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Abstract

Amodel of price determination is proposed that incorporates flat trading features into an

efficient price process. The model involves the superposition of a Brownian semimartin-

gale process for the efficient price and a Bernoulli process that determines the extent of

flat price trading. A limit theory for the conventional realized volatility (RV) measure of

integrated volatility is developed. The results show that RV is still consistent but has an

inflated asymptotic variance that depends on the probability of flat trading. Estimated

quarticity is similarly affected, so that both the feasible central limit theorem and the

inferential framework suggested in Barndorff-Nielson and Shephard (2002) remain valid

under flat price trading.

Keywords: Bernoulli process, Brownian semimartingale, Flat trading, Quarticity func-

tion, Realized volatility.

JEL classification: C15, G12



1. Introduction

The expression ‘flat trading’ refers to situations in market trading where consecutively

sampled prices take on the same value. The phenomenon of flat pricing is extremely

common in stock market trading, affecting almost all traded stocks, especially (but not

exclusively) over small time intervals. An immediate implication of the phenomenon

is that both returns and volatility are zero over the flat price subinterval, an outcome

that has null probability of occurrence in any model where price behaves like a contin-

uous Brownian semimartingale. This characteristic of the realized data inevitably has

implications for the econometric measurement of volatility.

The present paper seeks to explore some of these implications in the context of the

use of realized volatility (RV) estimates of integrated variance (IV). Part of the task is to

develop a model that compounds the presumed semimartingale behavior of underlying

efficient market prices with a mechanism that produces periods of flat prices in practical

trading. Flat trading is a regular feature of many financial markets, especially for stock

price data that is sampled at modest to high frequencies, where it may be regarded as a

market microstructure phenomenon arising from discrete trading practices, information

arrival in discrete packets, and trading volume effects. Without developing a full mi-

crostructure theory, we posit a stochastic mechanism that accords a constant probability

of the occurrence of a trading flat over each given subinterval. The formulation leads to

the compounding of the efficient price Brownian semimartingale with a Bernoulli process

that determines the timing and length of the flat trading periods.

Under this new model, we develop a limit theory for standard econometric estimates

of volatility by nonparametric RV measures. It turns out that when we allow for flat

trading RV is still consistent, converges to IV, and follows a mixed Gaussian limit theory

under standard regularity conditions corresponding to those used in the original work

of Barndorff-Nielson and Shephard (2002, BNS hereafter). These new results generalize

the standard theory on empirical quadratic variation estimates. Notably, however, there

is some information loss when using RV to do inference about IV due to the presence of

flat price effects. This loss takes the form of an increase in the asymptotic variance. The

effects are of a magnitude to be very significant in practical applications. For example,

if the RV estimate is constructed from 5-minute returns for Alcoa (AA) stock prices on

April 5, 1995, the proportion of flat pricing on this day amounts to some 60% of the

sample and our results imply that the correct variance quadruples that of the variance
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obtained from a semimartingale process without flat pricing.

As with much other recent research on volatility, our interest in the use of RV mea-

sures is motivated by the availability of ultra-high frequency data which has made it

feasible to measure volatility accurately in a direct nonparametric way. The idea is well

explained in earlier work and simply involves the calculation of the sum of squared intra-

day returns obtained from observed intra-day prices. The theoretical justification for

measuring volatility in this way relies on standard properties of the empirical quadratic

variation process for semimartingales (e.g., Protter, 2004), a set up which is commonly

assumed for financial asset prices in the literature (see, for example, Andersen, Boller-

slev, Diebold and Labys (ABDL, hereafter) (2001)). The main object of interest in this

research is the value of IV over a specific time period such as a day. This approach to

measuring volatility has attracted a great deal of attention in the last 5 years and has led

to numerous successful applications — see, for example, ABDL (2001, 2003), Andersen,

Bollerslev, Diebold and Ebens (ABDE, hereafter 2001), Andersen, Bollerslev, Diebold

and Wu (2005), Andersen, Bollerslev and Meddahi (2005), Bandi and Russell (2006)

and Fleming, Kirby and Ostdiek (2003). For overviews of the literature, see Andersen,

Bollerslev, Diebold (2005) and BNS (2007).

Direct application of empirical quadratic variation limit theory requires that efficient

or equilibrium prices be observed. This requirement appears too strong at ultra-high

frequencies, such as the tick-by-tick frequency, because of the presence of various market

microstructure effects. These market microstructure effects may be regarded as contami-

nating the efficient price process and may be, albeit somewhat crudely, modeled as noise.

Ignoring these effects produces bias and inconsistency in realized volatility estimates.

While maintaining the assumption of martingale-like behavior for efficient prices, the

literature has produced three different strands of research on how to deal with microstruc-

ture noise in realized volatility calculations with intra-day data. One strand of research is

to use all available tick-by-tick data and seek to explicitly model microstructure noise in

this fine-grain sampling context. Assumptions about the properties of the microstructure

noise are typically made for analytic convenience and include both iid and stationarity

conditions. Important contributions to this literature include Zhang, Mykland and Aït-

Sahalia (2005), Aït-Sahalia, Mykland and Zhang (2005), and Barndorff-Nielson, Hansen,

Lunde and Shephard (2006).

A second strand of research in the literature is to sample sparsely relative to the

available sampling frequency, usually at modest frequencies, of 5 or 10 minute intervals.
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This approach is motivated by the fact that many sources of microstructure noise (such

as bid/ask bounce), which occur in ultra-high frequency data, are mitigated when prices

are sampled at these modest frequencies. Correspondingly, it has been argued that these

more sparsely sampled prices better approximate the efficient price process, and therefore

standard semimartingale theory can be invoked. Under such semimartingale conditions,

the consistency of RV was used in ABDL (2001) and the asymptotic distribution of RV

was developed in Jacod (1994) and BNS (2002).

In the third strand of the literature, researchers have focused on the finite sample

properties of the RV estimates. Here it is argued that the choice of sampling frequency

effectively trades off estimation variance against bias. When microstructure noise is

explicitly modelled, an “optimal” sampling frequency, which minimizes the mean squared

error of the RV estimate, may be calculated. Studies following this approach include Zhou

(1996), Hansen and Lunde (2006) and Bandi and Russell (2005).

None of the above analyses explicitly models or allows for flat trading in observed

prices even though flat trading is a salient feature in actual stock data at most of the

frequencies that have been used in this literature, from tick-by-tick data through to

15-minute trading data. Flat trading is a characteristic of both actively traded and

inactively traded stocks. To illustrate the former, Fig. 1 plots transaction prices for

the stock AA from the Dow Jones Industrial Average (DJIA) on the New York Stock

Exchange (NYSE) at three different frequencies: tick-by-tick, 1-minute, and 15-minute

frequencies on April 5, 2000. Flat trading is obvious at all three frequencies and it

becomes a dominant feature in the tick-by-tick data. Table 1 reports the proportions of

flat transaction prices for AA when sampling is performed at five different frequencies

(1-, 2-, 3-, 4-, 5-minute intervals) on the first Wednesday in April from 1993 to 2004.

Although flat pricing effects are less pronounced after the decimalization of trading in

January 2001, they remain a non-negligible feature of these data. Flat pricing also

takes place in tick sampling and in quote data; see, for example, Table 1 in Hansen

and Lunde (2006) for the percentages of flat quote prices at the tick-by-tick level for

30 DJIA stocks. Note that AA is a DJIA stock and DJIA stocks are among the most

actively traded equities. Flat trading is naturally even more of an issue for less liquid

stocks. This feature of trading data deserves attention both in financial modeling and

econometric volatility estimation with high frequency data.
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Figure 1: Time series plots of transaction prices for AA on April 5, 2000 at three different

frequencies. The horizontal axis is the time stamp (in seconds) since the market opening

at 9:30am. The first panel is based on tick-by-tick observations. The second panel is

based on data that are sampled every 1 minute. The third panel is based on data that are

sampled every 15 minutes. The prices at the 1- and 15-minute frequencies are obtained

using the previous tick method. See Hansen and Lunde (2006) for a detailed discussion

of the different sampling schemes.
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Table 1: Proportion of flat trading in AA stock prices

Date # of ticks Proportion of flat trading

1-min 2-min 3-min 4-min 5-min

April 7, 1993 213 .8793 .8000 .7615 .7041 .6282

April 6, 1994 174 .8897 .8051 .7308 .6429 .6154

April 5, 1995 171 .8872 .7949 .7154 .6633 .6026

April 3, 1996 246 .8795 .7897 .6846 .6327 .5897

April 2, 1997 243 .8179 .6923 .5923 .5612 .4872

April 1, 1998 394 .7846 .6359 .5538 .4898 .4103

April 7, 1999 794 .5513 .4154 .3538 .2245 .2692

April 5, 2000 1007 .4436 .2564 .2231 .2041 .1154

April 4, 2001 1788 .1872 .0872 .0692 .0510 .0128

April 3, 2002 1281 .3872 .2615 .1385 .1224 .0128

April 2, 2003 1986 .3795 .2923 .1769 .1939 .0897

April 7, 2004 3845 .2641 .1590 .1692 .0306 .0513

The contribution of the present note to these issues relates to the second strand of the

literature on modest frequency sampling and to studies on market microstructure noise.

First, the model introduced here extends the models used in ABDL (2001) and BNS

(2002) by gaining some additional realism in its allowance for flat trading sample paths.

Second, we extend the limit theory of RV to the new model, showing that while RV

still consistently estimates IV and asymptotically follows a mixed Gaussian law in the

presence of flat trading, the asymptotic variance of the RV estimate is inflated, thereby

revealing the loss of a substantial amount of information about underlying efficient price

volatility in flat trading. Third, we show that the estimated variation of RV based on

empirical quarticity is similarly affected by the occurence of trading flats. In consequence,

and importantly for empirical research, both the feasible central limit theorem and the

inferential framework developed in BNS (2002) remain valid under flat price trading.

We proceed as follows. After briefly reviewing the literature, we introduce the new

model and develop the corresponding limit theory in Section 2. Section 3 reports the

results of some Monte Carlo experiments to assess the accuracy of the theory in finite

5



samples. Section 4 concludes. Proofs are given in the Appendix.

2. A Flat Trading Model and Limit Theory

Let p∗(t) be the logarithm of the efficient price and assume p∗(t) evolves according

to a Brownian semimartingale process on a filtered probability space (Ω,F, P ). This

assumption is justified by Back (1991) in a frictionless, arbitrage-free economy. As it is

typical in the high frequency volatility literature, we further assume that p∗(t) follows

the (driftless) diffusion

dp∗(t) = σ(t)dB(t), (1)

where B(t) is a standard Brownian motion and σ(t) is a càdlàg volatility process. The

quantity of interest is IV =
R 1
0
σ2(t)dt, the IV of p∗(t) over a certain unit time period,

say a day. The integral may be defined as the limit of the empirical quadratic variation

IV = plimh→0

mX
i=1

[p∗i,m − p∗i−1,m]
2, (2)

where p∗i,m = p∗(ti,m), 0 = t0,m < t1,m < · · · < tm,m = 1 is a sequence of deterministic

partitions of [0, 1], and h = supi |ti,m−ti−1,m| is the grid size. Sometimes, it is convenient
to assume that the partition involves a simple grid of equi-spaced points {ti,m = i

m
: i =

0, ...,m} with h = 1
m
.

The limiting value IV in (2) is a (unit time period) segment of the quadratic variation

process of p∗. The sample counterpart is the empirical quadratic variation

mX
i=1

[p∗i,m − p∗i−1,m]
2 := RV (m)(p∗),

which is now commonly referred to as RV in financial economics.

Since RV (m)(p∗)
p→ IV (e.g., Protter, 2004), RV is a natural candidate for estimating

IV, motivating the recent interest in this approach to volatility measurement. To quantify

the statistical difference between RV and IV, Jacod (1994) and BNS (2002) used the limit

theory

√
m
£
RV (m)(p∗)− IV

¤
|σ2(t) d→MN

µ
0, 2

Z 1

0

σ4(t)dt

¶
, (3)
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where MN signifies mixed normality. A feasible version of this limit involves the esti-

mation of the quarticity functional
R 1
0
σ4(t)dt using empirical quarticity. BNS obtained

the following result

RV (m)(p∗)− IVq
2
3

Pm
i=1[p

∗
i,m − p∗i−1,m]

4

d→ N (0, 1) , (4)

which is convenient for use in inference.

These asymptotic results all require knowledge of the log-efficient price, p∗i,m. At ultra

high frequencies market microstructure effects challenge this requirement, contaminating

observations with microstructure noise so that the actual price data pi,m = p(ti,m) differs

from p∗i,m and RV (m)(p) 6= RV (m)(p∗). To mitigate such market microstructure effects,

ABDL (2001), ABDE (2001) and BNS (2002) suggested sampling sparsely, say at five

minute intervals, so that the accumulative effects of noise are less important and pi,m

is treated the same as p∗i,m. ABDL justified the choice of five minute intervals using

the signature plot, a graphical device used to assess the degree of bias caused by market

microstructure effects at different sampling frequencies. Signature plots typically suggest

that RV is more severely biased when the sampling frequency increases but stabilizes at

modest frequencies. This observation has prompted researchers to view the observed

price as a good approximation to the efficient price and has the same semimartingale

characteristics at these modest frequencies.

The impact of market microstructure noise has also been examined in the more

specific analytic framework

p(t) = p∗(t) + u(t), (5)

where u(t) is microstructure noise. Most studies assume that the noise process u(t) and

price process p∗(t) are independent. However, there are many different proposals in the

literature about how to model the noise process and how to treat the presence of noise

in the estimation of IV. Some studies (e.g., Zhou, 1996, Bandi and Russell, 2005, Zhang,

Mykland and Aït-Sahalia, 2005, Sun, 2006) assume a pure noise structure for u(t). Some

other studies (e.g. Hansen and Lunde, 2006 and Aït-Sahalia, Mykland and Zhang, 2005)

assume u(t) is covariance stationary.

Neither pure noise nor covariance stationary microstructure effects explain flat trad-

ing. In fact, when the efficient price follows a Brownian semimartingale as in (1), then

during periods of flat trading prices the microstructure noise effect completely offsets
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the efficient price fluctuations to produce a sustained flat transactions price. The noise

process therefore inherits the same local martingale-like behavior of the efficient price

process over this subinterval. Inspection of trading data such as that shown in Fig. 1

shows that while sampling at modest frequencies reduces the effects of flat trading it

too does not completely resolve the problem. Accordingly, we propose to build a model

that directly incorporates flat trading features, so that the effects of flat pricing on RV

asymptotics can be assessed.

We follow the existing literature and assume that the efficient price process p∗(t)

follows (1). This specification implies that, for any ti ∈ [0, 1], p∗i,m has the martingale

structure p∗i,m =
Pi

j=1 εj,m, where εj,m =
R tj,m
tj−1,m

σ(s)dB(s). Also, conditional on the

volatility path σ2(s) over s ∈ [ti−1,m, ti,m],

εi,m = p∗i,m − p∗i−1,m =d N

Ã
0,

Z ti,m

ti−1,m

σ2(s)ds

!
∼ N(0, σ2(ti−1,m)(ti,m − ti−1,m)) (6)

for small grid size h.

Working within this framework, the new model adds a simple Bernoulli process to

determine the trading price

pi,m =

⎧⎨⎩ p∗i,m if ξi = 1

pi−1,m if ξi = 0
, (7)

where ξi is a Bernoulli sequence with E(ξi = 1) = π, and p0,m = p∗0,m = Op (1). Thus,

while p∗i,m follows an underlying martingale in the background, the observed price com-

pounds this efficient process with a Bernoulli sequence that determines whether flat

trading occurs in price realization . Whenever pi,m 6= pi−1,m, the realization follows

the efficient price and we observe p∗i,m. Otherwise, flat trading occurs. In that event,

the microstructure noise effect completely offsets the efficient price movement over the

subinterval in which flat trading occurs.

This model allows for flat trading with a constant probability of 1−π, so that there is
a positive probability of flat trading at each point on the temporal grid when π ∈ [0, 1).
When π = 1, pi,m = p∗i,m almost surely and the model reduces to the earlier model of

ABDL (2001), ABDE (2001) and BNS (2002). If pi−1,m = p∗i−1,m and pi,m = pi−1,m, then

pi,m−p∗i,m = p∗i−1,m−p∗i,m = −εi,m. So the newmodel allows for noise in the observed price
and the noise depends on the efficient price. The noise can be interpreted as a discrete

price effect, according to which the realized price changes only when the information
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content is strong enough. Eventually, of course, the observed price will change and

follow the efficient price provided π > 0. One consequence of the specification is that

when noise occurs in the model it takes the form pi,m−p∗i,m = −εi,m = −
R ti,m
ti−1,m

σ(s)dB(s)

and is therefore negatively correlated with the efficient price process. Negative correlation

between microstructure noise and the efficient price has been empirically documented in

Hansen and Lunde (2006, page 132). However, since pi,m = p∗i,m when pi,m 6= pi−1,m, the

present model eliminates noise effects when the price changes. Thus, the model may be

more appropriate at modest frequencies rather than at ultra-high frequencies.

Our first result shows that the compound model preserves the martingale property

for trading prices.

THEOREM 2.1 (Martingale Property): If p∗(t) follows (1) and the trading price

p(t) follows (7) with π ∈ (0, 1], then {pi,m} is a martingale with E(pi,m|Fi−1,m) = pi−1,m

and the natural filtration Fi,m = σ(pi,m, pi−1,m, · · · ).

We now present the main results of the paper. Theorem 2.2 shows that RV still

consistently estimates IV, extending the standard theory of empirical quadratic variation

(ABDL, 2001) to the case of flat trading. Theorem 2.3 derives the corresponding central

limit theorem (CLT) for RV and Theorem 2.4 provides a feasible version of the CLT

for inference about IV using an empirical quarticity estimate. For the CLT results it is

convenient to assume that the discrete sampling grid involves equi-spaced observations,

so that {ti,m = i
m
: i = 0, ...,m}. This requirement might be dispensed with at the cost

of some additional complexity, but fits in with earlier conditions used in BNS on RV

limit theory without flat trading.

THEOREM 2.2 (Consistency): If π ∈ (0, 1], then as m→∞,

RV (m)(p)
p→ IV. (8)

THEOREM 2.3 (Infeasible CLT): Assume the observation grid is equi-spaced with
{ti,m = i

m
: i = 0, ...,m}. If π ∈ (0, 1], then

√
m
£
RV (m)(p)− IV

¤ d→MN

µ
0,
4− 2π

π

Z 1

0

σ4(t)dt

¶
, (9)

stably as m→∞, where MN signifies mixed normal.

Remark A: Stable convergence in law means here, as in Barndorff-Nielson, Graversen,

Jacod and Shephard (2006), that there is joint convergence of the pair
³R 1

0
σ4(t)dt,

√
m
£
RV (m)(p)− IV

¤´
,
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as m→∞,
√
m
£
RV (m)(p)− IV

¤n
4−2π
π

R 1
0
σ4(t)dt

o1/2 d→ N (0, 1) .

This type of convergence in law is useful because it ensures that normings can be inter-

changed in the statistic when there is a mixed normal limit (see Hall and Heyde, 1980,

pp. 56-59), thereby facilitating inference as in Theorem 2.4 below.

Remark B: When π = 0.5, some 50% of the data involves flat trading and the as-

ymptotic variance in (9) is three times as large as when π = 1. This magnitude seems

to be in line with what has been documented empirically in Hansen and Lunde (2006,

page 137). Table 2 shows the ratio of the asymptotic variance to the case where there is

no flat trading for various values of π and Fig. 2 plots this nonlinear relationship. As π

becomes small, the ratio blows up rapidly.

Remark C: Interestingly, result (9) holds even when flats are removed from the sample.

This is because the empirical quadratic variation is unaffected by the presence of flat

trading periods. Hence removing flat prices from data does not reduce the asymptotic

variance or change the limit theory. In effect, the limit result shows that, when trading

which does not reflect the true efficient price occurs, the asymptotic variance of the RV

estimate increases proportionately. That is, when there is flat price trading there is

less information about the efficient price p∗(t), and the asymptotic theory reflects this

reduction in information by an inflation of the variance.

Table 2: Ratio of asymptotic variance with flats to that without flat

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2−π
π

19.00 9.00 5.67 4.00 3.00 2.33 1.86 1.50 1.22 1

To use the CLT (9) in practice the asymptotic variance must be estimated, which

involves estimating the integrated quarticity functional
R 1
0
σ4(t)dt. Following BNS, in-

tegrated quarticity can be estimated consistently and used in a feasible CLT that is

suitable for inference about IV.

Lemma 2.4: Under the conditions of Theorem 2.3, as m→∞
π

6− 3πm
mX
i=1

[pi,m − pi−1,m]
4 p→

Z 1

0

σ4(t)dt. (10)
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Figure 2: Ratio of the asymptotic variance under flat trading to that with no flat trading

(π = 1).

Remark D: When π = 1, π
6−3π =

1
3
and result (10) is identical to that of BNS.

THEOREM 2.5 (Feasible CLT): Under the conditions of Theorem 2.3, as m→∞r
3

2

(RV (m)(p)− IV )qPm
i=1 [p(ti,m)− p(ti−1,m)]

4

d→ N (0, 1) . (11)

Remark E: Interestingly, the standardization in the feasible CLT (11) does not depend

on π and the feasible CLT result is therefore the same as that given in BNS for the case

where there is no flat trading (π = 1). In effect, the quantity involving π appears as

a factor 2−π
π
in the asymptotic variance and the estimated quarticity functional and

is therefore scaled out in the feasible CLT. Nonetheless, the effects of flat trading are

implicitly embodied in the feasible CLT since they are carried in the empirical measurePm
i=1 [p(ti,m)− p(ti−1,m)]

4 , which is correspondingly reduced by periods of flat pricing.

Thus, the asymptotic inferential apparatus of BNS continues to hold under the present

model where flat trading is manifest.
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3. Monte Carlo Study

Data are simulated over a day so that t0,m = 0 and tm,m = 1. A day is assumed to have

6.5 hours and 23400 seconds. In our Monte Carlo design we chose m =39, 78, 130, 195,

and 390. These values correspond to frequencies of 10, 5, 3, 2, 1 minutes, respectively.

3.1 The Brownian motion model

This subsection reports simulations from a simple Brownian motion model where volatil-

ity is a known constant (σ2(t) = 1) so that

dp∗(t) = dB(t). (12)

This formulation allows us to assess the accuracy of CLT (9) as
R 1
0
σ4(t)dt = 1 and then

the asymptotic variance in (9) is simply 4−2π
π

.

Table 3 shows both the asymptotic and finite sample simulated variances of the

statistic
√
m
£
RV (m)(p)− IV

¤
based on 5000 replications for various combinations of π

and m. The asymptotic formula is clearly very accurate except for very small values of

π. The effect of flat trading on the asymptotic variance is dramatic, producing a three

fold increase in variance when π = 0.5.

Table 3: Asymptotic and finite sample variances

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Asymp. variance 4−2π
π

38 18 11.33 8 6 4.67 3.71 3 2.44 2

Asymp variance π = 1 2 2 2 2 2 2 2 2 2 2

Variance (m = 39) 24.31 14.84 10.18 7.61 5.82 4.56 3.74 3.06 2.51 2.04

Variance (m = 78) 30.38 16.56 10.88 7.71 5.79 4.61 3.70 3.02 2.49 2.02

Variance (m = 130) 33.47 17.15 11.16 7.85 5.88 4.66 3.71 3.00 2.45 2.02

Variance (m = 195) 34.39 17.06 10.87 7.74 5.95 4.69 3.74 3.04 2.45 2.02

Variance (m = 390) 36.32 17.41 11.03 7.92 6.03 4.74 3.76 3.04 2.47 2.03
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3.2 A stochastic volatility model

In this subsection, price data is simulated from Heston’s stochastic volatility model with

volatility following a square root model (Heston, 1993):⎧⎨⎩ dp∗(t) = σ(t)dB1(t),

dσ2(t) = κ(μ− σ2(t))dt+ ησ(t)dB2(t).
(13)

Feller (1951) showed that the density of σ2(t+h) conditional on σ2(t) is ce−u−v(v/u)q/2Iq(2(uv)1/2)

and the marginal density of σ2(t) is ww2
1 σ2(w2−1)e−w1σ

2
/Γ(w2), where c = 2κ/(η2(1 −

e−κh)), u = cσ2(t)e−κh, v = cσ2(t+ h), q = 2κμ/η2 − 1, w1 = 2κ/η2, w2 = 2κμ/η2, and
Iq(·) is the modified Bessel function of the first kind of order q. The conditional density
together with the marginal density are used for data simulation. The parameters in the

model are set at κ = 0.01, μ = 1 and η = 0.05.

Table 4: Asymptotic and finite sample variances

π 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Our asymp variance 1 1 1 1 1 1 1 1 1

Variance (m = 39) 15.06 5.76 4.61 2.15 1.90 1.62 1.45 1.21 1.16

Variance (m = 78) 5.85 2.71 2.05 1.54 1.50 1.35 1.26 1.16 1.11

Variance (m = 130) 3.17 1.95 1.54 1.31 1.29 1.28 1.21 1.17 1.11

Variance (m = 195) 1.89 1.52 1.27 1.20 1.20 1.20 1.14 1.12 1.08

Variance (m = 390) 1.37 1.35 1.21 1.20 1.15 1.16 1.14 1.12 1.08

The aim of the experiment is to assess the accuracy of the empirical quarticity formula

in the feasible CLT (11). Table 4 gives the Monte Carlo results. In particular, we

report the variance of the standardized statistic
q

3
2

(RV (m)(p)−IV )√
m
i=1[p(ti,m)−p(ti−1,m)]

4
from 1000

replications, for various combinations of π andm, shown against the asymptotic variance

of unity.

Some conclusions can be drawn from the table. First, the asymptotic theory clearly

works better for large π and large m. This is unsurprising because larger values of π

imply fewer flat price trading periods and therefore larger effective sample sizes. Second,

the asymptotic theory does eventually work well even for small π, but needs larger values

of m to provide a good approximation. The main reason for these effects is that it is

13



more difficult to estimate the integrated quarticity than the integrated volatility. This

corroborates existing findings in the literature on realized volatility without flat pricing.

Table 4 shows that these effects are exacerbated when there is flat trading, especially

when π is small, because of the smaller effective sample size.

4. Conclusion

When trading does not reflect the efficient price because of flat trading effects, the

variance of the RV estimate of integrated volatility increases because we have corre-

spondingly less information about the efficient price than the number of observations

might indicate. Of course, the same conclusion holds when the flats in the trading price

are simply ignored and the previous tick method of constructing the RV estimate is

employed. Furthermore, since fitted quarticity is similarly affected by flat trading, the

framework suggested in BNS for inference about RV remains valid. These conclusions

are intuitively obvious in that the operationally useful data for IV estimation are simply

those observations that reflect the underlying efficient price.

The flat trading model used here may be interpreted as embodying some noise effects

as flat trades imply that past values such as pi−Ki,m may be observed rather than the

current efficient price p∗i,m, in which case the offset from the efficient price is a form

of noise. But the present model is clearly limited by the fact that other sources of

microstructure noise are neglected, especially those that occur at very high frequency.

So the present results may be regarded as being most relevant at modest frequencies.

Appendix

Proof of Theorem 2.1: The specification of p(t) implies that

pi,m = p∗i,mξi,m + pi−1,m(1− ξi,m), (14)

pi,m − pi−1,m = (p
∗
i,m − pi−1,m)ξi,m, (15)

and

p∗i,m − pi,m = (p
∗
i,m − pi−1,m)(1− ξi,m). (16)

14



Taking conditional expectations of both sides of equation (14), we have

E(pi,m|Fi−1,m) = E(p∗i,m|Fi−1,m)π + pi−1,m(1− π) (17)

= E(p∗i−1,m|Fi−1,m)π + pi−1,m(1− π)

To compute E(p∗i−1,m|Fi−1,m), note that if pi−1,m 6= pi−2,m, then pi−1,m = p∗i−1,m and hence

E(p∗i−1,m|Fi−1,m) = pi−1,m. If pi−1,m = pi−2,m but pi−2,m 6= pi−3,m, then pi−2,m = p∗i−2,m,

p∗i−1,m = p∗i−2,m + εi−1,m, and Fi−1,m = Fi−2,m. Hence E(p∗i−1,m|Fi−1,m) = E(p∗i−2,m +

εi−1,m|Fi−2,m) = pi−2,m = pi−1,m. Similarly, if pi−1,m = · · · = pi−K,m but pi−K,m 6=
pi−K=1,m, then pi−K,m = p∗i−K,m, p

∗
i−1,m = p∗i−K,m + εi−K+1,m + · · ·+ εi−1,m and Fi−1,m =

· · · = Fi−K,m. Hence E(p∗i−1,m|Fi−1,m) = E(p∗i−K,m + εi−K+1,m + · · · + εi−1,m|Fi−K,m) =

pi−K,m = pi−1,m. In general, we have E(p∗i−1,m|Fi−1,m) = pi−1,m,and so E(pi,m|Fi−1,m) =
pi−1,m, as required.

Proof of Theorem 2.2: Unless specified, the analysis below is conditioned on the
volatility path, {σ2(t)}. To prove the theorem, we first need to recall the following
result on the maximum run time of a Bernoulli process. Let Ki be the maximum time

period of flat trading prior to ti,m. It is known (e.g. Schilling, 1990) that the maximum

time, Ki, for a sequence of identical Bernoulli draws in a sample of size m has mean

E (Ki) = O
¡
log1/π {m (1− π)}

¢
= O

³
log{m(1−π)}

log 1
π

´
and variance V ar(Ki) =

π2

6 log2( 1π )
. It

follows that

Ki = Op (logm) . (18)

From equation (15), we have

mX
i=1

[pi,m − pi−1,m]
2 =

mX
i=1

(p∗i,m − pi−1,m)
2ξ2i,m (19)

=
mX
i=1

(p∗i,m − pi−1,m)
2E[ξ2i,m] +

mX
i=1

(p∗i,m − pi−1,m)
2
¡
ξ2i,m −E[ξ2i,m]

¢
= π

mX
i=1

(p∗i,m − pi−1,m)
2 +

mX
i=1

(p∗i,m − pi−1,m)
2
¡
ξ2i,m −E[ξ2i,m]

¢
.
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Write the sum
Pm

i=1(p
∗
i,m − pi−1,m)

2 in the first term above as follows

mX
i=1

(p∗i,m − pi−1,m)
2 =

X
(p∗i,m − p∗i−1,m + p∗i−1,m − pi−1,m)

2

= RV (m)(p∗) + 2
X
(p∗i,m − p∗i−1,m)

¡
p∗i−1,m − pi−1,m

¢
+
X
(p∗i−1,m − pi−1,m)

2

= RV (m)(p∗) + 2
X

εi,m
¡
p∗i−1,m − pi−1,m

¢
+
X
(p∗i−1,m − pi−2,m)

2(1− ξi−1,m)
2

= RV (m)(p∗) + 2
X

εi,m
¡
p∗i−1,m − pi−1,m

¢
+
X
(p∗i−1,m − pi−2,m)

2(1− π) (20)

+
X
(p∗i−1,m − pi−2,m)

2
©
(1− ξi−1,m)

2 − (1− π)
ª
.

Set Am =
P
(p∗i,m− pi−1,m)

2. So Am−1 = Am− (p∗m,m− pm−1,m)
2. Substituting out Am−1

in equation (20) gives

Am = RV (m)(p∗) + 2
X

εi,m
¡
p∗i−1,m − pi−1,m

¢
+Am(1− π)

−(1− π)(p∗m,m − pm−1,m)
2 +

X
(p∗i−1,m − pi−2,m)

2
©
(1− ξi−1,m)

2 − (1− π)
ª
.

Hence

Am =
1

π
RV (m)(p∗) +

2

π

X
εi,m

¡
p∗i−1,m − pi−1,m

¢
(21)

−1− π

π
(p∗m,m − pm−1,m)

2 +
1

π

X
(p∗i−1,m − pi−2,m)

2
©
(1− ξi−1,m)

2 − (1− π)
ª
.

Substituting (21) into (19) we haveX
[pi,m − pi−1,m]

2 = RV (m)(p∗) + 2
X

εi,m
¡
p∗i−1,m − pi−1,m

¢
− (1− π)(p∗m,m − pm−1,m)

2

+
X
(p∗i−1,m − pi−2,m)

2
©
(1− ξi−1,m)

2 − (1− π)
ª

+
X
(p∗i,m − pi−1,m)

2
¡
ξ2i,m − π

¢
= RV (m)(p∗) + 2

X
εi,m

¡
p∗i−1,m − pi−1,m

¢| {z }
A

−(1− π)(p∗m,m − pm−1,m)
2| {z }

B

−2
X
(p∗i,m − pi−1,m)

2ξi,m(1− ξi,m)| {z }
C

= RV (m)(p∗) +A+B + C. (22)

Standard quadratic variation theory implies RV (m)(p∗)
p→ IV . We now consider the

limit behavior of A,B and C.
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First, for term C, since ξi,m is a Bernoulli variable, ξi,m
¡
1− ξi,m

¢
= 0 a.s., and so

C = 0. Next consider term B. Note that

p∗m,m − pm−1,m = p∗m,m − p∗m−Km,m for some Km = Op(logm)

=

Z 1

tm−Km,m

σ(s)dB(s)

= Op

µ√
logm√
m

¶
,

since

E

(Z 1

tm−Km,m

σ(s)dB(s)

)2
=

Z 1

tm−Km,m

E
©
σ(s)2

ª
ds = Op

µ
Km

m

¶
= Op

µ
logm

m

¶
.

Hence

B = −(1− π)(p∗m,m − pm−1,m)
2 = −(1− π)Op

µ
logm

m

¶
= op(1), (23)

Finally, for term A, note that

εi,m =

Z ti,m

ti−1,m

σ(s)dB(s) =MN

Ã
0,

Z ti,m

ti−1,m

σ2(s)ds

!
, (24)

where MN signifies mixed normal. Next,

p∗i−1,m − pi−1,m = (p∗i−1,m − pi−2,m)(1− ξi−1,m) (25)

= (p∗i−1,m − p∗i−Ki−1,m)(1− ξi−1,m), for some Ki−1 = Op(logm),

and then X
εi,m

¡
p∗i−1,m − pi−1,m

¢
=
X

εi,m(p
∗
i−1,m − p∗i−Ki−1,m)(1− ξi−1,m).

Now εi,m is independent of ξi−1,m, and E(εi,m) = 0 and V ar(εi,m)→ 0, as m→∞, whileP
(p∗i−1,m − p∗i−Ki−1,m)

2 is bounded as m→∞. It follows that A = op(1).

Thus, X
[pi,m − pi−1,m]

2 = RV (m)(p∗) + op(1)

= IV + op(1),

17



giving consistency as stated.

Proof Theorem 2.3: From (22) we have
√
m
nX

[pi,m − pi−1,m]
2 − IV

o
=
√
m
©
RV (m)(p∗)− IV

ª
+
√
m2
X

εi,m
¡
p∗i−1,m − pi−1,m

¢
−
√
m(1− π)(p∗m,m − pm−1,m)

2

+
√
m
X
(p∗i−1,m − pi−2,m)

2
©
(1− ξi−1,m)

2 − (1− π)
ª

+
√
m

mX
i=1

(p∗i,m − pi−1,m)
2
¡
ξ2i,m − π

¢
=
√
m
©
RV (m)(p∗)− IV

ª
+
√
mA+

√
mB +

√
mC

=
√
m
©
RV (m)(p∗)− IV

ª
+
√
mA+

√
mB, (26)

since C = 0, a.s. . From BNS (2002) and Barndorff-Nielson, Graversen, Jacod and

Shephard (2006), we have the CLT

√
m
©
RV (m)(p∗)− IV

ª d→ N

µ
0, 2

Z 1

0

σ4(t)dt

¶
, (27)

stably as m→∞. We now study the asymptotic behavior of
√
mA, and

√
mB.

For term
√
mA, from (24) and (25) we get

√
mA =

√
m2
X

εi,m(p
∗
i−1,m − p∗i−Ki−1,m)(1− ξi−1,m)

= 2
√
m
XZ ti,m

ti−1,m

σ(s)dB(s)(p∗i−1,m − p∗i−Ki−1,m)(1− ξi−1,m)

= 2
√
m
X

νi,m(p
∗
i−1,m − p∗i−Ki−1,m),

where νi,m =
R ti,m
ti−1,m

σ(s)dB(s)(1− ξi−1,m) is uncorrelated with (p
∗
i−1,m − p∗i−Ki−1,m), be-

cause of the martingale property, and has mean 0 and conditional variance (1− π)m
R ti,m
ti−1,m

σ(s)2ds.

So
√
mA is a martingale with conditional variance

m (1− π)
X
(p∗i−1,m − p∗i−Ki−1,m)

2

Z ti,m

ti−1,m

σ(s)2ds.

By stochastic Taylor series expansion we have

p∗i−1,m − p∗i−Ki−1,m =

Z ti−1,m

ti−Ki−1,m

σ(s)dB(s)

=
n
σ
¡
ti−Ki−1,m

¢
+Op

³p
Ki−1h

´o¡
B (ti−1,m)−B

¡
ti−Ki−1,m

¢¢
= σ

¡
ti−Ki−1,m

¢ ¡
B (ti−1,m)−B

¡
ti−Ki−1,m

¢¢
+Op (Ki−1h)

= σ

µ
i− 1
m

¶µ
B

µ
i− 1
m

¶
−B

µ
i−Ki−1

m

¶¶
+Op

µ
Ki−1

m

¶
(28)

18



on the equi-spaced grid {ti,m = i
m
: i = 0, ...,m} with h = 1

m
. Then

m
X
(p∗i−1,m − p∗i−Ki−1,m)

2

Z ti,m

ti−1,m

σ(s)2ds

= m
X½

σ

µ
i− 1
m

¶µ
B

µ
i− 1
m

¶
−B

µ
i−Ki−1

m

¶¶
+Op

µ
Ki−1

m

¶¾2
×
(
σ

µ
i− 1
m

¶2
+Op

µ
1√
m

¶)
1

m

=
X(

σ

µ
i− 1
m

¶4µ
B

µ
i− 1
m

¶
−B

µ
i−Ki−1

m

¶¶2 ∙
1 +Op

µ
Ki−1

m

¶¸)

=
X(

σ

µ
i− 1
m

¶4
Ki−1 − 1

m

∙
1 +Op

µ
Ki−1

m

¶¸)

→ p

µZ 1

0

σ4(t)dt

¶
E(Ki−1 − 1).

It follows by the martingale central limit theorem (e.g., theorem 3.2 of Hall and Heyde,

1980) that

√
mA

d→ 2×MN

µ
0, (1− π)

µZ 1

0

σ4(t)dt

¶
E(Ki−1 − 1)

¶
,

and the convergence is stable.

Observe that

Ki−1 − 2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 with probability π

1 with probability π(1− π)

2 with probability π(1− π)2

...

,

so that E(Ki−1−2) = π(1−π)+2π(1−π)2+· · · = 1−π
π
, which implies that E(Ki−1−1) =

1
π
. Thus

√
mA

d→MN

µ
0, 4

1− π

π

Z 1

0

σ4(t)dt

¶
, (29)

stably.

Next consider term
√
mB. From (23) we have

√
mB = −

√
mOp

µ
logm

m

¶
(1− π) = op(1). (30)
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Finally, note that the components of the term
√
m
©
RV (m)(p∗)− IV

ª
are quadratic in

the increments εi,m = p∗i,m−p∗i−1,m, whereas the components of
√
mA involve the product

εi,m(p
∗
i−1,m − p∗i−Ki−1,m)(1− ξi−1,m), and

E
n
ε3i,m(p

∗
i−1,m − p∗i−Ki−1,m)(1− ξi−1,m)

o
= 0,

so the components are uncorrelated. It follows that
√
m
©
RV (m)(p∗)− IV

ª
and
√
mA

are asymptotically independent, conditional on
R 1
0
σ4(t)dt. Therefore

√
m
©
RV (m)(p)− IV

ª d→MN

µ
0,
4− 2π

π

Z 1

0

σ4(t)dt

¶
,

stably, giving the required result.

Proof of Lemma 2.4: From equation (15), we have

m
mX
i=1

[pi,m − pi−1,m]
4 = πm

mX
i=1

(p∗i,m − pi−1,m)
4 +m

mX
i=1

(p∗i,m − pi−1,m)
4
¡
ξ4i,m − E[ξ4i,m]

¢
.

(31)

Consider
Pm

i=1(p
∗
i,m − pi−1,m)

4 in the first term,

mX
i=1

(p∗i,m − pi−1,m)
4 =

X
(p∗i,m − p∗i−1,m + p∗i−1,m − pi−1,m)

4

=
mX
i=1

¡
p∗i,m − p∗i−1,m

¢4
+ 4

mX
i=1

¡
p∗i,m − p∗i−1,m

¢3 ¡
p∗i−1,m − pi−1,m

¢
+6

mX
i=1

¡
p∗i,m − p∗i−1,m

¢2 ¡
p∗i−1,m − pi−1,m

¢2
+4

mX
i=1

¡
p∗i,m − p∗i−1,m

¢ ¡
p∗i−1,m − pi−1,m

¢3
+

mX
i=1

¡
p∗i−1,m − pi−1,m

¢4
=

mX
i=1

¡
p∗i,m − p∗i−1,m

¢4
+ 4

mX
i=1

¡
p∗i,m − p∗i−1,m

¢3 ¡
p∗i−1,m − pi−1,m

¢
+6

mX
i=1

¡
p∗i,m − p∗i−1,m

¢2 ¡
p∗i−1,m − pi−1,m

¢2
+4

mX
i=1

¡
p∗i,m − p∗i−1,m

¢ ¡
p∗i−1,m − pi−1,m

¢3
+m

mX
i=1

¡
p∗i−1,m − pi−2,m

¢4
(1− π)

+
mX
i=1

¡
p∗i−1,m − pi−2,m

¢4
((1− ξi−1,m)

4 − (1− π)). (32)
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Set Bm =
P
(p∗i,m− pi−1,m)

4. So Bm−1 = Bm− (p∗m,m− pm−1,m)
4. Substituting out Bm−1

in equation (32) and solving for Bm, we get

Bm =
1

π

mX
i=1

¡
p∗i,m − p∗i−1,m

¢4
+
4

π

mX
i=1

¡
p∗i,m − p∗i−1,m

¢3 ¡
p∗i−1,m − pi−1,m

¢
(33)

+
6

π

mX
i=1

¡
p∗i,m − p∗i−1,m

¢2 ¡
p∗i−1,m − pi−1,m

¢2
+
4

π

mX
i=1

¡
p∗i,m − p∗i−1,m

¢ ¡
p∗i−1,m − pi−1,m

¢3
−1− π

π
(p∗m,m − pm−1,m)

2 +
1

π

X
(p∗i−1,m − pi−2,m)

4
©
(1− ξi−1,m)

4 − (1− π)
ª
.

Substituting (33) into (31) we have

m
X
[pi,m − pi−1,m]

4 = m
mX
i=1

¡
p∗i,m − p∗i−1,m

¢4
+ 4m

mX
i=1

¡
p∗i,m − p∗i−1,m

¢3 ¡
p∗i−1,m − pi−1,m

¢
+6m

mX
i=1

¡
p∗i,m − p∗i−1,m

¢2 ¡
p∗i−1,m − pi−1,m

¢2
+4m

mX
i=1

¡
p∗i,m − p∗i−1,m

¢ ¡
p∗i−1,m − pi−1,m

¢3 − (1− π)(p∗m,m − pm−1,m)
2

+m
X
(p∗i−1,m − pi−2,m)

4
©
(1− ξi−1,m)

4 − (1− π)
ª

+m
mX
i=1

(p∗i,m − pi−1,m)
4
¡
ξ4i,m − π

¢
= m

mX
i=1

¡
p∗i,m − p∗i−1,m

¢4
+ 4m

mX
i=1

¡
p∗i,m − p∗i−1,m

¢3 ¡
p∗i−1,m − pi−1,m

¢
| {z }

A

+6m
mX
i=1

¡
p∗i,m − p∗i−1,m

¢2 ¡
p∗i−1,m − pi−1,m

¢2
| {z }

B

+4m
mX
i=1

¡
p∗i,m − p∗i−1,m

¢ ¡
p∗i−1,m − pi−1,m

¢3
| {z }

C

−(1− π)m(p∗m,m − pm−1,m)
4| {z }

D

+m
X
(p∗i,m − pi−1,m)

4(1− ξi,m)
2ξ2i,m| {z }

E

= m
mX
i=1

¡
p∗i,m − p∗i−1,m

¢4
+A+B + C +D +E. (34)
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As in (6) and (28) we have

p∗i,m − p∗i−1,m = σ (ti−1,m) (B (ti,m)−B (ti,m)) +Op

µ
1

m

¶
= σ (ti−1,m)

�i,m√
m
+Op

µ
1

m

¶
, (35)

where �i,m is iid N (0, 1) . Hence

m
X¡

p∗i,m − p∗i−1,m
¢4

=
X

σ (ti−1,m)
4 �

4
i,m

m
+Op

µ
1

m1/2

¶
=

X
σ (ti−1,m)

4 E
¡
�4i,m
¢

m
+Op

µ
1

m1/2

¶
→ p 3

Z 1

0

σ4(t)dt. (36)

Hence

2

3
m
X¡

p∗i,m − p∗i−1,m
¢4 →p 2

Z 1

0

σ4(t)dt. (37)

This corresponds with the result obtained in BNS (2002).

We now consider the limit behavior of terms A,B,C,D, and E. First, for term E,

since
¡
1− ξi,m

¢2
ξ2i,m = 0 almost surely, E = 0. Second, for term D, note that

D = −(1− π)m(p∗m,m − pm−1,m)
4 = −(1− π)m×Op

µ
log2m

m2

¶
= op(1).

Next, consider term A, viz.,

m
X¡

p∗i,m − p∗i−1,m
¢3 ¡

p∗i−1,m − pi−1,m
¢

= m
X¡

p∗i,m − p∗i−1,m
¢3 ¡

p∗i−1,m − pi−2,m
¢
(1− ξi−1,m)

= m
X½

σ (ti−1,m)
�i,m√
m
+Op

µ
1

m

¶¾3 ³
p∗i−1,m − p∗i−Ki−1,m

´
(1− ξi−1,m)

for some Ki−1 = Op(logm)

=
1√
m

X
σ3 (ti−1,m) �

3
i,m

³
p∗i−1,m − p∗i−Ki−1,m

´
(1− ξi−1,m) + op (1) . (38)

The component σ3 (ti−1,m) �3i,m
³
p∗i−1,m − p∗i−Ki−1,m

´
(1−ξi−1,m) in the sum (38) has mean

zero and conditional varianceE
£
�6i,m
¤
(1− π)σ6 (ti−1,m)

³
p∗i−1,m − p∗i−Ki−1,m

´2
= Op

¡
logm
m

¢
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since from (28)

p∗i−1,m − p∗i−Ki−1,m = σ

µ
i− 1
m

¶µ
B

µ
i− 1
m

¶
−B

µ
i−Ki−1

m

¶¶
+Op

µ
Ki−1

m

¶
= σ

µ
i− 1
m

¶
ηKi−1√

m
+Op

µ
Ki−1

m

¶
= Op

Ãr
logm

m

!
, (39)

where

ηKi−1 := B

µ
i− 1
m

¶
−B

µ
i−Ki−1

m

¶
=MN (0,Ki−1 − 1) = Op

³p
logm

´
.

It follows that

E

½
1√
m

X
σ3 (ti−1,m) �

3
i,m

³
p∗i−1,m − p∗i−Ki−1,m

´
(1− ξi−1,m)

¾2
= Op

µ
logm

m

¶
,

and so A = op(1). Similarly, for term C, 4m
P¡

p∗i,m − p∗i−1,m
¢ ¡

p∗i−1,m − pi−1,m
¢3
is op(1).

Next, consider term B. Using (15) and (39), we have

m
X¡

p∗i,m − p∗i−1,m
¢2 ¡

p∗i−1,m − pi−1,m
¢2

= m
X¡

p∗i,m − p∗i−1,m
¢2 ¡

p∗i−1,m − pi−2,m
¢2
(1− ξi−1,m)

2

= m
X¡

p∗i,m − p∗i−1,m
¢2 ³

p∗i−1,m − p∗i−Ki−1,m

´2
(1− ξi−1,m)
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!
=

1

m

X
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2
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1
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X
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2
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2 − E
h
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2
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2
io

+Op
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logm

m

!
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1

m
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σ4 (ti,m) (1− π)E(Ki−1 − 1) +Op

µ
logm√

m

¶
→ p

µZ 1

0

σ4(t)dt

¶
(1− π)E(Ki−1 − 1) =

(1− π)

π

Z 1

0

σ4(t)dt, (40)
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since �i,m, ηKi−1 , and ξi−1,m are independent. Therefore,

m
X

[pi,m − pi−1,m]
4 = 3

Z 1

0

σ4(t)dt+ 6
(1− π)

π

Z 1

0

σ4(t)dt+ op(1)

=
6− 3π

π

Z 1

0

σ4(t)dt+ op(1),

leading to the required result.

Proof Theorem 2.5: The proof follows directly from Lemma 2.4 and Theorem 2.3.

References
[1] Aït-Sahalia, Y., Mykland, P.A., and L. Zhang (2005), “Ultra high-frequency volatil-

ity estimation with dependent microstructure noise”, Working Paper, Princeton
University.

[2] Andersen, T.G., T. Bollerslev, T. and F.X. Diebold (2005), “Parametric and non-
parametric volatility measurement,” Handbook of Financial Econometrics, edited
by L.P. Hansen and Y. Aït-Sahalia. Amsterdam: North-Holland, forthcoming.

[3] Andersen, T.G., T. Bollerslev, F.X. Diebold, and P. Labys (2001), “The distribution
of realized exchange rate volatility,”Journal of the American Statistical Association
96, 42—55.

[4] Andersen, T.G., T. Bollerslev, F.X. Diebold, and P. Labys (2003), “Modeling and
forecasting realized volatility,” Econometrica, 71, 529-626.

[5] Andersen, T.G., T. Bollerslev, F.X. Diebold, and H. Ebens (2001), “The distribution
of realized stock return volatility,”Journal of Financial Economics, 61, 43—76.

[6] Andersen, T.G., Bollerslev, T., F.X. Diebold, and J. Wu (2005), “A framework for
exploring the macroeconomic determinants of systematic risk,” American Economic
Review, 95, 398-404.

[7] Andersen, T.G., T. Bollerslev, and N. Meddahi (2005), “Correcting the errors:
Volatility forecast evaluation using high-frequency data and realized volatilities,”
Econometrica, 73, 279-296.

[8] Back, K., (1991), “Asset pricing for general processes,” Journal of Mathematical
Economics, 20, 371-395.

[9] Bandi, F. M., and J. Russell (2005), “Microstructure noise, realized volatility,
and optimal sampling,” Working paper, Graduate School of Business, University of
Chicago.

[10] Bandi, F. M., and J. Russell (2006), “Separating microstructure noise from volatil-
ity,” Journal of Financial Economics, forthcoming

[11] Barndorff-Nielsen, O., S. E. Graversen, J. Jacod, and N. Shephard (2006), “Limit
theorems for bipower variation in financial econometrics,” Econometric Theory, 22,
677-719.

24



[12] Barndorff-Nielsen, O., P. Hansen, A. Lunde, and N. Shephard (2006), “Designing
realised kernels to measure the ex-post variation of equity prices in the presence of
noise ,” Working paper, Nuffield College.

[13] Barndorff-Nielsen, O. and N. Shephard (2002), “Econometric analysis of realized
volatility and its use in estimating stochastic volatility models,” Journal of the
Royal Statistical Society, Series B, 64, 253-280.

[14] Barndorff-Nielsen, O. and N. Shephard (2007),“Variation, jumps, market frictions
and high frequency data in financial econometrics,” Advances in Economics and
Econometrics: Theory and Applications, Ninth World Congress, edited by R. Blun-
dell, P. Torsten and W. Newey, Econometric Society Monographs, Cambridge Uni-
versity Press.

[15] Feller, W. (1951), Two singular diffusion problems. Annals of Mathematics 54,
173-182.

[16] Fleming, J., C. Kirby, and B. Ostdiek (2001), “The economic value of volatility
timing.” Journal of Finance, 56, 329-352.

[17] Hall, P. and C. C. Heyde (1980), Martingale Limit Theory and its Application. New
York: Academic Press.

[18] Hansen, P., and A. Lunde, (2006), “Realized volatility and market microstructure
noise,” Journal of Business and Economic Statistics, 24,127-161.

[19] Heston, S.L. (1993), A closed-form solution for options with stochastic volatility,
with application to bond and currency options. Review of Financial Studies 6,
327—343.

[20] Jacod, J. (1994), “Limit of random measures associated with the increments of a
Brownian semimartingale”. Laboratoire de Probabilités, Paris (mimeo).

[21] Protter, P. (2004), Stochastic Integration and Differential Equations. New York:
Springer-Verlag.

[22] Schilling, M. F. (1990), The longest run of heads. College Math. J. 21, 196—207

[23] Sun, Y. (2006), “Best quadratic unbiased estimators of integrated variance in the
presence of market microstructure noise”. UCSD, Department of Economics. Man-
uscript.

[24] Zhang, L., Mykland, P.A., and Y. Aït-Sahalia (2005), “A tale of two time scales:
Determining integrated volatility with noisy high-frequency data”, Journal of the
American Statistical Association, 100, 1394-1411

[25] Zhou, B. (1996), “High frequency data and volatility in foreign-exchange rates,”
Journal of Business and Economic Statistics, 41,45-52.

25


