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Abstract

A new methodology is proposed to estimate theortical prices of financial contingent-claims
whose values are dependent on some other underlying financial assets. In the literature the
preferred choice of estimator is usually maximum likelihood (ML). ML has strong asymptotic
justification but is not necessarily the best method in finite samples. The present paper proposes
instead a simulation-based method that improves the finite sample performance of the ML
estimator while maintaining its good asymptotic properties. The methods are implemented
and evaluated here in the Black-Scholes option pricing model and in the Vasicek bond pricing
model, but have wider applicability. Monte Carlo studies show that the proposed procedures
achieve bias reductions over ML estimation in pricing contingent claims. The bias reductions are
sometimes accompanied by reductions in variance, leading to significant overall gains in mean
squared estimation error. Empirical applications to US treasury bills highlight the differences
between the bond prices implied by the simulation-based approach and those delivered by ML.
Some consequences for the statistical testing of contingent-claim pricing models are discussed.

Keywords: Bias Reduction, Bond Pricing, Indirect Inference, Option Pricing, Simulation-based
Estimation.

JEL classification: C15, G12



1. Introduction

Pricing financial contingent-claims, whose values depend on the price of an underlying asset,

has been an important topic in modern financial economics. Some well known examples include

Black-Scholes (1973), Merton (1973), Vasicek (1977), Cox, Ingersoll and Ross (1985), Heston

(1993), and Duan (1996), Duffie, Pan and Singleton (2000). Often the underlying asset is

assumed to follow a parametric time series model, commonly formulated in continuous time,

and the price of the contingent-claim, often known as the theoretical price, is derived by

using no-arbitrage arguments. The resulting price of the contingent-claim is a function of the

parameters in the time series model. The functional form of this dependence is almost always

complicated and non-linear.

Since the parameters of the underlying asset are usually unknown, they are generally re-

placed by time series estimates in the contingent-claim.pricing formulas. Consequently, the

statistical properties of the theoretical contingent-claim price estimate critically hinge on those

of the parameter estimates. For example, the sampling variation in the estimated contingent-

claim price depends on the sampling variation in the estimated parameters. Hence, the choice

of method for parameter estimation is important and the topic has received a great deal of

attention in the literature; see, for example, Boyle and Ananthanarayanan (1977), Ball and

Torous (1984), Lo (1986), Chan et al (1992), Aït-Sahalia (1999).

Perhaps the most direct method for parameter estimation is to use historical time series data

on the underlying asset price. It has often been argued that when the model for the underlying

asset is correctly specified the preferred basis for estimation and inference should be maximum

likelihood (ML) — see, for example, Ball and Torous (1984), Lo (1986) and Aït-Sahalia (2002).

There are strong reasons for this choice. Primary among these is the fact that the ML estimator

(MLE) has desirable asymptotic properties of consistency, normality and efficiency under broad

conditions (Huber, 1967) in stationary time series settings. Moreover, when the MLE is used in

pricing formulae, one naturally expects the good asymptotic properties of the MLE to transfer

over to the corresponding contingent-claim price. The theoretical price of a contingent-claim

is a smooth non-linear function of the system parameters being estimated, so that plug-in

estimates of contingent-claim prices are themselves MLEs in view of the invariance property

of maximum likelihood (e.g, Zehna, 1966). In consequence, these plug-in pricing estimates

have all the desirable asymptotic properties of the MLE. Of course, ML is a very general tool

of estimation and inference so that it has wide applicability in this context and, at least for

stationary time series, its good asymptotic properties are well established. The ML approach
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therefore provides a convenient framework for estimation and inference in asset pricing models

(c.f., Lo, 1986).

In spite of its generally good asymptotic properties, ML is not necessarily the best esti-

mation method for contingent claim prices in finite samples. There are three reasons for this.

First, since the price of a contingent-claim is a non-linear transformation of the system para-

meters, insertion of even unbiased estimators into the pricing formulae will not assure unbiased

estimation of a contingent-claim price (Ingersoll, 1976). Second, although long-span samples

are now available for many financial variables, making asymptotic properties of econometric

estimators more relevant, full data sets are not always employed in estimation because of pos-

sible structural changes in long-span data. When short-span samples are used in estimation,

finite sample distributions can be far from the asymptotic theory. Third, in dynamic models

that are typically used for pricing claims that are contingent on short term interest rates, the

MLE of the system parameters may sustain substantial finite sample bias even in very large

samples as shown recently in Phillips and Yu (2005); and when biased estimated parameters

are inserted into the pricing formulae, the bias can be amplified in the resulting estimates of

the contingent-claim price.

Some past studies in the literature have addressed the finite sample properties of estimators

of contingent-claim prices. Boyle and Ananthanarayanan (1977) examined the exact finite sam-

ple distribution of the estimated Black-Scholes option price evaluated at an unbiased estimator

of the true variance and showed the resultant estimator to be biased. To remove the bias,

Butler and Schachter (1986) proposed an estimator based on Taylor series expansions. Knight

and Satchell (1997) showed that the estimator of Butler and Schachter is only unbiased for

at-the-money options. When ML is used to estimate one-factor models for short term interest

rates, Ball and Torous (1996) and Chapman and Pearson (2000) provided evidence of large

finite sample biases in the mean reversion parameter. Phillips and Yu (2005) showed that this

bias translates into bond pricing and bond option pricing and the pricing biases are econom-

ically too significant to ignore. To reduce this bias in bond pricing and bond option pricing,

Phillips and Yu (2005) proposed a new jackknife procedure. While the method proposed by

Butler and Schachter (1986) is fundamentally different from that of Phillips and Yu (2005),

they share a common limiting property: relative to ML, both these two methods trade off the

gain that may be achieved in bias reduction with a loss that arises through increased variance.

The present paper introduces a new methodology of estimating contingent-claim prices

which can achieve bias reduction as well as variance reduction, thereby offering overall gains

in mean squared estimation error for contingent-claim pricing. Instead of inserting a biased
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corrected ML estimator into the pricing formulae, the approach involves the direct estimation

of contingent-claim prices that is complete with an in-built correction for bias. The proposed

method is simulation-based and involves multiple stages. In a preliminary stage, the bias in

the price estimator is calibrated via simulation and at the next stage a procedure that accounts

for this bias is implemented.

Simulation-based methods have been successfully used in past work to estimate parameters

in various financial time series models. For example, they have been employed in the context

of continuous time models to address issues of discretization bias (e.g., Duffie and Singleton,

1993, Monfort, 1996 and Dai and Singleton, 2000) and in the context of discrete time stochastic

volatility models to deal with intractable likelihoods (e.g. Monfardini, 1998, and Andersen,

Chung and Lund, 1999). The methods have also been utilized to correct finite sample bias in

time series models (e.g. Gourieroux, et al, 2000) and in dynamic panel models (e.g. Gourieroux,

et al., 2005). The present work is to the best of our knowledge the first implementation of such

methods in contingent-claim pricing.

Simulation-based methods have several favorable attributes in the estimation of contingent-

claim prices. The first is that they do not require explicit analytic evaluation of the bias function

since this function is implicitly calculated by simulation. This advantage is significant as most

asset pricing models do not yield analytic expressions for the bias function. Simulation-based

methods are therefore applicable in a broad range of model specifications where analytic meth-

ods fail. Second, the simulation approach described here can be used in connection with many

different estimation methods, including exact ML when it is available, and various approximate

ML techniques, such as those based on the Euler approximation. When the simulation-based

method is used in connection with exact MLE, the resultant estimator is asymptotically equiv-

alent, thereby sharing all the asymptotic properties of the initial MLE, and standard tools

of statistical inference are applicable. Third, the present methods can deal with both the

estimation bias and the discretization bias that arises when non-linear stochastic differential

equations are estimated. Since non-linear stochastic differential equations typically do not have

closed-form likelihood expressions, exact ML estimation presents many challenges. While it is

straightforward to estimate a discretized model, discretization bias is inevitably introduced

in practice. Simulations permit the sampling interval to be chosen arbitrarily small, thereby

providing an important control on the size of the discretization bias. Fourth, simulation-

based methods have the advantage of flexibility and can be readily applied in any practical

contingent-claim pricing situation.

One drawback of the simulation-based methods is that they are inevitably computationally
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Figure 1: Distribution of simulated-based and ML estimates of bond price.

intensive. But numerical methods are now an important aspect of most empirical procedures in

finance and ongoing advances in computing technology continue to make numerically intensive

computations less burdensome in practical applications.

Our findings here indicate that simulation-based methods provide substantial improvements

in pricing contingent-claims over ML. To illustrate, Figure 1 compares the distribution of

estimates of the price of a discount bond obtained from five-year monthly data by using the

MLE and a bias corrected simulation method, both in the context of a Vasicek model. The

actual bond price in this case is $84.8. As is apparent in the figure, the simulation-based

estimates are much better centered on the true bond price and achieve bias reduction. In

addition, the bias reduction comes with a reduction in variance. In fact, the gain in the

percentage bias achieved by the simulated-based method is 32.4% and the gain in standard

error is 24.0%. More details of this implementation and comparison are provided in Section 3.
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The paper is organized as follows. Section 2 reviews some existing methods and introduces

our simulation-based methods. Using simulated data, Section 3 illustrates the bias in ML

estimation of call options prices in the context of the Black-Scholes model and of bond prices

in the context of the Vasicek model. We also explain how the simulation-based methods can be

implemented in stock option and bond valuation. The performance of these simulation-based

estimates is compared with that of ML. Section 4 shows how the simulation-based methods

can be used to address the estimation bias in pricing as well as the discretization bias. Section

5 examines the practical effects of simulation-based methods in an empirical application with

monthly zero-coupon bond data. Section 6 concludes and outlines some further applications

and implications of the approach.

2. Estimation Methods for Contingent Claims Prices

2.1. Maximum Likelihood and Indirect Inference

Let S(t) denote the price of an underlying asset whose dynamics are captured by the following

stochastic differential equation

dS(t) = μ(S(t), t; θ)dt+ σ(S(t), t; θ)dB(t), (1)

where B(t) is a standard Brownian motion, σ(S(t), t; θ) is some specified diffusion function,

μ(S(t), t; θ) is a given drift function, and θ is a unknown parameter or a vector of unknown

parameters. This class of parametric model has been widely used to characterize the temporal

dynamics of financial variables, including stock prices, interest rates, and exchange rates.

Although we use a continuous time model here for S(t), the proposed simulation-based

methods will apply more generally to any time series generating model for S(t). Moreover,

while we do not make a distinction between the physical measure and the risk neutral measure

in the present paper, this feature can also be relaxed.

Suppose a sequence of time series observations S = (S1, · · · , ST ) taken with a sampling
interval h is available and we wish to price a financial asset whose payoff is contingent upon

the value of S(t). Using the no-arbitrage argument, one can derive the price of the contingent-

claim. Denote by P (θ) the price of this contingent-claim. In general, P may also depend on

other parameters that occur in the setting and such dependencies can be accounted for in our

approach. But for convenience and exposition, we write P as a function solely of θ.

A common strategy for estimating P (θ) is to first estimate the parameter vector from the

underlying model (such as (1)) based on the data S, leading to the estimate θ̂, and then proceed
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to insert θ̂ in the pricing function P , giving P̂ = P (θ̂).

It has been argued that one should use ML to estimate θ whenever ML is feasible - see Aït-

Sahalia (2002) and Durham and Gallant (2002). Since the model (1) has the Markov property,

one can write down the log-likelihood function as

c(θ) =
TX
t=2

ln f(St|St−1; θ), (2)

where f(St|St−1) denotes the conditional density function of St given St−1. Maximizing the log-
likelihood function with respect to θ leads to the MLE θ̂

ML
T , which is consistent, asymptotically

normal and asymptotically efficient under usual regularity conditions for stationary dynamic

models. In such circumstances, the limit distribution of θ̂
ML
T is given by

√
T (θ̂

ML
T − θ)

d→ N(0, I−1(θ)). (3)

where I(θ) is the limiting information matrix, and the MLE is considered optimal in the Hajék-

LeCam sense, achieving the the Cramér-Rao bound and having the highest possible estimation

precision in the limit when T →∞.
By virtue of the principle of invariance, the MLE of P (θ) is obtained simply by replacing

θ in P (θ) with θ̂
ML
T , leading to P̂ML

T = P (θ̂
ML
T ).1 By standard delta method arguments, the

following asymptotic behavior for P̂ML
T is obtained

√
T (P̂ML

T − P )
d→ N(0, VP ), (4)

where

VP =
∂P

∂θ0
I−1(θ)

∂P

∂θ
. (5)

Since the estimator P̂ML
T is the MLE, it has the highest possible precision when T →∞, and

in consequence, this plug-in estimator has been argued to be the preferred approach — see, for

example, Lo (1986).

There are at least two problems with this use of the exact ML approach. First, to calculate

the exact MLE, one needs a closed form expression for ln f(St|St−1; θ), which is available only in
rare cases. Section 4 describes how to deal with this difficulty in the present context. Second, as

shown in many studies, when the time series behavior in St is persistent and μ(St; θ) is an affine

function in St, (for example μ(St; θ) = κ(μ− St)), the exact MLE of κ is substantially upward

1While we assume in this paper P is not a function of the underlying asset price, this assumption may be
relaxed and, conditional on the underlying asset price, the principle of invariance still applies.
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biased even in large samples (Phillips and Yu, 2005). This upward bias in bκML
T translates to

bias in P̂ML
T and is large enough to be of economic significance in practice. The present paper

seeks to address this problem by the use of the indirect inference procedure applied directly to

PT .

Indirect inference is a simulation-based method developed in Gourieroux, Monfort and

Renault (1993) to estimate models where the likelihood is difficult to construct analytically but

where the model may be readily simulated. It is closely related to the simulated GMM of Duffie

and Singleton (1993). This method also has the property that it can successfully correct for

estimation bias in time series parameter estimation. The application of indirect inference here

proceeds as follows. Let θ̂
ML
T denote the MLE that is obtained from the actual data and involves

finite sample estimation bias. For any given parameter choice θ, let eSk(θ) = {S̃k
1 , S̃

k
2 , · · · , S̃k

T}
be data simulated from the time series model (1), where k = 1, · · · ,K and K is the number of

simulated paths. The number of observations in eSk(θ) is chosen to be the same as the number
of actual observations in S so that the exact finite sample properties of θ̂

ML
T , including its finite

sample bias, may be calibrated. Let eφML,k

T (θ) denote the MLE of θ obtained in this way from

the k’th simulated path. By construction, this simulation-based estimate naturally carries any

finite sample estimation bias of the MLE in the given model and for this sample size.

The idea behind the procedure that allows for bias correction is to choose θ so that the

average behavior of eφML,k

T (θ) is matched against the numerical estimate θ̂
ML
T obtained with

the observed data. In particular, the indirect inference estimator is defined by

θ̂
II
T,K = argminθ∈Θ k θ̂

ML
T − 1

K

KX
k=1

eφML,k

T (θ) k, (6)

where k · k is some finite dimensional distance metric and the region of extremum estima-

tion Θ is a compact set. In the case where K tends to infinity, the law of large numbers,

K−1PK
k=1

eφML,k

T (θ) →p E(eφML,k

T (θ)), applies by virtue of the nature of the simulation and

then the indirect inference estimator becomes

θ̂
II
T = argminθ∈Θ k θ̂

ML
T − bT (θ) k, (7)

where bT (θ) = E(eφML,k

T (θ)) is called the binding function. When bT is invertible, the indirect

inference estimator may be written directly as

θ̂
II
T = b−1T (θ̃

ML
T ).

The procedure essentially builds in a finite-sample bias correction to θ̂
ML
T , with the bias

being computed directly by simulation. Any bias that occurs in θ̂
ML
T will also be present in
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the binding function bT (θ). Hence, with the bias correction that is built into the inversion

functional θ̂
II
T = b−1T (θ̂

ML
T ), the estimator θ̂

II
T becomes exactly “bT -mean-unbiased” for θ. That

is, E(bT (θ̂
II
T )) = bT (θ). In typical cases where limT→∞E(θ̂

ML
T ) = θ and θ̂

ML
T is asymptotically

unbiased, we have θ̂
II
T ∼ θ̂

ML
T in the limit as T →∞. Then, the indirect inference estimator is

asymptotically equivalent to the MLE so that θ̂
II
T shares the same good asymptotic properties

of θ̂
ML
T , while having improved finite sample performance.

2.2. Direct Simulation-based Methods of Pricing

While the indirect inference estimator of θ, θ̂
II
T , may have better finite sample properties than

θ̂
ML
T , inserting θ̂

II
T into P (θ) does not necessarily lead to a better estimator than bPML

T due to

the non-linearity in the pricing function. To improve the finite sample properties of bPML
T , we

propose to apply the simulation-based methods directly in the estimation of contingent-claims

prices.

We first focus on the case where θ is a scalar. As above, we denote by θ̂
ML
T the MLE of θ

that is obtained from the actual data, and write bPML
T = P (θ̂

ML
T ). bPML

T involves finite sample

estimation bias due to the non-linearity of the pricing function P in θ, or the use of the biased

estimate θ̂
ML
T , or both these effects.

The simulation approach involves the following steps.

1. Given a value for the contingent-claim price p, compute P−1(p) (call it θ(p)), where

P−1(·) is the inverse of the pricing function P (θ).

2. Let eSk(p) = {S̃k
1 , S̃

k
2 , · · · , S̃k

T} be data simulated from the time series model (1) given

θ(p), where k = 1, · · · ,K with K being the number of simulated paths. As argued above,

we choose the number of observations in eSk(p) to be the same as the number of actual
observations in S for the express purpose of finite sample bias calibration.

3. Obtain φ̃
ML,k
T (p), the MLE of θ, from the k’th simulated path, and calculate ePML,k

T (p) =

P (φ̃
ML,k
T (p)).

4. Choose p so that the average behavior of ePML,k
T (p) is matched with bPML

T to produce a

new bias corrected estimate.

Whenever bias occurs in P̂ML
T and from whatever source, this bias will also be present inePML,k

T (p) for the same reasons. Hence, the procedure builds in a finite-sample bias correction
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directly to correct P̂ML
T . The resultant estimator is different from simply inserting a simulation-

based estimator of θ into the pricing functional P , because this approach considers the quantity

of interest directly.

We propose using two quantities to represent the average behavior of P (φ̃
ML,k
T (p)) as the

binding function. The first one is the mean, which corresponds to the indirect inference esti-

mation approach of Gourieroux, Monfort and Renault (1993), while the second is the median,

corresponding to the median unbiased estimation approach of Andrews (1993). Of course, the

median is more robust to outliers than the mean. Hence, when the distribution of P̂ML
T is

highly skewed, it may be preferable to use the median in this approach. In general, however,

the binding function can not be computed analytically in either case and simulations are needed

to calculate the binding functions.

If the mean is chosen to be the binding function, the simulation-based estimator is defined

as

P̂SIM,1
T,K = argminp k P̂ML

T − 1

K

KX
k=1

P (φ̃
ML,k
T (p)) k . (8)

In the case where K tends to infinity, this simulation-based estimator becomes

P̂SIM,1
T = argminp k P̂ML

T − bT,1(p) k . (9)

where the binding function bT,1(p) is E(P (φ̃
ML,k
T (p))). If bT,1(p) is invertible, we then have

P̂SIM,1
T = b−1T,1(P̂

ML
T ). (10)

If the median is chosen to be the binding function, the simulation estimator is defined as

P̂SIM,2
T,K = argminp k P̂ML

T − ρ̂0.5P (φ̃
ML,k
T (p)) k, (11)

where ρ̂τ is the τth sample quantile obtained from {P (φ̃
ML,1
T (p)), P (φ̃

ML,2
T (p), · · · , P (φ̃ML,K

T (p))}.2

In the case where K tends to infinity, this simulation-based estimator becomes

P̂SIM,2
T = argminp k P̂ML

T − bT,2(p) k, (12)

where the binding function bT,2(p) is ρ0.5(P (φ̃
ML,k
T (p))). If bT,2(p) is invertible, we have

P̂SIM,2
T = b−1T,2(P̂

ML
T ). (13)

2A number m is the τth quantile of a random variable X if Prob(X ≥ m) = 1− τ and Prob(X < m) = τ .
The sample quantile is the sample counterpart of quantile.
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Equation (10) implies that P̂SIM,1
T is exactly “bT -mean-unbiased” for θ in the sense that

E(bT,1(P̂
SIM,1
T )) = bT,1(P ). Similarly, from equation (13) it can be shown that P̂

SIM,2
T is exactly

“bT -median-unbiased” for θ in the sense that ρ0.5(bT,2(P̂
SIM,2
T )) = bT,2(P ). If bT,1(P ) is linear

in P , exact “bT -mean-unbiasedness” implies exact mean unbiasedness, i.e., E(P̂
SIM,1
T ) = P .

If bT,2(P ) is strictly monotonic in P , exact “bT -median-unbiasedness” implies exact median

unbiasedness, i.e., ρ0.5(P̂
SIM,1
T ) = P . Thus, the sufficient condition for ensuring exact mean

unbiasedness of P̂SIM,1
T is stronger than the sufficient condition for ensuring exact median

unbiasedness of P̂SIM,2
T . When limT→∞E(P̂ML

T ) = limT→∞ ρ0.5(P̂
ML
T ) = P and the slopes of

the functions bT,1(P ) and bT,2(P ) are unity as T → ∞, the two simulation-based estimators

P̂SIM,1
T and P̂SIM,2

T are asymptotically equivalent to the MLE P̂ML
T .

Applying the delta method to equations (10) and (13), we obtain for i = 1, 2

P̂SIM,i
T = b−1T,i(P̂

ML
T ) = b−1T,i(bT,i(P ) + P̂ML

T − bT,i(P )),

and

Var(P̂SIM,i
T ) ≈

µ
∂bT,i(P )

∂P

¶−2
Var(P̂ML

T ) ≈
µ
∂bT,i(P )

∂P

¶−2 VP
T

, (14)

where VP is given in equation (5). The asymptotic approximation (14) suggests that the

simulated-based estimators should inherit some the “efficiency” properties of the ML estimator.

In fact, the change in the variance depends largely on ∂bT,i(P )/∂P , the slope of the binding

function, as seen above. For |∂bT,i(P )/∂P | > 1, P̂SIM,i
T has a smaller variance than the MLE,

and for |∂bT,i(P )/∂P | < 1, P̂SIM,i
T has a larger variance than the MLE.

We now consider the case where θ is an Mθ−dimensional vector. Denote by θ̂
ML
T the MLE

of θ, obtained from actual data. An important first step in the simulation-based method is

to back out θ from contingent claim prices. To achieve identification, we have to estimate

Mp ≥ Mθ contingent-claims prices p in order to ensure the existence and uniqueness of the

inverse mapping P−1(p). These contingent claims may differ in maturities, strike prices or

other features. If the number of contingent-claims Mp exceeds Mθ, the inverse P−1(p) will not

generally exist unless the equations p = P (θ) are fully consistent, although we may compute

the least squares solution

θmin = argmin
θ
kP (θ)− pk , kP (θ)− pk = (P (θ)− p)0 (P (θ)− p) .

If the dimension Mθ of θ outnumbers the contingent claims Mp, then there is generally insuffi-

cient information to recover θ from p = P (θ) and θ is not identified. We will therefore assume

in what follows that Mθ = Mp and that P is invertible. After the inversion, the same steps
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are used to obtain the simulation-based estimator of P . Since P is now multi-dimensional,

Equation (14) becomes

Var(P̂SIM,i
T ) ≈

µ
∂bT,i(P )

∂P 0

¶−1
Var(P̂ML

T )

µ
∂bT,i(P )

∂P

¶−1
≈
µ
∂bT,i(P )

∂P 0

¶−1 VP
T

µ
∂bT,i(P )

∂P

¶−1
,

(15)

To reduce the computational cost, one can choose a fine grid of discrete points, P , from an

extended Euclidean space and obtain the binding function on the grid via simulations. Then

standard interpolation and extrapolation methods can be used to approximate the binding

functions at any point. In this paper, a linear interpolation and extrapolation method is used.

3. Illustrations and Monte Carlo Evidence

This section illustrates the bias problem in the estimation of contingent-claims prices in the

context of both the Black-Scholes option pricing model and the Vasicek bond pricing model.

The reason for considering these two specific models in the Monte Carlo study is that they

both have closed form expressions for the conditional densities and we can therefore perform

exact ML estimation of P , providing a useful benchmark of comparison.

3.1. Black-Scholes Option Pricing

It is well known that in the Black-Scholes model, P̂ML
T , has little bias in most cases. However,

for deep out-of-the-money options with a short time-to-maturity, P̂ML
T can be seriously biased

(see for example, Boyle and Ananthanarayanan, 1977 and Lo, 1986). It is therefore of particular

interest to see how bias reduction strategies work in this case.

Let S(t) be the price of an underlying stock at time t, which is assumed to follow the

geometric Brownian motion process

dS(t) = μS(t)dt+ σS(t)dB(t),

and let {S1, · · · , ST} is a sample of equispaced time series observations on S(t) with sampling

interval h. First we define the following notation:

X = Strike price,
τ = Time to maturity,
r = Interest rate,

σ̂2,ML
T = MLE of σ2 defined by 1

T−1
PT−1

t=1

³
ln St+1

St
− 1

T−1
PT−1

t=1 ln
St+1
St

´2
,
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s2T = Sample variance of the continuously compounded returns, defined by
1

T−2
PT−1

t=1

³
ln St+1

St
− 1

T−1
PT−1

t=1 ln
St+1
St

´2
= T−1

T−2 σ̂
2,ML
T ,

d1 = 1
σ
√
τ

¡
ln(S/X) + (r + 0.5σ2)τ

¢
,

d2 = d1 − σ
√
τ ,

Φ = Cumulative distribution function of standard normal distribution,
P = Price of a European call option obtained from SΦ(d1)−Xe−rτΦ(d2).

In the Black-Scholes option pricing formula, the only unknown quantity is σ2. Since σ̂2,ML
T

is the MLE of σ2, bPML
T = P (σ̂2,ML

T ) is the MLE of P , an estimator advocated in Lo (1986).

Moreover, Lo (1986) showed that
√
T (P̂ML

T − P )
d→ N

³
0,
τ

2
S2σ2φ2(d1)

´
. (16)

In finite samples, however, σ̂2,ML
T is biased while s2T is unbiased. Inserting s2T into P (σ2)

is an alternative estimator of P that has received a great deal of attention: see, for example,

Boyle and Ananthanarayanan (1977) and Butler and Schachter (1986). In particular, Boyle

and Ananthanarayanan (1977) obtained exact finite sample moments of P (s2T ) and showed

that P (s2T ) is a biased estimator of P . They further provided evidence of the small magnitude

of the bias for near- and in-the-money options. However, when the option is deep-out-of-the-

money, the size of the bias becomes large. Based on a Taylor series expansion of the cumulative

distribution function of the standard normal distribution and the distribution of the minimum

variance unbiased estimator of σ2, Butler and Schachter (1986) derived an unbiased estimator of

P . Knight and Satchell (1997) showed that a uniformly minimum variance unbiased estimator

of P exists if and only if the option is at-the-money.

We now compare the performance of some existing methods with the proposed simulation-

based methods using simulated data. In particular, a simple simulation study is conducted to

compare the performance of bPML
T , P (s2T ), P̂

SIM,1
T and P̂SIM,2

T . Throughout the simulations,

the following parameter values are used:

S = $100
τ = 10/250
r = 5%
T = 41
h = 1/52
That is, we use 40 weekly stock returns to estimate the price of a European call option

which matures in two weeks and obtain the estimates bPML
T , P (s2T ), P̂

SIM,1
T and P̂SIM,2

T . The

experiment is replicated 5,000 times to obtain the means, standard errors, root mean square

errors and medians of all four estimates. For the two simulation-based estimates, we choose

the number of simulated paths to be K = 5, 000.

12



Table 1 shows the results when X = S exp(rτ) (i.e. the at-the-money option) and σ2 = 0.4.

In this case the actual option price is $5.0429. Several conclusions can be drawn from the

results reported in the Table. First, consistent with what has been documented, we found thatbPML
T has a small percentage bias (−1.96%). Moreover, it has the smallest variance among the
four estimators. Second, compared with bPML

T , the use of an unbiased plug-in estimator, P (s2T ),

reduces the percentage bias to −0.71%. Third, this bias is further reduced by the simulation
estimators P̂SIM,1

T (0%) and P̂SIM,2
T (0.52%). Note that P̂SIM,1

T is exactly mean-unbiased and

P̂SIM,2
T is exactly median-unbiased. While all three methods offer bias reduction over bPML

T ,

they also increase the variance slightly. Finally, all four estimators perform similarly in terms

of RMSE.

Table 1
Estimation of At-the-money Option Price

True Value P =5.0429

Estimators bPML
T P (s2T ) P̂SIM,1

T P̂SIM,2
T

Mean 4.9443 5.0072 5.0429 5.0692
Percentage bias -1.96 -0.71 0.00 0.52
Std error 0.5573 0.5644 0.5684 0.5713
RMSE 0.5660 0.5655 0.5684 0.5719
Median 4.9186 4.9812 5.0167 5.0429

To help understand the performance of the two simulation-based methods, we plot the

binding functions in Figure 2. Several features are apparent in the figure. First, both binding

functions are very close to the 45 degree line, suggesting that only a small amount of bias

correction is needed in the two simulation-based methods in this case. Second, both binding

functions are virtually linear, implying that P̂SIM,1
T should be exactly mean unbiased and

P̂SIM,2
T should be exactly median unbiased, a result consistent with the Monte Carlo findings

in Table 1. Third, the slopes of the two binding functions are close to but slightly less than 1,

suggesting that the variances of the two simulation-based estimators are close to, but slightly

larger than, that of bPML
T . This finding also corroborates the results found in Table 1.

In light of the finding in the literature that standard estimation methods tend to gener-

ate large percentage biases for deep-out-of-the-money options, we designed an experiment to

compare the performance of the four methods when X = 1.4S exp(rτ) (i.e. a deep-out-of-the-

money option) and σ2 = 0.4. Table 2 reports the means, standard errors, root mean square

errors and medians, each multiplied by 1,000, of all four estimates across 5,000 replications.

The actual call option price is $1.8038.
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Figure 2: Binding functions of the two simulation-based methods. The 45 degree line is plotted
for comparison.
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Several findings emerge from Table 2. First, consistent with findings in the literature, bPML
T

has a large percentage bias (21.64%). Moreover, this estimator no longer has the smallest

variance. Second, compared with bPML
T , instead of reducing the bias, P (s2T ) increases the

percentage bias to 35.60%, so the effect of plugging in an unbiased estimator increases bias.

Third and most importantly, the bias is reduced in P̂SIM,1
T in terms of the mean and in P̂SIM,2

T

(0%) in terms of the median. The performance of P̂SIM,1
T is particularly encouraging. This

estimate not only reduces the bias in terms of the mean, but also decreases variance, producing a

substantial overall gain in RMSE over bPML
T and P (s2T ). The percentage reductions in RMSE by

P̂SIM,1
T are 21.9% and 31.1%, respectively, over bPML

T and P (s2T ). Figure 3 plots the two binding

functions in this case. The second binding function appears linear and hence monotonic. Not

surprisingly, we found evidence of median unbiasedness in P̂SIM,2
T in the Monte Carlo study.

However, the slope of this binding function is clearly less than 1, leading to an increase in the

variance of P̂SIM,2
T over bPML

T . The first binding function appears slightly non-linear with the

slope being greater than 1 in the lower-left corner. That explains the finding that P̂SIM,1
T does

not completely remove the bias in bPML
T but can reduce the variance.

Table 2
Estimation of Deep-out-of-the-money Option Price

True Value P = 1.8038

Estimators bPML
T P (s2T ) P̂SIM,1

T P̂SIM,2
T

Mean 2.1941 2.4460 1.8768 2.7143
Percentage bias 21.64 35.60 4.05 50.47
Std error 2.3516 2.5677 2.222 2.7143
RMSE 2.3838 2.6468 2.2234 2.9377
Median 1.4123 1.6005 1.4036 1.8038

3.2. Vasicek Bond Pricing

Vasicek (1977) introduced a simple term structure model of interest rates where the short term

interest rate is assumed to follow the Ornstein-Uhlenbeck process:

dS(t) = κ(μ− S(t))dt+ σdB(t). (17)

In this model, S(t), the short term interest rate, mean-reverts towards the unconditional mean

μ and κ measures the speed of the reversion. Define P as the price of a discount bond that

pays-off $100 at time τ . Vasicek (1977) derived the expression for the prices of a discount bond

P = 100×A(τ)e−B(τ)S , (18)

15



0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Option Price

B
in

di
ng

 F
un

ct
io

ns

45 degree line
Binding function 1
Binding function 2

Figure 3: Binding functions of the two simulation-based methods. The 45 degree line is plotted
for comparison.
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where

B(τ) =
1− e−κτ

κ
,

A(τ) = exp

µ
(B(τ)− τ)(κ2μ− σ2/2)

κ2
− σ2B2(τ)

4κ

¶
.

Obviously the bond price P is a function of θ = (κ, μ, σ2)0, the parameters in equation (17).

When a discrete sample of the short interest rate is available, the exact ML can be used to

estimate the parameters. In particular, the conditional density is given by Phillips (1972):

St+1|St ∼ N(μ(1− e−κh) + e−κhSt, σ
2(1− e−2κh)/(2κ)). (19)

Since κ usually takes a small, positive value and h is often small (1/12, 1/52, and 1/250 for

monthly, weekly and daily data respectively), e−κh can be well approximated by 1−κh. Hence,
the Vasicek model is equivalent to a local-to-unity discrete time autoregressive model, with κ

being the local-to-unity parameter which is well known to be difficult to estimate. Indeed, the

ML estimator of κ is severely upward biased and such a bias translates to the bond pricing;

see, for example, Phillips and Yu (2005). For example, using 600 monthly observations to

estimate the bond and bond option prices, Phillips and Yu (2005, Table 5) found that ML

under-estimates the price of a three-year discount bond by 1.84% and the price of a one-year

bond option by 36.2%. These biases are large and economically important.

We now compare the performance of the MLE of P with the proposed simulation-based

estimators in a Monte Carlo study. It is known that μ and σ2 can be estimated with little bias

by exact ML, so we fix these two parameters and let κ be the only unknown parameter in the

simulation. Throughout the simulations, the following parameter values are used:

S = 5%
T = 60
τ = 3
h = 1/12
μ = 0.12
σ = 0.01
That is, we use 60 monthly observations (5 years of monthly interest rates) to estimate

the price of a 3-year discount bond. Based on 60 monthly interest rates, bPML
T (= P (κ̂ML

T )),

P̂SIM,1
T and P̂SIM,2

T are all obtained. We replicate the experiment 5,000 times to obtain the

means, standard errors, root mean square errors and medians of all four estimates. For the

two simulation-based estimates, we chose K = 5, 000 simulated paths.

Table 3 shows the results when the true values of κ are 0.05, 0.1, 0.15, respectively. These are

empirically realistic values. The corresponding bond prices are $84.824, $83.677, and $82.649.
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Several conclusions can be drawn from Table 3. First, consistent with the findings in Phillips

and Yu (2005), bPML
T is downward biased. In particular, the biases are -2.22%, -2.31% and

-1.06% when the actual values of κ are 0.05, 0.1 and 0.15, respectively. The sizes of these

estimation biases are economically significant as a 1% bias in the bond price may lead to a 25%

error in an bond option price — see, for example, Hull (2000, Chapter 21.7). Moreover, bPML
T

does not possess the smallest variance. On the contrary, it has the largest variance among the

three estimators in all three cases. Second, the bias is reduced in P̂SIM,1
T in terms of the mean

as well as the median without any sacrifice in variance. Indeed the standard errors of P̂SIM,1
T

are 15.7%, 11.7%, 7.9% smaller than those of bPML
T . In spite of these improvements, P̂SIM,1

T still

appears to underprice the bond. Thirdly, the performance of P̂SIM,2
T is even more encouraging

because both the bias and the variance (and hence the RMSE) are further reduced. Comparison

of the medians with the actual bond prices suggests that P̂SIM,2
T is median unbiased. Relative

to bPML
T , the biases of P̂SIM,2

T are 24.8%, 19.8%, 15.8% smaller while standard errors of P̂SIM,2
T

are 24.0%, 21.9%, 14.2% smaller. All these gains are substantial. Figure 1 compares the

nonparametric densities of bPML
T and P̂SIM,2

T when the actual true value of κ = 0.05. As is

apparent in the figure, the simulation-based estimates are better centered on the true bond

price and the bias reduction is accompanied by a reduction in variance.

Table 3

Estimation of Price of a Discount Bond
True Value P = 84.824 True Value P = 83.677 True Value P = 82.649
True Value κ = 0.05 True Value κ = 0.1 True Value κ = 0.15

Estimators bPML
T P̂SIM,1

T P̂SIM,2
T

bPML
T P̂SIM,1

T P̂SIM,2
T

bPML
T P̂SIM,1

T P̂SIM,2
T

Mean 82.938 83.598 83.556 81.747 82.457 82.536 80.811 81.579 81.744
% bias -1.06 -0.27 -0.32 -2.31 -1.46 -1.36 -2.22 -1.29 -1.09
Std err 5.3526 4.5149 4.0658 5.4807 4.8418 4.3947 5.3650 4.9414 4.5159
RMSE 5.6636 4.6786 4.2592 5.8103 4.9929 4.5403 5.6712 5.0560 4.6058
Median 83.268 85.056 84.824 81.676 83.601 83.677 80.594 82.397 82.649

Figure 4 plots the binding functions. Both binding functions involve some interesting non-

linearity. In particular, while the binding functions are more linear in the lower-left corner,

they become more non-linear in the upper-right corner. Note that the upper-right corner

corresponds to the range of low values of κ, a region which is empirically more realistic. Since

the second binding function is still monotonic, P̂SIM,2
T remains median unbiased. However, the

non-linearity in the first binding function implies that P̂SIM,1
T is not mean unbiased. Moreover,

in the upper-right corner, the slopes of the two binding functions are larger than 1, explaining
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Figure 4: Binding functions of the two simulation-based methods. The 45 degree line is plotted
for comparison.
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why the variance is reduced in P̂SIM,1
T and P̂SIM,2

T . All the results are confirmed in the Monte

Carlo study.

4. Estimation Bias versus Discretization Bias

As discussed earlier, to perform exact ML estimation, one needs a closed-form expression for

c(θ) and hence ln f(St|St−1; θ). Although both the Black-Scholes model and the Vasicek model
enable exact ML estimation, it is generally impossible to obtain a closed form expression for

ln f(St|St−1; θ) for other interesting models. As a result, ML estimation requires numerical
techniques or analytic or simulation-based approximants. Some important work in this area of

research include Lo (1988), Brandt and Santa-Clara (2002) and Aït-Sahalia (2002). We refer to

Phillips and Yu (2006) for a recent discussion of alternative estimation techniques, and briefly

review here one approximate ML method that is relevant to the present study.

The Euler scheme approximates equation (1) by the following discrete time model

St = St−1 + μ(St−1, θ)h+ σ(St−1, θ)
√
h�t, (20)

where �t ∼ i.i.d. N(0, 1). The conditional density f(St|St−1) for the Euler discrete time model
has the following closed-form expression:

St|St−1 ∼ N
¡
St−1 + μ(St−1, θ)h, σ

2(St−1, θ)h
¢
. (21)

Denote as bθAML

T the resultant ML estimator of θ and set bPAML
T = P (bθAML

T ). The advantage of

the Euler scheme is that no matter how complicated the functions μ(St, θ) and σ(St, θ) are, the

conditional density and hence the log-likelihood function for the approximate model have closed

form expressions. The drawback is that the Euler scheme obviously introduces a discretization

bias. The magnitude of the discretization bias depends on the size of the sampling interval h.

The larger is h, the larger the discretization bias. Another disadvantage is the presence of the

finite sample estimation bias, as discussed in the last section. Both biases translate to bPAML
T .

Simulation-based methods can be used to deal with these two types of bias simultaneously.

The idea is as follows. Given a price choice p, we calculate the implied parameter θ(p) using

the pricing formula. Then we apply the Euler scheme with a much smaller step size than h

(say δ = h/10), which leads to the generating scheme

eSt = eSt−1 + μ(eSt−1, θ)h+ σ(eSt−1, θ)√δ�t,
where

t = 1, · · · , h
δ
T + 1(= N).
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This sequence may be regarded as a nearly exact simulation from the continuous time model

(1) with the step size δ since δ is so small. We then choose every (1/δ)th observation to form

the sequence of {eSk
t (p)}Ti=1, which can be regarded as data simulated directly from model (1)

with the (observationally relevant) step size h and hence this data may be regarded as having

negligible discretization bias since δ is so small.

Let S̃k(p) = {eSk
1 (p), · · · , eSk

T (p)} be data simulated from the true model, where k = 1, · · · ,K
with K being the number of simulated paths. Again it is important to choose the number of

observations in S̃k(p) to be the same as the number of observations in the observed sequence

S for the purpose of reducing the finite sample estimation bias. Denote by eφAML,k

T (p) the

approximate ML estimator of θ obtained from the conditional density (21) and S̃k(p), and

define ePAML,k
T (p) = P (eφAML,k

T (p)). The simulation-based estimation then matches bPAML
T with

the average behavior of ePAML,k
T (p). Define the average behavior by bT (p). The simulation-

based estimator of p is then defined as,

bPSIM
T = argminp k bPAML

T − bT (p) k . (22)

where k · k is some finite dimensional distance metric. In practice, since bT (p) does not have
an analytical expression, we calculate it as before via simulation. That is, the simulation-based

estimator of p is calculated as,

bPSIM
T,K = argminp k bPAML

T −bbT,K(p) k, (23)

where bbT,K(p) can be the sample mean or the 50th sample quantile of { ePAML,k
T (p)}Kk=1.

5. Empirical Illustrations

As an illustrative example, we now test the Vasicek model using the proposed theory based on

real monthly time series data on a short-term interest rate and real cross section data on three

discount bonds. We take the short term interest rate as the annualized discount rates on the

13-week Treasury bill. These bills are issued by the U.S. Treasury in auctions conducted weekly

by the Federal Reserve Bank. The data are reported throughout the trading day by Telerate

Systems Incorporated and downloadable at Yahoo.Finance. The sample period is from March

1, 1974 to August 1, 2006 and has 390 monthly observations. The Vasicek model is used to

price three discount bonds, with maturities of 5-, 10-, and 30-years. We obtain the yields and

hence the prices of the 5-year treasury note, the 10-year treasury note and the 30-year treasury

bond quoted on August 1, 2006 in the Wall Street Journal (4.97%, 4.98% and 5.07%).
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To obtain the ML estimate of the theoretical price, we fit the time series data using ML and

then insert the ML estimates of the model parameters into the price formula of the zero-coupon

bond. Using the asymtotic variance, we compute the 95% confidence intervals for the zero-

coupon bonds. Similarly, two simulation-based methods are used to estimate the zero-coupon

bonds and to obtain the corresponding 95% confidence intervals. Such a long-span series for

the short-term rate is chosen because our intention is to examine the difference between the

simulation approaches and the standard method in a large sample.

The time series plot of the 13-week treasure bills is provided in Fig. 5. Table 4 shows the

sample size, mean, standard deviation, the first seven sample autocorrelations of the series and

prices of the three discount bonds. Clearly, the 13-week Treasury bills are highly persistent.

Tables 5 reports the estimated prices and the corresponding 95% confidence intervals of

three bonds using ML and the two simulation-based methods. Although not reported in Table

5, the ML estimates of κ, μ and σ are 0.2166, 0.0553 and 0.1934, respectively. These estimates
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are compatible with those reported in the literature - e.g., Aït-Sahalia (1999) and Ball and

Torous (1996). In particular, the estimate of κ is close to zero and suggests that the short

term interest rate is highly persistent. As pointed out in Phillips and Yu (2005), when the

true value of κ is close to zero, the ML estimate is severely biased upward, leading to biased

estimates of theoretical contingent-claim prices. The present results corroborate that claim.

The two simulation-based estimates are always higher than the MLEs. In particular, the first

simulation-based estimates are 0.29%, 1.37% and 1.48% higher than their ML counterparts,

while the second simulation-based estimates are 0.25%, 0.51% and 1.52% higher than their

ML counterparts. Even with such a large sample of data, the differences in the estimates for

all three bonds are large and economically significant. These findings are consistent with the

magnitudes and directions of the biases and differences between the simulation-based and ML

estimates that were found in the Monte Carlo studies.

Table 4: Summary Statistics
Time Series Data on Treasure Bill
Number of Observations 390
Mean 0.0601
Standard Deviation 0.0299
Autocorrelations
ρ1 0.982
ρ2 0.959
ρ3 0.937
ρ4 0.918
ρ5 0.901
ρ6 0.883
ρ7 0.872

Price of 5-year Treasure Note on Aug 1, 2006 (×100) 78.00
Price of 10-year Treasure Note on Aug 1, 2006 (×100) 60.77
Price of 30-year Treasure Note on Aug 1, 2006 (×100) 21.85

Comparison of the observed prices with the 95% confidence intervals based on the ML

estimates suggests that the data are inconsistent with a Vasicek model. In particular, out of

three bonds, only one observed price (for the 30-year bond) is contained in the 95% confidence

interval. On the other hand, when the observed prices are compared with the 95% confidence

intervals constructed from the two simulation-based estimates, in no case can the of a Vasicek

model be rejected. The reason for this difference is that the two simulation-based estimates

are always closer to the observed counterparts. This finding suggests that bias-correction has

important implications in statistical testing, particularly in the evaluation of contingent-claim
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pricing models.

Of course, the empirical application considered here is meant merely as an illustration of

the proposed theory and not as a conclusive test of the Vasicek model. However, the empirical

results presented above do indicate that, without correcting the finite-sample bias, inferences

based on the ML estimates can be misleading in practically realistic cases, even when sample

sizes are large.

Table 5

Empirical Estimation of Prices of Discount Bonds
Maturity 5-year 10-year 30-year

Observed Price 78.00 60.77 21.85
ML 77.58 59.97 21.46

95% Confidence Interval (77.46,77.70) (59.28,60.65) (19.80,23.13)
Simulation method 1 77.90 60.79 21.78
95% Confidence Interval (77.78,78.02) (60.10,61.48) (20.11,23.45)
Simulation method 2 77.87 60.27 21.79
95% Confidence Interval (77.75,78.00) (59.59,60.96) (20.12,23.45)

6. Conclusions and Implications

Our findings indicate that maximum likelihood estimation does not always lead to the best

estimator of contingent-claim prices in finite samples. One reason for the shortcoming is the

non-linear nature of the pricing formulae. Another explanation is the finite sample estimation

bias of the MLE in dynamic models.

This paper proposes two simulation-based methods to improve the finite sample properties

of the MLE. The idea is based on the observation that if the MLE of a contingent claim price is

biased with actual data, then it will also be biased with simulated data. Simulations therefore

enable the bias function to be calibrated for the specific model and sample size being used and

from this calibrated function a bias reduction procedure is constructed that leads directly to

a new simulation-based estimate. Monte Carlo studies show that the procedure reduces not

only the bias but also the variance of the MLE when the Black-Scholes model is used to price

a deep-out-of-money option and when the Vasicek model is used to price a discount bond.

The present paper applies this simulation-based approach to price discount bonds in the

context of a Vasicek model and options in the context of a Black-Scholes model. Use of these

two specific models makes it possible to employ exact ML and closed-form bond pricing and

options pricing formulae. These models and simulation designs permit a comparison of the pro-

posed methods with exact ML using replicated simulated data within feasible time frameworks.
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However, the technique itself is quite general and can be applied in many other contingent-claim

models. One obvious example is the pricing of bond options (Jamshidian, 1990). Another is

the GARCH option pricing model of Heston and Nandi (2000). In a recent study, Dotsus and

Markellos (2006) found that the MLE of the GARCH model of Heston and Nandi involves

substantial estimation biases, even when the sample size is as large as 3,000. They further

show that the estimation biases may translate to option pricing. More generally, the MLE of

the parameters in the multi-factor affine asset pricing models of Duffie and Kan (1996) may be

biased (Aït-Sahalia and Kimmel, 2005) and the bias can be expected to translate to prices of

contingent-claims. For more general asset pricing models, the dynamics of the underlying asset

price may be so complicated that exact ML is not feasible. However, our simulation-based

methods can be used in connection with other estimation methods, including the approximate

ML method of Aït-Sahalia (2002) and Duffie, Pedersen and Singleton (2003). Of course, for

models in which exact ML is not feasible and for contingent-claims prices which do not have

closed-form expressions, the simulation-based methods will inevitably be computationally more

costly.
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