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Abstract

This paper develops new estimation and inference procedures for dynamic panel
data models with fixed effects and incidental trends. A simple consistent GMM esti-
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1 Introduction

In simple dynamic panel models it is well-known that the usual fixed effects estimator is

inconsistent when the time span is small (Nickell, 1981), as is the ordinary least squares

(OLS) estimator based on first differences. In such cases, the instrumental variable (IV)

estimator (Anderson and Hsiao, 1981) and generalized method of moments (GMM) estimator

(Arellano and Bond, 1991) are both widely used. However, as noted by Blundell and Bond

(1998), these estimators both suffer from a weak instrument problem when the dynamic

panel autoregressive coefficient (ρ) approaches unity. When ρ = 1, the moment conditions

are completely irrelevant for the true parameter ρ, and the nature of the behavior of the

estimator depends on T . When T is small, the estimators are asymptotically random and

when T is large the unweighted GMM estimator may be inconsistent and the efficient two

step estimator (including the two stage least squares estimator) may behave in a nonstandard

manner. Some special cases of such situations are studied in Staiger and Stock (1997) and

Stock and Wright (2000), among others, and Han and Phillips (2006), the latter in a general

context that includes some panel cases.

Methods to avoid these problems were developed in Blundell and Bond (1998) and more

recently in Hsiao, Pesaran and Tahmiscioglu (2002). Blundell and Bond propose a system

GMM procedure which uses moment conditions based on the level equations together with

the usual Arellano and Bond type orthogonality conditions. Hsiao et al., on the other hand,

consider direct maximum likelihood estimation based on the differenced data under assumed

normality for the idiosyncratic errors. Both approaches yield consistent estimators for all ρ

values, but there are remaining issues that have yet to be determined in regard to the limit

distribution when ρ is unity and T is large.

In a recent paper dealing with the time series case, Phillips and Han (2005) introduced

a differencing-based estimator in an AR(1) model for which asymptotic Gaussian-based

inference is valid for all values of ρ ∈ (−1, 1]. The present paper applies those ideas to

dynamic panel data models, where we show that significant advantages occur. In panels,

the estimator again has a standard Gaussian limit for all ρ values including unity, it has

virtually no bias except when T is very small (T ≤ 4), and it completely avoids the usual

weak instrument problem for ρ in the vicinity of unity.

As discussed later, this panel estimator makes use of moment conditions that are strong

for all values of ρ ∈ (−1, 1] under the assumption that the errors are white noise over time.

(The white noise condition is stronger than that on which the usual IV/GMM approaches

by Anderson and Hsiao (1981) or Arellano and Bond (1991) are based.) Under this condi-

tion, the proposed estimator is consistent, supports asymptotically valid Gaussian inference

even with highly persistent panel data, and is free of initial conditions on levels. These
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advantages stem from the following properties: (i) the limit distribution is continuous as

the autoregressive coefficient passes through unity; (ii) the rate of convergence is the same

for stationary and non-stationary panels; and (iii) differencing transformations essentially

eliminate dependence on level initial conditions.

Furthermore, there are no restrictions on the number of the cross-sectional units (n) and

the time span (T ) other than the simple requirement that nT → ∞ (and T > 3 or T > 4

depending on the presence of incidental trends). Thus, neither large T , nor large n is required

for the limit theory to hold. Gaussian asymptotics apply irrespective of how the composite

sample size nT → ∞, including both fixed T and fixed n cases, as well as any diagonal

path and relative rate of divergence for these sample dimensions. This robust feature of the

asymptotics is unique to our approach and differs substantially from the existing literature,

including recent contributions by Hahn and Kuersteiner (2002), Alvarez and Arellano (2003),

and Moon, Perron and Phillips (2005), who analyze various cases with large n and large T .

Apart from the fact that the asymptotic variance of our proposed estimator can be better

estimated by different methods when n is large and T is small (because the variance evolves

with T ), no other modification or consideration is required in the implementation of our

approach, so it is well suited to practical implementation. This wide applicability does come

at a cost in efficiency for the fixed effects model and a loss of power for the incidental trends

model compared with existing methods.

In what follows, section 2 considers the model and estimator for a simple dynamic model

with fixed effects, where the basic idea of our transformation is explained. Section 3 deals

with a dynamic panel model where exogenous variables are present, and Section 4 studies the

case with incidental trends. Section 5 applies the new approach to panel unit root testing.

The last section contains some concluding remarks. Proofs are in the Appendix. Throughout

the paper we define 00 = 1 and use Tj to denote max(T − j, 0). We assume that data are

observed for t = 0, 1, . . . , T .

2 Simple Dynamic Panels

2.1 A New Estimator and Limit Theory

We consider the simple dynamic panel model

yit = αi + uit, uit = ρuit−1 + εit, ρ ∈ (−1, 1],

implying

(1) yit = (1− ρ)αi + ρyit−1 + εit,
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where αi are unobservable individual effects and εit ∼ iid(0, σ2) with finite fourth moments.

This model differs slightly in its components form from the usual dynamic panel model

yit = αi + ρyit−1 + εit in that the individual effects disappear when ρ = 1. This formulation

is made only to guarantee continuity in the asymptotics at ρ = 1. When |ρ| < 1 the two

models are not distinguishable.

As is well known, the OLS estimator based on the ‘within’ transformation yields an

inconsistent estimator because the transformed regressor and the corresponding error are

correlated—see Nickell (1981), among others. This bias is also not corrected by first differ-

encing

(2) ∆yit = ρ∆yit−1 + ∆εit,

because the transformation induces a correlation between ∆yit−1 and ∆εit. Instead, following

Phillips and Han (2005), we transform (2) further into the form

(3) 2∆yit + ∆yit−1 = ρ∆yit−1 + ηit, ηit = 2∆yit + (1− ρ)∆yit−1.

Then, this formulation produces the following key moment conditions.

Lemma 1 If Eε2
it = σ2 for all t and Eεisεit = 0 for all s 6= t, then

(4) Egit(ρ) = E∆yit−1[2∆yit + (1− ρ)∆yit−1] = 0, t = 3, . . . , T

for every ρ ∈ (−1, 1].

It is worth noting that the white-noise condition is required for (4). When |ρ| < 1, this white-

noise condition is stronger than just serial uncorrelatedness (over time) which is required for

the consistency of the Arellano-Bond type IV/GMM estimators for |ρ| < 1.

The T1 (i.e, T − 1) moment conditions in (4) are strong for all ρ ∈ (−1, 1] in the sense

that the expected derivatives of the moment functions git(ρ) differ from zero for all ρ as

long as ∆yit−1 has enough variation across i. This is easily verified by the calculation

E∂git(ρ)/∂ρ = −E(∆yit−1)
2.

There are many ways to make use of these T1 moment conditions. The simplest is to use

pooled least squares estimation of (3), which leads to

ρ̂ols =

∑n
i=1

∑T
t=2 ∆yit−1(2∆yit + ∆yit−1)∑n

i=1

∑T
t=2(∆yit−1)2

,

which we call the first difference least squares (FDLS) estimator. This estimator has the

following limit distribution.
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Theorem 2 For each T ,
√
nT1(ρ̂ols− ρ) ⇒ N(0, Vols,T ) as n→∞ for all ρ ∈ (−1, 1], where

Vols,T =
ET−1

1

(∑T
t=2 ∆yit−1ηit

)2

[
ET−1

1

∑T
t=2(∆yit−1)2

]2 .
As T →∞, VT → 2(1 + ρ), and furthermore,

√
nT1(ρ̂ols − ρ) ⇒ N(0, 2(1 + ρ)).

The Gaussian limit theory is valid for any n/T ratio as long as nT1 → ∞, including

finite T values for which the variance Vols,T evolves with T . Most remarkably, the joint limit

as both n and T pass to infinity is identical to the limit where T → ∞ individually, or

the sequential limit as T → ∞ and then n → ∞ or the sequential limit as n → ∞ and

then T → ∞. As a result, the limit theory is remarkably robust to different sample size

constellations of (n, T ) and simulations support the resulting intuition that testing based on

Theorem 2 should show little size distortion.

We remark that the fourth moment condition Eε4
it <∞ is required for the limit theory to

hold. For small T , the variance Vols,T can be expressed directly in terms of the parameters,

using the general formula given in (56) in the Appendix. For example, if εit ∼ N(0, σ2) or

more weakly Eε4
it = 3σ4 and if T = 2, then we have Vols,2 = (1 + ρ)(3 − ρ). For T > 2

(and fixed) the variances Vols,T are plotted in Figure 1. The expression is quite complicated

for general ρ, and is unlikely to be practically useful because Vols,T depends on the nuisance

fourth moment of εit, except for ρ = 1 (see below Corollary 3), and because Vols,T can be

readily estimated by just replacing the expectation operators with averaging over i and the

error process ηit with the residuals η̂it from the regression of (3). More specifically, when n

is large, Vols,T is estimated by

(5) V̂ols,T =
(nT1)

−1
∑n

i=1

(∑T
t=2 ∆yit−1η̂it

)2

[
(nT1)−1

∑n
i=1

∑T
t=2(∆yit−1)2

]2 ,
where η̂it = 2∆yit + ∆yit−1 − ρ̂ols∆yit−1. The corresponding standard error for ρ̂ols is

(6) se(ρ̂ols) =

 n∑
i=1

(
T∑

t=2

∆yit−1η̂it

)2
1/2/

n∑
i=1

T∑
t=2

(∆yit−1)
2.

As T →∞, both Vols,T and V̂ols,T converge to 2(1+ ρ), and the N(0, 2(1+ ρ)) limit holds

if T →∞ whether or not n→∞. Technically speaking, the joint limit as both n→∞ and

T →∞ coincides with the sequential limit as n→∞ followed by T →∞ or the sequential

limit as T →∞ followed by n→∞. In this case, both (5) and 2(1 + ρ̂ols) are consistent for
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Figure 1: Vols,T for various T with normal errors. As T →∞, Vols,T approaches to 2(1 + ρ).
The convergence is fast when ρ > 0.
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Vols,T , so either formula can be used. This undiscriminating feature is a characteristic of the

new approach.

If n is small and T is large, then performance of (5) may be poor as it relies on the

law of large numbers across cross sectional units. But in this case the 2(1 + ρ̂ols) formula

approximates the actual variances quite well. This good performance of the asymptotic

theory has been confirmed in earlier simulations reported in Phillips and Han (2005) for the

time series case where n = 1.

When ρ = 1, the differenced data (∆yit) are iid over both cross-sectional and time-

series dimensions, resulting in the same Gaussian limit holding as nT →∞ (more precisely,

nT1 →∞) irrespective of the n/T ratio, as given in the following result.

Corollary 3 If ρ = 1, then (nT1)
−1/2(ρ̂ols − 1) ⇒ N(0, 4) as nT1 →∞.

Simulation results are given in Table 1 for T = 2 and T = 24. The exact form of Vols,T

is provided in (56) in the Appendix. The simulated test size based on t-ratios with the

standard errors obtained by (6) are given in the ‘size’ columns. The results generally reflect

the asymptotic theory well, including the consistency of both the estimator and the standard

error. When n is relatively small, the standard errors according to (6) slightly underestimate

the true variance. The asymptotic variance formula 2(1+ρ) for
√
nT1(ρ̂ols−ρ) from Theorem

2, which is appropriate when T →∞, obviously does not perform so well when T is as small

as it is in this experiment, although the formula is surprisingly good when ρ close to unity.
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Also, when T ≥ 3, the formula 2(1+ρ) is rather close to the true variance for reasonably large

ρ values (e.g., ρ ≥ 0.5), at least if the errors are normally distributed. For error distributions

with thicker tails one might expect that larger values of T might be needed to get a good

correspondence with the asymptotic formula based on T →∞.

2.2 Increasing Efficiency

As the moment functions are correlated over t, optimal GMM, which we call first differ-

ence GMM (FDGMM), is possibly a more efficient alternative to pooled OLS. In order

to formulate FDGMM, let D be the T1-vector of E(∆yit−1)
2 for t = 2, . . . , T and Ω the

T1 × T1 matrix for E∆yit−1ηitηis∆yis−1 for t, s = 2, . . . , T . Let h = (h2, . . . , hT )′ = Ω−1D.

Then the FDGMM estimator is the method of moments estimator using
∑T

t=2 ht∆yit−1ηit

as the moment function. (The FDLS estimator above corresponds to uniform weighting,

i.e., h2 = · · · = hT .) In other words, the FDGMM estimation is the instrumental variable

estimator of (3) using ht∆yit−1 as the instrument for ∆yit−1. Naturally, FDLS and FDGMM

are equal if T = 2, where the weighting is irrelevant.

It is straightforward to make optimal GMM operational through a two-step procedure.

We estimate D by D̃ = n−1
∑n

i=1[(∆yi1)
2, . . . , (∆yiT−1)

2]′ and Ω by Ω̃ = n−1
∑n

i=1 w̃iw̃
′
i,

where w̃i = (∆yi1η̃i2, . . . ,∆yiT−1η̃iT )′, with η̃it denoting the residuals from (3) using an

initial consistent estimate ρ̃ (e.g., ρ̂ols). Let h̃ = (h̃2, . . . , h̃T )′ = Ω̃−1D̃. Then the second

step efficient GMM estimator is obtained by pooled IV regression of (3) using h̃t∆yit−1 as

instrument for ∆yit−1.

Let us still assume that T is small. Let ρ̂gmm be the FDGMM estimator. Then obvi-

ously (nT1)
1/2(ρ̂gmm − ρ) ⇒ N(0, Vgmm) where Vgmm = (T−1

1 D′Ω−1D)−1. In the case of the

two-step efficient GMM, this variance can be estimated by replacing D with D̃ and Ω by

n−1
∑n

i=1 ŵiŵ
′
i, where ŵi = ∆yit−1η̂it with η̂it = 2∆yit + (1− ρ̂gmm)∆yit−1.

Because D = dι for some constant d where ι is the T1 vector of ones, we have

(7)
Vgmm

Vols,T

=
(D′Ω−1D)−1

[D′ι(ι′Ωι)−1ι′D]−1
=

T 2
1

ι′Ωιι′Ω−1ι
≤ 1,

where the last inequality boundary is obtained by the usual algebra in proving the asymptotic

efficiency of optimal GMM.

Even though the optimal GMM estimator may have a smaller asymptotic variance than

the OLS estimator, the efficiency gain looks marginal in our case. When ρ = 1, it can be

shown that OLS equals the optimal GMM (because h2 = · · · = hT ). For other ρ values

the variance ratio (7) is evaluated in Figure 2 in the case of standard normal errors with

ρ = −0.5, 0, 0.5, 0.9, 1 and T = 2, 3, . . . , 100. The lowest variance ratio is approximately

0.99, which is obtained at ρ = 0.5 and T = 5, indicating that the efficiency gain of optimal
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Table 1: FDLS for εit ∼ N(0, 1). Simulations conducted using Gauss with 10,000 iterations.
The limit variance Vols,T (denoted by V in this table) is calculated by (56). The sizes of test
based on the t-ratios using (6) are listed in the ‘size’ columns.

T = 2

ρ = 0 (V = 3) ρ = −0.5 (V = 1.75) ρ = −0.9 (V = 0.39)
n mean nT1var size mean nT1var size mean nT1var size

50 0.000 3.189 0.077 −0.499 1.857 0.076 −0.900 0.401 0.071
100 0.002 3.081 0.063 −0.500 1.822 0.063 −0.900 0.387 0.058
200 0.000 3.031 0.054 −0.500 1.734 0.054 −0.900 0.392 0.051
400 0.000 3.032 0.053 −0.499 1.779 0.054 −0.900 0.387 0.055

ρ = 0.5 (V = 3.75) ρ = 0.9 (V = 3.99) ρ = 1 (V = 4)
n mean nT1var size mean nT1var size mean nT1var size

50 0.498 3.968 0.075 0.901 4.049 0.067 1.001 4.066 0.068
100 0.500 3.808 0.064 0.900 4.041 0.061 1.001 3.980 0.058
200 0.501 3.823 0.057 0.899 3.962 0.055 1.000 4.047 0.057
400 0.500 3.846 0.054 0.900 3.930 0.052 1.001 4.098 0.058

T = 24

ρ = 0 (V = 2.043) ρ = −0.5 (V = 1.074) ρ = −0.9 (V = 0.313)
n mean nT1var size mean nT1var size mean nT1var size

50 0.001 2.057 0.061 −0.498 1.091 0.062 −0.899 0.329 0.069
100 0.000 2.077 0.059 −0.499 1.095 0.056 −0.899 0.321 0.060
200 0.000 2.039 0.052 −0.500 1.053 0.049 −0.900 0.325 0.057
400 0.000 2.035 0.050 −0.500 1.079 0.051 −0.900 0.324 0.050

ρ = 0.5 (V = 2.987) ρ = 0.9 (V = 3.758) ρ = 1 (V = 4)
n mean nT1var size mean nT1var size mean nT1var size

50 0.500 2.986 0.059 0.900 3.735 0.059 1.000 3.988 0.059
100 0.500 3.036 0.054 0.900 3.723 0.053 1.000 4.039 0.057
200 0.500 3.036 0.056 0.900 3.685 0.050 1.000 3.841 0.045
400 0.500 3.073 0.054 0.900 3.817 0.053 1.000 4.071 0.055
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Figure 2: Variance ratio Vgmm/Vols for normal errors for T = 2, 3, . . . , 100. The minimum
efficiency of FDLS relative to FDGMM is approximately 0.99 with the low point being
attained at ρ = 0.5 and T = 4. The efficiency gain of FDGMM over FDLS is marginal.
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GMM over OLS is marginal. But note that this simulation result applies only to normally

distributed errors. From additional experiments (not reported here) it was found that the

efficiency of GMM over OLS is responsive to kurtosis, but for reasonable degrees of kurtosis,

the efficiency gain of FDGMM remains marginal. For example, when var((εi/σ)2)− 2 = 5,

the minimal Vgmm/Vols ratio is approximately 0.98.

Because the performance of the feasible two-step GMM estimator may deteriorate due

to inaccurate estimation of the covariance matrix, the two-step efficient GMM may yield

a poorer estimator than OLS when the efficiency gain of the infeasible optimal GMM is

marginal. When εit is normally distributed, this is likely to be the case. According to

simulations not reported here, the two-step efficient GMM (using OLS as the first step

estimator) looks less efficient than OLS for a wide range of ρ and T values up to quite a

large n. So we generally recommend FDLS over FDGMM for practical use.

It is interesting to view FDLS in the context of method of moments and compare it with

other consistent estimators. For the model yit = αi +uit, uit = ρuit−1 +εit, under the further

assumption that αi is uncorrelated with εit (and ui0), we get the moments

Eyityis = Eα2
i + σ2ρ|t−s|/(1− ρ2), |ρ| < 1,

Eyityis = Eα2
i + Eu2

i0 + σ2(s ∧ t), ρ = 1,

for all t, s = 0, 1, . . . , T , which in turn provide (T + 1)(T + 2)/2 distinct moments. Next,
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rewrite the moments in terms of (yi0,∆y
′
i)
′ = (yi0,∆yi1, . . . ,∆yiT )′ as

Ey2
i0 = Eα2

i + ρ2Eu2
i0 + σ2,

Eyi0∆yit = −σ2ρt−1/(1 + ρ), t ≥ 1,

E(∆yit)
2 = 2σ2/(1 + ρ),

E∆yit∆yis = −σ2ρ|t−s|−1(1− ρ)/(1 + ρ), t 6= s,

or in matrix form as

(8) E

[
yi0

∆yi

][
yi0

∆yi

]′
=

σ2

1 + ρ


ξρ −1 −ρ · · · −ρT1

−1 2 −(1− ρ) · · · −ρT2(1− ρ)

−ρ −(1− ρ) 2 · · · −ρT3(1− ρ)
...

...
...

. . .
...

−ρT1 −ρT2(1− ρ) −ρT3(1− ρ) · · · 2

 ,

where ξρ = (Eα2
i +ρ

2Eu2
i0+σ

2)(1+ρ)/σ2. (Note that the moments Ey2
i0 and E∆yiyi0 depend

on the condition that the αi are uncorrelated with ui,−1 and εit but the moments E∆yi∆yi

do not.) Rewriting the moments Eyiy
′
i as (8) does not waste any information because we

can recover the original moments Eyiy
′
i by a linear transformation. Now, among these

(T + 1)(T + 2)/2 distinct moments, Ey2
i0 contains the nuisance parameters Eα2

i and Eu2
i,−1

and, in fact, only Ey2
i0 does so. Thus this element does not contribute to the estimation

of ρ and can be safely ignored. Now, in what follows, we will show that each conventional

(consistent) estimator can be derived as a (generalized) method of moments estimator using

a subset of the above moment conditions.

Let us first consider the conventional IV/GMM estimators such as those of Anderson and

Hsiao (1981) and Arellano and Bond (1991). The moment conditions

(9) Efi1t(ρ) = Eyi0(∆yit − ρ∆yit−1) = 0, t ≥ 2,

are obtained by combining any two consecutive elements of the first column (except for Ey2
i0).

Furthermore, any lower off-diagonal element of E∆yi∆y
′
i and the element below it provides

the moment condition

(10) Ehist(ρ) = E∆yis(∆yit − ρ∆yit−1) = 0, s < t− 1,

for some s and t. These moment conditions are strong when ρ < 1 so the IV/GMM estimators

are consistent. But if ρ ' 1, then the moment conditions are weakly identifying, and in case

ρ = 1, each moment condition in (9) and (10) fails to identify the true parameter because

then Efi1t(ρ) ≡ 0 and Ehist(ρ) ≡ 0. When ρ = 1, if T is small and fixed, then the

limit distribution of the GMM estimator is nondegenerate due to the lack of identification
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(see, e.g., Phillips, 1989, Staiger and Stock, 1997). But if T is large, then the unweighted

GMM using these moment conditions converges to zero (under some regularity conditions

for ui0 = yi0 − αi), because the unweighted criterion function satisfies the convergence

q−1
n


T∑

t=2

[
n−1/2

n∑
i=1

fi1t(ρ)

]2

+
∑

s<t−1

[
n−1/2

n∑
i=1

hist(ρ)

]2
→p (1 + ρ2)σ4,

(if the initial condition that (nT )−1/2
∑n

i=1 ui,−1 →p 0 holds under other regularity condi-

tions) due to the accumulating signal variability and despite the fact that each moment

condition fails to identify any ρ value, and this limit is minimized at zero (see Han and

Phillips (2006) for a detailed study of such situations), where qn = (T − 1) + T (T + 1)/2

is the total number of moment conditions. So IV/GMM estimation based on (9) and (10)

can hardly be used successfully when ρ may take values near unity. The behavior of the two

step efficient GMM estimator in this case has not been determined.

It is remarkable that Arellano and Bond (1991)’s estimator does not make full use of

all the moment conditions implied by the off-diagonal elements of (8). Taking the example

of T = 2, besides Eyi0(∆yi2 − ρ∆yi1) = 0, the moment condition E∆yi2(yi0 − ρyi1) = 0

also holds. (But it should also be noted that Eyi0(∆yi2 − ρ∆yi1) = 0 if the εit are not

autocorrelated (over t) while the moment condition that E∆yi2(yi0 − ρyi1) = 0 requires

homoskedasticity over time also. See Ahn and Schmidt (1995) for the complete list of moment

conditions implied by various set of assumptions.) These additional moment conditions

certainly improve the quality of Arellano and Bond’s estimator when |ρ| < 1, but do not

help solve the problem at ρ = 1.

Unlike this IV/GMM estimator which uses the off-diagonal elements of (8), our approach

works from the moment conditions on the diagonal elements of E∆yi∆y
′
i. Each diagonal

element of E∆yi∆y
′
i in (8) and the element right below it construct a moment condition

in (4), i.e., (1 − ρ)E(∆yit−1)
2 + 2E∆yit−1∆yit = 0 or equivalently E∆yit−1[2∆yit + (1 −

ρ)∆yit−1] = 0. It is also interesting that more moment conditions can be obtained by

combining the diagonal elements and their left elements, viz.,

(11) Eg∗it(ρ) = E∆yit[2∆yit−1 + (1− ρ)∆yit] = 0, t = 2, . . . , T.

These moment conditions are symmetric to (4) and are obtained by swapping the roles of ∆yit

and ∆yit−1. We may consider GMM estimation or OLS estimation using these additional

moment conditions together with those in (4). Simulations illustrate that the efficiency

gain over ρ̂ols by considering (11) is considerable when T = 2 especially for negative ρ, but

the contribution of these additional moment conditions diminishes with T . Furthermore,

when ρ = 1, git(ρ) of (4) and g∗it(ρ) of (11) are asymptotically identical when evaluated

11



Table 2: Efficiency gain by adding g∗it(ρ)

ρ \ T 2 3 4 5 7 10 20
−0.5 0.44 0.47 0.56 0.62 0.73 0.79 0.90

0.0 0.75 0.78 0.86 0.88 0.92 0.95 0.98
0.5 0.93 0.95 0.97 0.98 0.99 0.99 1.00
0.9 0.99 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Variance ratios var(ρ̂∗∗ols)/var(ρ̂ols) are reported.

at the true parameter, so the moment conditions are singular and the traditional feasible

optimal GMM procedure does not provide standard asymptotics should we use both (4)

and (11). In that case, procedures based on analytically calculated optimal weights (so the

weights are a function of ρ) could avoid the singularity, but this sort of general analytic

weighting scheme cannot be implemented because the optimal weighting matrix depends on

the nuisance parameter Eε4
it. When εit ∼ N(0, σ2), however, the variances of git(ρ) and g∗it(ρ)

are almost equal except for ρ ' −1 according to simulations, implying that the unweighted

sum git(ρ) + g∗it(ρ) is an (almost) optimal transformation of git(ρ) and g∗it(ρ). Especially,

when
∑T

t=2 git(ρ) is used (as in the derivation of ρ̂ols) instead of each git(ρ) separately,

the unweighted sum
∑T

t=2[git(ρ) + g∗it(ρ)] is an almost optimal exactly identifying moment

condition with normal errors. This leads to a natural OLS regression of the pooled dependent

variable (2∆yit+∆yit−1, 2∆yit−1+∆yit)
′ on the correspondingly pooled independent variable

(∆yit−1,∆yit)
′. Let us denote this estimator by ρ̂∗∗ols. According to simulations, when ρ = 0

and T = 2, the variance ratio var(ρ̂∗∗ols)/var(ρ̂ols) is about 0.75, meaning that by additionally

using the moment condition that Eg∗i3(ρ) = 0, we can reduce 25% of the variance. For other

values of ρ and T , Table 2 reports the ratio of the variance of the OLS estimator based

on git(ρ) to the variance of the OLS estimator based on both git(ρ) and g∗it(ρ). Note again

that this result applies only to normal errors, and when the tails of the error distribution

are thicker (e.g., the t5 distribution), g∗it(ρ) will have larger variance than git(ρ), and as a

result, the estimator ρ̂∗∗ols may be even less efficient than ρ̂ols because of the failure of optimal

weighting.

In summary, the loss of efficiency from using OLS rather than GMM is marginal, and

the gain from adding g∗it(ρ) is not big enough compared with the possible risk of singularity

(in case of GMM) and efficiency loss (in case of pooled OLS). In view of these many consid-

erations, the original FDLS method (which yields ρ̂ols) is again recommended for practical

use.
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2.3 More Moment Conditions

We may want to use all the moment conditions fi1t, hist, git and their mirror images. This is

done in Ahn and Schmidt (1995). The GMM estimator based on all these moment conditions

is asymptotically efficient when |ρ| < 1 and T 2 is small relative to n. However, this approach

faces the many instrument problem when T is large and the weak instrument problem when

ρ ' 1. Noting that some moment conditions are strong for all ρ, we may calculate the

weighted sum of all the moment conditions using a nonrandom weighting function of ρ (and

only ρ with no other nuisance parameters). Nickell’s (1981) analysis allows for this kind of

method, which is a method of moments estimator (let us call it the fixed effects method of

moments, or FEMM for short, estimator) due to the fact that∑T
t=1Eẏit−1(ÿit − ρẏit−1)∑T

t=1Eẏ
2
it−1

= dT (ρ),

where ÿit = yit − T−1
∑T

t=1 yit, ẏit−1 = yit−1 − T−1
∑T

t=1 yit−1, and

dT (ρ) = −
(

1 + ρ

T1

)
d̃T (ρ)

/[
1− 2ρd̃T (ρ)

(1− ρ)T1

]
,

with d̃T (ρ) = 1 − T−1(1 − ρ)−1(1 − ρT ). (Here T1 = T − 1 as before.) The above moment

condition can be written as

(12) E

T∑
t=1

ẏit−1{ÿit − [ρ+ dT (ρ)]ẏit−1} = 0.

In order to estimate ρ, we can set the sample moment to zero and use a nonlinear algorithm

to locate the root. It is also possible to estimate ρ + dT (ρ) by linear fitting (which is the

usual within-group estimator) and then correct the bias by applying the inverse mapping of

ρ 7→ ρ + dT (ρ), but we do not consider this method because estimating the variance of the

resulting estimator is not straightforward in that case.

Now, because ÿit and ẏit−1 can be expressed in terms of ∆yis as

ÿit =
1

T

T∑
s=2

(s− 1)∆yis −
T∑

s=t+1

∆yis and ẏit =
1

T

T−1∑
s=1

s∆yis −
T−1∑

s=t+1

∆yis,

the moment condition (12) can be expressed as a linear combination of the elements of

E∆yi∆y
′
i of (8).

When T = 2, the moment condition for FEMM is equal to the moment condition for ρ̂ols,

and the FEMM estimator is algebraically equal to ρ̂ols. If |ρ| < 1 in this case, the GMM

estimator based on (4) and (11) is more efficient than FEMM when the errors are normally
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distributed as we have seen before. This example is interesting because it shows that the

bias corrected within estimator (FEMM) may not be efficient for small T .

When T = 3, the moment condition for FEMM is ‘factorized’ as

[(1− ρ)(3 + ρ)]−1E{(2− 3ρ− ρ2)gi2(ρ) + 2g∗i2(ρ) + (3 + ρ)(1− ρ)[gi3(ρ) + hi13(ρ)]} = 0,

where git(ρ), g
∗
it(ρ) and hist(ρ) are defined in (4), (11) and (10), respectively. The leading

factor [(1− ρ)(3 + ρ)]−1 is ignored (we can do so because the probability of ρ̂ = 1 is zero) to

handle the ρ = 1 case, and we have

(13) E{(2− 3ρ− ρ2)gi2(ρ) + 2g∗i2(ρ) + (3 + ρ)(1− ρ)[gi3(ρ) + hi13(ρ)]} = 0.

In (13) it is remarkable and important that hi13(ρ) is multiplied by the factor 1 − ρ, which

makes hi13(ρ) relevant when ρ = 1. That is, when the true parameter is unity, Ehi13(ρ) = 0

for all ρ so hi13(ρ) is irrelevant, but because of the 1− ρ factor, the sample moment function

n−1
∑n

i=1(1− ρ)hi13(ρ) involving the irrelevant hi13(ρ) is always set to zero at ρ = 1, which

is the true parameter. This happens for all T, ensuring consistency of the FEMM estimator

for all ρ. Interesting as it is, we do not further pursue this issue here.

2.4 The Explosive Case

When ρ > 1, the differences ∆yit continue to manifest explosive behavior and all the good

properties of FDLS do not hold. The estimator is inconsistent and the limit depends on the

n/T ratio and the initial status ui,−1. The following lemma is indicative of what happens in

this case.

Lemma 4 If ρ > 1, then

E
1

T1

T∑
t=2

(∆yit−1)
2 = (ρ+ 1)−1 [2 + ν(ρ, T )]σ2,

E
1

T1

T∑
t=2

∆yit−1ηit = ν(ρ, T )σ2,

where

ν(ρ, T ) =

[
ρ2(ρ2T1 − 1)δρ

T1(ρ+ 1)

]
, δρ = (ρ2 − 1)Eu2

i,−1/σ
2 + 1.

When T is fixed, this lemma implies, by the law of large numbers, that

plim
n→∞

ρ̂ols = ρ+
(ρ+ 1)ν(ρ, T )

2 + ν(ρ, T )
.
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Thus, in the case where ρ is close to unity and Eu2
i,−1 is small so that ν(ρ, T ) is negligible,

then the inconsistency of ρ̂ols is also small. For a given ρ, the bias of ρ̂ols is bigger when T is

large than when T is small. If ρ is even closer to unity and such that
√
nν(ρ, T ) → 0, then

the bias of
√
nT1(ρ̂ols − ρ) is negligible, leading to a Gaussian limit whose variance changes

continuously as ρ deviates slightly from unity into the explosive area. This observation

implies that the limit distribution of Theorem 2 is continuous as ρ passes through unity to

very mildly explosive cases.

The case with large T and fixed n can be analyzed by Theorems 2 and 3 of Phillips and

Han (2005) who consider the time series case. Again the asymptotics are continuous as ρ

passes through unity under the initial condition that (ρT − 1)u2
i,−1 →p 0 where ρ = ρT ↓ 1.

If both n and T are large, the N(0, 2(1 + ρ)) asymptotics are still continuous as ρ passes

through the boundary of unity into the explosive area, though the boundary of ρ for the

continuous asymptotics is then correspondingly narrower on the explosive side of unity.

2.5 Heterogeneity and Cross Section Dependence

The remainder of this section considers issues of cross-sectional heteroskedasticity, hetero-

geneity, and cross section dependence.

If the error variance Eε2
it is different across i, then Theorem 2 still applies as long as

the Lindeberg condition holds, with the only modification to Vols,T being the more general

expression

lim
n→∞

(nT1)
−1
∑n

i=1E(
∑T

t=2 ∆yit−1ηit)
2

(nT1)−1
∑n

i=1

∑T
t=2(∆yit−1)2

.

Computation of standard errors by (6) remains valid.

If the AR coefficient changes across i so that the model involves uit = ρiuit−1 + εit, then

we have the limit

ρ̂ols →p plim
n→∞

n∑
i=1

wiρi,

if the limit on the right hand side exists, where

wi =

∑T
t=2(∆yit−1)

2∑n
i=1

∑T
t=2(∆yit−1)2

.

Noting that E(∆yit−1)
2 = 2σ2

i /(1 + ρi), we see that an individual unit with smaller ρi is

given a bigger weight if there is no heteroskedasticity.

To allow for cross section dependence, let εit =
∑K

k=1 λikfkt + vit, where the fkt are

common shocks iid over t and independent of other shocks, λik are the factor loadings, and
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the vit are iid. Since the compounded error εit is still white noise, the moment conditions

(4) still hold. However, consistency does not hold unless T →∞ or K →∞ (where K is the

number of common factors). The case K = 1 is exemplary. Here (∆yit−1)
2 involves (λi1f1t)

2

and the randomness in the double sum

(nT1)
−1

n∑
i=1

T∑
t=2

(λi1f1t)
2 = n−1

n∑
i=1

λ2
i1 · T−1

1

T∑
t=2

f 2
1t

persists unless T is large (c.f. Phillips and Sul, 2004). When T is small, as is the case

in typical microeconometric work, K may be considered large and each factor loading is

assumed to be sufficiently small to ensure convergence. (Then the variation of the cross

section dependence term
∑K

k=1 λikfit is correspondingly controlled.) As long as the common

factors fkt are white noise over time, the moment conditions (4) hold, and under further

regularity to ensure convergence, the FDLS estimator would be consistent. See Phillips and

Sul (2004) for details on panel models with these characteristics.

3 Dynamic Panels with Exogenous Variables

This section considers the model with exogenous variables yit = αi + β′xit + uit where

uit = ρuit−1 + εit for ρ ∈ (−1, 1], which may be transformed to

(14) yit = (1− ρ)αi + β′(xit − ρxit−1) + ρyit−1 + εit.

Let zit = yit − β′xit. Then the model (14) is written as zit = (1− ρ)αi + ρzit−1 + εit, which

is the same as (1) with yit replaced with zit. By applying the same transformation, we get

2∆zit + ∆zit−1 = ρ∆zit−1 + ηit, ηit = 2∆εit + (1 + ρ)∆zit−1.

For all ρ, ∆zit−1 and ηit are uncorrelated and these moment conditions are strong for all ρ,

as before. Next, if we allow αi to be arbitrarily correlated with xit, then we can apply the

within transformation to (14) giving

ÿit − ρẏit−1 = (ẍit − ρẋit−1)
′β + ε̈it,

where ÿit = yit− T−1
∑T

s=1 yis, ẏit−1 = yit−1− T−1
∑T

s=1 yis−1, and so on. From the fact that

the within-group estimator is efficient when αi is allowed to be correlated with xit in the

usual linear panel data model (see Im, Ahn, Schmidt and Wooldridge, 1999), we propose the

following exactly identifying moment conditions:

E

T∑
t=2

∆zit−1[(2∆zit + ∆zit−1)− ρ∆zit−1] = 0,(15)

E

T∑
t=1

(ẍit − ρẋit−1) [(ÿit − ρẏit−1)− (ẍit − ρẋit−1)
′β] = 0,(16)
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where ∆zit = ∆yit−∆x′itβ. Note that when there is no exogenous variable, the first moment

condition (15) leads to the OLS estimator of the previous section. We can estimate ρ and

β by the method of moments. In practice, after (15) and (16) are rewritten in terms of

the sample moment conditions, the parameters can be estimated by estimating ρ and β

iteratively between (15) and (16) if the procedure converges.

For the asymptotic variance we can use the usual “(D′Ω−1D)−1” formula where D con-

tains the expected scores of (15) and (16) and Ω is the variance matrix of those moment

conditions, both evaluated at the true parameter. Conveniently, D is block diagonal and if

εit has zero third moment, then so is the Ω matrix, separating the estimation of ρ from the

estimation of β. (See the Appendix for further details.) As a result, we can treat the final es-

timator β̂ as the true β parameter in computing the ∆zit’s and then estimate ρ and compute

its standard error; similarly, we can treat the final ρ̂ as the true ρ parameter and compute

the standard errors of β̂ using usual within-group estimation technique after transforming

xit and yit to xit − ρ̂xit−1 and yit − ρ̂yit−1, respectively.

4 Incidental Trends

When the model includes incidental trends so that yit = αi + γit+ uit, uit = ρuit−1 + εit, it

may be written in the form

(17) yit = (1− ρ)αi + ργi + (1− ρ)γit+ ρyit−1 + εit.

Double differencing eliminates the combined fixed effects, giving

(18) ∆2yit = ρ∆2yit−1 + ∆2εit,

which implies that

∆2yit =
∞∑

j=0

ρj∆2εit−j = εit − (2− ρ)εit−1 + (1− ρ)2

∞∑
j=0

ρjεit−j−2.

When ρ = 1, we have ∆2yit = ∆εit, so E(∆2yit−1)
2 = 2σ2 and E∆2yit−1∆

2εit = −3σ2. When

|ρ| < 1, we have

E(∆2yit−1)
2 =

[
1 + (2− ρ)2 +

(1− ρ)4

1− ρ2

]
σ2 =

2(3− ρ)σ2

1 + ρ
,

and

E∆2yit−1∆
2εit = −(4− ρ)σ2
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so these formulae cover the case of ρ = 1. Thus

E∆2yit−1η̃it = 0, η̃it = 2∆2εit +
(1 + ρ)(4− ρ)

3− ρ
∆2yit−1.

This corresponds to transforming (18) to the model in differences

(19) 2∆2yit + ∆2yit−1 = θ∆2yit−1 + η̃it, θ = −(1− ρ)2

3− ρ
.

Correspondingly, the double difference least squares (DDLS) estimator θ̂ is

θ̂ =

∑n
i=1

∑T
t=3 ∆2yit−1(2∆2yit + ∆2yit−1)∑n

i=1

∑T
t=3(∆

2yit−1)2
.

Note that θ ∈ (−1, 0] for all ρ ∈ (−1, 1] and θ = 0 if ρ = 1. When point estimation of ρ is of

interest, we can simply run pooled OLS on (19) to get θ̂ and censor at 0 and −1, and then

recover ρ̂ from θ̂ by ρ̂ = 1
2
[2 + θ̂ − (θ̂

2
− 8θ̂)1/2]. Alternatively, we may also consider method

of moments estimation based on (19) using the moment condition

E
T∑

t=3

∆2yit−1

(
2∆2yit +

[
1 +

(1− ρ)2

3− ρ

]
∆yit−1

)
= 0.

Some caution is needed here because the parameter θ = −(1− ρ)2/(3− ρ) can never exceed

zero for all ρ ∈ (−1, 1] and therefore the sample moment function may not attain zero at

any parameter value.

For testing, we can rely on the asymptotic distribution√
nT2(θ̂ − θ) ⇒ N(0,Wols,T )

for some positive Wols,T . (Asymptotic normality is established in Theorems 5 and 6 in the

Appendix.) Just as for the case without incidental trends, the limit theory is continuous and

joint as n → ∞ or T → ∞ or both pass to infinity with Wols,T evolving with T . However,

as is apparent from the relation θ = − (1−ρ)2

3−ρ
, an O

(
n−1/4T−1/4

)
neighborhood of ρ = 1

corresponds to an O
(
n−1/2T−1/2

)
neighborhood of θ = 0, and for ρ = 1, it is easily seen that

the rate of convergence of ρ̂ is at the slower n1/4T
1/4
2 rate, while that of θ̂ is n1/2T

1/2
2 . For

ρ < 1, the rates of convergence of ρ̂ and θ̂ are both n1/2T
1/2
2 . Hence, there is a deficiency in

the convergence rate for ρ̂ around unity.

When T is small, Wols,T depends on Eε4
it and the algebraic form of Wols,T for small T

is too complicated to be of interest. But when n is large, as in typical microeconometric

projects, the standard error of θ̂ is easily calculated by

(20) se(θ̂) =

√∑n
i=1(
∑T

t=3 ∆2yit−1η̂it)
2∑n

i=1

∑T
t=3(∆

2yit−1)2
,
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with η̂it denoting the residuals from the regression of (19). On the other hand, in macroe-

conometrics where T is often moderately large, then
√
nT2(θ̂ − θ) ⇒ N(0, limT→∞Wols,T ),

where

lim
T→∞

Wols,T = (1 + ρ)2(3− ρ)−2

k∑
1

b2k,

with

b1 = 2(3− ρ) + (1− ρ)2 − [(2− ρ) + 2(1− ρ)2/(1 + ρ)]φ,

b2 = −(2− ρ)[1 + (1− ρ)2] + (1− ρ)3φ/(1 + ρ),

bk = ρk−3(1− ρ)3[(1− ρ) + ρφ/(1 + ρ)], k ≥ 3,

and with φ = (4− ρ)(1 + ρ)/(3− ρ). (Phillips and Han, 2005, derive this limit in the time

series case.) As presented in Theorems 5 and 6 in the Appendix, the convergence is uniform

in the sense that the limit of the variance is the variance of the limit distribution as T →∞.

As a special case, if ρ = 1, then

(21)
√
nT2θ̂ ⇒ N(0, 2 + κ4/T2)

for all T as n→∞, where κ4 = var(ε2
it)/2σ

4, and the limit distribution as T →∞ is simply

N(0, 2) whether n is large or small.

5 Panel Unit Root Testing

5.1 Fixed Effects Model

The inferential apparatus and its limit theory may be applied directly to panel unit root

testing. Consider the fixed effects panel yit = (1 − ρ)αi + ρiyit−1 + εit where the εit are

iid. The unit root null hypothesis is that ρi = 1 for all i. The OLS estimator ρ̂ols and its

limit theory in Theorem 2 and Corollary 3 can form the basis of a statistical test. More

precisely, the test statistic is τ̂ 0 := (nT1)
1/2(ρ̂ols − 1)/2. This test statistic is derived under

the assumption of cross-sectional homoskedasticity. If the variances σ2
i := Eε2

it differ across

i and ρi ≡ 1, then the standard deviation of the limit distribution of ρ̂ols is approximated by

(22)
2 (
∑n

i=1 σ
4
i )

1/2

T
1/2
1

∑n
i=1 σ

2
i

=
2

(nT1)1/2
× (n−1

∑n
i=1 σ

4
i )

1/2

n−1
∑n

i=1 σ
2
i

,

which is larger than the simple standard error form 2/(nT1)
1/2 obtained for homoskedastic

data. Under heteroskedasticity, the τ̂ 0 statistic can be computed by using formula (6) for the
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standard error, or by replacing σ2
i in (22) with the estimate σ̂2

i = T−1
∑T

t=1(∆yit)
2. Under

the null hypothesis, τ̂ 0 ⇒ N(0, 1), and under the alternative hypothesis that ρi < 1 for some

i, plim ρ̂ols < 1, and as a result, τ̂ 0 →p −∞ as nT → ∞. So, the test is consistent for any

passage of nT →∞.

Unlike Levin and Lin (1992) or Im, Pesaran and Shin (1997), this test does not require

any restriction on the path to infinity such as T → ∞ and n/T → 0. Only the composite

divergence nT →∞ is required, and there is virtually no size distortion when T is small. On

the other hand, while the point optimal test for a unit root has local power in a neighborhood

of unity that shrinks at the rate n−1/2T−1 (see Moon and Perron, 2004, and Moon, Perron and

Phillips, 2006b), the τ̂ 0 test has only trivial asymptotic power in n−1/2T−1 neighborhoods

and non-trivial local asymptotic power in n−1/2T−1/2 neighborhoods of unity. So in this

model at least, there is an infinite power deficiency in neighborhoods of order n−1/2T−1.

This deficiency is partly due to the fact that ρ̂ols depends only on differenced data, which

thereby reduces the signal relative to that of point optimal and other tests which make

direct use of the nonstationary regressor. But that is not the only reason, and interestingly

a common point optimal test based on the differenced data may attain the optimal rate of

n1/2T . To illustrate this possibility, consider the common point likelihood ratio test for the

case where the εit are iid N(0, σ2) and σ2 is known. The test for H0 : n1/2T (1 − ρ) = 0

against the alternative H1 : n1/2T (1− ρ) = c using the differenced data ∆yit is based on the

likelihood ratio

(23) UnT (c) = 2
[
logL

(
1− n−1/2T−1c

)
− logL(1)

]
,

where logL(·) is calculated based on the joint distribution of ∆yi = (∆yi1, . . . ,∆ynT )′, i.e.,

logL(ρ) = −nT
2

log(2π)− nT

2
log σ2 − n

2
log |ΩT (ρ)| − 1

2σ2

n∑
i=1

∆y′iΩT (ρ)−1∆yi,

with

(24) ΩT (ρ) = (1 + ρ)−1Toeplitz
{
2,−1(1− ρ),−ρ(1− ρ), . . . ,−ρT2(1− ρ)

}
.

In the above, the notation Toeplitz{a0, . . . , am−1} denotes the m × m symmetric Toeplitz

matrix whose (i, j) element is a|i−j|. As shown in the appendix, when n1/2T (1− ρ) = c (i.e.,

under the alternative hypothesis), we have

(25) UnT (c) →d N(c2/8, c2/2).

So if the null hypothesis of n1/2T (1− ρ) = 0 is tested against the alternative that n1/2T (1−
ρ) = c̃ such that the null hypothesis is rejected for UnT (c̃) ≥ z̄αc/

√
2 where Φ(−z̄α) = α,
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and if the c̃ happens to equal the true c, then the local power of this test is

Φ

(
c

4
√

2
− z̄α

)
.

For all c > 0, this local power function resides below the power envelope Φ(c/
√

2− z̄α) based

on the level data for large T obtained by Moon, Perron and Phillips (2006b). Nonetheless,

it is remarkable that the optimal rate can be attained by using differenced data.

As discussed so far, the deficiency of testing using ρ̂ols comes partly from differencing

and partly from inefficient use of the moment conditions. This fact may at first seem to

contradict our earlier observation that ρ̂ols is almost as good as the (infeasible) optimal

GMM estimator based on the differenced data (e.g., Figure 2). Nonetheless, it seems that

maximum likelihood estimation on the differenced model combines the moment conditions

so cleverly that, at ρ = 1 (at which point the levels MLE is superconsistent), the otherwise

useless moment conditions contribute to estimating ρ = 1. (See the last part of section 2.3.)

A full analysis and comparison of panel MLE in levels and differences that explores this issue

will be useful and interesting, and deserves a separate research paper.

To return to testing based on the FDLS estimator, the deficiency in power based on this

procedure may be interpreted as a cost arising from the simplicity of the τ̂ 0 test, the uniform

convergence rate of the estimator and its robustness to the asymptotic expansion path for

(n, T ). Table 3 reports the simulated size and power of the τ̂ 0 test, in comparison to Im

et al.’s (2003) test, for the data generating process yit = (1 − ρi)αi + ρiyit−1 + σiεit with

alternative parameter settings, where αi and εi are standard normal and σi ∼ U(0.5, 1.5).

To simulate power, the cases ρi ≡ 0.9 and ρi ∼ U(0.9, 1) are considered. Panel length is

chosen to be T = 6 and T = 25, choices that roughly illustrate size and power for small and

moderate T . (T = 6 is the smallest value covered by Table 1 of Im et al., 2003.) Note that

the τ̂ 0 test does not require bias adjustment. It is also remarkable that the τ̂ 0 test seems

to have better power than the IPS test when T is small. But with larger T (T = 25 in the

simulation), the IPS test has better power, which is related to the O(
√
nT ) convergence rate

of the FDLS estimator.

5.2 Incidental Trends Model

Next consider the case where incidental trends are present, as laid out in Section 4. Let θ̂

be the pooled OLS estimator from the regression of (19). Noting that ρ = 1 corresponds

to θ = 0, we can base the panel unit root test on the statistic τ̂ 1 := θ̂/se(θ̂) ⇒ N(0, 1),

where se(θ̂) is given in (20) when n is large or se(θ̂) =
√

2/nT2 when T is large. (Again

note that (20) is robust to the presence of cross-sectional heteroskedasticity.) The null

hypothesis H0 : ρi = 1 for all i is rejected if τ̂ 1 is less than the left-tailed critical value from
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Table 3: Simulated Size and Power of Unit Root Tests with Incidental Intercepts case.
DGP: yit = αi + uit, uit = ρiuit−1 + σiεit

αi, εit ∼ iid N(0, 1), σi ∼ iid U(0.5, 1.5)
Significance level: 5%

T = 6

ρi ≡ 1 ρi ≡ 0.9 ρi ∼ U(0.9, 1)
n HP IPS HP IPS HP IPS

50 6.09 5.83 20.13 10.76 12.13 7.95
100 6.00 5.47 28.37 14.77 13.37 9.20
200 5.30 5.56 42.88 22.05 18.49 11.52
400 5.54 5.97 66.30 35.02 26.77 15.63

T = 25

ρi ≡ 1 ρi ≡ 0.9 ρi ∼ U(0.9, 1)
n HP IPS HP IPS HP IPS

50 6.17 5.14 49.56 84.26 22.66 33.61
100 5.89 5.34 72.64 98.63 30.01 54.62
200 5.05 5.31 93.00 99.99 47.09 81.03
400 4.91 5.70 99.73 100.0 71.05 97.83

the standard normal distribution. When some ρi are smaller than unity, or equivalently

when some θi are smaller than 0, θ̂ converges in probability to the limit of
∑n

i=1 w̃iθi where

w̃i =
∑T

t=3(∆
2yit−1)

2/
∑n

i=1

∑T
t=3(∆

2yit−1)
2. As long as a non-negligible portion of individual

units i have ρi < 1, this limit is strictly negative, and hence the test statistic τ̂ 1 diverges to

−∞ in probability. Thus, the test τ̂ 1 is consistent regardless of the existence of incidental

trends.

Local power of the test is relatively weak, which can be explained by the definition of θ

in (19). Since θ̂ has an (nT2)
1/2 rate of convergence the test should have some local power

when θ is in an O(n−1/2T
−1/2
2 ) neighborhood of zero. But that is the case when ρ is in an

O(n−1/4T
−1/4
2 ) neighborhood of unity, which shrinks at a far slower rate than the optimal

n−1/4T−1 rate attained by a point optimal test when the incidental trends are extracted from

the panel data as described in Moon, Perron and Phillips (2006b).

It is interesting that there may exist a unit root test based on the double differenced

data which has local power in a neighborhood of unity shrinking at the n−1/2T
−1/2
1 rate

when T1/
√
n→ 0 and at a correspondingly faster rate when T grows faster. This possibility

can again be illustrated by considering a likelihood ratio test with double differenced data

under the Gaussianity assumption such that

(26) ∆2yi = (∆2yi2, . . . ,∆
2yiT )′ ∼ N(0, σ2Ω̃T (ρ)), Ω̃T (ρ) = Toeplitz(ω0(ρ), . . . , ωT2(ρ)),
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where

ω0(ρ) = 2(3− ρ)/(1 + ρ),

ω1(ρ) = −(4− 3ρ+ ρ2)/(1 + ρ),

ωj(ρ) = ρj−2(1− ρ)3/(1 + ρ), j = 2, 3, . . . , T2.

(The ωj’s are straightforwardly calculated from (58) in the appendix.) The associated log-

likelihood function is

log L̃(ρ, σ2) =− nT1

2
log(2π)− nT1

2
log(σ2)− n

2
log |Ω̃T (ρ)|(27)

− 1

2σ2

n∑
i=1

(∆2yi)
′Ω̃T (ρ)−1(∆2yi).

If σ2 is known, then the common point optimal test for H0 : n−1/2T
−1/2
1 (1− ρ) = 0 against

H1 : n−1/2T
−1/2
1 (1− ρ) = c is based on

(28) ŨnT (c) = 2
[
log L̃(1− n−1/2T

−1/2
1 c, σ2)− log L̃(1, σ2)

]
.

Let the true ρ be ρ = ρnT = 1− (nT1)
−1/2c for some c ∈ (0, 1], so the alternative hypothesis

of the likelihood ratio test coincides with the data generating process. Then, as derived in

the appendix,

(29) ŨnT (c) →d N(c2/2, 2c2), if n−1/2T1 → 0.

Note that in the above asymptotics ρnT = 1 − (nT1)
−1/2c is the true parameter used in

generating ∆2yit. So if the null hypothesis that (nT1)
1/2(1 − ρ) = 0 is tested against the

alternative that (nT1)
1/2(1− ρ) = c, in such a way that the null hypothesis is rejected when

UnT (ρnT ) ≥
√

2cz̄α (with z̄α again denoting the 100α% critical value for the standard normal

distribution), then the size α asymptotic local power is

Φ

(
c

2
√

2
− z̄α

)
.

This finding is potentially important because it reveals the possibility that an optimal test

based on double differenced data (which would have non-trivial local power in an n−1/2T
−1/2
1

neighborhood of unity) would outperform the point optimal test (which is known to have

local power in a neighborhood shrinking at the n−1/4T−1 rate) when the panel is wide and

short. In effect, if this conjecture is true, then the asymptotic power envelope in panel unit

root tests will depend on the manner in which the sample size parameters pass to infinity.

Unfortunately this possibility is not realized in the case of the τ̂ 1 test, and considering its

local power properties it may be natural to conclude that this test is less useful. Nonetheless,
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its straightforward and general Gaussian asymptotics and accurate size properties make it

at least an ex tempore method for simple diagnostic purposes, especially for the case where

n is large compared to T .

Table 4 reports simulation results for τ̂ 1 applied to the data generating process with

incidental trends for small T . Tests that require large T for valid size (e.g., the Ploberger

and Phillips, 2002, test in the simulation) look biased and certainly perform poorly with

small T , but are considerably more powerful with large T . (Simulation results with large T

are not reported here.) On the other hand, Breitung’s (2000) unbiased (UB) test, which is

based on

(30) (nT2)
−1/2

n∑
i=1

T∑
t=3

x∗ity
∗
it, x∗it = λ′1t∆

2yi, y
∗
it = λ′2t∆

2yi

for specially chosen λ1t and λ2t such that Ex∗ity
∗
it = 0 (see Breitung, 2000; the proof of the

validity of this expression is available upon request), performs well with small T with better

local power than τ̂ 1. The greater power of the UB test can be ascribed to several causes.

First, the UB test is based on the special choice of λ1t and λ2t, which is more efficient at

unity than our approach. Naturally, the power gain from this source comes at the cost that

the test is available only for the null hypothesis of unity. For other null hypotheses (e.g.,

H0 : ρ = 0), the UB test cannot be used, though some modification of the test might be

possible, of course, in this case. Another relevant explanation is that the UB test statistic

estimates the variance of (30) in a more efficient, but somewhat unintuitive way, which is

valid only when the errors are cross-sectionally homoskedastic and no skewness and extra

kurtosis are present.

In the simulations, the UB test and the PP (Ploberger and Phillips, 2002) are computed

with σ2
i known. To correspondingly tweak the performance of the τ̂ 1 test and effect a

fairer comparison with the UB test, a variant of the τ̂ 1 test (denoted as HP∗ in Table 4) is

introduced, which is

τ̂ ∗1 =

∑n
i=1

∑T
t=3 σ

−2
i ∆2yit−1(2∆2yit + ∆2yit−1)√

[(8 + 4/T2)/6]
∑n

i=1

∑T
t=3 σ

−2
i (2∆2yit + ∆2yit−1)2

.

This is asymptotically standard normal under the null of unity if Eε3
it = 0 and Eε4

it = 3σ4
i .

The case T = 3 is particularly useful in illustrating the comparison of the UB and τ̂ ∗1
tests. In this case, x∗i3 = (2∆2yi2 + ∆2yi3) and y∗i3 = ∆2yi3 for the UB test, so the moment

condition the UB test is based on is

E∆2yi3(2∆2yi2 + ∆2yi3) = 0 if ρ = 1,
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which is the ‘mirror image’ (obtained by swapping the roles of ∆2yi2 and ∆2yi3) of our

moment condition

E∆2yi2(2∆2yi3 + ∆2yi2) = 0 if ρ = 1.

So the UB test and the τ̂ ∗1 test (HP∗) should manifest similar power performance, which

indeed proves to be so in simulations. But when T > 3 (e.g., T = 5 in the simulation) the

power of the UB test exceeds that of τ̂ 1 and τ̂ ∗1, which can be attributed to the first cause

mentioned above.

It is also worth noting that both the UB test and the τ̂ 1 test have trivial local power in

the neighborhood of unity shrinking at the
√
n rate for fixed T . This is related with the fact

that the mean function of the ‘numerators’ of the tests have zero slope at unity. Interestingly,

the LM test statistic based on the normal distribution ∆2yi ∼ N(0, Ω̃(ρ)) is identically zero

under H0 : ρ = 1 (a proof is available on request), an outcome that seems to be related to

the trivial local power in the O(n−1/2) neighborhood for fixed T .

Notwithstanding the above discussion and simulation findings, the power envelope anal-

ysis given earlier seems to imply the existence of a most powerful test based on double

differenced data that may have nontrivial power in an O(n−1/2) neighborhood of unity with

T fixed. Increasing power to approach this power envelope would involve using other mo-

ment conditions (e.g., by the use of MLE with double differenced data). This interesting

issue presents a major challenge for future research.

6 Conclusion

This paper develops a simple GMM estimator for dynamic panel data models, which is largely

free from bias as the AR coefficient approaches unity, and which yields standard Gaussian

asymptotics for all values of ρ and without any discontinuity at unity. The limit theory is also

robust in the sense that it performs well under all possible passages to infinity, including

n → ∞, T → ∞ and all diagonal paths. The method also extends in a straightforward

manner to cases with exogenous variables, cross section dependence, and incidental trends.

The approach leads to standard Gaussian panel unit root tests. These tests do not suffer

from size distortion regardless of the n/T ratio. Illustration of power properties of some

infeasible likelihood ratio tests indicates that the optimal convergence rate can perhaps be

achieved using (double) differenced data while at the same time preserving standard Gaussian

limits. Such tests can be expected to be particularly useful when n is large and T is small

or moderate, and to outperform existing point optimal tests and exceed the usual power

envelope for such sample size configurations. Extension of the present line of research in this

direction is a major challenge and is left for future work.

25



Table 4: Simulated Size and Power of Unit Root Tests with Incidental Trends case.

DGP: yit = αi + γit+ uit, uit = ρiuit−1 + σiεit

αi, γi, εit ∼ iid N(0, 1), σi ∼ iid U(0.5, 1.5),

Significance level: 5%

T = 3

ρi ≡ 1 ρi ≡ 0.5 ρi ∼ U(0.5, 1)

n HP HP∗ UB PP HP HP∗ UB PP HP HP∗ UB PP

50 6.93 4.72 4.84 12.59 13.19 19.62 19.51 0.00 8.41 9.93 10.35 0.53

100 6.32 4.89 4.64 15.57 15.11 25.15 25.19 0.00 8.89 11.93 11.22 0.09

200 5.27 4.75 4.98 22.32 20.02 33.70 33.35 0.00 9.50 13.35 12.84 0.01

400 5.25 5.09 4.79 31.35 28.75 46.25 45.58 0.00 11.29 16.59 16.21 0.00

T = 5

ρi ≡ 1 ρi ≡ 0.5 ρi ∼ U(0.5, 1)

n HP HP∗ UB PP HP HP∗ UB PP HP HP∗ UB PP

50 6.03 5.55 5.40 5.94 20.51 31.44 47.67 0.00 9.97 13.40 17.60 0.17

100 5.25 5.16 5.78 6.84 28.59 46.25 69.10 0.00 12.03 16.87 23.65 0.06

200 5.11 5.35 5.37 7.35 43.84 64.14 89.20 0.00 14.59 21.74 33.27 0.01

400 4.84 5.15 5.16 9.12 67.10 85.08 98.98 0.00 19.94 30.36 49.43 0.00

Note: PP: Ploberger and Phillips (2002);

HP∗ =

∑
i

∑
t σ

−2
i ∆2yit−1(2∆2yit + ∆2yit−1)√

[(8 + 4/T2)/6]
∑

i

∑
t σ

−2
i (2∆2yit + ∆2yit−1)2

;

HP∗, UB and PP: Calculated with σi known.
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A Proofs

The assumed model in the fixed effects case is yit = αi + uit, uit = ρuit−1 + εit, where

εit ∼ iid(0, σ2). Obviously we can express, for all ρ ∈ (−1, 1],

(31) ∆yit−1 =
∞∑

j=0

ρj∆εit−1−j = εit−1 − (1− ρ)
∞∑

j=1

ρj−1εit−j−1,

and

(32) ηit = 2∆εit + (1 + ρ)∆yit−1 = 2εit − (1− ρ)εit−1 − (1− ρ2)
∞∑

j=1

ρj−1εit−j−1,

where 0 · ±∞ = 0.

Proof of Lemma 1. If ρ = 1, then ∆yit = εit, and ηit = 2εit. So we have E∆yit−1ηit =

2Eεit−1εit = 0. If |ρ| < 1, then E∆yit−1ηit = −(1− ρ)σ2 +(1− ρ)(1− ρ2)(1− ρ2)−1σ2 = 0.

Next, we present some lemmas that are useful in proving the theorems. Let Tm =

max(T −m, 0). Let Xit =
∑∞

0 cjεit−j and Yit =
∑∞

0 djεit−j where εit ∼ iid(0, σ2). We will

frequently assume that

∞∑
0

(|cs|+ |ds|) <∞,(33)

∞∑
0

s(c2s + d2
s) <∞.(34)

Theorem 5 If Eε2
it <∞, then under (34),

1

nTm

n∑
i=1

T∑
t=m+1

X2
it →p σ

2

∞∑
0

c2j

for any small m (e.g., 2 or 3), as nTm →∞.

Of course, the part of condition (34) related to ds is not relevant in this case.

Proof. If T is fixed and n→∞, then by Khinchine’s law of large numbers,

1

Tm

T∑
t=m+1

[
1

n

n∑
i=1

X2
it

]
→p

1

Tm

T∑
t=m+1

EX2
it = EX2

it = σ2

∞∑
0

c2j ,

where the first equality on the right hand side holds because of stationarity. If n is fixed

and T → ∞, then the result follows from the convergence T−1
m

∑T
t=m+1X

2
it →p σ

2
∑∞

0 c2j
for each i under the stated conditions (Theorem 3.7 of Phillips and Solo (1992)) and the
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cross-sectional iid assumption. If both n and T increase to infinity, by Theorem 1 of Phillips

and Moon (1999), it suffices to show that (a) lim supn,T n
−1
∑n

i=1EZiT{ZiT > nδ} = 0 for

all δ > 0 where ZiT = T−1
m

∑T
t=m+1X

2
it (a notation that is used only in this proof), because

all other conditions in Phillips and Moon (1999)’s theorem are obviously satisfied. Because

the ZiT are iid across i, condition (a) is equivalent to EZ1T{Z1T > nδ} = 0 for all δ > 0,

which is implied by the uniform integrability of Z1T (over T ). Since Z1T →p σ
2
∑∞

0 c2j , the

uniform integrability of Z1T (over T ) is equivalent to the convergence EZ1T → σ2
∑∞

0 c2j ,

which is obviously true because EZ1T = σ2
∑∞

0 c2j for all T .

Next, we establish a panel CLT for the sample covariance of Xit and Yit. We assume that

Xit and Yit are uncorrelated by imposing the condition

(35)
∞∑
0

cjdj = 0.

Theorem 6 Let Πj,r = cjdj+r + cj+rdj. If Eε4
it < ∞, then under (33), (34) and (35), for

any fixed T and small m (e.g., 2 or 3),

(36) UnT := (nTm)−1/2

n∑
i=1

T∑
t=m+1

XitYit ⇒ N(0, VT )

as n→∞, where

VT = AT var(ε2
it) +BTσ

4,

with

AT =
∞∑
0

c2jd
2
j +

2

Tm

T∑
t=m+2

t−m−1∑
r=1

∞∑
j=0

cjdjcj+rdj+r,(37)

BT =
∞∑

j=0

∞∑
r=1

Π2
j,r +

2

Tm

T∑
t=m+2

t−m−1∑
k=1

∞∑
j=0

∞∑
r=1

Πj,rΠj+k,r.(38)

Furthermore,

(39) VT → σ4B = σ4

∞∑
r=1

(
∞∑

j=0

Πj,r

)2

,

as T →∞. Whether or not n→∞, UnT ⇒ N(0, σ4B) as T →∞.

Proof. When T is small, (36) follows from the central limit law for iid variates because

fourth moments are finite. The variance VT is computed as follows. Since

(40) XitYit =
∞∑

j=0

cjdjε
2
it−j +

∞∑
j=0

∞∑
r=1

Πj,rεit−jεit−j−r,
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we have

(41) C0 = var(XitYit) =

(
∞∑

j=0

c2jd
2
j

)
var(ε2

it) +

(
∞∑

j=0

∞∑
r=1

Π2
j,r

)
σ4.

Also

(42) Xit−kYit−k =
∞∑

j=0

cjdjε
2
it−k−j +

∞∑
j=0

∞∑
r=1

Πj,rεit−k−jεit−k−j−r,

and from (40) and (42), Ck := cov(XitYit, Xit−kYit−k) is

Ck =

(
∞∑

j=0

cjdjcj+kdj+k

)
var(ε2

it) +

(
∞∑

j=0

∞∑
r=1

Πj,rΠj+k,r

)
σ4.

Now

(43) T−1
m var

(
T∑

t=m+1

XitYit

)
= C0 +

2

Tm

T∑
t=m+2

t−m−1∑
k=1

Ck = AT var(ε2
it) +BTσ

4,

as stated. Lemmas 7 and 8 below respectively show that AT → 0 and BT → B under (33)

and (34), and thus the convergence (39) is obvious from (43).

Now we prove the central limit theory as T → ∞. If n is fixed, then the result follows

from Theorem 6 of Phillips and Han (2005), implied by (34) and the finiteness of the second

moments. For the case both n and T increase, we will apply the Lindeberg central limit

theorem to the row-wise independent array {n−1/2WTi}, where WTi = T
−1/2
m

∑T
t=m+1XitYit

(notation that is used only in this proof). The Lindeberg condition is

(44)
1

n

n∑
i=1

EW 2
Ti{W 2

Ti > nε} → 0, for all ε > 0

(e.g., Kallenberg (2002, Theorem 5.12)). Because the random variables are iid across i, (44)

reduces to EW 2
T1{W 2

T1 > nε} → 0 for all ε > 0 (note that T depends on n), which is again

implied by

sup
T
EW 2

T1{W 2
T1 > nε} → 0 for all ε > 0.

This last condition holds if W 2
T1 (as a sequence indexed by T ) is uniformly integrable over T .

When a positive random variable converges in distribution, uniform convergence is equivalent

to convergence of the means (Kallenberg (2002, Lemma 4.11)). In the case of W 2
T1, we have

WT1 →d W1 ∼ N(0, σ4B) by Theorem 6 of Phillips and Han (2005), and by the continuous

mapping theorem, W 2
T1 →d W

2
1 . But by the first part of the theorem,

EW 2
T1 = AT var(ε2

it) + σ4BT → σ4BT = EW 2
1 ,
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and the joint limit theory follows straightforwardly.

The next two lemmas respectively show that AT → 0 and BT → B as T → ∞, as

indicated above.

Lemma 7 Under (34) and (35), limT→∞AT = 0.

Proof. Let fj = cjdj (notation used only in this proof). For any sequence {ar},

(45)
T∑

t=m+2

t−m−1∑
r=1

ar =
Tm−1∑
s=1

(Tm − s)as,

and thus we have

AT =
∞∑
0

f 2
j +

2

Tm

∞∑
j=0

Tm−1∑
s=1

(Tm − s)fjfj+s

=

[
∞∑
0

f 2
j + 2

∞∑
j=0

Tm−1∑
s=1

fjfj+s

]
− 2

[
1

Tm

∞∑
j=0

Tm−1∑
s=1

sfjfj+s

]

=

[
∞∑
0

f 2
j + 2

∞∑
j=0

∞∑
s=1

fjfj+s

]
− 2

∞∑
j=0

∞∑
s=Tm

fjfj+s − 2

[
1

Tm

∞∑
j=0

Tm−1∑
s=1

sfjfj+s

]
= A1T − 2A2T − 2A3T , say.

Here A1T = (
∑∞

0 fj)
2 = (

∑∞
0 cjdj)

2 = 0 because of (35), and therefore it suffices to show

that A2T → 0 and A3T → 0 as T →∞. First,

|A2T | ≤
∞∑

j=0

∞∑
s=Tm

|fjfj+s| ≤
∞∑

j=0

|fj|
∞∑

s=Tm

|fs| → 0,

because

(46)
∞∑
0

|fj| =
∞∑
0

|cjdj| ≤

(
∞∑
0

c2j

)1/2( ∞∑
0

d2
j

)1/2

<∞,

by (34). Next,

|A3T | ≤ T−1
m

∞∑
j=0

Tm∑
s=1

s|fjfj+s| = T−1
m

∞∑
j=0

|fj|
Tm∑
s=1

s|fj+s| ≤ T−1
m

(
∞∑
0

|fj|

)
∞∑
0

s|fs|.

But
∑∞

0 |fj| < ∞ by (46), and
∑∞

0 s|fs| ≤ (
∑∞

0 sc2s)
1/2(
∑∞

0 sd2
s)

1/2 < ∞ by (34). So

A3T = O(T−1
m ) → 0.
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Lemma 8 Under (33) and (34), limT→∞BT = B =
∑∞

r=1

(∑∞
j=0 Πj,r

)2

<∞.

Proof. The finiteness of B is proved in Theorem 6 of Phillips and Han (2005). To establish

convergence, note that

B =
∞∑

r=1

(
∞∑

j=0

Πj,r

)2

=
∞∑

r=1

∞∑
j=0

Π2
j,r + 2

∞∑
r=1

∞∑
j=0

∞∑
k=1

Πj,rΠj+k,r,

so we have

BT −B = −2

(
∞∑

k=1

∞∑
j=0

∞∑
r=1

Πj,rΠj+k,r − T−1
m

T∑
t=m+2

t−m−1∑
k=1

∞∑
j=0

∞∑
r=1

Πj,rΠj+k,r

)
= −2DT ,

say. Using (45) again, we have

DT =
∞∑

k=1

∞∑
j=0

∞∑
r=1

Πj,rΠj+k,r −
Tm−1∑
k=1

∞∑
j=0

∞∑
r=1

Πj,rΠj+k,r +
1

Tm

Tm−1∑
k=1

k
∞∑

j=0

∞∑
r=1

Πj,rΠj+k,r

=
∞∑

k=Tm

∞∑
j=0

∞∑
r=1

Πj,rΠj+k,r +
1

Tm

Tm−1∑
k=1

∞∑
j=0

∞∑
r=1

kΠj,rΠj+k,r = D1T +D2T , say.

As shown below, we have

(47)
∞∑

k=1

∞∑
j=0

∞∑
r=1

|Πj,rΠj+k,r| <∞ and
∞∑

k=1

∞∑
j=0

∞∑
r=1

k |Πj,rΠj+k,r| <∞,

which imply that D1T → 0 and D2T = O(T−1
m ) → 0.

Now we prove (47). For the first part of (47), note that
∑∞

k=1 |Πj+k,r| ≤
∑∞

k=1 |Πk,r| ≤∑∞
j=0 |Πj,r|, so

(48)
∞∑

k=1

∞∑
j=0

∞∑
r=1

∣∣Πj,rΠj+k,r

∣∣ ≤ ∞∑
r=1

(
∞∑

j=0

|Πj,r|

)2

.

Now let aj = |cj| + |dj|, implying that |Πj,r| ≤ |cjdj+r| + |cj+rdj| ≤ ajaj+r. Then (33) and

(34) imply that

(49)
∞∑
0

as <∞,

∞∑
0

a2
s <∞,

∞∑
0

sa2
s <∞,

where the second and third results hold because a2
j ≤ 2(c2j + d2

j). Now, the right hand side

of (48) is bounded by

∞∑
r=1

(
∞∑

j=0

ajaj+r

)2

≤
∞∑

r=1

(
∞∑

j=0

a2
j

)(
∞∑

j=0

a2
j+r

)
=

(
∞∑
0

a2
j

)(
∞∑
1

sa2
s

)
<∞,
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by (49). So the first part of (47) is proved.

For the second part of (47),

∞∑
k=1

k|Πj+k,r| ≤
∞∑

k=1

kaj+kaj+k+r ≤

(
∞∑

k=1

ka2
j+k

)1/2( ∞∑
k=1

ka2
j+k+r

)1/2

≤
∞∑

k=1

ka2
j+k ≤

∞∑
k=1

(k + j)a2
k+j ≤

∞∑
1

ka2
k,

and therefore the second part of (47) is

∞∑
k=1

∞∑
j=0

∞∑
r=1

k|Πj,rΠj+k,r| ≤
∞∑

j=0

∞∑
r=1

|Πj,r|

(
∞∑
1

ka2
k

)
≤

(
∞∑
0

aj

)2( ∞∑
1

ka2
k

)
<∞

by (49).

We apply Theorems 5 and 6 to the components of the FDLS estimator ρ̂ols.

Lemma 9 (nT1)
−1
∑n

i=1

∑T
t=2(∆yit−1)

2 →p 2σ2/(1 + ρ) as nT1 →∞.

Proof. Because of (31), we invoke Theorem 5 with c0 = 0, c1 = 1, and cj = −(1 − ρ)ρj−2

for j ≥ 2. The calculation of
∑∞

0 c2j for the limit is then obvious.

For the central limit theorem, we have the following lemma.

Lemma 10 If Eε4
it <∞, then as n→∞, (nT1)

−1/2
∑n

i=1

∑T
t=2 ∆yit−1ηit converges to a nor-

mal distribution with variance 8σ4/(1+ρ) and furthermore (nT1)
−1/2

∑n
i=1

∑T
t=2 ∆yit−1ηit ⇒

N(0, 8σ4/(1 + ρ)) whether n→∞ or not.

Proof. Because the coefficients of the lag polynomials for ∆yit−1 and ηit decay exponentially,

conditions (33) and (34) are satisfied. Condition (35) holds by Lemma 1. The results follow

from Theorem 6. The variances for finite T and infinite T are calculated below after Theorem

2 is proved.

Proof of Theorem 2. This follows from Lemmas 9 and 10.

The Variance of FDLS

We calculate the variance of the FDLS estimator ρ̂ols in terms of the parameters using the

expressions in Theorem 6. Let ρ1 = 1− ρ and ρ2 = 1− ρ2. The lag polynomial coefficients
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Table 5: Coefficients of lag polynomials for ∆yit−1 and ηit.

0 1 2 3 4 j

∆yt−1 0 1 −ρ1 −ρρ1 −ρ2ρ1 −ρj−2ρ1

ηt 2 −ρ1 −ρ2 −ρρ2 −ρ2ρ2 −ρj−2ρ2

ρ1 = 1− ρ, ρ2 = 1− ρ2

of ∆yt−1 and ηt are tabulated in Table 5, and the corresponding Πj,r terms are tabulated in

Table 6. So

∞∑
0

c2jd
2
j = ρ2

1 + ρ2
1ρ

2
2(1 + ρ4 + · · · ) = 2(1− ρ)2/(1 + ρ2),(50)

∞∑
0

cjdjcj+kdj+k = −ρ2(k−1)
[
ρ2

1ρ
2 + ρ2ρ2

1ρ
2
2(1 + ρ4 + · · · )

]
= −ρ2(k−1)(1− ρ)2(1− ρ2)/(1 + ρ2), k ≥ 1,(51)

where 00 = 1. As well

∞∑
j=0

∞∑
r=1

Π2
j,r = [4 + 4ρ2

1(1 + ρ2 + · · · )] + 4ρ2ρ2
1(1 + ρ2 + · · · )

+ 4ρ2ρ2
1ρ

2
2(1 + ρ2 + · · · )(1 + ρ4 + · · · )

= 4

[
1 +

(1 + ρ2)(1− ρ)

1 + ρ
+
ρ2(1− ρ)2

1 + ρ2

]
,(52)

and (after some algebra)

∞∑
j=0

∞∑
r=1

Πj,rΠj+k,r = −4ρ(1− ρ)/(1 + ρ){k = 1}+ 4ρ2k−3(1− ρ)2{k > 1}(53)

−4ρ2k(1− ρ)2/(1 + ρ2), k ≥ 1.

Table 6: The Πj,r terms.

r \ j 0 1 2 3 4 5

1 2 −2ρρ1 2ρρ1ρ2 2ρ3ρ1ρ2 2ρ5ρ1ρ2 · · ·
2 −2ρ1 −2ρ2ρ1 2ρ2ρ1ρ2 2ρ4ρ1ρ2 2ρ6ρ1ρ2 · · ·
3 −2ρρ1 −2ρ3ρ1 2ρ3ρ1ρ2 2ρ5ρ1ρ2 2ρ7ρ1ρ2 · · ·
...

...
...

...
...

...
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The calculation of AT and BT of Theorem 6 (with m = 1) is tedious. We will use

T∑
t=3

t−2∑
k=1

ρ2(k−1) =
T2

1− ρ2
−
(

ρ2

1− ρ2

)
1− ρ2T2

1− ρ2
,

and
T∑

t=3

t−2∑
k=2

ρ2(k−2) =
T∑

t=4

t−2∑
k=2

ρ2(k−2) =
T3

1− ρ2
−
(

ρ2

1− ρ2

)
1− ρ2T3

1− ρ2
.

From the definition of AT , (50) and (51), we have

AT =
2(1− ρ)2

1 + ρ2
− 2

T1

[
T2

1− ρ2
−
(

ρ2

1− ρ2

)
1− ρ2T2

1− ρ2

]
(1− ρ)2(1− ρ2)

1 + ρ2

=
2

T1

[
(1− ρ)2

1 + ρ2
+
ρ2(1− ρ)(1− ρ2T2)

(1 + ρ)(1 + ρ2)

]
,(54)

and

BT = 4

[
1 +

(1 + ρ2)(1− ρ)

1 + ρ
+
ρ2(1− ρ)2

1 + ρ2

]
+

8

T1

{
− T2ρ(1− ρ)

1 + ρ
{T > 3}+

[
T3(1− ρ)

1 + ρ
− ρ2(1− ρ2T3)

(1 + ρ)2

]
ρ

−
[
T2(1− ρ)

1 + ρ
− ρ2(1− ρ2T2)

(1 + ρ)2

]
ρ2

1 + ρ2

}
,

which equals

(55) BT = 4

[
1 +

(1 + ρ2)(1− ρ)

1 + ρ
+
ρ2(1− ρ)2

1 + ρ2
−
(

2

T1

)
ρ(1− ρ)

1 + ρ
{T ≥ 3}

− 2

(
T2

T1

)
ρ2(1− ρ)

(1 + ρ)(1 + ρ2)
+

(
2

T1

)
ρ4(1− ρ2T2)

(1 + ρ)2(1 + ρ2)
−
(

2

T1

)
ρ3(1− ρ2T3)

(1 + ρ)2

]
,

where AT and BT are defined in Theorem 6 and m = 1 is used.

The limit variance (as n → ∞) of (nT1)
1/2(ρ̂ols − ρ) is now obtained by multiplying

AT var(ε2
it) +BTσ

4 by (1 + ρ)2/4σ4, viz.,

(56) Vols,T =
1

T1

[
(1− ρ2)2

1 + ρ2
− ρ2(1− ρ2)(1− 2ρ2T2)

1 + ρ2

]
(1/2)var(ε2

it/σ
2)

+ (1 + ρ)2 + (1 + ρ2)(1− ρ2) +
ρ2(1− ρ2)2

1 + ρ2
−
(

2

T1

)
ρ(1− ρ2){T ≥ 3}

− 2

(
T2

T1

)
ρ2(1− ρ2)

1 + ρ2
+

(
2

T1

)
ρ4(1− ρ2T2)

1 + ρ2
−
(

2

T1

)
ρ3(1− ρ2T3).

As a special case, if T = 2 and εit ∼ N(0, σ2), then var(ε2
it/σ

2) = 2 and Vols,T is simplified to

(57) Vols,T = (3− ρ)(1 + ρ), T = 2, εit ∼ N(0, σ2).

It is also easily verified that Vols,T → 2(1 + ρ) as T →∞.
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The Variance of DDLS When ρ = 1

Next, we calculate the variance of the DDLS (double-differencing least squares) estimator θ̂

for ρ = 1. According to Phillips and Han (2005), ∆2yit−1 =
∑∞

0 cjεit−j and η̃it =
∑∞

0 djεit−j,

where

c0 = 0, c1 = 1, c2 = −(2− ρ), ck = ρk−3(1− ρ)2, k ≥ 3,(58)

d0 = 2, d1 = −4 + φc1, d2 = 2 + φc2, dk = φck, k ≥ 3,(59)

with φ = (4− ρ)(1 + ρ)/(3− ρ) and 00 = 1. When ρ = 1, we have

c0 = 0, c1 = 1, c2 = −1, ck = 0, k ≥ 3,

d0 = 2, d1 = −1, d2 = −1, dk = 0, k ≥ 3.

So

∞∑
0

c2jd
2
j = 2 and

T∑
t=m+2

t−m−1∑
r=1

∞∑
j=0

cjdjcj+rdj+r = −Tm+1,

and because

Π0,1 = 2, Π0,2 = −2, and Πj,r = 0 for all other j and r,

we have

∞∑
j=0

∞∑
r=1

Π2
j,r = 8,

T∑
t=m+2

t−m−1∑
k=1

∞∑
j=0

∞∑
r=1

Πj,rΠj+k,r = 0.

For the DDLS estimator θ̂, we use m = 2, and thus, by Theorem 6, when ρ = 1 and T > 2,

(nT2)
−1/2

n∑
i=1

T∑
t=3

∆2yit−1η̃it →d N
(
0, 2 var(ε2

it)/T2 + 8σ4
)
,

and because plimnT→∞(nT2)
−1
∑n

i=1

∑T
t=3(∆

2yit−1)
2 = 2σ4 by Theorem 5, we have θ = 1

and as nT →∞,

(nT2)
1/2θ̂ →d N

(
0, var(ε2

it/σ
2)/2T2 + 2

)
.

Proof of Lemma 4. Recall that the model is yit = αi + uit with uit = ρuit−1 + εit. Let

the sequence be initialized at ui0. Then

uit = ρtui0 +
t−1∑
j=0

ρjεit−j,
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and therefore

∆yit−1 = ∆uit−1 = ρt−2(ρ− 1)ui0 + εit−1 + (ρ− 1)
t−2∑
j=1

ρj−1εit−j−1,

and

(60)

E(∆yit−1)
2 = (ρ− 1)2ρ2(t−2)Eu2

i0 +
[
1 + (ρ− 1)2

(
1 + ρ2 + · · · ρ2(t−3)

)]
σ2

= (ρ− 1)2ρ2(t−2)Eu2
i0 + (ρ+ 1)−1

[
2 + (ρ− 1)ρ2(t−2)

]
σ2

= 2σ2/(ρ+ 1) +

(
ρ− 1

ρ+ 1

)
ρ2(t−2)σ2ξρ,

where (ρ2 − 1)Eu2
i0/σ

2 + 1. (We can verify the calculation by checking with the case of

ρ < 1, where ξρ = 0 and therefore E(∆yit−1)
2 = 2σ2/(1 + ρ) as in Lemma 9.) Next, because

ηit = 2∆εit + (1 + ρ)∆yit−1, we have

(61) E∆yit−1ηit = (ρ− 1)ρ2(t−2)σ2ξρ.

The results follow from (60) and (61).

Next we show that the moment conditions (15) and (16) make the expected first derivative

matrix (D) block diagonal and if Eε3
it = 0 then the variance-covariance matrix (Ω) is block

diagonal too when evaluated at the true parameter. For convenience, we write (15) and (16)

again as

EAit(ρ, β) = E
T∑

t=2

∆zit−1[2∆zit + (1− ρ)∆zit] = 0,

EBit(ρ, β) = E
T∑

t=1

(ẍit − ρẋit−1) [(ÿit − ρẏit−1)− (ẍit − ρẋit−1)
′β] = 0,

where ∆zit = ∆yit −∆x′itβ.

For theD matrix, we need to show that E∂Ait/∂β = 0 and E∂Bit/∂ρ = 0 when evaluated

at the true parameter. Because ∆zit = ∆uit and ÿit = (ẍit − ρẋit−1)
′β + ρẏit−1 + ε̈it when

evaluated at the true parameter, we have

E
∂Ait

∂β
= −E

T∑
t=2

[
∆xit−1ηit + ∆uit{2∆xit + (1− ρ)∆xit−1}

]
= 0,

E
∂Bit

∂ρ
= −E

T∑
t=1

[
ẋit−1ε̈it + (ẍit − ρẋit−1)u̇it−1

]
= 0,
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where ηit = 2∆uit + (1 − ρ)∆uit−1 and u̇it−1 = uit−1 − T−1
∑T

s=1 uis−1 = ẏit−1 − ẋ′it−1β. So

the D matrix is block diagonal. Next, for the Ω matrix, at the true parameter,

EBitAit = E

[
T∑

t=1

(ẍit − ρẋit−1)ε̈it

][
T∑

t=2

∆uit−1ηit

]
= 0,

when Eεit = 0, Eε3
it = 0 and εit are iid. So the Ω matrix is also block diagonal under the

zero third moment assumption.

Now let us obtain the limit behavior of UnT (c) of (23) under the local to unity setting

ρ = ρnT = 1− n−1/2T−1c. Clearly,

UnT (c) = −n log
(
|ΩT (ρnT )|/|ΩT (1)|

)
− 1

σ2

n∑
i=1

(∆yi)
′ [ΩT (ρnT )−1 − ΩT (1)−1

]
(∆yi),

where ΩT (·) is defined in (24). Under the alternative hypothesis that n1/2T (1− ρ) = c,

EUnT (c) = n
(
tr ΩT (ρnT )− T − log |ΩT (ρnT )|

)
= n

(
(1− ρnT )T

1 + ρnT

− log

[
1 +

(1− ρnT )T

1 + ρnT

])
,

where the determinant is calculated in Han (2006, Theorem 2). Because

x− log(1 + x) = x2/2− o(x2)

when x is close to zero, we have

EUnT (c) =
nT 2(1− ρnT )2

2(1 + ρnT )2
+ o

(
nT 2(1− ρnT )2

(1 + ρnT )2

)
=

c2

2(1 + ρnT )2
+ o(1) → c2

8
.

The variance is calculated from the fact that var(z′Az) = 2tr(A′A) if z ∼ N(0, I) and A is

symmetric. In our case,

σ−2∆y′i
[
ΩT (ρ)−1 − ΩT (1)−1

]
∆yi = z′i [IT − ΩT (ρ)] zi = z′iQT zi, say,

where zi = σ−1ΩT (ρ)−1/2∆yi ∼ N(0, I) and

QT = Toeplitz{1, 1, ρ, . . . , ρT2}(1− ρ)/(1 + ρ),

so that

var
(
UnT (c)

)
= 2n tr(Q′

TQT ) = 2
[
T + 2(T1 + T2ρ

2
nT + · · ·+ ρ2T2

nT )
](1− ρnT )2

(1 + ρnT )2

=
2nT (1− ρnT )2

(1 + ρnT )2
+

4n(1− ρnT )2

(1 + ρnT )2

[
T1

1− ρ2
nT

− ρ2
nT (1− ρ2T1

nT )

(1− ρ2
nT )2

]
.(62)

The first term of (62) is [1+ o(1)]c2/2T when n1/2T (1− ρnT ) = c. (The notation o(1) means

here that the relevant term disappears as n→∞.) The second term can be handled by the

following lemma.
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Lemma 11 For every c,

n(1− ρ2T1
nT ) = 2

√
n(T1/T )c− (T1/T )2(2− T−1

1 )c2 +O(n−1/2).

Proof. From the binomial expansion of ρ2T1
nT = (1− n−1/2T−1c)2T1 , we have

n(1− ρ2T1
nT ) = −n

2T1∑
k=1

(
2T1

k

)(
−n−1/2T−1c

)k
.

The first two terms of the lemma correspond to k = 1 and k = 2 respectively. For the

remainder term, note that

n

2T1∑
k=3

(
2T1

k

)
(n−1/2T−1c)k ≤

2T1∑
k=3

n1−k/2(2c)k

k!
≤ n−1/2

∞∑
k=0

(2c)k

k!
= n−1/2e2c,

which is O(n−1/2) as stated.

Whether T is fixed or T →∞ as n→∞, we have, after some algebra,

var
(
UnT (c)

)
→ c2/2.

In the derivation of this variance, we can also verify that it is uniformly bounded, which is

sufficient to invoke the Lindeberg CLT for UnT (c). Thus,

UnT (c) →d N(c2/8, c2/2).

Now establish a similar CLT for ŨnT (c) of (28) under the local to unity setting ρ = ρnT =

1 − c/
√
nT1 for some c > 0. The algebra is tedious, and is therefore separated into several

pieces in the following lemmas. First, to evaluate EŨnT (c) when 1 − (nT1)
−1/2c is the true

ρ parameter, we obtain an algebraic expression of Ω̃T (1)−1.

Lemma 12 Let AT = Toeplitz{T1, T1 − 1, . . . , 1}, ĀT,0 = AT and

ĀT,j =

 Oj×j Oj×(T1−2j) Oj×j

O(T1−2j)×j AT−2j O(T1−2j)×j

Oj×j Oj×(T1−2j) Oj×j

 , j = 1, 2, . . . , [(T1 − 1)/2],

where [x] denotes the greatest integer not exceeding x and Op×q denotes the p× q matrix of

zeros. Then

Ω̃T (1)−1 = T−1

[T2/2]∑
j=0

ĀT,j.
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Proof. Use mathematical induction.

Lemma 13 Let Sk = k2 + (k − 2)2 + · · · (1 or 2)2, where the last term is 1 if k is odd and

2 otherwise. Then Sk = k(k + 1)(k + 2)/6.

Proof. We use mathematical induction as follows. First, S1 = 1 = 1 · 2 · 3/6 and S2 = 4 =

2 · 3 · 4/6. Next, suppose that Sk = k(k + 1)(k + 2)/6 is true. Then

Sk+2 = (k + 2)2 + Sk = (k + 2)2 + k(k + 1)(k + 2)/6 = (k + 2)(k + 3)(k + 4)/6,

which gives the result.

Now we consider EŨnT (c) where n1/2T
1/2
1 (ρ− 1) = c > 0. Let

µT (ρ) = tr
{

[Ω̃T (ρ)− Ω̃T (1)]Ω̃T (1)−1
}
− log |Ω̃T (ρ)Ω̃T (1)−1|(63)

= tr
[
Ω̃T (ρ)Ω̃T (1)−1

]
− T1 − log |Ω̃T (ρ)|+ log T,

so EŨnT (c) = nµT (ρnT ). Let µ1T (ρ) = tr Ω̃T (ρ)Ω̃T (1)−1−T1 and µ2T (ρ) = log |Ω̃T (ρ)|− log T

so that µT (ρ) = µ1T (ρ)− µ2T (ρ). We shall first investigate µ1T (ρ) and µ2T (ρ) separately.

Lemma 14 We have

µ1T (ρ) =
T1(1− ρ)

1 + ρ
+

2

1 + ρ

(
1− 1

T

T1∑
k=0

ρk

)
= fT (ρ) + gT (ρ), say.

Proof. By Lemma 12, we have

µ1T (ρ) =
1

T

[T2/2]∑
j=0

tr Ω̃T (ρ)ĀT,j − T1 =
1

T

[T2/2]∑
j=0

tr Ω̃T−2j(ρ)AT−2j − T1.

The result can be obtained through some tedious workings using tr Ω̃k+2Ak+2 =
∑k−1

j=0 ωj(k−
j)2 and Lemma 13.

The determinant of Ω̃T (ρ) is calculated in Han (2006, Theorem 2) as follows.

Lemma 15 We have

|Ω̃T (ρ)|
|Ω̃T (1)|

= 1 +
1

12(1 + ρ)

[
8(2 + ρ)(1− ρ)T1 + (7 + ρ)(1− ρ)2T 2

1 + (1− ρ)3T 3
1

]
= 1 + hT (ρ), say.
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Remember that µ2T (ρ) = log |Ω̃T (ρ)|/|Ω̃T (1)| and µT (ρ) = µ1T (ρ)− µ2T (ρ), i.e.,

µT (ρ) = fT (ρ) + gT (ρ)− log[1 + hT (ρ)],

where fT (·) and gT (·) are defined in Lemma 14 and hT (·) in Lemma 15. Thus

(64) EŨnT (ρnT ) = nµT (ρnT ) = nfT (ρnT ) + ngT (ρnT )− n log[1 + hT (ρnT )].

For the first term of (64) we only note that

(65) nfT (ρnT ) = (nT1)
1/2c/(1 + ρnT )

when ρnT = 1−(nT1)
−1/2c. To handle ngT (ρnT ), let ΠT,k =

∏k−1
j=1(1−j/T1) = T1!/(T1−k)!T k

1

for 2 ≤ k ≤ T1 and ΠT,1 = 1. Let MnT = T1/
√
n. We consider the case MnT → 0.

Lemma 16 If T1/
√
n→ 0 and c ∈ (0, 1], then

ngT (ρnT ) = nfT (ρnT ) +
c2

3(1 + ρnT )
− T1c

2

3(1 + ρnT )
+

ΠT,3MnTT
1/2
1 c3

12(1 + ρnT )
+ o(1).

Proof. Let anT = 1− ρnT = (nT1)
−1/2c. Then

n

(
1− 1

T

T1∑
j=0

ρj
nT

)
=

n

anTT

[
(1− anT )T − (1− TanT )

]
=

n

anTT

T∑
k=2

(
T

k

)
(−anT )k =

n

anTT

T1∑
k=1

(
T1 + 1

k + 1

)
(−anT )k+1

= −n
T1∑

k=1

1

k + 1

(
T1

k

)
(−anT )k,

where the second line comes from the binomial expansion of (1− anT )T . In the last summa-

tion, the first three terms (corresponding to k = 1 through k = 3) construct the important

terms in the lemma. (It is only a matter of calculation.) Truncating the terms for k exceed-

ing 3 is valid because the term for k = 4 is O(M2
nT ) = o(1) and the sum of the rest is at

most O(n1−5/4).

Now the last term n log[1 + hT (ρnT )] is to be expanded. When T1/n → 0, we have

hT (ρnT ) → 0 as n→∞ (see (69) below), and therefore we may expand the logarithm by

(66) log(1 + x) =
K∑

k=1

(−1)k−1xk

k
+ o(xK),
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which is valid if x is close to zero. The choice of K can be made as follows. Since ρnT =

1− c/
√
nT1, we have

(67) n(1− ρnT )kT k
1 = n1−k/2T

k/2
1 ck.

Especially, n(1− ρnT )4T 4
1 = M2

nT c
4, and n(1− ρnT )5T 5

1 = M3
nTT

−1/2
1 c5 = M

5/2
nT n

−1/4c5. This

fact, together with (66), gives us

(68) n log[1 + hT (ρnT )] = n

3∑
k=1

(−1)k−1hT (ρnT )k

k
+ o(1),

when c ∈ (0, 1]. (Expand up to the fourth order. Then the remainder is o(M2
nT ) and the

fourth term itself is O(M2
nT ).) So we shall expand it up to the third order. Due to Lemma

15 and (67), we have

(69) hT (ρnT ) =
1

12(1 + ρnT )

[
8(2 + ρnT )n−1/2T

1/2
1 c+ (7 + ρnT )n−1T1c

2 + n−3/2T
3/2
1 c3

]
.

Since any term involved with n−k/2T
k/2
1 ck for k > 3 is negligible when multiplied by n, we

have the following results.

Lemma 17 If T1/
√
n→ 0 and c ∈ (0, 1], then

nhT (ρnT ) = 2fT (ρnT ) +
2T1c

2

3(1 + ρnT )
− 2c2

3(1 + ρnT )
+
MnTT

1/2
1 c3

12(1 + ρnT )
− o(1),

nhT (ρnT )2 = T1c
2 +

2MnTT
1/2
1 c3

3
+ o(1),

nhT (ρnT )3 = MnTT
1/2
1 c3 + o(1).

Proof. By direct calculation.

Now we can obtain the limiting mean of ŨnT (c).

Lemma 18 If T1/
√
n→ 0, then EŨnT (c) → c2/2.

Proof. Combine (64), Lemmas 16 and 17, and (68). Simplify using the fact that

T1

1 + ρnT

=
T1

2
+

(T1/n)1/2c

2(1 + ρnT )
, and

T
1/2
1

1 + ρnT

=
T

1/2
1

2
+

n−1/2c

2(1 + ρnT )
,

and the result follows immediately.
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For the variance of ŨnT (c), recall as above that the variance of z′Az where z ∼ N(0, Im)

is 2tr (A′A). So we have

var
(
ŨnT (c)

)
= 2ntr(Q̃◦′Q̃◦), Q̃◦ = Ω̃T (ρnT )1/2[Ω̃T (ρnT )−1 − Ω̃T (1)−1]Ω̃T (ρnT )1/2.

Because tr(AB) = tr(BA) when AB and BA are both defined, we have

(70) var
(
ŨnT (c)

)
= 2ntr(Q̃Q̃), Q̃ = [Ω̃T (ρnT )− Ω̃T (1)]Ω̃T (1)−1.

Obviously,

Ω̃T (ρ)− Ω̃T (1) = Toeplitz{ω∗0(ρ), ω∗1(ρ), ω2(ρ), . . . , ωT2(ρ)},

where ω∗0(ρ) = 4(1− ρ)/(1 + ρ) and ω∗1(ρ) = −(3− ρ)(1− ρ)/(1 + ρ). Split

Ω̃T (ρ)− Ω̃T (1) = Toeplitz{4,−2, 0, . . . , 0} · (1− ρ)/(1 + ρ)(71)

−Toeplitz{0, 1, 0, . . . , 0} · (1− ρ)2/(1 + ρ)

+Toeplitz{0, 0, 1, ρ, . . . , ρT4} · (1− ρ)3/(1 + ρ)

= (1 + ρ)−1[(1− ρ)D1T − (1− ρ)2D2T + (1− ρ)3D3T ], say.

We observe that D1T = 2Ω̃T (1). Other terms are involved but can be shown to be negligible

when (70) is calculated if T1/
√
n→ 0.

Lemma 19 The following are true:

(i) n(1− ρnT )2trD1T Ω̃T (1)−1D1T Ω̃T (1)−1 = 4c2;

(ii) 0 < n(1− ρnT )4trD2T Ω̃T (1)−1D2T Ω̃T (1)−1 ≤ n−1T 2c4/4;

(iii) 0 < n(1− ρnT )6trD3T Ω̃T (1)−1D3T Ω̃T (1)−1 ≤ n−1T 2c4/4;

(iv) 0 < n(1− ρnT )3trD1T Ω̃T (1)−1D2T Ω̃T (1)−1 ≤ n−1/2T 1/2c3;

(v) 0 < n(1− ρnT )4trD1T Ω̃T (1)−1D3T Ω̃T (1)−1 ≤ n−1/2T 1/2c4;

(vi) 0 < n(1− ρnT )5trD2T Ω̃T (1)−1D3T Ω̃T (1)−1 ≤ n−1T 2c4/4.

Proof. (i) Obvious because 1 − ρnT = (nT1)
−1/2c and D1T = 2Ω̃T (1). (ii) Because all the

elements of D2T and Ω̃T (1)−1 are positive, the trace is no bigger than tr (D2TBD2TB) for

any B whose elements are no smaller than the elements of Ω̃T (1)−1. By Lemma 12, the

elements of Ω̃T (1)−1 are bounded by T/4, so

trD2T Ω̃T (1)−1D2T Ω̃T (1)−1 ≤ (T 2/16)trD2T ιι
′D2T ιι

′ = (T 2/16)(ι′D2T ι)
2 = T 2T 2

2 /4.
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The result follows immediately because n(1− ρnT )4 = n−1T−2
1 c4. (iii) Similarly, we have

(72) trD3T Ω̃T (1)−1D3T Ω̃T (1)−1 ≤ (T 2/16)(ι′D3T ι)
2.

But

ι′D3T ι = 2(T3 + T4ρnT + T5ρ
2
nT + · · ·+ ρT4

nT ) = 2

[
T2

1− ρnT

− 1− ρT2
nT

(1− ρnT )2

]
≤ 2T2

1− ρnT

,

thus (72) is bounded by T 2T 2
2 /4(1− ρnT )2, implying the result. The remainder are similarly

proved.

Now the limiting variance is straightforwardly obtained.

Lemma 20 If T1/
√
n→ 0, then varŨnT (c) → 2c2.

Proof. By (70) and (71),

(73)

varŨnT (c) = 2(1 + ρnT )−2
[
n(1− ρnT )2trD1T Ω̃T (1)−1D1T Ω̃T (1)−1

+n(1− ρnT )4trD2T Ω̃T (1)−1D2T Ω̃T (1)−1

+n(1− ρnT )6trD3T Ω̃T (1)−1D3T Ω̃T (1)−1

−2n(1− ρnT )3trD1T Ω̃T (1)−1D2T Ω̃T (1)−1

+2n(1− ρnT )4trD1T Ω̃T (1)−1D3T Ω̃T (1)−1

−2n(1− ρnT )5trD2T Ω̃T (1)−1D3T Ω̃T (1)−1
]
.

By Lemma 19 above, only the first term is important when T1/
√
n→ 0. More specifically,

varŨnT (c) = 2(1 + ρnT )−2[4c2 + o(1)] → 2c2

when n−1/2T1 → 0.

With the limiting mean and variance in hand, we can now prove (29) by establishing

asymptotic normality for ŨnT (ρnT ) as follows.

Proof of (29). Thanks to Lemmas 18 and 20, it remains to show the asymptotic normality

of ŨnT (c). Rewrite

ŨnT (c) = −
n∑

i=1

{
(σ−1∆2yi)

′[Ω̃T (ρnT )−1 − Ω̃T (1)−1](σ−1∆2yi)
′

+
[
log |Ω̃T (ρnT )| − log |Ω̃T (1)|

]}
= −

n∑
i=1

ψnT,i, say.
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For asymptotic normality, we need to prove that the Lindeberg condition holds for the array

(ψnT,i), viz.,

n∑
i=1

Eψ2
nT,i{ψ2

nT,i > ε} = Enψ2
nT,i{nψ2

nT,i > nε} → 0 for all ε > 0.

This condition is satisfied because lim supn,T nEψ
2
nT,i <∞ due to (73) and Lemma 19 when

n−1/2T1 → 0.
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