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Abstract

We consider an single object auction environment with interdependent valuations

and a generalized Vickrey-Clark-Groves allocation mechanism that allocates the object

almost e¢ ciently in a strict ex post equilibrium. If there is a signi�cant amount of

interdependence, there are multiple rationalizable outcomes of this direct mechanism

and any other mechanism that allocates the object almost e¢ ciently. This is true

whether the agents know about each others�payo¤ types or not.

We consider an ascending price dynamic version of the generalized VCG mechanism.

When there is complete information among the agents of their payo¤ types, we show

that the almost e¢ cient allocation is the unique backward induction (i.e., extensive

form rationalizable) outcome of the auction, even when there are multiple rationalizable

outcomes in the static version. This example illustrates the role that open auctions may

play in obtaining e¢ cient allocations by reducing strategic uncertainty.

Keywords: Dynamic Auction, Rationalizability, Extensive Form, Uniqueness,

Strategic Uncertainty.
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1 Introduction

The important role of dynamic auctions, in particular ascending price auctions, for the

revelation of private information has long been recognized. The advantage of sequential

procedures is the ability to reveal and communicate private information in the course of

the mechanism. The revelation of private information can decrease the uncertainty faced

by the bidders and ultimately improve the �nal allocation o¤ered by the mechanism. In

auctions, the source of the uncertainty can either be payo¤ uncertainty (uncertainty about

others�payo¤relevant information) or strategic uncertainty (uncertainty about their bidding

strategies).

The ability of dynamic auctions to reduce payo¤ uncertainty is well documented in the

literature. In a setting with interdependent values, the seminal paper by Milgrom and

Weber (1982) shows that the ascending price auction leads to larger expected revenues by

weakening the winner�s curse problem. The ascending price auction leads to sequential

revelation of good news for the active bidder. As the bidding contest proceeds and the

price for the object increases, each active bidder revises upwards his estimate of the private

information of the remaining bidders. The continued presence of active bidders represents a

�ow of good news about the value of the object. In consequence, each active bidder becomes

less concerned about exposure to the winner�s curse.

The objective of this paper is to argue that dynamic auctions also o¤er bene�ts for the

reduction of strategic uncertainty. We consider an environment with interdependent values.

We show that - under ex post incentive compatible allocation rules - strategic uncertainty

(i.e., multiple rationalizable outcomes) necessarily occurs in a static mechanism. But we

study a dynamic auction format in the case of complete information among the bidders.

The complete information assumption removes payo¤ uncertainty and focusses our analysis

on the role of strategic uncertainty.

We introduce strategic uncertainty by analyzing the rationalizable outcomes of static

and dynamic versions of a generalized Vickrey-Clark-Groves mechanism. The relationship

between rationalizability and strategic uncertainty has been established in Brandenburger

and Dekel (1987). In a complete information environment they show that the set of ra-

tionalizable outcomes is equivalent to the set of outcomes of Nash equilibria in some type

space. We appeal to this epistemic result and analyze the outcomes of static and dynamic
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auction formats under rationalizability.

An important di¤erence emerges as we compare the set of rationalizable outcomes in

the static and dynamic auction format. In the static auction, the e¢ cient outcome is the

unique rationalizable outcome if and only if the interdependence in the valuation of the

agents is moderate. In contrast, the e¢ cient outcome will remain the unique rationalizable

outcome in the dynamic auction as long as a much weaker single crossing condition prevails.

In the interdependent value environment, the reports of the bidders are strategic sub-

stitutes. If bidder i increases his bid for a given valuation, then bidder j has an incentive

to lower his report. An increase in the report by bidder i makes the object more costly to

obtain without changing its value. In consequence bidder j will lower his report to par-

tially o¤set the increase in the payment for the object induced by bidder i. The element

of strategic substitutes between the reports of bidder i and j is generated by the incentive

compatible transfer scheme rather than by the signal of the agents directly.

The discrepancy between the static and the dynamic version of the auction is due to the

ability of the dynamic mechanism to partially synchronize the beliefs of the agents. In the

static auction a low bid by agent i can be justi�ed by high bids of the remaining bidders.

But in turn, a large bid by bidder j requires bidder j to believe in low bids by the remaining

bidders. The beliefs of bidder i and j about the remaining bidders are thus widely divergent.

In the dynamic auction, the current report of each bidder represent a lower bound on the

beliefs of all the agents and hence imposes a synchronization on the belief. In addition,

in the dynamic auction, the bidders look ahead and only consider rationalizable future

outcomes in their consideration. This forces each bidder to have a belief about the future

actions of the other bidders which are rationalizable.

2 Model

We consider an auction environment with interdependent values. There are I agents com-

peting for a single object o¤ered by a seller. The payo¤ type of agent i given by a realization

�i 2 [0; 1]. The type pro�le is given by � = (�i; ��i) and agent i�s valuation of the object

at the type pro�le � is given by vi (�i; ��i) = �i + 
X
j 6=i

�j , with  2 R+. The net utility of
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agent i depends on his probability qi of receiving the object and the monetary transfer ti:

ui (�; qi; yi) =

0@�i + X
j 6=i

�j

1A qi � yi. (1)

The socially e¢ cient allocation rule is given by:

bqi (�) =
8<: 1

#fj:�j��k for all kg , if �i � �k for all k;

0; if otherwise.

Dasgupta and Maskin (2000) have shown that a generalized Vickrey-Clark-Groves (VCG)

auction leads to truthful revelation of private information in ex post equilibrium. In the

generalized VCG auction, the monetary transfer of the winning agent i is given by:

byi (�) = max
j 6=i

8<:�j + X
j 6=i

�j

9=; ; (2)

and the losing bidders all have a zero monetary transfer. The generalized VCG mechanism

only guarantees weak rather than strict ex post incentive compatibility conditions. We seek

to analyze the strategic behavior in the auction in terms of rationalizable behavior. As

rationalizability involves the iterative elimination of strictly dominated actions, we modify

the generalized VCG mechanism to display strict ex post incentive constraints everywhere.

We add to the VCG allocation rule bqi an allocation rule which increases proportionally in
the report of agent i:

qi
�
�0
�
=
�0i
I
for all i. (3)

The modi�ed VCG allocation rule is now de�ned for some " > 0 by

q�i (�) = "qi (�) + (1� ") bqi (�) . (4)

The modi�ed allocation rule is supported by an associated set of transfers:

y�i (�) =
"

2I
�2i +

"�i
I

0@X
j 6=i

�j

1A+ (1� ")
0@max

j 6=i

8<:�j + X
j 6=i

�j

9=;
1Abqi (�) : (5)

The transfer rule y�i (�) leads to strict truthtelling incentives everywhere. The outcome

function of the direct mechanism is denoted by f� = (q�i ; y
�
i )
I
i=1.

Truth-telling is a strict ex post equilibrium of the above mechanism. This means that

whatever the agents�beliefs and higher order beliefs about other agents�types, there exists
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a strict equilibrium where every agent tells the truth. However, this does not guarantee

that there do not exist other, non-truth-telling equilibria. In the remainder of this paper,

we �x this mechanism - which is designed to deal with incentive compatibility problems

under general incomplete information structures - and examine the performance of static

and dynamic versions of the mechanism under complete information.

3 Static Auction

We �rst analyze the generalized VCG mechanism in a static environment. The purpose

of this section is to provide a background for the analysis of the ascending auction. We

then show that the ascending auction leads to a unique rationalizable outcome under very

weak condition on the interaction parameter . More precisely, the set of rationalizable

outcome consists of a singleton for each bidder if  < 1. This condition is weak as  < 1

is necessary and su¢ cient for the single crossing condition to hold. In contrast, the static

version of generalized VCG auction leads to the unique rationalizable outcome if and only

if the interdependence is moderate, or  < 1
I�1 .

Proposition 1 is a special case of a general uniqueness result in environments with in-

terdependent values and incomplete information in Bergemann and Morris (2005). The

analysis in the present case is substantially simpli�ed by the complete information assump-

tion as well as the linear and symmetric valuation structure.

The net utility of agent i in the modi�ed VCG mechanism depends on the true type

pro�le � and the reported pro�le �0:

ui
�
f�
�
�0
�
; �
�
=

0@�i + X
j 6=i

�j

1A q�i ��0�� y�i ��0� .
We insert the outcome function f� given by (4) and (5) to obtain the net utility of i:

ui
�
f�
�
�0
�
; �
�
=

0@�i + X
j 6=i

�j

1A0@"
I

0@�0i + X
j 6=i

�0j

1A+ (1� ") bqi ��0�
1A

� "

2I
�02i �

"�0i
I

X
j 6=i

�0j � (1� ")

0@max
j 6=i

8<:�0j + X
j 6=i

�0j

9=;
1Abqi ��0� .

The net utility function is a linear combination of the e¢ cient allocation rule and the

proportional allocation rule. It is straightforward to compute the best response of each
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agent i given a point belief about the reports �0�i of the remaining agents. The best response

is linear in the true valuation and the size of the downward or upward report of the other

agents:

�0i = �i + 
X
j 6=i

�
�j � �0j

�
.

From here, it follows that the report of agent i and agent j are strategic substitutes. If

agent j increases his report, then in response agent i optimally chooses to lower his report.

The linear best response structure facilitates the analysis. In order to establish the largest

possible report of agent i, it su¢ ces to look at the lowest possible reports by all other

agents. The process of elimination can therefore proceed based on speci�c point beliefs

about minimal and maximal reports by the agents.

Proposition 1 (Static Auction)

The rationalizable outcome is unique and coincides with truthtelling if and only if  < 1
I�1 .

4 Ascending Auction

We now consider a dynamic version of the generalized Vickrey Clark Groves mechanism,

namely an ascending auction in continuous time. The auction begins with the clock running

and each bidder participating in the auction. Each bidder can choose at any point in time

to exit the auction. The exit decision is irrevocable and presents a commitment. Similarly,

a decision to stay in the game may be viewed as a partial commitment to bid at least as

much as indicated by the current decision. The decision of each player is therefore to let the

clock continue or to stop it. The time interval is the unit interval t 2 [0; 1] and the game
ends at T = 1.

Agents will choose strategies that are rationalizable in every subgame. Given the

perfect information, simultaneous move nature of the game, this will imply that we can

characterize rationalizable outcomes essentially by backward induction in terms of recursive

best response functions. Thus we do not need to appeal to the forward induction logic

built into Pearce�s (1984) notion of extensive form rationalizability.

In the ascending auction, the i-th bidder to exit the auction will choose a best response

to the actions of the other bidders. However, conditional on being the i-th bidder to leave,

his best response will distinguish between the actions of bidders who left before him and
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those who leave after him. As bidder i cannot in�uence the timing of bidders who already

left the game, he will choose a best response to their actions. As for the actions of the

bidders leaving the game after i, bidder i will have rational expectations as to how his

timing will a¤ect their future choices. Without loss of generality, we relabel the bidders

so that we have ascending bidding times in the index i: t1 � t2 � � � � � tI . Given the

stopping times of all other bidders, the stopping time tI is simply the best response to the

past stopping times. We denote the best response of bidder I by �I (t1; t2; :::; tI�1), and the

best response of i to the stopping decisions of the preceding bidders is �i (t1; :::; ti�1).

We can solve for the best response functions recursively. The stopping time of the last

remaining bidder is his best response to the stopping times of the preceding bidders:

tI = �I + 

I�1X
i=1

(�i � ti) . (6)

The best response of the penultimate bidder I � 1:

tI�1 = �I�1 + 
X
i6=I�1

(�i � ti) = �I�1 + 
I�2X
i=1

(�i � ti) +  (�I � tI) .

Now bidder I�1 anticipates the best response of bidder I to all previous stopping decisions.
We can thus insert the best response of bidder I, (6), into the best response of bidder I�1.
In consequence, we obtain the best response of bidder I � 1 to all preceding bidders:

tI�1 = �I�1 +


1 + 

I�2X
i=1

(�i � ti) .

We inductively obtain the best response for bidder I � j for all j = 0; 1; :::; I � 1 as:

�i (t1; :::; ti�1) = �i + �i

i�1X
j=1

(�j � tj) ; (7)

where the slope �i of the best response depends on the exit position of bidder i:

�i =


1 + (I � i)  : (8)

While bidder i with an early exit responds more moderately to preceding bidders, at the

same time an early exit by i gives bidder i the possibility to in�uence the decision of all

succeeding bidders. In this sense, an early exit gives bidder i more strategic in�uence than a

late exit would give bidder i. In order to induce truthtelling in the dynamic bidding game,
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we therefore have to account for the strategic in�uence in the monetary transfers. The

strategic weight of each exit position suggests that the transfer functions should account

for the di¤erence across exit decisions. We therefore modify the monetary transfer (5) to

account for the strategic weight:

yi (t) =
1

2I
wit

2
i +

ti
I

X
j 6=i

tj ; (9)

where wi is the strategic weight of bidder i. In the static mechanism we implicitly assigned

each agent the same strategic weight equal to one. In the dynamic game the weights

are given by the direct and indirect e¤ects that bidder i has on the stopping times of all

successive bidders. The weight wi is simply the marginal e¤ect that an increase in the

stopping time of agent i has on the behavior of successive bidders, or:

wi =
1 + (I � i� 1)  + (I � i) 2

1 + (I � i� 1)  = 1 +
(I � i) 2

1 + (I � i� 1)  . (10)

The dynamic game is solved recursively by means of the best response functions (7).

Proposition 2 (Ascending Auction)

The rationalizable outcome is unique and coincides with truthtelling if  < 1.

The dynamic game introduces the possibility that a player can strategically commit

in order to a¤ect the behavior of the other agents. The above analysis suggests that the

strategic value of the commitment does not interfere with our analysis. The absence of a

strategic value of commitment is due here to the careful design of the monetary transfers

which neutralize the strategic value of commitment.

5 Discussion and Conclusion

Incomplete Information. The current analysis consider a game in which the bidding

agents had complete information about their types. The focus on the complete information

environment allowed us to interpret the remaining uncertainty about the actions of the

players as pure strategic uncertainty. We could then appeal to the epistemic analysis of

Brandenburger and Dekel (1987) to interpret the set of rationalizable strategies as Nash

equilibria in some type space. Naturally, it is of interest to ask how the results presented

here would be a¤ected by the introduction of incomplete information among the bidders.
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The nature of the argument in proposition 2 suggests that the result may partially survive

in an incomplete information environment. The best response of each bidder was largely a

function of his own payo¤ type and his exit position in the auction. This information will

still be available to him in the incomplete information game. Moreover, in the inductive

process the payo¤ type of agents exiting after i dropped out and hence the information

about future bidders did not enter either.

Partial Commitment. An ascending auction requires players to make partial com-

mitments during the play of the game: by not dropping out at the current price, I commit

to bid something strictly higher than the current price, but I do not commit to what it

will be. There is a literature looking at how gradual partial commitment can help resolve

multiplicity of equilibrium outcomes (e.g., Caruana and Einav (2006)); in our setting, the

partial commitment reduces multiple static rationalizable outcomes to a unique dynamic

rationalizable outcome. However, there is an important di¤erence. For us, partial commit-

ment reduces outcomes only by reducing strategic uncertainty, and we carefully adjust the

transfers to ensure that players do not have an incentive to use their commitment to alter

others� reports. Our dynamic selection is analogous to the classic observation that in a

simple coordination game with multiple equilibria, a Pareto e¢ cient equilibrium is selected

if players choose sequentially (Gale (1995)).

Implementation in Re�nements of Nash Equilibrium. Moore and Repullo (1988),

Abreu and Sen (1990) and others have examined abstract settings where sequential ratio-

nality re�nements of Nash equilibrium in dynamic mechanisms can be used to strengthen

implementation results. Our example in this note belongs to this tradition, although our

results seem to have a more direct intuition than the canonical mechanisms in that litera-

ture.

Conclusion. We analyzed strategic bidding behavior in a static and dynamic auction

in an environment with interdependent values. We analyzed the static and dynamic version

of the auction under rationalizability. We interpreted the results from rationalizability with

a well-known epistemic point of view. The rationalizable behavior in the ascending auction

was determined to be unique in substantially larger class of environments than the static

auction. The dynamic auction allowed the agents to update their beliefs about the behavior

of their competitors. As the decision to stay or to exit is common knowledge among the

bidders, the ascending auction makes the strategic decision of the agent public. In con-
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sequence, the ascending auction reduces the strategic uncertainty among the bidders and

leads to tighter prediction of the behavior of the agents. This suggests a new and impor-

tant advantage of ascending auctions over sealed bid auctions. By reducing the strategic

uncertainty, the ascending auction severely limits the possibility of multiple equilibria to

arise from the auction.
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The appendix contains the proofs of Proposition 1 and 2.

Proof of Proposition 1. The uniqueness result is an immediate consequence of Theorem

1 and Theorem 3 in general incomplete information environments in Bergemann and Morris

(2006).�

The proof of Proposition 2 assumes that the payo¤ types of the bidders are distinct: �1 <

�2 < ::: < �I . In addition we allow the exit time of each agent to be in the interval [0; I � 1]
rather than [0; 1]. With a larger set of feasible exit times we avoid the possibility of corner

solutions in the best response functions. The resulting set of rationalizable exit times will

nonetheless be in [0; 1]. Proposition 2 continues to hold without distinct payo¤ types and

with exit times restricted to the unit interval. The only consequence is a longer proof caused

by the necessity of case distinctions due to corner solutions.

Proof of Proposition 2. The proof proceeds by induction on the number j of bidders

still to leave the auction. We show that the best response of bidder I � j to the reports of
the bidders exiting before him is given by:

�I�j (t1; t2; :::; tI�j�1) = �I�j +


1 + j

I�j�1X
i=1

(�i � ti) . (11)

We begin with the �nal bidder I and thus j = 0. We showed earlier in (6) that the best

response function of bidder I is indeed given by:

�I (t1; t2; :::; tI�1) = �I + 
I�1X
i=1

(�i � ti) .

We now proof the general inductive step. With the outcome function de�ned by (4), (9)

and (10), we can write the payo¤ of agent I � j for j > 0 as follows:

"

0@0@�I�j +  X
i6=I�j

�i

1A tI�j � 1
2
wI�jt

2
I�j � tI�j

0@ X
i6=I�j

ti

1A1A . (12)
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We can rewrite the payo¤ function of bidder I � j by separating the bidders who exited
before and those who will exit after I � j :

"

0@0@�I�j +  X
i6=I�j

�i

1A tI�j � 1
2
wI�jt

2
I�j � tI�j

0@ X
i<I�j

ti +
X
i>I�j

ti

1A1A . (13)

By hypothesis, the inductive step holds for all k < j. For all i > I � j, we can therefore
replace the report by the best response given by (11):

"

0@0@�I�j +  X
i6=I�j

�i

1A tI�j � 1
2
wI�jt

2
I�j � tI�j

0@ X
i<I�j

ti +
X
i>I�j

�i (t1; :::ti�1)

1A1A .
(14)

In particular, as the inductive step holds for all i > I � j, we can rewrite the best response
of every agent i > I � j as follows:

�i (t1; t2; :::; tI�j) = �i +


1 + j

I�jX
k=1

(�k � tk) . (15)

We can now insert �i (t1; t2; :::; tI�j) for all i > I � j into (14) to get:

"

0@0@�I�j +  X
i6=I�j

�i

1A tI�j � 1
2
wI�jt

2
I�j � tI�j

0@ X
i<I�j

ti +
X
i>I�j

 
�i +



1 + j

I�jX
k=1

(�k � tk)
!1A1A .

We �nd the best response of bidder I � j by determining the optimal exit time tI�j in
response to past exit times and di¤erentiate the above payo¤ with respect to the exit time

tI�j :0@�I�j +  X
i6=I�j

�i

1A�wI�jtI�j�
0@ X
i<I�j

ti +
X
i>I�j

 
�i +



1 + j

I�jX
k=1

(�k � tk)
!
� j

1 + j
tI�j

1A = 0:

We can collect terms to obtain0@�I�j + � � j2

1 + (j � 1) 

� X
i<I�j

(�i � ti)

1A�wI�jtI�j� �+ j

1 + (j � 1)  �I�j �
j

1 + (j � 1)  2tI�j
�
= 0;

or0@�I�j �1� j2

1 + (j � 1) 

�
+

�
 � j2

1 + (j � 1) 

� X
i<I�j

(�i � ti)

1A =

�
wI�j �

2j2

1 + (j � 1) 

�
tI�j :

(16)
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We can then solve for tI�j and �nd that

tI�j = �I�j +


1 + j

I�j�1X
i=1

(�i � ti) ;

thus proving the inductive step.�


