brevity, we outline the argument in Appendix A.

The model is as follows. The true value θ0 (∈ Θ ⊂ Rd) is assumed to satisfy the
following moment conditions:

EFmj(Wi,θ0) ≥ 0 for j = 1, ..., p and
EFmj(Wi,θ0) = 0 for j = p+ 1, ..., p+ s, (9.7)

where {mj(·, θ) : j = 1, ..., p+ s} are scalar-valued moment functions and {Wi : i ≥ 1}
are stationary random vectors with joint distribution F.
12CHT focus on CRs for the identified set, rather than the true parameter. By definition, the

identfied set, Θ0, is the set of all θ ∈ Θ that satisfy the moment inequalities and equalities when the
true value is θ0. Also, CHT consider a more general criterion function than that considered below.
Their asymptotic results do not establish that the limit of the finite sample size of the CR for the true
value is the nominal level, which is one of the results shown in this section.
13Strictly speaking this is not true because Shaikh’s results do not establish uniformity over the true

θ value, although it should not be difficult to extend his results to do so.
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The sample moment functions are

mn,j(θ) = n
−1

n[
i=1

mj(Wi, θ) for j = 1, ..., p+ s. (9.8)

The test that we invert to construct a confidence region is based on an Anderson—
Rubin-type GMM statistic for testing H0 : θ = θ0 that gives positive weight to the
moment inequalities only when they are violated:

Tn(θ0) = n

p[
j=1

(mn,j(θ0)/eσn,j(θ0))2− + n p+s[
j=p+1

(mn,j(θ0)/eσn,j(θ0))2, where
(x)− =

�
x if x < 0
0 if x ≥ 0 (9.9)

and eσ2n,j(θ0) is a consistent estimator of σ2F,j(θ0) = limn→∞ V arF (n1/2mn,j(θ0)) for
j = 1, ..., p+s. For example, with i.i.d. observations, one can define eσ2n,j(θ0) = n−1Sn

i=1

(mj(Wi, θ0)−mn,j(θ0))
2.

The subsample statistics are constructed such that Assumption Sub2 holds. (No
consistent estimator of the true parameter exists when the latter is unidentified, so a
subsample procedure that satisfies Assumption Sub1 is not suitable.)

We now specify γ = (γ1, γ2, γ3) for this example. The moment conditions in (9.7)
can be written as

σ−1F,j(θ0)EFmj(Wi, θ0)− γ1,j,0 = 0 for j = 1, ..., p and

σ−1F,j(θ0)EFmj(Wi, θ0) = 0 for j = p+ 1, ..., p+ s (9.10)

for some γ1,0 = (γ1,1,0, ..., γ1,p,0)
� ∈ Rp+. Let Ω0 = limn→∞CorrF (n1/2mn(θ0)), where

mn(θ0) = (mn,1(θ0), ...,mn,p+s(θ0))
� and CorrF (n1/2mn(θ0)) denotes the (p+s)×(p+s)

correlation matrix of n1/2mn(θ0). Let γ1, Ω, and θ denote generic parameter values
corresponding to the true parameter values γ1,0, Ω0, and θ0, respectively. We take
γ = (γ1, γ2, γ3) such that γ1 ∈ R

p
+, γ2 = (γ�2,1, γ�2,2)� = (θ�, vech∗(Ω)�)� ∈ Rq, where

vech∗(Ω) denotes vech(Ω) with the diagonal elements of Ω deleted, q = d+(p+ s)(p+
s− 1)/2, and γ3 = F.

We take r = 1/2 and h = (h1, h2), where h1 ∈ Rp+,∞, h2 = (h�2,1, h�2,2)�, h2,1 ∈cl(Θ),
h2,2 ∈cl(Γ2,2), and Γ2,2 is some set of vectors γ2,2 such that γ2,2 = vech∗(C) for some
(p + s) × (p + s) correlation matrix C. Hence, H = Rp+,∞×cl(Θ) ×cl(Γ2,2). Note that
h1 corresponds to γ1 and, hence, h1 measures the extent to which the j = 1, ..., p
moment inequalities deviate from being equalities. Also, h2,1 corresponds to θ and h2,2
corresponds to vech∗(Ω).

The parameter spaces for γ1 and γ2 are Γ1 = R
p
+ and Γ2 = Θ× Γ2,2, respectively.

For given (γ1, γ2) ∈ Γ1 × Γ2, the parameter space for F is

F(γ1, γ2) = {F : σ−1F,j(θ)EFmj(Wi, θ)− γ1,j = 0 for j = 1, ..., p, (9.11)

EFmj(Wi, θ) = 0 for j = p+ 1, ..., p+ s},
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such that {F(γ1, γ2) : (γ1, γ2) ∈ Γ1 × Γ2} satisfies the following “convergence condi-
tion.” By definition, the convergence condition restricts {F(γ1, γ2) : (γ1, γ2) ∈ Γ1×Γ2}
so that under any {γn,h = (γn,h,1, (θ�n,h, vech∗(Ωn,h)�)�, Fn,h) : n ≥ 1} for any h ∈ H,
we have

(An,1, ..., An,p+s)
� →d Zh2,2 ∼ N(0, Ch2,2) as n→∞, where

An,j = n
1/2(mn,j(θn,h)−EFn,hmn,j(θn,h))/σFn,h,j(θn,h), andeσnj(θn,h)/σFn,h,j(θn,h)→p 1 as n→∞ (9.12)

for j = 1, ..., p + s, where Ch2,2 is the (p + s) × (p + s) correlation matrix for which
vech∗(Ch2,2) = h2,2. For example, if the observations {Wi : i ≥ 1} are i.i.d. under a fixed
γ and eσ2nj(θ) is defined as above, the convergence condition holds ifEF |mj(Wi, θ)|2+δ1 ≤
M and σF,j(θ) ≥ δ2 for j = 1, ..., p+ s for some constants M <∞ and δ1, δ2 > 0 that
do not depend on F. (This holds by straightforward calculations using the CLT and
LLN for i.n.i.d. random vectors that satisfy a uniform 2+ δ1 moment bound.) For de-
pendent observations, one needs to specify a specific variance estimator eσ2nj(θ), such as
a HAC estimator, before a primitive convergence condition can be stated. For brevity,
we do not do so here. Note that (9.12) and the other conditions employed here allow
for weak identification because the test statistic considered is an Anderson-Rubin-type
statistic.

Given (9.9) and (9.12), Assumption B2 holds because under {γn,h : n ≥ 1} we have

Tn(θn,h)→d

p[
j=1

(Zh2,2,j + h1,j)
2
− +

p+s[
j=p+1

Z2h2,2,j ∼ Jh (9.13)

for all h ∈ H, where Zh2,2 = (Zh2,2,1, ..., Zh2,2,p+s)� and h1 = (h1,1, ..., h1,p)�. (Note that
(Zh2,2,j� + h1,j�)− = 0 for any j� in {1, ..., p} for which h1,j� =∞.)

For all (g, h) ∈ GH, we have
Jg ≥ST Jh, (9.14)

where ≥ST denotes “stochastically greater than or equal to.” This holds becauseSp
j=1(Zh2,2,j + g1,j)

2− ≥
Sp
j=1(Zh2,2,j + h1,j)

2− a.s. for all 0 ≤ g1 ≤ h1 (where g1 =
(g1,1, ..., g1,p)

�) due to the (·)− function. Furthermore, when s > 0 (i.e., when some
equality constraints appear), Jh is continuous at its 1− α quantile for all α < 1/2. In
consequence, when s > 0 by Corollary 3(d) and Comment 2 following Theorem 2, for
the subsample CR, we have

AsyCS = inf
(g,h)∈GH

Jh(cg(1− α)) = 1− α (9.15)

for α < 1/2.
For the case when s = 0, Jh(x) is discontinuous at x = 0 when h = (∞p, h2),

where ∞p = (∞, ...,∞)� ∈ Rp∞, and this implies that inf(g,h)∈GH Jh(cg(1 − α)−) 9=
inf(g,h)∈GH Jh(cg(1 − α)). Nevertheless, AsyCS equals 1 − α in this case too. See the
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fourth section of Appendix A for details. To conclude, in this example, discontinuity
of the limit distribution does not cause size distortion for the subsample CR.

We now verify the remaining assumptions needed for Corollary 3. Assumption A2
holds with Γ defined as above. Assumption C holds by choice of bn. Assumption D
holds by stationarity and the standard definition of subsample statistics in the i.i.d. and
dependent cases. Assumption E holds by the general argument given in Section 5 for
i.i.d. observations and stationary strong mixing observations provided supγ∈Γ αγ(m)→
0 asm→∞. Assumption F2 holds for all α < 1/2 because if s > 0, then Jh is absolutely
continuous with strictly increasing df, and if s = 0, then Jh has supportR+, the df Jh(x)
has a jump at x = 0 and no other jumps, is strictly increasing on R+ if any element
of h1 is finite, and equals one on R+ if all elements of h1 are infinite. Assumption G2
holds automatically because the subsample procedure satisfies Assumption Sub2.

Next, we discuss FCV CRs. Corollary 3(c), combined with the continuity results
concerning Jh given in the discussion of Assumption F2 above and the result above
that Jg ≥ST Jh for (g, h) ∈ GH, imply that for an FCV CR

AsyCS = inf
h∈H

Jh(cFix(1− α)) = inf
h2∈H2

J(0,h2)(cFix(1− α)). (9.16)

Hence, if cFix(1− α) is defined such that

inf
h2∈H2

J(0,h2)(cFix(1− α)) = 1− α, (9.17)

then the FCV CR has asymptotic level 1 − α, as desired. By (9.13), the distribution
J(0,h2) only depends on

h2,2 = vech∗( lim
n→∞CorrFn,h(n

1/2mn(θn,h))). (9.18)

Hence, determination of the value cFix(1− α) that satisfies (9.17) only requires maxi-
mization over the possible asymptotic correlation matrices of n1/2mn(θn,h). For example
if p = 1 and s = 0, then J(0,h2) is the distribution of a random variable that is 0 with
probability 1/2 and is chi-squared with one degree of freedom with probability 1/2.
Hence, no unknown parameter appears. If p+ s = 2, then J(0,h2) depends on the scalar
h2,2, which is the asymptotic correlation between n1/2mn,1(θn,h) and n1/2mn,2(θn,h).
For general p+s, one can determine cFix(1−α) such that the infimum in (9.16) equals
1− α via simulation.

Given (9.16), one can design a data-dependent “plug-in” critical value (PCV) that
yields a more powerful test than the FCV test and, hence, a smaller CR, because it is
closer to being asymptotically similar. Let cPlug(h2,2, 1− α) denote the 1− α quantile
of J(0,h2)(x) (which only depends on h2,2). Let eh2,2,n be a consistent estimator of h2,2.
The PCV is

cPlug(eh2,2,n, 1− α), (9.19)

where eh2,2,n − h2,2 →p 0 and, hence, cPlug(eh2,2,n, 1 − α) − cPlug(h2,2, 1 − α) →p 0 as
n → ∞ under {γn,h : n ≥ 1}. For example, in the case of i.i.d. observations, one can
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take

eh2,2,n = vech∗
� eD−1/2n (θ0)eVn(θ0) eD−1/2n (θ0)

�
, where

eVn(θ0) = n−1
n[
i=1

(m(Wi, θ0)−mn(θ0))(m(Wi, θ0)−mn(θ0))
�,

m(Wi, θ0) = (m1(Wi, θ0), ...,mp+s(Wi, θ0))
�, andeDn(θ0) = Diag{eσ2n,1(θ0), ..., eσ2n,p+s(θ0)}. (9.20)

The PCV, cPlug(eh2,2,n, 1− α), can be computed by simulation.
The use of the PCV yields a CR for the true value θ0 whose finite-sample size has

limit equal to 1 − α (using (9.16) with Fix replaced by Plug). The PCV CR is not
asymptotically similar because the limit of its coverage probability exceeds 1−α when
h1 9= 0. However, it is closer to being asymptotically similar than the FCV CR is,
because cPlug(h2,2, 1− α)) ≤ suph2∈H2 cPlug(h2,2, 1− α) = cFix(1− α) for all h2,2 with
strict inequality for some h2,2.

See Appendix A for some extensions of this example.

9.3 CI for the Endpoint of a Distribution

In this example, we consider an equal-tailed subsample CI for the lower endpoint,
θ, of the support of a distribution. The observations {Xi : i = 1, ..., n} are i.i.d.
with distribution F, where F has a density f with respect to Lebesgue measure and
support with finite lower endpoint θ = F−1(0). For example, F could be U [θ, 1]. This
example is non-regular in that rate-n consistent estimators of θ are available. Bickel
and Freedman (1981) show that the bootstrap is inconsistent in this example (or a
slightly different version of it). Several papers have considered the b < n bootstrap
in this example and have shown that it is consistent (for any fixed parameter value),
see Swanepoel (1986), Shao (1994), and Bickel, Götze, and van Zwet (1997). We show
that an equal-tailed subsample CI with nominal level 1−α has AsyCS = 1−α. Hence,
subsampling “works” in this case. This occurs because this is a “continuous limit”
example. That is, the asymptotic distribution of the test statistic considered under
any fixed parameter is continuous in the parameter. (In addition, one needs continuity
of the asymptotic distribution function at the appropriate quantile(s).) This example
is of interest in econometrics because it is a special case of production function frontier
and some auction models, see Hirano and Porter (2003) and Chernozhukov and Hong
(2004).

For brevity, the details of this example are given in Appendix B.
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10 Appendix A

10.1 Studentized t Statistics

In this section we provide sufficient conditions for Assumption G2 for the case
when Tn is a studentized t statistic and the subsample statistics satisfy Assumption
Sub1. This result generalizes Lemma 1 because Assumption t2 is not imposed. The
results apply to models with i.i.d., stationary and weakly dependent, or nonstationary
observations.

Just as Tn,bn,j(θ0) is defined, let (eθn,bn,j , eσn,bn,j) be the subsample statistics that
are defined exactly as (eθn, eσn) are defined, but based on the jth subsample of size bn.
In analogy to Un,bn(x) defined in (3.9), we define

Uσ
n,bn(x) = q

−1
n

qn[
j=1

1(dbneσn,bn,j ≤ x) (10.1)

for a sequence of normalization constants {dn : n ≥ 1}. Although Uσ
n,bn

(x) depends on
{dn : n ≥ 1}, we suppress the dependence for notational simplicity.

We now state modified versions of Assumptions B2, D, E, and H that are used with
studentized statistics when Assumption Sub1 holds.

Assumption BB2. (i) For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1}, some
normalization sequences of positive constants {an : n ≥ 1} and {dn : n ≥ 1}, and some
distribution (Vh,Wh) on R2, (an(eθn− θ0), dneσn)→d (Vh,Wh) under {γn,h : n ≥ 1}, (ii)
Pθ0,γn,h(eσn,bn,j > 0 for all j = 1, ..., qn)→ 1 under all sequences {γn,h : n ≥ 1} and all
h ∈ H, and (iii) Wh(0) = 0 for all h ∈ H.
Assumption DD. (i) {(eθn,bn,j , eσn,bn,j) : j = 1, ..., qn} are identically distributed under
any γ ∈ Γ for all n ≥ 1 and (ii) (eθn,bn,1, eσn,bn,1) and (eθbn , eσbn) have the same distribution
under any γ ∈ Γ for all n ≥ 1.
Assumption EE. For all h ∈ H and all sequences {γn,h : n ≥ 1} with corresponding
normalization {dn : n ≥ 1} as in Assumption BB2, Uσ

n,b(x) − Eθ0,γn,hU
σ
n,b(x) →p 0

under {γn,h : n ≥ 1} for all x ∈ R.
Assumption HH. abn/an → 0.

In most examples, the normalization sequences {an : n ≥ 1} and {dn : n ≥ 1} in
Assumptions BB2, EE, and HH do not depend on {γn,h : n ≥ 1}. In consequence, for
notational simplicity, this dependence is suppressed. For example, in a model with i.i.d.
or stationary strong mixing observations, one often takes dn = 1 for all n, Wh to be a
pointmass distribution with pointmass at the probability limit of eσn, and an = n1/2.

However, in some cases the normalization sequences {an : n ≥ 1} and {dn : n ≥ 1}
need to depend on {γn,h : n ≥ 1}. For example, this occurs when the observations are
stationary or nonstationary depending on the value of γ. In particular, it occurs in an
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autoregressive model with a root that is less than or equal to one, see Andrews and
Guggenberger (2005a) for an analysis of this model.

When {an : n ≥ 1} and {dn : n ≥ 1} depend on {γn,h : n ≥ 1}, it must be the
case that τn = an(γn,h)/dn(γn,h) does not depend on {γn,h : n ≥ 1}. Also, in this case,
Assumption HH becomes: For all sequences {γn,h : n ≥ 1} for which brnγn,h,1 → g1 for
some g1 ∈ Rp∞, abn(γn,h)/an(γn,h) → 0. When dn depends on γn,h, the normalization
constant dbn that appears in U

σ
n,b(x) in Assumption EE is dbn = dbn(γn,h).

Assumption BB2 implies Assumption B2 with τn = an/dn (by the continuous
mapping theorem using Assumption BB2(iii)). Note that there is a certain redundancy
of normalization constants in Assumption BB2. If dn is known (as occurs in some
models, but not all models), then without any loss of generality one could absorb dn into
the definition of eσn and take dn = 1 for all n. We do not do this for three reasons. First,
if dn is unknown (because it depends on the unknown true data generating procedure)
and is absorbed into eσn, then eσn is unknown, which is problematic. Second, if there
is a conventional definition of eσn, then absorbing dn into the definition of eσn would
preclude its use. Third, it is convenient to keep the assumptions as close as possible to
those of PRW.

Assumption DD implies Assumption D. Assumption DD is not restrictive given the
standard methods of defining subsample statistics. Assumption EE holds automatically
when the observations are i.i.d. for each fixed γ ∈ Γ or are stationary, strong mixing,
and satisfy the condition in (5.9) for each fixed γ ∈ Γ provided the subsamples are
constructed as described in Section 5 (for the same reason that Assumption E holds in
these cases). Assumption HH holds in many examples when Assumption C holds, as is
typically the case. However, it does not hold if θ is unidentified when γ = 0 (because
consistent estimation of θ is not possible in this case and an = 1 in Assumption BB2(i)).
For example, this occurs in a model with weak instruments.

The following Lemma generalizes Lemma 1. It does not impose Assumption t2.

Lemma 2 Assumptions t1, Sub1, A2, BB2, C, DD, EE, and HH imply Assumption
G2.

Comments. 1. Given Lemma 2, the result of Theorem 2(b) holds for studentized t
statistics under Assumptions t1, Sub1, A2, BB2, C, DD, E, EE, F2, and HH. These
Assumptions imply Assumptions B2, D, and G2.

2. The proof of Lemma 2 is a variant of the proofs of Theorems 11.3.1(i) and
12.2.2(i) of PRW to allow for nuisance parameters {γn,h : n ≥ 1} that vary with n and
t statistics that may be one- or two-sided.14

Example 1 (cont.). Assumption G2 follows from Lemma 2 in this example by
noting that Assumptions BB2 and HH hold with an = n1/2, dn = 1, τn = n1/2, Vh = Jh,

14Lemma 2 does not assume τbn/τn → 0 (only Assumption HH), although PRW’s results do. A
careful reading of their proof reveals that the assumption abn/an → 0 is enough to show that Un,b(x)
and Ln,b(x) have the same probability limits.
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and Wh equal to pointmass at one (where, as above, we assume σ21 = 1 without loss of
generality).

We next show that Max−Type(α) = MaxType(α) for Type = Fix and Sub in this
example and verify the formulae given in (6.6). For all h = (h1, h2) ∈ H with |h2| < 1,
±J∗h(x) and |J∗h(x)| are continuous at all x ∈ R . If h2 = 1, J∗h(x),−J∗h(x), and |J∗h(x)|
have jumps at x = −h1, h1, and h1, respectively, but are continuous for all other
x ∈ R. Likewise, if h2 = −1, J∗h(x),−J∗h(x), and |J∗h(x)| have jumps at x = h1,−h1,
and h1, respectively, but are continuous for all other x ∈ R. In addition, Jh = J∗h is
stochastically increasing (decreasing) in h1 for h2 < 0 (h2 ≥ 0).

Using these results, for Jh = J∗h, we have

Max−Fix(α) = 1− inf
h∈H

Jh(cFix(1− α)−) = 1− inf
h2∈[0,1]

J(0,h2)(z1−α) and

Max−Sub(α)
= 1−min{ inf

(g,h)∈GH
Jh(cg(1− α)), inf

((g1,−1),(h1,−1))∈GH
J(h1,−1)(c(g1,−1)(1− α)−)}

= 1− inf
h2∈[−1,0]

J∞(c(0,h2)(1− α)). (10.2)

In the second and last equalities of (10.2), we use that Jh = J∗h is stochastically in-
creasing (decreasing) in h1 for h2 < 0 (h2 ≥ 0) which implies that

inf
h1∈[0,∞],h2∈[−1,0)

J(h1,h2)(z1−α−) = J∞(z1−α) = 1− α,

inf
(g,h)∈GH,h2∈[0,1]

Jh(cg(1− α))

= min{ inf
h1∈[0,∞),h2∈[0,1]

J(h1,h2)(c(0,h2)(1− α)), inf
h1∈[0,∞],h2∈[0,1]

J∞(c(h1,h2)(1− α))}

= min{1− α, 1− α} = 1− α, and

inf
((g1,−1),(h1,−1))∈GH

J(h1,−1)(c(g1,−1)(1− α)−) = J∞(c(0,−1)(1− α)). (10.3)

By the same argument as above, MaxFix(α) and MaxSub(α) equal the right-hand side
expressions in (10.2). This implies that Max−Type(α) = MaxType(α) for Type = Fix
and Sub for Jh = J∗h and verifies the expressions for MaxType(α) given in (6.6).

The proof that Max−Type(α) = MaxType(α) for lower one-sided tests is the same
with h2 replaced by −h2. The proof for symmetric two-sided tests is similar.

We now verify Assumption J2. For |h2| < 1, Jh(x) = J∗h(x) is strictly increasing
for all x ∈ R. When h2 = 1, Jh(x) = J∗h(x) equals zero for x < −h1 and is strictly
increasing for all x ≥ −h1. Finally, for h2 = −1, Jh(x) = J∗h(x) is strictly increasing
for all x ≤ h1 and equals 1 otherwise. In consequence, Assumption J2 holds.

Next, we show that Max�−ET,Fix(α) =Max
r−
ET,Fix(α). For α < 1/2, we have

sup
h∈H:h2=1

[1− Jh(cFix(1− α/2)−) + Jh(cFix(α/2))]

= sup
h1∈[0,∞]

[1− J(h1,1)(z1−α/2) + J(h1,1)(zα/2)]
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= α/2 + sup
h1∈[0,∞]

J(h1,1)(zα/2)

= α/2 + J∞(zα/2) = α, (10.4)

where for the first and second equalities we use continuity of J(h1,1)(x) for x > 0
and the fact that J(h1,1)(x) for x ≥ 0 does not depend on h1 ∈ [0,∞]. Similarly,
because infh∈H:h2=−1 Jh(cFix(1− α/2)−) = J∞(z1−α/2) = 1− α/2 and J(h1,−1)(x) for
x ≤ 0 does not depend on h1 ∈ [0,∞], we also have suph∈H:h2=−1[1 − Jh(cFix(1 −
α/2)−)+Jh(cFix(α/2))] = α. Therefore, by continuity of Jh(x) = J∗h(x) for |h2| < 1, it
follows thatMax�−ET,Fix(α) =Max

r−
ET,Fix(α). Similar arguments yieldMax

�−
ET,Sub(α) =

Maxr−ET,Sub(α).

10.2 Examples

10.2.1 CI Based on a Post-Model-Selection/Super-Efficient
Estimator (cont.)

Here we verify Assumptions A1, B1, C-E, F1, and G1 for this example for arbitrary
choice of the parameter h. Assumption A1 holds because Γ = R, Assumption C holds by
assumption, Assumptions D and E hold because the observations are i.i.d. for each fixed
θ ∈ R, Assumption H holds because τ bn/τn = b

1/2
n /n1/2 → 0 by Assumption C, and

Assumption G1 holds by Lemma 1(a) using Assumption H. For a = 0, Assumption F1
holds because Jh0(x) = 1(x ≥ 0) has a jump at x = ch0(1−α) = 0 with Jh0(ch0(1−α)) =
1 > 1−α. For a ∈ (0, 1), Assumption F1 holds because Jh0(x) = Φ(a−1x)−Φ(−a−1x)
is strictly increasing at ch0(1− α) = az1−α/2.

Next, we verify Assumption B1. For any true sequence {γn : n ≥ 1} for which
n1/2γn (= n

1/2θn) = O(1), we have

Pγn(n
1/2|Xn| ≤ κn) = Pγn(|n

1/2(Xn − θn) + n
1/2θn| ≤ κn)

= Pγn(|Op(1) +O(1)| ≤ κn)→ 1 and

Pγn(
eθn = aXn) → 1, (10.5)

where the second equality uses the fact that n1/2(Xn−θn) has mean zero and variance
one and the second convergence result uses the definition of eθn in (9.2). Therefore (9.3)
holds. For the particular sequence γn,h (= θn,h) = hn

−1/2 in Assumption B1(i), (9.3)
implies that Assumption B1(i) holds with Jh(x) defined as above. For any sequence
{γn,0 : n ≥ 1} as in Assumption B1(ii), we have n1/2γn,0 = O(1), (10.5) holds, and
(9.3) holds. Hence, Assumption B1(ii) holds with Jh0(x) = J0(x) defined as above.

10.2.2 Confidence Region Based on Moment Inequalities (cont.)

Here we discuss confidence regions based on moment inequalities using (i) an empir-
ical likelihood criterion function, (ii) a GMM criterion function that employs a consis-
tent preliminary estimator of a vector of identified parameters, (iii) a minimum distance
criterion function, and (iv) restrictions on the parameter space Γ1 = R

p
+.
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For an empirical likelihood-based test statistic, the asymptotic distribution of the
test statistic is the same as the GMM-based statistic above. Hence, the same argument
as above leads to (9.15) and the subsample, FCV, and PCV CRs have the desired
asymptotic level. The PCV CR yields the smallest CR based on an empirical likelihood
test statistic.

Next, suppose the population moment functions are of the form EFmj(Wi,θ0, τ0) ≥
0 for j = 1, ..., p and EFmj(Wi,θ0, τ0) = 0 for j = p+1, ..., p+s, where τ0 is a parameter
for which a preliminary asymptotically normal estimator eτn(θ0) exists, as in Soares
(2005). The sample moment functions are of the form mn,j(θ) = mn,j(θ,eτn(θ)). In
this case, the asymptotic variance of n1/2mn,j(θ), as well as the quantities Ω and h2,2,
take different values than when τ0 appears in place of eτn(θ0). But, the form of the
asymptotic distribution given in (9.13) is the same. (This relies on suitable smoothness
of EFmj(Wi,θ0, τ0) with respect to τ0.) In consequence, by the same argument as above,
we have Jg ≥ST Jh for (g, h) ∈ GH and (9.15), (9.16), and the above PCV CR results
hold. Hence, use of a preliminary estimator in the GMM criterion function does not
cause size distortion for the subsample, FCV, or PCV CRs (provided Jh is properly
defined and takes into account the estimation of τ0 when computing cFix(1 − α) or
cPlug(eh2,2,n, 1− α)).

We now discuss CRs based on a minimum distance test statistic, as in Rosen (2005).
(Rosen (2005) does not consider subsample critical values, but we do here.) For testing
H0 : θ = θ0, the test statistic is

Tn(θ0) = inf
t=(t�1,0�s)�:t1∈Rp+

n(mn(θ0)− t)� eV −1n (mn(θ0)− t), (10.6)

where mn(θ) = (mn,1(θ), ...,mn,p+s(θ)),
� eVn is a consistent estimator of V = limn→∞

V arF (n
1/2mn(θ0)) when θ0 is the true parameter, and V is assumed to be nonsingular.

In this case, under {γn,h : n ≥ 1}, some calculations yield

Tn(θn,h)→d L(h) ∼ Jh, where

L(h) = inf
t1∈Rp+

�
Zh2,2 −

�
t1 − h1
0s

���
C−1h2,2

�
Zh2,2 −

�
t1 − h1
0s

��
and

Zh2,2 ∼ N(0, Ch2,2), (10.7)

where Ch2,2 is the correlation matrix defined in (9.12) and Ch2,2 is assumed to be
nonsingular for all h2,2 in the parameter space. If 0 ≤ g1 ≤ h1, then algebra and
Rp+ − g1 ⊂ R

p
+ − h1 give

L(h) = inf
t∗1∈Rp+−h1

�
Zh2,2 −

�
t∗1
0s

���
C−1h2,2

�
Zh2,2 −

�
t∗1
0s

��
≤ inf

t∗1∈Rp+−g1

�
Zh2,2 −

�
t∗1
0s

���
C−1h2,2

�
Zh2,2 −

�
t∗1
0s

��
a.s. (10.8)
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Also, for (g, h) ∈ GH, we have 0 ≤ g1 ≤ h1 and g2,2 = h2,2. These results imply
that Jg ≥ST Jh for (g, h) ∈ GH and (9.15) holds. Hence, discontinuity of the limit
distribution also does not cause size distortion for the CR based on the subsample
minimum distance statistic. Analogous results to those above for the FCV and PCV
CRs also hold.

All of the discussion above takes the parameter space for γ1 = (γ1,1, ..., γ1,p)
� to be

Γ1 = Rp+. This is appropriate when a specific value of one component, γ1,j say for a
j ∈ {1, ..., p}, does not put any additional restriction on the other components γ1,k for
k 9= j, but is not appropriate otherwise. For example, consider a location model with
interval outcomes. For simplicity, suppose the interval endpoints are integer values.
The model is y∗i = θ0 + ui for a zero mean disturbance ui and yi = [y∗i ] for i = 1, ..., n,
where [y∗i ] denotes the integer part of y

∗
i , y

∗
i is not observed, and yi is observed. The

interval outcome [yi, yi + 1] necessarily includes the unobserved outcome variable y∗i .
Two moment inequalities that place bounds on θ0 are (i) −Eθ0yi + θ0 ≥ 0 and (ii)
Eθ0yi+1−θ0 ≥ 0. In this example, γ1,1 = −Eθ0yi+θ0 and γ1,2 = Eθ0yi+1−θ0 satisfy
the additional restriction γ1,1 + γ1,2 = 1.

Analysis of the interval outcome model can be done using the general results of this
paper as follows. We have (−Eθ0yi+ θ0) ∈ [0, 1].We treat the two cases (a) (−Eθ0yi+
θ0) ∈ [0, 1/2] and (b) (−Eθ0yi + θ0) ∈ (1/2, 1] separately because the asymptotic
distribution of Tn(θn,h) is discontinuous both at −Eθ0yi+ θ0 = 0 and at −Eθ0yi+ θ0 =
1. For case (a), we define γ1 via (−Eθ0yi + θ0) + γ1 = 0 for γ1 ∈ [0, 1/2] and, in
consequence, (Eθ0yi + 1 − θ0) − (1 − γ1) = 0. Using these equalities in place of the
equalities in (9.10), we can analyze this model in the same way as above with p = 2
and s = 0. We obtain the same result as above that the limit of finite-sample size
is the nominal level for subsample CRs when (−Eθ0yi + θ0) ∈ [0, 1/2]. For case (b),
we define γ1 via (Eθ0yi + 1 − θ0) − γ1 = 0 for γ1 ∈ [0, 1/2] and, in consequence,
(−Eθ0yi+θ0)+(1−γ1) = 0. Analogously, using these equalities in place of the equalities
in (9.10), we can analyze this model in the same way as above. We obtain the same
result as above that the limit of finite-sample size is the nominal level for subsample
CRs when (−Eθ0yi+ θ0) ∈ (1/2, 1]. Combining the results from cases (a) and (b) gives
the same result for the model in which (−Eθ0yi + θ0) ∈ [0, 1].

10.3 Proofs

The following Lemmas are used in the proofs of Theorems 1 and 2. (The expressions
κn → [κ1,∞,κ2,∞] and G(x−) used below are defined in Section 5.2.)

Lemma 3 Suppose (i) for some df’s Ln(·) and GL(·) on R, Ln(x) →p GL(x) for all
x ∈ C(GL), (ii) Tn →d GT , where Tn is a scalar random variable and GT is some
distribution on R, and (iii) for all ε > 0, GL(c∞ + ε) > 1− α, where c∞ is the 1− α
quantile of GL for some α ∈ (0, 1). Then for cn := inf{x ∈ R : Ln(x) ≥ 1 − α}, (a)
cn →p c∞ and (b) P (Tn ≤ cn)→ [GT (c∞−),GT (c∞)].
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Comments. 1. Condition (iii) holds if GL(x) is strictly increasing at x = c∞ or if
GL(x) has a jump at x = c∞ with GL(c∞) > 1− α and GL(c∞−) < 1− α.

2. If GT (x) is continuous at c∞, then the result of part (b) is P (Tn ≤ cn) →
GT (c∞).

Lemma 4 Suppose Assumptions A2, B2, C-E, F2, and G2 hold. Let {wn : n ≥ 1}
be any subsequence of {n}. Let {γwn = (γwn,1, γwn,2, γwn,3) : n ≥ 1} be a sequence of
points in Γ that satisfies (i) wrnγwn,1 → h1 for some h1 ∈ Rp∞, (ii) brwnγwn,1 → g1 for
some g1 ∈ Rp∞, and (iii) γwn,2 → h2 for some h2 ∈ Rq∞. Let h = (h1, h2), g = (g1, g2),
and g2 = h2. Then, we have

(a) (g, h) ∈ GH,
(b) Eθ0,γwn

Uwn,bwn (x)→ Jg(x) for all x ∈ C(Jg),
(c) Uwn,bwn (x)→p Jg(x) for all x ∈ C(Jg) under {γwn : n ≥ 1},
(d) Lwn,bwn (x)→p Jg(x) for all x ∈ C(Jg) under {γwn : n ≥ 1},
(e) cwn,bwn (1− α)→p cg(1− α) under {γwn : n ≥ 1},
(f) Pθ0,γwn (Twn(θ0) ≤ cwn,bwn (1− α))→ [Jh(cg(1− α)−), Jh(cg(1− α))], and
(g) if ||h1|| <∞ and wn = n for all n ≥ 1, then parts (b)-(f) hold with Assumptions

A2, B2, F2, and G2 replaced by Assumptions A1, B1, F1, and G1 and (g, h) in parts
(b)-(f) equal (h0, h) of Assumption B1.

Comment. If Jh is continuous at cg(1 − α), Pθ0,γwn (Twn(θ0) ≤ cwn,bwn (1 − α)) →
Jh(cg(1− α)).

Lemma 5 Suppose Assumptions A2, B2, C-E, F2, and G2 hold. Let (g, h) ∈ GH be
given. Then, there is a sequence {γn = (γn,1, γn,2, γn,3) : n ≥ 1} of points in Γ that
satisfy conditions (i)-(iii) of Lemma 4 and for this sequence parts (b)-(f) of Lemma 4
hold with wn replaced by n.

Proof of Lemma 3. For ε > 0 such that c∞ ± ε ∈ C(GL) ∩ C(GT ), we have

Ln(c∞ − ε)→p GL(c∞ − ε) < 1− α and

Ln(c∞ + ε)→p GL(c∞ + ε) > 1− α (10.9)

by assumptions (i) and (iii) and the fact that GL(c∞ − ε) < 1− α by the definition of
c∞. This and the definition of cn yield

P (An(ε))→ 1, where An(ε) = {c∞ − ε ≤ cn ≤ c∞ + ε}. (10.10)

There exists a sequence {εk > 0 : k ≥ 1} such that εk → 0 as k → ∞ and c∞ ± εk ∈
C(GL) ∩ C(GT ) for all k ≥ 1. Hence, part (a) holds.

Let P (A,B) denote P (A ∩B). For part (b), using the definition of An(ε), we have

P (Tn ≤ c∞ − ε, An(ε)) ≤ P (Tn ≤ cn, An(ε)) ≤ P (Tn ≤ c∞ + ε). (10.11)
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Hence,

lim sup
n→∞

P (Tn ≤ cn) = lim sup
n→∞

P (Tn ≤ cn, An(ε))

≤ lim sup
n→∞

P (Tn ≤ c∞ + ε) = GT (c∞ + ε), and

lim inf
n→∞ P (Tn ≤ cn) = lim inf

n→∞ P (Tn ≤ cn, An(ε))

≥ lim inf
n→∞ P (Tn ≤ c∞ − ε, An(ε)) = GT (c∞ − ε) (10.12)

using assumption (ii), c∞ ± ε ∈ C(GT ), and (10.10). Given a sequence {εk : k ≥ 1} as
above, (10.12) establishes part (b).

Proof of Lemma 4. First, we prove part (a). We need to show that g ∈ H, h ∈ H,
g2 = h2, and conditions (i)-(iii) in the definition of GH hold. Form = 1, ..., p, if am = 0,
then g1,m, h1,m ∈ R+,∞ by conditions (i) and (ii) of the Lemma. Likewise, if bm = 0,
then g1,m, h1,m ∈ R−,∞. Otherwise, g1,m, h1,m ∈ R∞. Hence, by the definition of H1,
g1, h1 ∈ H1. By condition (iii) of the Lemma, h2 ∈cl(Γ2) = H2. Combining these results
gives g, h ∈ H. By assumption of the Lemma, g2 = h2. By conditions (i) and (ii) of the
Lemma and Assumption C(ii), conditions (i)-(iii) of GH hold. Hence, (g, h) ∈ GH.

Next, we prove part (b). For notational simplicity, we drop the subscript θ0 from
Pθ0,γ and Eθ0,γ . We have

Eγwn
Uwn,bwn (x) = q

−1
wn

qwn[
j=1

Pγwn (Twn,bwn ,j(θ0) ≤ x)

= Pγwn (Twn,bwn ,1(θ0) ≤ x) = Pγwn (Tbwn (θ0) ≤ x), (10.13)

where the first equality holds by definition of Uwn,bwn (x), the second equality holds by
Assumption D(i), and the last equality holds by Assumption D(ii).

We now show that Pγwn (Tbwn (θ0) ≤ x) → Jg(x) for all x ∈ C(Jg) by showing
that any subsequence {tn} of {wn} has a sub-subsequence {sn} for which Pγsn (Tbsn (θ0)
≤ x)→ Jg(x).

Given any subsequence {tn}, select a sub-subsequence {sn} such that {bsn} is
strictly increasing. This can be done because bwn →∞ by Assumption C(i). Because
{bsn} is strictly increasing, it is a subsequence of {n}.

Below we show that Assumption B2 implies that for any subsequence {un} of {n}
and any sequence {γ∗un = (γ∗un,1, γ∗un,2, γ∗un,3) ∈ Γ : n ≥ 1}, that satisfies (i�) urnγ∗un,1 →
g1 and (ii�) γ∗un,2 → g2 ∈ Rq, we have

Pγ∗un (Tun(θ0) ≤ y)→ Jg(y), (10.14)

for all y ∈ C(Jg). We apply this result with un = bsn , γ∗un = γsn , and y = x to obtain
the desired result Pγsn (Tbsn (θ0) ≤ x)→ Jg(x), where (i�) and (ii�) hold by assumptions
(ii) and (iii) on {γwn : n ≥ 1}.
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For the proof of part (b), it remains to show (10.14). Because g ∈ H, by definition
of H there exists a sequence {γ+k = (γ

+
k,1, γ

+
k,2, γ

+
k,3) ∈ Γ : k ≥ 1} such that krγ

+
k,1 → g1

and γ+k,2 → g2 as k →∞. Define a new sequence {γ∗∗k = (γ∗∗k,1, γ
∗∗
k,2, γ

∗∗
k,3) ∈ Γ : k ≥ 1} as

follows. If k = un set γ∗∗k equal to γ∗un . If k 9= un, set γ∗∗k equal to γ+k . Clearly, γ
∗∗
k ∈ Γ

for all k ≥ 1 and krγ∗∗k,1 → g1 and γ∗∗k,2 → g2 as k → ∞. Hence, {γ∗∗k : k ≥ 1} is of
the form {γn,g : n ≥ 1} and Assumption B2 implies that Pγ∗∗k (Tk(θ0) ≤ y)→ Jg(y) for
all y ∈ C(Jg). Because {un} is a subsequence of {k} and γ∗∗k = γ∗un when k = un, the
latter implies that Pγ∗un (Tun(θ0) ≤ y)→ Jg(y), as desired.

For part (c) we have to show that Uwn,bwn (x) →p Jg(x) for all x ∈ C(Jg) under
{γwn : n ≥ 1}. Define a new sequence {γ∗k = (γ∗k,1, γ∗k,2, γ∗k,3) ∈ Γ : k ≥ 1} as follows. If
k = wn, set γ∗k equal to γwn . If k 9= wn, for m = 1, ..., p, define

γ∗k,1,m = max{k−rh1,m, am/2} if g1,m = 0 & −∞ < h1,m < 0

γ∗k,1,m = min{k−rh1,m, bm/2} if g1,m = 0 & 0 < h1,m <∞
γ∗k,1,m = max{−k−2r, am/2} if g1,m = h1,m = 0 & am < 0
γ∗k,1,m = min{k−2r, bm/2} if g1,m = h1,m = 0, am = 0, & bm > 0
γ∗k,1,m = max{−(bkk)−r/2, am/2} if g1,m = 0 & h1,m = −∞
γ∗k,1,m = min{(bkk)−r/2, bm/2} if g1,m = 0 & h1,m =∞
γ∗k,1,m = max{b

−r
k g1,m, am/2} if −∞ < g1,m < 0 & h1,m = −∞

γ∗k,1,m = min{b
−r
k g1,m, bm/2} if 0 < g1,m <∞ & h1,m =∞

γ∗k,1,m = am/2 if g1,m = h1,m = −∞
γ∗k,1,m = bm/2 if g1,m = h1,m =∞,

(10.15)

where γ∗k,1 = (γ
∗
k,1,1, ..., γ

∗
k,1,p)

�, define γ∗k,2 = γwnk ,2
, where nk = max{c ∈ N : w� ≤ k},

and define γ∗k,3 to be any element of Γ3(γ
∗
k,1, γ

∗
k,2). As defined, γ

∗
k ∈ Γ for all k ≥ 1

using Assumption A2(ii) and straightforward calculations show that {γ∗k : k ≥ 1}
satisfies (i)-(iii) of Lemma 4 with {wn} replaced by {k}. By Assumption E we know
that Uk,bk(x) − Eθ0,γ∗kUk,bk(x) →p 0 under {γ∗k : n ≥ 1} for all x ∈ R. Because for
k = wn, γ∗k equals γwn , the latter implies that Uwn,bwn (x) − Eθ0,γwn

Uwn,bwn (x) →p 0
under {γwn : n ≥ 1} for all x ∈ R. Part (c) then follows from part (b).

To prove part (d), we show that Assumptions A2 and G2 imply that

Lwn,bwn (x)− Uwn,bwn (x)→p 0 under {γwn : n ≥ 1} for all x ∈ C(Jg). (10.16)

This and part (c) of the Lemma establish part (d). To show (10.16), define the same
sequence {γ∗k} as in part (c) that satisfies (i)-(iii) of Lemma 4 with {wn} replaced
by {k}. Hence, by Lemma 4(c) with {wn} replaced by {k}, Uk,bk(x) →p Jg(x) as
k → ∞ under {γ∗k : k ≥ 1} for all x ∈ C(Jg). In consequence, because {γ∗k : k ≥ 1}
is of the form {γn,h : n ≥ 1} and satisfies brkγ∗k,1 → g1, Assumption G2 implies that
Lk,bk(x)−Uk,bk(x)→p 0 as k →∞ under {γ∗k : k ≥ 1} for all x ∈ C(Jg). Since γ∗k = γwn
for k = wn, this implies that (10.16) holds.

Parts (e) and (f) are established by applying Lemma 3 with Ln(x) = Lwn,bwn (x)
and Tn = Twn(θ0) and verifying the conditions of Lemma 3 using (I) part (d), (II)
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Twn(θ0) →d Jh under {γwn : n ≥ 1} (which is verified below), and (III) Assumption
F2. The result of (II) holds because {γ∗k : k ≥ 1} in the proof of part (c) is of the form
{γn,h : n ≥ 1} for h as defined in the statement of Lemma 4; this and Assumption B2
imply that Tk(θ0) →d Jh as k → ∞ under {γ∗k : k ≥ 1}; and the latter and γ∗k = γwn
for k = wn imply the result of (II).

Part (g) holds because (I) the proof of part (b) goes through with Assumptions A2
and B2 replaced by Assumptions A1 and B1 given that ||h1|| <∞, which implies that
g = h0, (II) the proof of part (c) holds without change, (III) part (d) holds immediately
by part (c) and Assumption G1 (in place of Assumption G2) because wn = n for all
n ≥ 1, and (IV) the proof of parts (e) and (f) holds with Assumptions A2, B2, and F2
replaced by Assumptions A1, B1(i), and F1 given that ||h1|| <∞ (which implies that
g1 = 0 using conditions (i) and (ii) of the Lemma and Assumption C(ii)) and wn = n.

Proof of Lemma 5. Define γn,1,m as in (10.15) with n in place of k for m = 1, ..., p
and let γn,1 = (γn,1,1, ..., γn,1,p)

�. Define {γn,2 : n ≥ 1} to be any sequence of points in
Γ2 such that γn,2 → h2 as n→∞. Let γn,3 be any element of Γ3(γn,1, γn,2) for n ≥ 1.
Then, γn = (γn,1, γn,2, γn,3) is in Γ for all n ≥ 1 using Assumption A2. Also, using
Assumption C, straightforward calculations show that {γn : n ≥ 1} satisfies conditions
(i)-(iii) of Lemma 4 with wn = n. Hence, parts (b)-(f) of Lemma 4 hold with wn = n
for {γn : n ≥ 1} as defined above.

Proof of Theorem 1. Part (a) holds by Assumption B1(i) and the definition of
convergence in distribution by considering points of continuity of Jh(·) that are greater
than cFix(1− α) and arbitrarily close to cFix(1− α) as well as continuity points that
are less than cFix(1 − α) and arbitrarily close to it. Part (b) follows from Lemma
4(g) because ||h1|| < ∞, wn = n for all n ≥ 1, g in Lemma 4(g) equals h0 = (0, h2),
conditions (i) and (iii) of Lemma 4 hold by the definition of the sequence {γn,h : n ≥ 1},
and condition (ii) of Lemma 4 holds because nrγn,h,1 → h1 with ||h1|| < ∞ implies
that brnγn,h,1 → 0 using Assumption C(ii).

Proof of Theorem 2. The proof of part (a) is similar to that of part (b), but
noticeably simpler because cFix(1 − α) is a constant. Furthermore, the proof of the
second result of part (b) is quite similar to that of the first result. Hence, for brevity,
we only prove the first result of part (b).

We first show that AsySz(θ0) ≥ MaxSub(α). Equations (3.10) and (3.11) imply
that for any sequence {γn ∈ Γ : n ≥ 1},

AsySz(θ0) ≥ lim sup
n→∞

[1− Pθ0,γn(Tn(θ0) ≤ cn,b(1− α))]. (10.17)

In consequence, to show AsySz(θ0) ≥ MaxSub(α), it suffices to show that given any
(g, h) ∈ GH there exists a sequence {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1} such that

lim sup[1−
n→∞

Pθ0,γn(Tn(θ0) ≤ cn,b(1− α))] ≥ 1− Jh(cg(1− α)). (10.18)
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The latter inequality holds by Lemma 5.
It remains to show AsySz(θ0) ≤Max−Sub(α). Let {γ∗n = (γ∗n,1, γ∗n,2, γ∗n,3) ∈ Γ : n ≥

1} be a sequence such that lim supn→∞RPn(θ0, γ∗n) = lim supn→∞ supγ∈ΓRPn(θ0, γ)
(= AsySz(θ0)). Such a sequence always exists. Let {vn : n ≥ 1} be a subsequence
of {n} such that limn→∞RPvn(θ0, γ∗vn) exists and equals lim supn→∞RPn(θ0, γ∗n) =
AsySz(θ0). Such a subsequence always exists.

Let γ∗n,1,m denote themth component of γ∗n,1 form = 1, ..., p. Either (1) lim supn→∞
|vrnγ∗vn,1,m| <∞ or (2) lim supn→∞ |vrnγ∗vn,1,m| = ∞. If (1) holds, then for some subse-
quence {wn} of {vn}

brwnγ
∗
wn,1,m → 0 and

wrnγ
∗
wn,1,m → h1,m for some h1,m ∈ R. (10.19)

If (2) holds, then either (2a) lim supn→∞ |brvnγ∗vn,1,m|<∞ or (2b) lim supn→∞ |brvnγ∗vn,1,m|
=∞. If (2a) holds, then for some subsequence {wn} of {vn},

brwnγ
∗
wn,1,m → g1,m for some g1,m ∈ R and (10.20)

wrnγ
∗
wn,1,m → h1,m, where h1,m =∞ or −∞ with sgn(h1,m) = sgn(g1,m).

If (2b) holds, then for some subsequence {wn} of {vn},

brwnγ
∗
wn,1,m → g1,m, where g1,m =∞ or −∞, and (10.21)

wrnγ
∗
wn,1,m → h1,m, where h1,m =∞ or −∞ with sgn(h1,m) = sgn(g1,m).

In addition, for some subsequence {wn} of {vn},

γ∗wn,2 → h2 for some h2 ∈ cl(Γ2). (10.22)

By taking successive subsequences over the p components of γ∗vn,1 and γ∗vn,2, we find
that there exists a subsequence {wn} of {vn} such that for each m = 1, ..., p exactly
one of the cases (10.19)-(10.21) applies and (10.22) holds. In consequence, conditions
(i)-(iii) of Lemma 4 hold. In addition, γ∗wn,3 ∈ Γ3(γ∗wn,1, γ∗wn,2) for all n ≥ 1 because
γ∗wn ∈ Γ. Hence,

RPwn(θ0, γ
∗
wn)→ [1− Jh(cg(1− α)), 1− Jh(cg(1− α)−)] (10.23)

by Lemma 4(f). Also, (g, h) ∈ GH by Lemma 4(a). Since limn→∞RPvn(θ0, γ∗vn) =
AsySz(θ0) and {wn} is a subsequence of {vn}, we have limn→∞RPwn(θ0, γ∗wn) =
AsySz(θ0). This, (10.23) and (g, h) ∈ GH imply that AsySz(θ0) ≤Max−Sub(α), which
completes the proof of the first result of part (b).

Proof of Lemma 2. Assume Un,b(x) →p Jg(x) for all x ∈ C(Jg) under {γn,h :
n ≥ 1} for some g ∈ H and h ∈ H such that brnγn,h,1 → g1 and g2 = h2. To show
Ln,b(x) − Un,b(x) →p 0 for all x ∈ C(Jg) under {γn,h}, we use the argument in the
proofs of Theorems 11.3.1(i) and 12.2.2(i) in PRW.
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Define Rn(t) := q−1n
Sqn
j=1 1(|τ bn(eθn − θ0)/eσn,bn,j | ≥ t). Using

Un,b(x− t)−Rn(t) ≤ Ln,b(x) ≤ Un,b(x+ t) +Rn(t) (10.24)

for any t > 0 (which holds for all versions (i)—(iii) of Tn(θ0) in Assumption t1), the
desired result follows once we establish that Rn(t) →p 0 under {γn,h} for any fixed
t > 0. By τn = an/dn, we have

|τ bn(eθn − θ0)/eσn,bn,j | ≥ t iff (abn/an)an|eθn − θ0| ≥ dbneσn,bn,jt (10.25)

provided eσn,bn,j > 0, which by Assumption BB2(ii) holds uniformly in j = 1, ..., qn
wp→1. (In the case where an and dn depend on γn,h, the expression on the rhs of

(10.25) is (abn(γn,h)/an(γn,h))an(γn,h)|eθn − θ0| ≥ dbn(γn,h)eσn,bn,jt.) By Assumption
BB2(i) and HH, (abn/an)an|eθn − θ0| = op(1) under {γn,h}. Therefore, for any δ > 0,
Rn(t) ≤ q−1n

Sqn
j=1 1(δ ≥ dbneσn,bn,jt) = Uσ

n,bn
(δ/t) where the inequality holds wp→1.

Now, by an argument as in the proof of Lemma 4(b) and (c) (which uses Assumption
EE, but does not use Assumption G2) applied to the statistic dneσn rather than Twn(θ0),
we have Uσ

n,bn
(x)→p Wg(x) for all x ∈ C(Wg) under {γn,h}, where g ∈ H is defined as

in Lemma 4 with {γwn} being equal to {γn,h}. Therefore, Uσ
n,bn

(δ/t) →p Wg(δ/t) for
δ/t ∈ C(Wg) under {γn,h}. By Assumption BB2(iii), Wg does not have positive mass
at zero and, hence, Wg(δ/t)→ 0 as δ → 0. We can therefore establish that Rn(t)→p 0
for any t > 0 by letting δ go to zero such that δ/t ∈ C(Wg).

10.4 Additional Results

The upper bound, Max−Sub(α), on AsySz(θ0) in Theorem 2(b) can be improved
in certain situations. For example, this occurs in some models in which Jh(x) has a
discontinuity at x = cg(1−α) for some h ∈ H and the test statistic and the subsample
statistics have a common lower bound on their support for all n ≥ 1. The improvement
is possible because the test statistic and the subsample critical values cannot be smaller
than the lower bound. For example, this improvement is relevant in the moment
inequality example when s = 0 (i.e., when no equality constraints appear).

Modification to Theorem 2(b): Let GH∗ be a set of points (g, h) ∈ GH such that
for all sequences {γwn : n ≥ 1} that satisfy (i)-(iii) of Lemma 4, we have

lim inf
n→∞ Pθ0,γwn (Twn(θ0) ≤ cwn,bwn (1− α)) ≥ Jh(cg(1− α)). (10.26)

Then, Max−Sub(α) in Theorem 2(b) can be replaced by Max−Sub,2(α), which is defined
by

max

+
sup

(g,h)∈GH\GH∗
(1− Jh(cg(1− α)−)), sup

(g,h)∈GH∗
(1− Jh(cg(1− α)))

,
. (10.27)
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Clearly, Max−Sub,2(α) ≤Max
−
Sub(α).

Analogously, if (h0, h) ∈ GH∗ in Theorem 1, then Jh(ch0(1−α)−) can be replaced
by Jh(ch0(1 − α)) in the result of Theorem 1(b). Similarly, for CIs or CRs, the lower
bound in Corollary 3(d), inf(g,h)∈GH Jh(cg(1− α)−), can be replaced by

min

�
inf

(g,h)∈GH\GH∗
Jh(cg(1− α)−), inf

(g,h)∈GH∗
Jh(cg(1− α))

�
, (10.28)

where GH∗ is defined as above, but with θn,h in place of θ0 in condition (iii), where
θn,h is a subvector of γn,h.

Sufficient conditions for (g, h) to be in GH∗ are that for all sequences {γwn : n ≥ 1}
that satisfy (i)-(iii) of Lemma 4, (a) there exists a finite non-stochastic lower bound
LBh such that the subsample statistics are ≥ LBh a.s. under {γwn : n ≥ 1}, (b)
Jh(LBh) ≥ Jh(cg(1 − α)), and (c) lim inf

n→∞ Pθ0,γwn (Twn(θ0) ≤ LBh) = Jh(LBh). (Con-

ditions (a)-(c) imply (10.26) because lim inf
n→∞ Pθ0,γwn (Twn(θ0) ≤ cwn,bwn (1 − α)) ≥

lim inf
n→∞ Pθ0,γwn (Twn(θ0) ≤ LBh) = Jh(LBh) ≥ Jh(cg(1− α)).)

We now use the results above to show that the subsample CR for the moment
inequality example of Section 9.2 has AsyCS = 1 − α when s = 0. In this case, we
claim that GH∗ = GH. Suppose cg(1−α) = 0, then (g, h) ∈ GH∗ because condition (a)
of the previous paragraph holds with LBh = 0, condition (b) holds because Jh(LBh) =
Jh(0) = Jh(cg(1 − α)), and condition (c) holds by the following argument. First,
cg(1 − α) = 0 implies that h1 = ∞p. For notational simplicity, suppose p = 1 and let
(θ, P,E) denote (θwn,h, Pθ0,γwn , Eθ0,γwn

). For the case s = 0, we have

P (Twn(θ) > LBh)

= P (min{w1/2n mwn(θ)/eσwn(θ), 0}2 > 0)
= P (w1/2n mwn(θ) < 0)

= P (w1/2n (mwn(θ)−Emwn(θ))/σFwn,h,j(θ) + w
1/2
n Emwn(θ)/σFwn,h,j(θ) < 0)

→ 0 = 1− Jh(LBh), (10.29)

where the convergence holds because the first summand on the fourth line is Op(1) and
the second diverges to ∞ by (9.10), (9.12), and h1 = ∞. Hence, condition (c) holds.
The proof when p > 1 is analogous.

Next, suppose cg(1 − α) > 0, then (g, h) ∈ GH∗ because Jh(x) is continuous for
all x > 0 for all h ∈ H, which implies that Jh(cg(1 − α)−) = Jh(cg(1− α)), and then
Lemma 4(f) yields (10.26). Now, GH∗ = GH, (10.28), and Corollary 3(d) imply that
AsyCS = inf(g,h)∈GH Jh(cg(1 − α)). Because Jg ≥ST Jh for (g, h) ∈ GH by (9.14),
inf(g,h)∈GH Jh(cg(1− α)) = Jh(ch(1− α)) = 1− α as desired.

Proof of Modification of Theorem 2(b). If we add the assumption that lim infn→∞
P (Tn ≤ cn) ≥ GT (c∞) in Lemma 3, then the Lemma yields the stronger conclusion
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that P (Tn ≤ cn) → GT (c∞). This follows directly from equation (10.12) in the proof
of Lemma 3. Therefore, for any (g, h) ∈ GH∗ and sequence {γwn : n ≥ 1} that
satisfies (i)-(iii) of Lemma 4, the proof of Lemma 4(f) yields the stronger conclusion
that Pθ0,γwn (Twn(θ0) ≤ cwn,bwn (1−α))→ Jh(cg(1−α)). Combining this with the proof
of Theorem 2(b) establishes the claim.
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11 Appendix B

11.1 Proofs

We now give a proof of Corollary 1. The purpose is to provide a direct proof of
Corollary 1 that is simpler and more transparent than the proof of the more general
Theorem 2. The proof uses the following two lemmas. Part (b) of Lemma 6 is the key
to the subsample results because it leads to the basic result given in Lemma 6(e).

Let C(Jg) denote the set of continuity points of Jh.

Lemma 6 Suppose Assumptions B2 and S hold. Let {γn,h ∈ Γ : n ≥ 1} satisfy (i)
nrγn,h → h and (ii) brnγn,h → g for some g ∈ [0,∞]. Then,

(a) (g, h) ∈ GH,
(b) Eθ0,γn,hUn,bn(x) = Pγn,h(Tbn(θ0) ≤ x)→ Jg(x) for all x ∈ C(Jg),
(c) Un,bn(x)→p Jg(x) for all x ∈ C(Jg) under {γn,h : n ≥ 1},
(d) cn,bn(1− α)→p cg(1− α) under {γn,h : n ≥ 1},
(e) Pθ0,γn,h(Tn(θ0) ≤ cn,bn(1− α))→ Jh(cg(1− α)), and
(f) parts (a)-(e) of the Lemma hold with the sequence {n} replaced by any subse-

quence {wn : n ≥ 1} throughout the assumptions and results.

Proof of Lemma 6. Part (a) holds because if h <∞ and bn/n→ 0, then brnγn,h → 0,
g = 0, and (g, h) ∈ GH. On the other hand, if h = ∞, then (g, h) ∈ GH because the
definition of GH puts no restriction on g.

Next, we prove part (b). For notational simplicity, we drop the subscript θ0 from
Pθ0,γ and Eθ0,γ . We have

Eγn,hUn,bn(x) = q
−1
n

qn[
j=1

Pγn,h(Tn,bn,j(θ0) ≤ x) = Pγn,h(Tbn(θ0) ≤ x), (11.30)

where the first equality holds by definition of Un,bn(x) and the second equality holds
by Assumption S(iii).

We now show that Pγn,h(Tbn(θ0) ≤ x) → Jg(x) for all x ∈ C(Jg) by showing that
any subsequence {tn} of {n} has a sub-subsequence {sn} for which Pγsn,h(Tbsn (θ0) ≤
x)→ Jg(x). Given any subsequence {tn}, select a sub-subsequence {sn} such that {bsn}
is strictly increasing. This can be done because bn →∞ by Assumption S(i). Because
{bsn} is strictly increasing, it is a subsequence of {n}. Below we show that Assumption
B2 implies that for any subsequence {un} of {n} and any sequence {γ∗un ∈ Γ : n ≥ 1}
that satisfies (i�) urnγ∗un → g, we have

Pγ∗un (Tun(θ0) ≤ x)→ Jg(x), (11.31)

for all x ∈ C(Jg). We apply this result with un = bsn and γ∗un = γsn,h to obtain the
desired result Pγsn,h(Tbsn (θ0) ≤ x) → Jg(x), where (i�) holds because brsnγsn,h → g by
assumption.
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For the proof of part (b), it remains to show (11.31). Define a new sequence
{γ∗∗k : k ≥ 1} as follows. If k = un set γ∗∗k equal to γ∗un . If k 9= un, define γ∗∗k to be

γ∗∗k = min{k−2r, b/2} if g = 0
γ∗∗k = min{k−rg, b/2} if 0 < g <∞
γ∗∗k = b/2 if g =∞.

(11.32)

Note that the parameters {γ∗∗k : k ≥ 1} are in Γ for all k ≥ 1 and krγ∗∗k → g as k →∞.
Hence, {γ∗∗k : k ≥ 1} is of the form {γn,g : n ≥ 1} and Assumption B2 implies that
Pγ∗∗k (Tk(θ0) ≤ y)→ Jg(y) for all y ∈ C(Jg). Because {un} is a subsequence of {k} and
γ∗∗k = γ∗un when k = un, the latter implies that Pγ∗un (Tun(θ0) ≤ y)→ Jg(y), as desired.

Part (c) holds by part (b) and Assumption S(iv). Parts (d) and (e) are established
by fairly standard arguments using part (c) and Assumption S(v) because cn,bn(1−α)
is the 1 − α quantile of Un,bn(x) = Ln,bn(x) using Assumption S(vi). In particular,
Lemma 3 in Appendix A can be used for this purpose. Part (f) holds by variations of
the arguments given above with wn in place of n throughout, see the proof of Lemma
4 for details.

Lemma 7 Suppose Assumptions B2 and S hold. Let (g, h) ∈ GH be given. Then, there
is a sequence {γn,h : n ≥ 1} of points in Γ that satisfies nrγn,h → h and brnγn,h → g
and for this sequence parts (b)-(e) of Lemma 6 hold.

Proof of Lemma 7. Define a sequence {γn,h : n ≥ 1} as follows:

γn,h = min{n−2r, b/2} if g = h = 0
γn,h = min{n−rh, b/2} if g = 0 & 0 < h <∞
γn,h = min{(bnn)−r/2, b/2} if g = 0 & h =∞
γn,h = min{b−rn g, b/2} if 0 < g <∞ & h =∞
γn,h = b/2 if g = h =∞.

(11.33)

As defined, γn,h ∈ (0, b] ⊂ Γ for all n ≥ 1 and straightforward calculations show that
{γn,h : n ≥ 1} satisfies nrγn,h → h and brnγn,h → g.

Proof of Corollary 1. The proof of part (a) is similar to that of part (b), but much
simpler. Hence, for brevity, we only give the proof for part (b). We first show that
AsySz(θ0) ≥ MaxSub(α). Equations (3.10) and (3.11) imply that for any sequence
{γn ∈ Γ : n ≥ 1},

AsySz(θ0) ≥ lim sup
n→∞

[1− Pθ0,γn(Tn(θ0) ≤ cn,b(1− α))]. (11.34)

In consequence, to show AsySz(θ0) ≥ MaxSub(α), it suffices to show that given any
(g, h) ∈ GH there exists a sequence {γn ∈ Γ : n ≥ 1} such that

lim sup[1−
n→∞

Pθ0,γn(Tn(θ0) ≤ cn,b(1− α))] ≥ 1− Jh(cg(1− α)). (11.35)
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The latter inequality holds (as an equality) by Lemma 7.
It remains to show AsySz(θ0) ≤ MaxSub(α). Let {γ∗n ∈ Γ : n ≥ 1} be a sequence

such that lim supn→∞RPn(θ0, γ∗n) = lim supn→∞ supγ∈ΓRPn(θ0, γ) (= AsySz(θ0)).
Such a sequence always exists. Let {vn : n ≥ 1} be a subsequence of {n} such that
limn→∞RPvn(θ0, γ∗vn) exists and equals lim supn→∞RPn(θ0, γ

∗
n) = AsySz(θ0). Such a

subsequence always exists.
Either (1) lim supn→∞ vrnγ∗vn <∞ or (2) lim supn→∞ vrnγ∗vn =∞. If (1) holds, then

for some subsequence {wn} of {vn}

wrnγ
∗
wn → h for some h ∈ R and

brwnγ
∗
wn → 0. (11.36)

If (2) holds, then either (2a) lim supn→∞ brvnγ
∗
vn <∞ or (2b) lim supn→∞ brvnγ

∗
vn =∞.

If (2a) holds, then for some subsequence {wn} of {vn},

brwnγ
∗
wn → g for some g ∈ R and

wrnγ
∗
wn → h, where h =∞. (11.37)

If (2b) holds, then for some subsequence {wn} of {vn},

brwnγ
∗
wn → g, where g =∞, and

wrnγ
∗
wn → h, where h =∞. (11.38)

In consequence, conditions (i) and (ii) of Lemma 6 hold. Hence,

RPwn(θ0, γ
∗
wn)→ 1− Jh(cg(1− α)) (11.39)

by Lemma 6(e) with wn in place of n, which holds by Lemma 6(f). Also, (g, h) ∈ GH
by Lemma 6(a). Since limn→∞RPvn(θ0, γ∗vn) = AsySz(θ0) and {wn} is a subsequence
of {vn}, we have limn→∞RPwn(θ0, γ∗wn) = AsySz(θ0). This, (11.39) and (g, h) ∈ GH
imply that AsySz(θ0) ≤MaxSub(α), which completes the proof of part (b).

11.2 CI for the Endpoint of a Distribution (Cont.)

Here we consider an equal-tailed subsample CI for the lower endpoint, θ, of the
support of a distribution. We show that this CI with nominal level 1−α has AsyCS =
1 − α, as desired. The subsample CI has correct asymptotic size because this is a
“continuous limit” example as a function of the parameters in the model (and the limit
distribution function is continuous at the appropriate quantiles).

The observations {Xi : i = 1, ..., n} are i.i.d. with distribution F, where F has
a density f with respect to Lebesgue measure and support with finite lower endpoint
θ = F−1(0). For example, F could be U [θ, 1]. This example is non-regular in that rate-n
consistent estimators of θ are available.

Because the present example is a “continuous limit” example, there is no parameter
γ1.We define γ2 = (θ, f(θ))

� and γ3 = F. The parameter space for γ2 is Γ2 = {(θ, γ22)� :
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θ ∈ R,B1 ≤ γ22 ≤ B2} for some 0 < B1 < B2 < ∞. The parameter space for γ3 is
Γ3(γ2) = {F : F has a density f with respect to Lebesgue measure that satisfies (i)
f(θ) = γ22, where γ2 = (θ, γ22)

�, and (ii) f is right continuous at θ with modulus of
continuity δ ≤ M}, for some M < ∞. The definition of Γ2 bounds the density of F
away from zero at θ. This ensures that rate-n consistent estimators of θ are available.
With some added complication, this assumption could be relaxed, see Loh (1984).

We consider the maximum likelihood estimator of θ: eθn = X(1), where X(j) denotes
the jth order statistic from {Xi : i = 1, ..., n}. The test statistic is

Tn(θ) = n(X(1) − θ). (11.40)

In this example, τn = n. No rate of convergence parameter r arises in this continuous
limit example because there is no parameter γ1.

The equal-tailed subsample CI of θ is defined as in (8.5) with eσn = 1, c1−α/2 =
cn,b(1− α/2), and cα/2 = cn,b(α/2).

We have H = H2 = cl(Γ2). We consider sequences {γn,h = (γ2,n,h, γ3,n,h) =
((θn,h, fn,h(θn,h))

�, Fn,h) : n ≥ 1} that are defined such that γ2,n,h = (θn,h, fn,h(θn,h))� ∈
Γ2, γ2,n,h → h2 for some h2 = (h21, h22)� ∈ H2, and γ3,n,h ∈ Γ3(γ2,n,h). As defined, the
parameter h22 is the limit as n→∞ of fn,h(θn,h). For any such sequence {γn,h : n ≥ 1},
we have

Tn(θn,h)→d Jh, where

Jh(x) = 1− exp{−h22x} for x ≥ 0. (11.41)

That is, Jh is an exponential distribution with parameter h22 ∈ [B1, B2]. Hence, As-
sumption B2 holds. The proof is given below.

It is straightforward to verify that Assumptions A2, C, D, E, t1, t2, Sub1, and H
hold. Assumption J2 holds because Jh has support R+ and is strictly increasing on
R+. Assumption G2 holds by Lemma 1. By Corollary 4(b),

AsyCS ∈ [1−Max�−ET,Sub(α), 1−Max
r−
ET,Sub(α)], (11.42)

where Max�−ET,Sub(α) and Max
r−
ET,Sub(α) are defined in (7.3). Because Jh is contin-

uous at its τ quantile for all τ ∈ (0, 1), we have Max�−ET,Sub(α) = Maxr−ET,Sub(α).
Furthermore, because no parameter γ1 appears, the parameter space GH reduces to
{(g2, h2) ∈ H2 ×H2 : g2 = h2} and Max�−ET,Sub(α) simplifies to

Max�−ET,Sub(α) = sup
h2∈H2

[1− Jh2(ch2(1− α/2)) + Jh2(ch2(α/2))] = α. (11.43)

We conclude that the equal-tailed subsample CI has AsyCS = 1−α. Analogous results
show that the subsample CI is asymptotically similar even though the asymptotic
distribution of Tn(θ) is nuisance parameter dependent.

It remains to verify Assumption B2 with Jh as in (11.41). For x ≥ 0, we have

PFn,h(Tn(θn,h) > x) = PFn,h(Xi > x/n+θn,h ∀i ≤ n) = (1−Fn,h(x/n+θn,h))n. (11.44)
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By a mean-value expansion, we obtain

Fn,h(x/n+ θn,h) = Fn,h(θn,h) + fn,h(θ
∗
n,h)x/n

= fn,h(θ
∗
n,h)x/n

= [fn,h(θn,h) + o(1)]x/n, (11.45)

where θ∗n,h lies between θn,h and θn,h + x/n, Fn,h(θn,h) = 0 because θn,h is the lower
endpoint of the support of Fn,h, and the third equality holds because fn,h is right
continuous at θn,h with modulus of continuity δ ≤ M by the definition of Γ3(γ2).
Substitution of (11.45) into (11.44) gives PFn,h(Tn(θn,h) > x)→ exp{−h22x} as desired.
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TABLE I
NUISANCE PARAMETER NEAR A BOUNDARY EXAMPLE: MAXIMUM

ASYMPTOTIC NULL REJECTION PROBABILITIES (×100) AS A FUNCTION OF
THE TRUE CORRELATION h2 FOR NOMINAL 5% TESTS

Upper 1-sided Symmetric 2-sided Equal-tailed 2-sided
h2 Sub FCV Sub FCV Sub FCV

-1.00 50.2 5.0 9.9 5.0 52.7 5.0
-.99 42.8 5.0 9.9 5.0 43.2 5.0
-.95 33.8 5.0 9.9 5.0 32.4 5.0
-.90 27.6 5.0 9.9 5.0 25.4 5.0
-.80 20.2 5.0 9.3 5.0 17.4 5.0
-.60 12.3 5.0 7.4 5.0 10.0 5.0
-.40 8.3 5.0 6.0 5.0 6.8 5.0
-.20 6.2 5.0 5.2 5.0 5.3 5.0
.00 5.0 5.0 5.0 5.0 5.0 5.0
.20 5.0 5.6 5.2 5.0 5.4 5.0
.40 5.0 5.8 6.0 5.0 6.7 5.0
.60 5.0 5.6 7.5 5.0 9.9 5.0
.80 5.0 5.1 9.6 5.0 17.3 5.0
.90 5.0 5.0 10.1 5.0 25.2 5.0
.95 5.0 5.0 10.1 5.0 32.4 5.0
.99 5.0 5.0 10.1 5.0 43.0 5.0
1.00 5.0 5.0 10.1 5.0 52.3 5.0

AsySz(θ0) 50.2 5.8 10.1 5.0 52.7 5.0










