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Abstract
We provide a new asymptotic theory for local time density estimation for a gen-

eral class of functionals of integrated time series. This result provides a convenient
basis for developing an asymptotic theory for nonparametric cointegrating regres-
sion and autoregression. Our treatment directly involves the density function of
the processes under consideration and avoids Fourier integral representations and
Markov process theory which have been used in earlier research on this type of
problem. The approach provides results of wide applicability to important practical
cases and involves rather simple derivations that should make the limit theory more
accessible and useable in econometric applications. Our main result is applied to
offer an alternative development of the asymptotic theory for non-parametric esti-
mation of a non-linear cointegrating regression involving non-stationary time series.
In place of the framework of null recurrent Markov chains as developed in recent
work of Karlsen, Myklebust and Tjostheim (2007), the direct local time density
argument used here more closely resembles conventional nonparametric arguments,
making the conditions simpler and more easily verified.

Key words and phrases: Brownian Local time, Cointegration, Integrated process, Local
time density estimation, Nonlinear functionals, Nonparametric regression, Unit root.

JEL Classification: C14, C22.

1 Introduction

Since the introduction of unit root and cointegration analysis in time series econometrics,

linear models have dominated empirical work in the application of these methods. This

∗Wang acknowledges partial research support from Australian Research Council. Phillips acknowl-
edges partial research support from a Kelly Fellowship and the NSF under Grant No. SES 04-142254.
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emphasis on linearity is convenient for practical implementation and accords well with the

linear framework of partial summation in which the integrated process and cointegration

concepts have been developed. Nonetheless, it is restrictive, especially in view of the atten-

tion given elsewhere in modern econometric methodology to nonlinear and nonparametric

estimation, and the fact that economic theory often suggests nonlinear responses with-

out being specific regarding functional form. In such situations, nonparametric function

estimation offers an alternative that is appealing in applied work.

For stationary time series data, the theory of nonparametric function estimation and

inference is well developed and the methods are widely used in practice. By contrast,

density function estimation and nonparametric regression involving stochastically nonsta-

tionary time series are presently rather undeveloped. An early contribution to the study of

nonparametric autoregression in the context of a random walk was undertaken in Phillips

and Park (1998). Their results showed that, in contrast to parametric autoregressions,

nonstationarity slows down the rate of convergence in nonparametric estimation because

of the signal reduction (in the local behavior) that results from the random wandering

characteristic of processes such as a random walk.

Some related analytic tools on the local time density and hazard functions of the

limiting Brownian motion of a standardized integrated process were developed and ap-

plied in Phillips (1998/2005, 2001) and have recently been used in Park (2006) to study

stochastic dominance relations for nonstationary time series. Nonlinear transformations

of integrated time series and an asymptotic theory of inference for nonlinear regression

were developed in Park and Phillips (1999, 2001). de Jong (2002), Pötscher (2004), and

Berkes and Horváth (2006) extended this limit theory for nonlinear transformations to

cover a wider class of functionals. Bandi and Phillips (2003) developed an asymptotic

theory of function estimation and inference in possibly nonstationary diffusions. Tests for

nonlinearity in cointegrating relations have been developed by Hong and Phillips (2005)

and Kasparis (2005). Karlsen and Thostheim (2001) and Guerre (2004) studied non-

parametric estimation for certain nonstationary processes in the framework of recurrent

Markov chains. This work has been overviewed in relation to the approach of Phillips

and Park (1998) by Bandi (2004). Most recently, Karlsen, Myklebust and Tjostheim

(2007, hereafter KMT) developed an asymptotic theory for nonparametric estimation of

a time series regression equation involving stochastically nonstationary time series. KMT

specifically address the function estimation problem for a possibly nonlinear cointegrating
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relation, providing an asymptotic theory of estimation and inference for nonparametric

forms of cointegration.

The present paper has a similar goal to KMT but offers an alternative approach to

the asymptotic theory that we hope is simpler and more accessible. While KMT use the

framework of null recurrent Markov chains, we use a direct local time density argument

that makes the approach more closely related to conventional nonparametric arguments.

The starting point in our development is to show the weak convergence of a general

class of funtionals to the local time density of a certain limiting stochastic process. The

functional class is designed to include the type of kernel averages that appear in standard

kernel density estimation, thereby making the results applicable to nonparametric density

estimation and regression with nonstationary time series.

To begin, consider a triangular array xk,n, 1 ≤ k ≤ n, n ≥ 1 constructed from some

underlying time series and assume that there is a continuous limiting Gaussian process

G(t), 0 ≤ t ≤ 1, such that

x[nt],n ⇒ G(t), on D[0, 1],

where [a] denotes the integer part of a and ⇒ denotes weak convergence. The functional

of interest Sn of xk,n is defined by the sample average

Sn =
cn
n

n∑
k=1

g(cn xk,n),

where cn is a certain sequence of positive constants and g is a real function on R. Such

functionals commonly arise in non-linear regression with integrated time series [Park and

Phillips (1999, 2001)] and non-parametric estimation in relation to nonlinear cointegration

models [Phillips and Park (1998), Karlsen and Tjostheim (2001), and KMT]. The limit

behavior of Sn in the situation that cn → ∞ and n/cn → ∞ is particularly interesting

and important for practical applications as it provides a setting that accommodates a

sufficiently wide range of bandwidth choices to be relevant for non-parametric kernel

estimation, as discussed later.

Accordingly, the present paper derives by direct calculation the limit distribution of

Sn when cn → ∞ and n/cn → ∞, showing that under very general conditions on the

function g and the process xk,n

Sn →D

∫ ∞

−∞
g(x)dxL(1, 0), (1.1)

where L(t, s) is the local time of the process G(t) at the spatial point s. When the function

g is a kernel density, the limit (1.1) is simply the local time of G at the origin, and this
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limit may be recentred at an arbitrary spatial point s. These results relate to those of

Jeganathan (2004), who investigated the asymptotic form of similar functionals when

xk,n is the partial sum of a linear process. For the particular situation where cnxk,n is a

partial sum of iid random variables, some other related results can be found in the work

of Borodin and Ibragimov (1995), Akonom (1993) and Phillips and Park (1998).

As in Jeganathan (2004), the approach in this paper involves approximating the dif-

ference
cn
n

n∑
k=1

g
(
cn xk,n

)
− cn
n

n∑
k=1

∫ ∞

−∞
g
[
cn (xk,n + zε)

]
φ(z)dz,

where φ(x) = 1√
2π

exp
{
− x2

2

}
. However, unlike Jeganathan (2004) who used a traditional

Fourier transformation like that of Borodin and Ibragimov (1995) for dealing with this kind

of problem, our treatment directly involves the density function of xk,n. In this respect our

work is related to the approach used in Pötscher (2004) and Berkes and Horváth (2006).

The application of this idea gives the results wide applicability to important practical

cases where xk,n is an integrated time series and the limit process is Gaussian, and it also

makes for rather simple and neat derivations.

We mention that the limit distribution of Sn in the situation that cn = 1 is very

different from that when cn → ∞ and n/cn → ∞. When cn = 1, in a series of papers of

increasing generality on the conditions for xk,n, g(x) and G(t), Park and Phillips (1999),

de Jong (2002), Pötscher (2004), De Jong and Wang (2005), and Berkes and Horváth

(2006) proved that

1

n

n∑
k=1

g(xk,n) →D

∫ 1

0

g(G(t))dt. (1.2)

The limit distribution of Sn in this case is an integral of G(t) and the result may be

interpreted as an application of weak convergence in conjunction with a version of the

continuous mapping theorem. When cn → ∞, not only is the limit result different, but

the rate of convergence is affected and the result no longer has a form associated with a

continuous map.

Some heuristic arguments help to reveal the nature of these differences. Note first that

by virtue of the occupation times formula (see (2.1) below) we may write∫ 1

0

g(G(t))dt =

∫ ∞

−∞
g(s)LG(1, s)ds, (1.3)

where LG(1, s) is the local time at s of the limit process G over the time interval [0, 1], as

discussed in Section 2 below. Next, rewrite the average Sn so that it is indexed by twin
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sequences cm and n defining Sm,n = cm
n

∑n
k=1 g(cm xk,n) and noting that Sm,n = Sn when

m = n. If we hold cm fixed as n→∞, then from (1.2) - (1.3) we have

Sm,n →D cm

∫ 1

0

g(cmG(t))dt = cm

∫ ∞

−∞
g(cms)LG(1, s)ds

=

∫ ∞

−∞
g(r)LG(1,

r

cm
)dr := Sm,∞.

Clearly, Sm,∞ →D

∫∞
−∞ g(r)drLG(1, 0) as m → ∞, so that (1.1) may be regarded as a

limiting version of (1.2). The goal is to turn this sequential argument as n→∞, followed

by m→∞, into a joint limit argument so that cn may play an active role as a bandwidth

parameter in density estimation and kernel regression.

The paper is organized as follows. The next section presents our main results. Theorem

2.1 provides a general framework for the limit theory, and its applications to integrated

time series and Gaussian limit processes are given in the following Corollaries. Section 3

further investigates applications of Theorem 2.1, which include nonlinear nonparametric

cointegrating regressions and the nonparametric estimation of a unit root autoregression.

These applications provide a basis for practical nonparametric work with nonstationary

series. Section 4 concludes by discussing these results and some possible extensions.

Section 5 gives proofs of the main results and corollaries. Throughout the paper we use

conventional notation, so that →D stands for the convergence in distribution and →P for

the convergence in Probability. A,A1, ... denote constants which may be different at each

appearance.

2 Main results

We start by recalling the definition of local time. The process {Lζ(t, s), t ≥ 0, s ∈ R} is

said to be the local time of a measurable process {ζ(t), t ≥ 0} if, for any locally integrable

function T (x), ∫ t

0

T [ζ(s)]ds =

∫ ∞

−∞
T (s)Lζ(t, s)ds, all t ∈ R, (2.1)

with probability one. Equation from (2.1) is known as the occupation times formula.

Roughly speaking, Lζ(t, s) is a spatial density that records the relative sojourn time of

the process ζ(t) at the spatial point s over the time interval [0, t]. For further discussion

and the properties of local time, we refer to Geman and Horowitz (1980) and Revuz and

Yor (1999) and to Phillips (2001) for economic applications. We also define a fractional
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Brownian motion with 0 < β < 1 on D[0, 1] as follows:

Wβ(t) =
1

A(β)

∫ 0

−∞

[
(t− s)β−1/2 − (−s)β−1/2

]
dW (s) +

∫ t

0

(t− s)β−1/2dW (s),

where W (s) is a standard Brownian motion and

A(β) =
( 1

2β
+

∫ ∞

0

[
(1 + s)β−1/2 − sβ−1/2

]2

ds
)1/2

.

Note that W1/2(t) is a standard Brownian motion and Wβ(t) has a continuous local time

LWβ
(t, s) with regard to (t, s) in [0,∞)×R. See German and Horowitz (1980), Theorem

22.1, for example.

As in Section 1, let xk,n, 0 ≤ k ≤ n, n ≥ 1 (define x0,n ≡ 0) be a random triangular

array and g(x) be a real measurable function on R. We make the following assumptions.

Assumption 2.1. |g(x)| and g2(x) are Lebesque integrable functions on R with τ ≡∫
g(x)dx 6= 0.

Assumption 2.2. There exists a stochastic process G(t) having a continuous local

time LG(t, s) such that x[nt],n ⇒ G(t), on D[0, 1], where weak convergence is understood

w.r.t the Skorohod topology on the space D[0, 1].

Assumption 2.2*. On a suitable probability space, there exists a stochastic process

G(t) having a continuous local time LG(t, s) such that sup0≤t≤1

∣∣x[nt],n −G(t)
∣∣ = oP (1).

In the Assumption 2.3 below we shall make use of the notation: Ωn(η) =
{
(l, k) :

η n ≤ k ≤ (1− η)n, k + η n ≤ l ≤ n
}
, where 0 < η < 1.

Assumption 2.3. For all 0 ≤ k < l ≤ n, n ≥ 1, there exist a sequence of constants

dl,k,n and a sequence of σ-fields Fk,n (define F0,n = σ{φ,Ω}, the trivial σ-field) such that,

(i) for some m0 > 0 and C > 0, inf(l,k)∈Ωn(η) dl,k,n ≥ ηm0/C as n→∞,

lim
η→0

lim
n→∞

1

n

n∑
k=(1−η)n

(dk,0,n)
−1 → 0, (2.2)

lim
η→0

lim
n→∞

1

n
max

0≤k≤(1−η)n

k+η n∑
l=k+1

(dl,k,n)
−1 → 0, (2.3)

lim sup
n→∞

1

n
max

0≤k≤n−1

n∑
l=k+1

(
dl,k,n

)−1
<∞; (2.4)

(ii) xk,n are adapted to Fk,n and, conditional on Fk,n, (xl,n− xk,n)/dl,k,n has a density

hl,k,n(x) satisfying that hl,k,n(x) is uniformly bounded by a constant K and

sup
(l,k)∈Ωn[δ1/(2m0)]

sup
|u|≤δ

∣∣hl,k,n(u)− hl,k,n(0)
∣∣ = oP (1), (2.5)
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when n→∞ first and then δ → 0.

We remark that Assumptions 2.1 and 2.2 are quite weak and likely very close to nec-

essary conditions for this kind of problem. Assumptions 2.1 excludes the zero energy case∫
g(x)dx = 0, where the limit theory is different and a different convergence rate applies.

Assumption 2.2* is a stronger version of Assumption 2.2. In certain situations Assump-

tions 2.2 and 2.2* are equivalent (for example, in the situation that xi,n =
∑i

j=1 εj/
√
n,

where εj are iid random variable with Eε1 = 0 and Eε21 = 1). If Assumption 2.2 holds

and G(t) is a continuous Gaussian process, it follows from the so-called Skorohod-Dudley-

Wichura representation theorem (e.g., Shorack and Wellner, 1986, p. 49, Remark 2) that

xi,n may be replaced by an equivalent process x∗i,n (i.e., x∗i,n =d xi,n, 1 ≤ i ≤ n, n ≥ 1, where

=d denotes equivalence in distribution) for which x∗i,n satisfies Assumption 2.2*. This is

sufficient for many applications if we are only interested in weak convergence. As for

Assumption 2.3, we may choose Fk,n = σ(x1,n, ..., xk,n), the natural σ-fields, and the dl,k,n

being a numerical sequence such that, conditional on Fk,n, (xl,n − xk,n)/dl,k,n has a limit

distribution as l−k →∞ in many applications. For instance, if xi,n =
∑i

j=1 εj/
√
n, where

εj are iid random variable with Eε1 = 0 and Eε21 = 1, we may choose Fk,n = σ(ε1, ..., εk)

and dl,k,n =
√
n/
√
l − k. More examples are given in Corollaries 2.1 and 2.2 below.

We now state our main result.

THEOREM 2.1. Suppose Assumptions 2.1-2.3 hold . Then, for any cn →∞, cn/n→ 0

and r ∈ [0, 1],

cn
n

[nr]∑
k=1

g
(
cn xk,n

)
→D τ LG(r, 0). (2.6)

If Assumption 2.2 is replaced by Assumption 2.2*, then, for any cn →∞ and cn/n→ 0,

sup
0≤r≤1

∣∣∣cn
n

[nr]∑
k=1

g
(
cn xk,n

)
− τ LG(r, 0)

∣∣∣ →P 0, (2.7)

under the same probability space defined as in Assumption 2.2*.

REMARK 2.1. Many examples occur in applications where limit results at spatial points

other than the origin are relevant. Phillips (2001) gave examples of hazard rate analyses

for inflation series and Hu and Phillips (2004) analyzed Federal funds rate market inter-

vention policy on interest rates. To suit such applications, versions of results (2.6) and

7



(2.7) still hold if the xi,n is replaced by yi,n = xi,n + x c′n where c′n → 0 or c′n = 1, and

respectively LG(r, 0) is replaced by

L∗G(r) =

{
LG(r, 0), if c′n → 0,
LG(r,−x), if c′n = 1.

Indeed, if xi,n satisfies Assumptions 2.2 (similarly for Assumption 2.2*), then for any given

x ∈ R
y[nt],n ⇒

{
G(t), if c′n → 0,
G(t) + x, if c′n = 1;

If xi,n satisfies Assumptions 2.3 then yi,n also satisfies Assumption 2.3. The claim follows

directly from Theorem 2.1 and the fact that G(t) + x has local time LG(t, s− x).

In the following we consider the applications of Theorem 2.1 to Gaussian processes

and general linear processes. Further applications will be investigated in Section 3 where

we consider the non-parametric estimate in a non-linear cointegration regression model.

COROLLARY 2.1. Suppose Assumption 2.1 holds. Let {ξj, j ≥ 1} be a stationary

sequence of Gaussian random variables with Eξ1 = 0 and the co-variance γ(j− i) = Eξiξj

satisfying the following condition, for some 0 < α < 2 and λ < 1,

d2
n ≡

∑
1≤i,j≤n

γ(j − i) ∼ nα h(n) and |γ̃l,k| ≤ λ dk dl−k, (2.8)

as min{k, l − k} → ∞, where h(n) is a slowly varying function at ∞ and

γ̃l,k =
k∑
i=1

l∑
j=k+1

γ(j − i).

Let Si =
∑i

j=1 ξj and xi,n = Si/dn, for 1 ≤ i ≤ n, n ≥ 1. Then, for any cn → ∞,

cn/n→ 0 and r ∈ [0, 1],

cn
n

[nr]∑
k=1

g
(
cn xk,n

)
→D τ LWα/2

(r, 0). (2.9)

REMARK 2.2. Note that d2
n = ES2

n and γ̃l,k = cov(Sk, Sl − Sk). Condition (2.8) is quite

weak. For instance, if one of the following conditions is satisfied, then (2.8) holds:

(i) γ(j) = E(ξ1ξ1+j) ≥ 0 for all j ≥ 0 and
∑∞

j=0 γ(j) <∞;

(ii) γ(k) = E(ξ1ξ1+k) ∼ C k−µ with some 0 < µ < 1 and C > 0;

(iii) γ(k) = E(ξ1ξ1+k) ∼ −C k−µ with some 1 < µ < 2, C > 0 and γ(0)+2
∑∞

k=1 γ(k) = 0.
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Indeed, in situation (i), it is readily seen that d2
n ∼ C n with some constant C > 0 and as

min{k, l − k} → ∞,

γ̃l,k =
k−1∑
i=0

l−k∑
j=1

γ(j + i) = o(1) min{k, l − k} ≤ 1

2
d

1/2
k d

1/2
l−k.

In both situations (ii) and (iii), it follows from Taqqu (1975, Lemma 5.1) [also see Ex-

ample 2.3 of Berkes and Horváth (2006)] that d2
n = ES2

n ∼ K n2−µ, where K is constant

depending only on µ and C. This yields the first part of (2.8). On the other hand, it can

be easily seen that, as min{k, l − k} → ∞,

|γ̃l,k| =
1

2

∣∣ES2
l − E(Sl − Sk)

2 − ES2
k

∣∣
∼ 1

2
K

∣∣lα − (l − k)α − kα
∣∣ ≤ 1

2
(1 + ς) max{1, 2− µ} dk dl−k,

for arbitrary ς > 0, where we have used the fact that

|(x+ y)α − xα − yα| ≤ max{1, α}xα/2yα/2, x, y ≥ 0, 0 < α < 2.

Recall 0 < µ < 2. By letting ς = ς0 sufficient small, we prove the second part of (2.8)

with λ = 1
2
(1 + ς0) max{1, 2− µ} < 1.

COROLLARY 2.2. Let Assumption 2.1 hold. Let {ξj, j ≥ 1} be a sequence of linear

processes defined by

ξj =
∞∑
k=0

ψk εj−k,

where {εj,−∞ < j < ∞} is a sequence of iid random variables with Eε0 = 0, Eε20 = 1

and characteristic function ϕ(t) of ε0 satisfying
∫∞
−∞ |ϕ(t)|dt <∞. Let Si =

∑i
j=1 ξj and

xi,n = Si/dn, for 1 ≤ i ≤ n, n ≥ 1, where d2
n = ES2

n.

(i) If ψk ∼ k−µ h(k), where 1/2 < µ < 1 and h(k) is a function slowly varying at ∞,

then d2
n ∼ cµ n

3−2µ h2(n) with cµ = 1
(1−µ)(3−2µ)

∫∞
0
x−µ(x + 1)−µdx and, for any cn → ∞,

cn/n→ 0 and r ∈ [0, 1],

cn
n

[nr]∑
k=1

g
(
cn xk,n

)
→D τ LW3/2−µ

(r, 0). (2.10)

(ii) If
∑∞

k=0 |ψk| <∞ and ψ ≡
∑∞

k=0 ψk 6= 0, then d2
n ∼ ψ2 n and, for any cn →∞,

cn/n→ 0 and r ∈ [0, 1],

cn
n

[nr]∑
k=1

g
(
cn xk,n

)
→D τ LW (r, 0). (2.11)
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REMARK 2.3. Corollary 2.2 (i) provides a result similar to Theorem 3 of Jeganathan

(2004) who considered the more general situation where ε0 is in the domain of attraction

of the stable law. It is possible to restate our corollary in the same setting. However, this

is not essential for our purpose in the present paper and we therefore omit the details.

Corollary 2.2 (ii) essentially improves and extends similar results obtained in Akonom

(1993), Park and Phillips (1999) and others.

3 Nonparametric cointegrating regression

Consider a non-linear cointegrating regression model:

yt = f(xt) + ut, t = 1, 2, ..., n, (3.1)

where x0 = 0 and

xt = xt−1 + εt, t = 1, 2, ..., n.

Let K(x) be a non-negative real function and write Kh(s) = 1
h
K(s/h) where h ≡ hn → 0.

The conventional kernel estimate of f(x) in model (3.1) is given by

f̂(x) =

∑n
t=1 ytKh(xt − x)∑n
t=1Kh(xt − x)

. (3.2)

The limit behavior of f̂(x) has currently been investigated in KMT in the situation

where xt is a recurrent Markov chain.
[
Also, see Phillips and Park (1998), Karlsen and

Thostheim (2001), Guerre (2004) and Bandi (2004) for related work on non-linear, non-

stationary autoregressions
]
. The main theorem in KMT (Theorem 3.1 of KMT) relies

heavily on the asymptotic theory developed in Karlsen and Thostheim (2001) involving

the conditions on the invariant measure associated with a recurrent Markov chain. These

conditions are difficult to check and less accessible.

This section provides a different and simpler approach to nonparametric cointegration.

In particular, we reconsider the limit behavior of f̂(x) by making direct use of Theorem 2.1

in developing the asymptotics. This approach gives an alternative route to the asymptotic

theory that is more closely associated with traditional nonparametric asymptotics, and

the conditions required for this development are simpler and more accessible.

Our first theorem assumes that the εt are independent of ut. We relax this inde-

pendence condition in the second theorem. Throughout the section we make use of the

following assumptions.
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Assumption 3.1. The kernel K satisfies that
∫∞
−∞K(s)ds = 1 and supsK(s) <∞.

Assumption 3.2. For given x, there exists a real function f1(s, x) such that, when h

sufficiently small, |f(hy+x)−f(x)| ≤ h f1(y, x) for all y ∈ R and
∫∞
−∞K(s) f1(s, x)ds < ∞.

Assumption 3.3. (ut,Ft, 1 ≤ t ≤ n) is a martingale difference with E(u2
t |Ft−1) →a.s.

σ2 > 0 as t→∞ and sup1≤t≤nE(|ut|q|Ft−1) <∞ a.s. for some q > 2.

Assumption 3.4. There exists 0 < dn → ∞ and dn = o(n) such that xi,n =

xi/dn, 1 ≤ i ≤ n, n ≥ 1, satisfies Assumption 2.3.

Our first result is as follows.

THEOREM 3.1. Suppose Assumptions 3.1-3.4 hold. Suppose that (εt)
n
1 is independent

of (ut)
n
1 and, on a suitable probability space, there exists a stochastic process G(t) having

a continuous local time LG(t, s) such that

sup
0≤t≤1

∣∣x[nt],n −G(t)
∣∣ = oP (1), (3.3)

where dn and xi,n = xi/dn are defined as in Assumption 3.4. Then, for any h satisfying

nh/dn →∞ and nh3/dn → 0,(
h

n∑
t=1

Kh(xt − x)
)1/2

(f̂(x)− f(x)) →D N(0, σ2
1), (3.4)

where σ2
1 = σ2

∫∞
−∞K

2(s)ds.

REMARK 3.1. The conditions in Assumptions 3.1 and 3.2 are quite weak and simply

verified for various kernels K(x) and regression functions f(x). For instance, if K(x) is a

standard normal kernel or has a compact support as in KMT, a wide range of regression

functions f(x) are included. Thus, commonly occuring functions like f(x) = |x|α and

f(x) = 1/(1 + |x|α) for some α > 0 satisfy the Assumption 3.2. Assumption 3.3 is a

standard condition for the error processes. As in the proofs of Corollaries 2.1 and 2.2,

if εt are iid random variable with Eε1 = 0, Eε21 = 1 and characteristic function ϕ(t)

satisfying
∫∞
−∞ |ϕ(t)|dt < ∞, then εt (respectively xt) satisfies (3.3) and Assumption 3.4.

Furthermore, if the xi,n = xi/dn defined in Assumption 3.4 satisfies Assumption 2.2 with

the G(t) being a continuous Gaussian process, then εt (respectively xt) satisfies (3.3)

and Assumption 3.4. This fact follows from the Skorohod-Dudley-Wichura representation

theorem, as observed earlier. Since fractional Brownian motion Wβ(t) is a continuous

Gaussian process, the result (3.4) holds true for the εt being equal to the process ξt

defined in Corollaries 2.1 and 2.2.
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REMARK 3.2. It is interesting to notice that the bandwidth h needs to satisfy certain

rate conditions to ensure the stated asymptotic normality applies. For instance, in the

most common situation where dn =
√
n (e.g., when the εt are iid random variables), we

require nh2 → ∞ and nh6 → 0. This can be explained as follows. In stationary non-

parametric models the convergence rate of a kernel regression estimate is
√
nh requiring

that nh → ∞. Undersmoothing in such regressions to avoid bias typically requires that

h = o(n−1/5). In the nonstationary case, the amount of time spent by the process around

any particular spatial point is of order
√
n rather than n, so that the corresponding rate

in such regressions is now
√√

nh, which requires that nh2 → ∞. Undersmoothing to

remove asymptotic bias in this situation typically requires a rate smaller than that in the

stationary case. Here we find that the rate h = o(n−1/6) is sufficient for undersmoothing.

It is possible to improve the range for the bandwidth h by adding a bias term in (3.4).

Since it is not essential for the purpose of this paper and since applications will typically

involve some undersmoothing for bias removal, we leave developments in this direction

for later work. Also, it is clear from the proof of Theorem 3.1 that f̂(x) →P f(x) for any

h satisfying h→ 0 and dn/(nh) → 0.

Our next theorem considers the effect of some relaxation of the restriction on the

independence between εt and ut. To do so, denote the stochastic processes Un and Vn on

D[0, 1] by

Un(r) = x[nr],n and Vn(r) =
1√
n

[nr]∑
t=1

ut,

where dn and xi,n = xi/dn are defined as in Assumption 3.4.

THEOREM 3.2. Suppose Assumptions 3.1-3.4 hold. Suppose that, for each n ≥ 2,

xi,n is adapted to Fi−1, 2 ≤ i ≤ n, and (Un, Vn) ⇒D (U, V ) on D[0, 1]2 as n → ∞,

where (U, V ) is a standard vector Brownian motion. Then (3.4) still holds true for any h

satisfying nh/dn →∞ and nh3/dn → 0.

REMARK 3.3. Theorem 3.2 can be used to construct a non-parametric kernel estimate

of m(x) in the unit-root autoregressive model

yt = m(yt−1) + ut, m(yt−1) = α yt−1, a.s..

with α = 1 and y0 = 0. To illustrate, let ut be a sequence of iid random variables with

Eu0 = 1, Eu2
0 = 1, E|u0|q < ∞ for some q > 2 and the characteristic function ϕ(t) of
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u0 satisfying
∫∞
−∞ |ϕ(t)|dt < ∞. As in (3.2), the conventional kernel estimate of m(x) is

given as follows:

m̂(x) =

∑n
t=1 ytKh(yt−1 − x)∑n
t=1Kh(yt−1 − x)

.

In this case, xi,n = yi−1 =
∑i−1

t=1 ut and the stochastic processes Un and Vn on D[0, 1] are

defined by

Un(r) =
1√
n

[nr]−1∑
t=1

ut and Vn(r) =
1√
n

[nr]∑
t=1

ut,

By letting Fi = σ{u1, u2, ..., ui}, it is easy to check that xi,n are Fi−1 measurable and

(Un, Vn) ⇒D (W,W ) on D[0, 1]2 since Vn(r) ⇒D W (r) on D[0, 1] and supr |Un(r) −
Vn(r)| ≤ supr |u[nr]|/

√
n→P 0. It therefore follows from Theorem 3.2 that

(
h

n∑
t=1

Kh(yt−1 − x)
)1/2

(m̂(x)−m(x)) →D N(0, σ2
1), (3.5)

where σ2
1 =

∫∞
−∞K

2(s)dt. Result (3.5) provides a simple demonstration that kernel au-

togression in the case of a unit root is asymptotically normal upon standardization in

the usual way. However, the implied convergence rate is slower than that in stationary

nonparametric autoregession and much slower than parametric rate in the unit root case,

as found in Phillips and Park (1998) and Guerre (2004).

4 Conclusion

The main advantage of the approach adopted here is its simplicity. Just as sample averages

of a kernel function of a strictly stationary time series inform us about the probability

density of the time series at some locality, the same sample averages of an integrated

process provide local spatial density information about the trajectories of the process.

The fact that the rates of convergence differ between the two cases simply reflects the fact

that integrated time series wander over the entire sample space and spend only O(
√
n)

of the sample time in the vicinity of particular points like the origin. The proofs of

the results given here on local time density estimation and nonparametric cointegrating

regression take advantage of these characteristics and, in other respects, more closely

relate to conventional nonparametric arguments.

The nonparametric formulation of cointegrating relations seems important in many

different empirical applications, especially in view of the fact that economic variables
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are frequently considered to be driven by fundamentals which have random wandering

characteristics. Nonparametric treatment of such relations is appealing because the nature

of the functional dependence on fundamentals is seldom specified. The limit distribution

theory of KMT and the present paper on the kernel estimation of such relations provides

a foundation for empirical work in this context. Further work seems desirable on many

different econometric aspects of this central problem, such as dealing with endogeneous

regressor issues.

5 Proof of Theorems

This section provides proofs of the main results. The proof of Theorem 2.1 is simple and

uses conventional arguments in the main.

Proof of Theorem 2.1. Write

L(r)
n =

cn
n

[nr]∑
k=1

g
(
cn xk,n

)
, L(r)

n,ε =
cn
n

[nr]∑
k=1

∫ ∞

−∞
g
[
cn (xk,n + zε)

]
φ(z)dz,

where φ(x) = φ1(x) with φε(x) = 1
ε
√

2π
exp

{
− x2

2ε2

}
. By a similar argument to the proof

of Lemma 7 of Jeganathan (2004), we have that, for any ε > 0,

L(r)
n,ε −

τ

n

[nr]∑
k=1

φε(xk,n) = oP (1), (5.1)

uniformly in r ∈ [0, 1]. Now Theorem 2.1 will follow if we prove that, uniformly in

r ∈ [0, 1],

lim
ε→0

lim
n→∞

E|L(r)
n − L(r)

n,ε| = 0. (5.2)

Indeed it follows from the continuous mapping theorem that, for ∀ε > 0,

1

n

[nr]∑
k=1

φε(xk,n) =

∫ r

0

φε(x[nt],n)dt−
1

n
φε(0) +

1

n
φε(xn,[nr])

→D

∫ r

0

φε(G(t))dt. (5.3)

Furthermore, by recalling L(t, s) is a continuous local time process satisfying (2.1),∫ r

0

φε(G(t))dt =

∫ ∞

−∞
φ(x)L(r, ε x)dx = L(r, 0) + oa.s.(1), (5.4)

14



as ε → 0. By (5.1)-(5.4), we obtain (2.6). The proof of (2.7) is the same except that we

replace (5.3) by

∣∣∣ 1
n

[nr]∑
k=1

φε(xk,n)−
∫ r

0

φε(G(t))dt
∣∣∣ ≤

∫ r

0

∣∣φε(x[nt],n)− φε(G(t))
∣∣dt+

2

n

≤ A(ε) sup
0≤t≤1

|x[nt],n −G(t)|+ 2/n →P 0,

as n→∞.

We next prove (5.2). Write Yk,n(z) = g[cnxk,n]−g[cn(xk,n+zε)]. Since
∫∞
−∞ φ(x)dx = 1,

it is readily seen that

E|L(r)
n − L(r)

n,ε| ≤
∫ ∞

−∞

cn
n
E

∣∣∣ [nr]∑
k=1

Yk,n(z)
∣∣∣φ(z)dz. (5.5)

Recall that xk,n/dk,0,n has a density hk,0,n(x) which is bounded by a constant K for all x,

1 ≤ k ≤ n and n ≥ 1. For all z ∈ R and 1 ≤ k ≤ n, we have

cnE
∣∣Yk,n(z)∣∣ = cn

∫ ∞

−∞

∣∣∣g[cn (dk,0,n x+ zε)
]
− g

(
cn dk,0,n x

) ∣∣∣hk,0,n(x)dx
≤ A

dk,0,n

∫ ∞

−∞

∣∣g(x+ cnzε)− g(x)
∣∣dx ≤ 2A

∫ ∞

−∞

∣∣g(x) ∣∣dx/dk,0,n. (5.6)

Hence, for each z ∈ R, cn
n
E

∣∣∣ ∑[nr]
k=1 Yk,n(z)

∣∣∣ ≤ A1
1
n

∑n
k=1 1/dk,0,n < ∞, by (2.4). This,

together with (5.5) and the dominated convergence theorem, implies that, to prove (5.2),

it suffices to show that, for each fixed z, uniformly in r ∈ [0, 1],

Λn(ε) ≡ c2n
n2
E

[ [nr]∑
k=1

Yk,n(z)
]2

→ 0, (5.7)

when n→∞ first and then ε→ 0. We may rewrite Λn as

Λn(ε) =
c2n
n2

[nr]∑
k=1

E Y 2
k,n(z) +

2 c2n
n2

[nr]∑
k=1

[nr]∑
l=k+1

E Yk,n(z)Yl,n(z) = Λ1n(ε) + Λ2n(ε), say.

Since g2(x) is integrable, by a similar argument as in the proof of (5.6), we have

Λ1n(ε) ≤ Ac2n
n2

∑
1/dk,0,n ≤ A1cn/n→ 0.

We next prove limε→0 limn→∞ Λ2n(ε) → 0, and then (5.7) follows accordingly. Write

Ωn = Ωn(ε
1/(2m0)). Recall that xk,n are adapted to Fk,n and conditional on Fk,n, (xl,n −
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xk,n)/dl,k,n has a density hl,k,n(x) which is bounded by a constant K. We obtain that

cndl,k,n
∣∣E(Yl,n | Fk,n)

∣∣ = cndl,k,n

∣∣∣ ∫ ∞

−∞

(
g
[
cnxk,n + cndl,k,n y

]
− g

[
cn(xk,n + zε) + cndl,k,n y

])
hl,k,n(y)dy

∣∣∣
≤

∫ ∞

−∞
|g(y)|

∣∣V (y, cn xk,n)
∣∣dy

≤
{
A, if (l, k) 6∈ Ωn

A
∫
|y|≥√cn |g(y)|dy +

∫
|y|≤√cn |g(y)| |V (y, cn xk,n)|dy, if (l, k) ∈ Ωn,

where V (y, t) = hl,k,n

(
y−t

cndl,k,n

)
− hl,k,n

(
y−t−cn z ε
cndl,k,n

)
. Furthermore, as in the proof of (5.6),

whenever |y| ≤ √cn, n large enough and (l, k) ∈ Ωn,

E
[
|Yk,n(z)| |V (y, cn xk,n)|

]
=

∫ ∞

−∞

∣∣∣g[cn (dk,0,n x+ zε)
]
− g

(
cn dk,0,n x

) ∣∣∣|V (y, cn dk,0,nx)|hk,0,n(x)dx

≤ A

cn dk,0,n

∫ ∞

−∞

∣∣g(x+ cnzε)− g(x)
∣∣ |V (y, x)| dx

≤ A

cn dk,0,n

∫ ∞

−∞

∣∣g(x) ∣∣ [
|V (y, x)|+ |V (y, x− cnzε)|

]
dx

≤ A

cn dk,0,n

[ ∫
|x|≥√cn

|g(x)|dx+ sup
|u|≤Czε1/2

|hl,k,n(u)− hl,k,n(0)|
]
,

where we have used the facts that inf(l,k)∈Ωn dl,k,n ≥ ε1/2/C, cn → ∞ and V (y, t) is

bounded. In view of these facts, together with (5.6), we obtain that, if (l, k) 6∈ Ωn,∣∣∣E [
Yk,n(z)Yl,n(z)

]∣∣∣ =
∣∣∣E [

Yk,n(z)E
(
Yl,n(z) | Fk,n

)]∣∣∣
≤ A (cndl,k,n)

−1E |Yk,n(z)| ≤ A1 (c2n dl,k,n dk,0,n)
−1, (5.8)

and if (l, k) ∈ Ωn,∣∣∣E [
Yk,n(z)Yl,n(z)

]∣∣∣
≤ A (cn dl,k,n)

−1E |Yk,n(z)|
∫
|y|≥√cn

|g(y)|dy

+A (cn dl,k,n)
−1

∫
|y|≤√cn

|g(y)|E
[
|Yk,n(z)| |V (y, cn xk,n)|

]
dy

≤ A (c2n dl,k,n dk,0,n)
−1

( ∫
|y|≥√cn

|g(y)|dy + sup
|u|≤Czε1/2

|hl,k,n(u)− hl,k,n(0)|
)
. (5.9)
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It follows from (5.8)-(5.9) and (2.2)-(2.5) that, with η = ε1/2/C below,

|Λ2n(ε)| ≤ 2 c2n
n2

( ∑
l>k,(l,k) 6∈Ωn

+
∑

(l,k)∈Ωn

)∣∣∣E [
Yk,n(z)Yl,n(z)

]∣∣∣
≤ A

n2

n∑
k=(1−η)n

(dk,0,n)
−1 max

1≤k≤n−1

n∑
l=k+1

(dl,k,n)
−1

+
A

n2
max

0≤k≤n−1

n∑
l=k+1

(dl,k,n)
−1 max

0≤k≤(1−η)n

k+η n∑
l=k+1

(dl,k,n)
−1

+
A

n2

n∑
k=1

(dk,0,n)
−1 max

1≤k≤n−1

n∑
l=k+1

(dl,k,n)
−1

×
[ ∫

|y|≥c1/2
n

|g(y)|dy + sup
(l,k)∈Ωn

sup
|u|≤Czε

|hl,k,n(u)− hl,k,n(0)|
]

→ 0,

as n→∞ first and then ε→ 0, as required. The proof of Theorem 2.1 is now complete.

Proof of Corollary 2.1. Note that d2
n = ES2

n. It follows from Lemma 5.1 in Taqqu

(1975) that x[nt],n ⇒ Wα/2(t), 0 ≤ t ≤ 1, on D[0, 1], where Wβ(t) is a fractional Brownian

motion having a continuous local time LWβ
(t, s) with regard to both coordinates (t, s) in

[0,∞)×R. Therefore xi,n satisfies Assumption 2.2. We next show that xi,n also satisfies

Assumption 2.3 and then (2.9) follows form Theorem 2.1 accordingly.

In order to check Assumption 2.3, let Ft,n = σ{ξ1, ξ2, ..., ξt} and n0 be so large that

|γ̃l,k| ≤ λ dk dl−k for all min{k, l − k} ≥ n0. The choice of n0 is possible because of the

second part of condition (2.8). For any 0 ≤ k < l ≤ n, let

dl,k,n =

{
d∗l,k/dn, if min{k, l − k} ≥ n0,
dl/dn, otherwise,

where d∗l,k =
[
d2
l−k − γ̃2

l,k/d
2
k

]1/2
. Recall d2

n ∼ nαh(n) and note d−1
l,k,n ≤ dn /dl + (1 −

λ2)−1/2 dn/dl−k. It is readily seen that, as n→∞,

inf
(l,k)∈Ωn(η)

dl,k,n ≥ (1− λ2)1/2 inf
(l,k)∈Ωn(η)

dl−k/dn ≥ C (1− λ2)1/2 ηα/2,

and dl,k,n satisfy (2.2)–(2.4). On the other hand, by noting that (Sk, Sl−Sk) ∼ N(0,
∑

),

where
∑

=

(
d2
k γ̃l,k

γ̃l,k d2
l−k

)
. The conditional distribution of Sl−Sk given Sk isN(γ̃l,kSk/d

2
k, d

∗2
l,k).

This implies that, conditional on Ft,n,

(xl,n − xk,n)/dl,k,n = (Sl − Sk)/d
∗
l,k ∼ N

(
γ̃l,k Sk/(d

2
k d

∗
l,k), 1

)
,
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for min{k, l − k} ≥ n0, and

(xl,n − xk,n)/dl,k,n = (Sl − Sk)/dl ∼ N
(
γ̃l,k Sk/(d

2
k dl), d∗2l,k/d

2
l

)
,

in other cases. Therefore (xl,n− xk,n)/dl,k,n has a bounded density hj,k,n(x). The hj,k,n(x)

satisfy (2.5) since, whenever min{k, l − k} ≥ n0,

sup
x

∣∣hj,k,n(x)− hj,k,n(x+ u)
∣∣ ≤ 1√

2π
sup
x
|e−(u+x)2/2 − e−x

2/2| ≤ A |u|.

This proves that the Assumption 2.3 holds true for xin, and also completes the proof of

Corollary 2.1.

Proof of Corollary 2.2. We first prove (2.10). We need some preliminaries. Write

ψ̃i =
∑i

j=0 ψj, S̃n =
∑n

i=0 ψ̃iεi and Λ2
n =

∑n
i=0(ψ̃i)

2. Also let fn(t) = EeitS̃n/Λn .

Recalling the definitions of ψj, simple calculations show that ψ̃i ∼ 1
1−µi

1−µh(i) and

Λ2
n ∼ 1

(1−µ)2(3−2µ)
n3−2µh2(n). This, together with the facts that Eε0 = 0, Eε20 = 1 and

ES̃2
n = Λ2

n, implies that S̃n/Λn →D N(0, 1). Furthermore we may prove the following:

(a) for each n ≥ 1, if not all ψ̃i = 0, 0 ≤ i ≤ n, then S̃n/Λn has a density hn(x) which

is uniformly bounded by a constant K;

(b) as n→∞, the density function hn(x) satisfies that

sup
x
|hn(x)− n(x)| ≤ 1

2π

∫ ∞

−∞
|fn(t)− e−t

2/2|dt→ 0, (5.10)

where n(x) = e−x
2/2/

√
2π is the density of a standard normal.

In fact, it follows from
∫∞
−∞ |Ee

itε0|dt <∞ and the independence of εi that, whenever

n ≥ 1 and ψ̃i0 6= 0 for some i0 ≤ n,∫ ∞

−∞
|fn(t)|dt ≤

∫ ∞

−∞
|Eeitψ̃i0

εi0/Λn|dt =

∫ ∞

−∞
|Eeitε0|dt <∞.

This yields the result (a) (see, e.g., Lukács, 1970, Theorem 3.2.2).

The left inequality of (5.10) is obvious. In order to prove the convergence in (5.10),

we split the integral into three parts as

I1n ≡
∫
|t|≤A

|fn(t)− e−t
2/2|dt, I2n ≡

∫
A<|t|≤δ

√
n

|fn(t)− e−t
2/2|dt,

and I3n ≡
∫
|t|>δ

√
n
|fn(t)−e−t

2/2|dt. It is clear that I1n → 0 for each A > 0 since S̃n/Λn →D

N(0, 1). To prove I2n + I3n → 0 for some A, δ > 0, we need the following facts:

(i) for n sufficiently large, there exist 0 < c1 < c2 < ∞ such that c1
√
n < ψ̃i/Λn ≤

c2
√
n for n/2 ≤ i ≤ n;
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(ii) for some δ0 > 0, there exist an 0 < η < 1 such that

|ϕ(t)| = |Eeitε0| ≤
{
e−t

2/4, for |t| ≤ δ0,
η, for |t| ≥ δ0.

Fact (i) follows immediately from the estimates of ψ̃i and Λn. Recalling Eε0 = 0, Eε20 = 1

and
∫∞
−∞ |ϕ(t)|dt <∞, fact (ii) follows from (5.6) and the proof of Theorem 5.2 in Chapter

8 of Feller (1971, page 489). In view of (i) and (ii), for ∀ε > 0, by choosing δ = δ0/c2 and

A sufficiently large such that
∫
|t|≥A e

−t2/8dt < ε/2, we have

I2n ≤
∫
A<|t|≤δ

√
n

(
|

n∏
j=[n/2]+1

∣∣∣Eeitψ̃jεj/Λn

∣∣∣ + e−t
2/2

)
dt ≤ 2

∫
|t|≥A

e−t
2/8dt < ε,

for n sufficiently large, and similarly

I3n ≤
∫
|t|≥δ

√
n

(
|

n∏
j=[n/2]+1

∣∣∣Eeitψ̃jεj/Λn

∣∣∣ + e−t
2/2

)
dt

≤ ηn/2−1

∫
|t|≥δ /c1

|Eeitε0/Λn|dt+

∫
|t|≥δ

√
n

e−t
2/2dt→ 0,

as n→∞. So we have proved the convergence of (5.10), and this completes the proof of

result (b).

We are now ready to prove (2.10). The fact that d2
n = ES2

n ∼ cµ n
3−2µ h2(n) with

cµ = 1
(1−µ)(3−2µ)

∫∞
0
x−µ(x+1)−µdx can be found in the Proposition 2.1 of Wang, Ling and

Gulati (2003a). Now it follows from Gorodetskii (1977) [also see Wang, Ling and Gulati

(2003b)] that x[nt],n ⇒ Wβ(t), 0 ≤ t ≤ 1, on D[0, 1], where β = (3− 2µ)/2 and Wβ(t) is a

fractional Brownian motion having a continuous local time LWβ
(t, s) with regard to (t, s)

in [0,∞)×R. This proves that xi,n satisfies the Assumption 2.2.

We next show that xi,n also satisfies the Assumption 2.3 and then (2.10) follows from

Theorem 2.1 accordingly. In order to check the Assumption 2.3, let Ft,n = σ{..., εt−1, εt}
and dl,k,n = Λl−k/dn. Recall Λ2

n/d
2
n ∼ 1

1−µ

∫ 1

0
x−µ(x + 1)−µdx. It is readily seen that, as

n→∞,

inf
(l,k)∈Ωn(η)

dl,k,n = inf
(l,k)∈Ωn(η)

Λl−k/dn ≥ C η(3−2µ)/2,
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for some constant C > 0 and dl,k,n satisfy (2.2)–(2.4). On the other hand, by noting that

Sl =
l∑

j=1

j∑
i=−∞

εiψj−i

=
k∑
j=1

j∑
i=−∞

εiψj−i +
l∑

j=k+1

j∑
i=−∞

εiψj−i

= Sk +
l∑

j=k+1

k∑
i=−∞

εiψj−i +
l∑

j=k+1

j∑
i=k+1

εiψj−i

:= Sk + S1l + S2l,

it follows from the independence of εi, results (a) and (b) above, and the fact S2l =d

S̃l−k (where =d denotes equivalence in distribution) that, conditional on Fk,n, (xl,n −
xk,n)/dl,k,n = (S1l+S2l)/Λl−k has a density hl−k(x−S1l/Λl−k) which is uniformly bounded

by a constant K for all n ≥ 1 and

sup
(l,k)∈Ωn[δ1/α]

sup
|u|≤δ

∣∣hl−k(u− S1l/Λl−k)− hl−k(−S1l/Λl−k)
∣∣

≤ 2 sup
(l,k)∈Ωn[δ1/α]

sup
x
|hl−k(x)−

1√
2π
e−x

2/2|+ 1√
2π

sup
|u|≤δ

sup
x
|e−(x+u)2/2 − e−x

2/2|

→ 0,

as n → ∞ first and then δ → 0, because of (5.10). This proves that the Assumption 2.3

holds true for xin, and also completes the proof of (2.10).

By noting that Λ2
n ∼ d2

n ∼ ψ2 n if
∑∞

k=0 |ψk| <∞ and ψ ≡
∑∞

k=0 ψk 6 =0, the proof of

(2.11) is similar to that of (2.10) except that the weak convergence in Gorodetskii (1977)

is replaced by Hannan (1979). We omit the details. The proof of Corollary 2.2 is now

complete.

Proof of Theorem 3.1. Without loss of generality we assume that εt and ut, 1 ≤
t ≤ n are defined on the same probability space {Ω,F , P}. If it were not so, it can be

easily arranged since the result to be proved in (3.4) involves only weak convergence. In

order to prove (3.4), we split f̂(x)− f(x) as

f̂(x)− f(x) =

∑n
t=1 utKh(xt − x)∑n
t=1Kh(xt − x)

+

∑n
t=1

[
f(xt)− f(x)

]
Kh(xt − x)∑n

t=1Kh(xt − x)
.

It is readily seen that(
h

n∑
t=1

Kh(xt − x)
)1/2

(f̂(x)− f(x)) =
n∑
t=1

ut Znt + Θ1n/Θ2n, (5.11)
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where Znt =
(
dn

nh

)1/2
K

(
dn

h
xt,n − x

h

)
/Θ2n with Θ2

2n = dn

nh

∑n
t=1K

(
dn

h
xt,n − x

h

)
and

Θ1n =
( dn
nh

)1/2
n∑
t=1

[
f(dn xt,n)− f(x)

]
K

(dn
h
xt,n −

x

h

)
.

Recall that xi,n satisfies Assumptions 2.2* and 2.3, and for any λ ≥ 1, g(s) = Kλ(s)

satisfies Assumption 2.1 due to the Assumption 3.1. It follows from Theorem 2.1 and

Remark 2.1 that, for any λ ≥ 1 and h satisfying nh3/dn → 0 (hence h→ 0) and nh/dn →
∞,

dn
nh

n∑
t=1

Kλ
(dn
h
xt,n −

x

h

)
→P LG (1, 0)

∫ ∞

−∞
Kλ(s)ds. (5.12)

Now, to prove (3.4), it suffices to show that, for any h satisfying nh3/dn → 0 and

nh/dn → ∞,

E|Θ1n| → 0, (5.13)

and

Vn ≡
1

Λn

n∑
t=1

ut Znt →D N(0, σ2), (5.14)

where Λ2
n = Θ−2

2n
dn

nh

∑n
t=1K

2
(
dn

h
xt,n − x

h

)
. Indeed it follows from (5.12) with λ = 1 and

λ = 2 respectively that Θ2
2n →P LG(1, 0) and Λ2

n →P

∫∞
−∞K

2(s)ds. These facts, together

with (5.13) and (5.14), yield that Θ1n/Θ2n → 0 and
∑n

t=1 ut Znt → N(0, σ2
1), and hence

we have (3.4) due to (5.11).

We next prove (5.13) and (5.14), starting with (5.13). In fact, recalling that xtn/dt,0,n

has a density ht,0,n(x) [in the notation of Assumption 2.3 (ii) due to xi,n satisfying As-

sumption 2.3] which is uniformly bounded by a constant K, we have

E|Θ1n| ≤
( dn
nh

)1/2
n∑
t=1

E
{∣∣f(dn xt,n)− f(x)

∣∣K(dn
h
xt,n −

x

h

)}
=

( dn
nh

)1/2
n∑
t=1

∫ ∞

−∞

{∣∣f(dn dt,0,n y)− f(x)
∣∣K(dn dt,0,n

h
y − x

h

)}
ht,0,n(y) dy

≤
( dn
nh

)1/2 h

dn

n∑
t=1

(dt,0,n)
−1

∫ ∞

−∞

{∣∣f(h y + x)− f(x)
∣∣K(

y
)}

dy

≤ h
(nh
dn

)1/2 1

n

n∑
t=1

(dt,0,n)
−1

∫ ∞

−∞
K

(
s
)
f1(s) ds

→ 0,
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since nh3/dn → 0 and the fact that dt,0,n satisfies (2.4). This yields (5.13). As for (5.14),

by noting that, given ε1, ε2, ..., εt, (Znt ut, t = 1, 2, ..., n) is a martingale difference since εt

is independent of ut, it follows from Theorem 3.9 [(3.75) there] in Hall and Heyde (1980)

with δ = q/2− 1 that

sup
x

∣∣P (Vn ≤ xσ | ε1, ε2, ..., εn)− Φ(x)
∣∣ ≤ A(δ)L1/(1+q)

n , a.s., (5.15)

where A(δ) is a constant depending only on δ and

Ln =
1

σq Λq
n

n∑
k=1

|Znk|qE|uk|q + E
∣∣∣ 1

σ2Λ2
n

n∑
k=1

Z2
nk

[
E(u2

k|Fk−1)− σ2
]∣∣∣q/2.

Recall Assumption 3.3, K(x) is uniformly bounded and Λ2
n =

∑n
t=1 Z

2
tn. Routine calcula-

tions show that

Ln ≤
A

σq Λq−2
n

( dn
nh

)(q−2)/2
+ oP (1) = oP (1),

since Λ2
n →P

∫∞
−∞K

2(s)ds, q > 2 and nh/dn → 0. Therefore, we obtain

sup
x

∣∣P (Vn ≤ xσ)− Φ(x)
∣∣ ≤ E

[
sup
x

∣∣P (Vn ≤ xσ | x1, x2, ..., xn)− Φ(x)
∣∣] → 0.

This proves (5.14) and also completes the proof of Theorem 3.1.

Proof of Theorem 3.2. The idea of this theorem is similar to Park and Phillips

(2001). First notice that, under the assumption (Un, Vn) ⇒D (U, V ), it follows from

the so-called Skorohod-Dudley-Wichura representation theorem that there is a common

probability space (Ω,F , P ) supporting (U0
n, V

0
n ) and (U, V ) such that

(Un, Vn) =d (U0
n, V

0
n ) and (U0

n, V
0
n ) →a.s. (U, V ) (5.16)

in D[0, 1]2 with the uniform topology. Moreover, as in the proof of Lemma 2.1 in Park

and Phillips (2001), (U0
n, V

0
n ) can be chosen such that, for each n ≥ 1

U0
n(k/n) =d Un(k/n) and V 0

n (k/n) =d V (τnk/n), k = 1, 2, ..., n, (5.17)

where τnt, 0 ≤ t ≤ 1, are stopping times in (Ω,F , P ) with τn0 = 0 satisfying

sup
0≤t≤1

∣∣∣τnt − t

nδ

∣∣∣ →a.s 0 (5.18)

as n→∞ for any δ > max(1/2, 2/q). These facts, together with (5.11), yield that, under

the extended probability space,(
h

n∑
t=1

Kh(xt − x)
)1/2

(f̂(x)− f(x))

=d
1

Θ∗
2n

n∑
t=1

Ynt
[
V 0(

τn,t
n

)− V 0(
τn,t−1

n
)
]

+
Θ∗

1n

Θ∗
2n

, (5.19)
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where Ynt =
(
dn

h

)1/2
K

[
dn

h
U0
n(

t
n
)− x

h

]
, Θ∗2

2n = dn

nh

∑n
t=1K

[
dn

h
U0
n(

t
n
)− x

h

]
and

Θ∗
1n =

( dn
nh

)1/2
n∑
t=1

[
f(dn U

0
n(
t

n
))− f(x)

]
K

[dn
h
U0
n(
t

n
)− x

h

]
.

Since (5.16) implies that Assumption 2.2* holds true for U0
n(t/n) with G(t) being a Brow-

nian motion [that is, G(t) = U(t)], it follows from a similar argument to the proofs of

(5.12) and (5.13) that, for any λ ≥ 1,

dn
nh

[nr]∑
t=1

Kλ
[dn
h
U0
n(
t

n
)− x

h

]
→P LU(r, 0)

∫ ∞

−∞
Kλ(s)ds, (5.20)

uniformly in r ∈ [0, 1] and E|Θ∗
1n| → 0. We mention that (5.20) also implies, for any

λ ≥ 1, uniformly in r ∈ [0, 1],

dn
h

∫ r

0

Kλ
[dn
h
U0
n(s)−

x

h

]
ds =

dn
nh

[nr]∑
t=1

Kλ
[dn
h
U0
n(
t

n
)− x

h

]
+
dn
nh

Kλ
(
− x

h

)
+Kλ

(dn
h
U0
n(

[nr]

n
)− x

h

)
(nr − [nr])

→P LU(r, 0)

∫ ∞

−∞
Kλ(s)ds, (5.21)

since K(x) is uniformly bounded and dn

nh
→ 0.

By virtue of (5.20) and E|Θ∗
1n| → 0, we have Θ∗

2n →P LU(1, 0) and Θ∗
1n/Θ

∗
2n →P 0.

These facts, together with (5.19) and an argument similar to that in the proof of Theorem

3.3 in Hall and Heyde (1980) imply that (3.4) will follow if we prove

n∑
t=1

Ynt
[
V 0(

τn,t
n

)− V 0(
τn,t−1

n
)
]
→D η N, (5.22)

where η2 = LU(1, 0)
∫∞
−∞K

2(s)ds and N is a standard normal variable independent of η.

In order to prove (5.22), write

Mn(r) =

j−1∑
t=1

Ynt
[
V 0(

τn,t
n

)− V 0(
τn,t−1

n
)
]
+ Yn,j−1

[
V 0(

r

n
)− V 0(

τn,j−1

n
)
]
, (5.23)

for τn,j−1/n < r ≤ τn,j/n, j = 1, 2, ..., k . It is readily seen that Mn is a continuous

martingale with the quadratic variation process [Mn] given by

[Mn]r =

j−1∑
k=1

Y 2
nt

(τn,k
n
− τn,k−1

n

)
+ Y 2

n,j−1

(
r − τn,j−1

n

)
=

dn
h

∫ r

0

K2
[dn
h
U0
n(s)−

x

h

]
ds

[
1 + oP (1)

]
→P LU(r, 0)

∫ ∞

−∞
K2(s)ds, (5.24)
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uniformly in r ∈ [0, 1], in view of (5.18) and (5.21) with λ = 2. For the covariance process

[Mn, U ] of Mn and U , we also have

[Mn, U ]r =

j−1∑
k=1

Ynk

(τn,k
n
− τn,k−1

n

)
σuv + Yn,k−1

(
r − τn,j−1

n

)
σuv

= σuv
(dn
h

)1/2
∫ r

0

K
[dn
h
U0
n(s)−

x

h

]
ds

[
1 + oP (1)

]
→P 0, (5.25)

where σuv = cov(V, U), since (h/dn)
1/2 → 0 and (5.21) with λ = 1. Now, following the

proof of Theorem 3.2 in Park and Phillips (2001), we obtain that

j−1∑
t=1

Ynt
[
V 0(

τn,t
n

)− V 0(
τn,t−1

n
)
]

= Mn(
τn,n
n

) →D η N,

which yields (5.22). This completes the proof of Theorem 3.2.
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