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Abstract

Estimation of the memory parameter (d) is considered for models of nonstationary
fractionally integrated time series with d > 1

2 . It is shown that the log periodogram
regression estimator of d is inconsistent when 1 < d < 2 and is consistent when 1

2 < d ≤ 1.
For d > 1, the estimator is shown to converge in probability to unity.
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1. Introduction

Statistical inference in models of fractionally integrated time series has been an active field

of recent research. Much of the literature has focused on estimating the memory parameter

‘d’ of a fractionally integrated process Xt satisfying a general model of the form

(1− L)dXt = ut, t = 1, . . . , n (1)

∗The original version of this paper was circulated in 1999 and the present version has benefitted from
comments of referees and an associate editor. Phillips acknowledges partial research support from the NSF
under Grant Nos. SBR 97-30295 and SES 04-142254.
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where ut is stationary with zero mean and continuous spectral density fu(λ) > 0, and L is a

lag operator for which Lut = ut−1. A variety of estimation methods of d have been suggested

and asymptotic theories for them have recently been developed in the case of stationary

long memory time series like (1) with |d| < 1
2 . A commonly used estimator in applied work

is the log periodogram estimator, suggested in Geweke and Porter-Hudak (1983), which is

appealing because of its nonparametric treatment of ut and the convenience of linear least

squares regression. Under Gaussian assumptions, Robinson (1995a) developed consistency

and asymptotic normality results for a log periodogram estimator which trims out some low

frequencies periodogram ordinates in the regression, following a suggestion of Künsch (1987).

Hurvich, Deo, and Brodsky (1998) derive an expression for the mean squared error of this

estimator without omitting low frequencies ordinates, again under Gaussianity, and obtain

asymptotic normality results and an optimal choice of the number of periodogram ordinates

to include in the regression.

Most of the theory of statistical inference for log periodogram regression has been devel-

oped for the stationary long memory case with fractional parameter −12 < d < 1
2 , however, in

practice, log periodogram regression has frequently been applied in apparently nonstationary

cases (e.g. Bloomfield, 1991, Agiakloglou et al., 1993); and the importance of nonstationar-

ity in practical work is borne out in many empirical studies including those of Cheung and

Lai (1993), Phillips (1998/2005), and Maynard and Phillips (2002). Practically speaking, of

course, there is seldom any prior information about the range of d before estimation, so that

analysis of log periodogram regression for d > 1
2 is important from both theoretical and prac-

tical points of view. Hurvich and Ray (1995) study the asymptotic behavior of periodogram

ordinates of a fractionally integrated process with fractional parameter d ∈ [0.5, 1.5) and
argue that log periodogram regression can be badly biased for nonstationary processes with

d > 1. These authors also illustrate that the estimator is not invariant to first differencing,

a phenomenon that was earlier reported in Agiakloglou et al. (1993). Extending the work

of Robinson (1995a), Velasco (1999a) has shown consistency of a log periodogram regression

estimator that trims out low frequency ordinates, when 1
2 < d < 1 and under Gaussianity.

Velasco (2000) showed the asymptotic normality of non-Gaussian pooled log periodogram

regression in the stationary case. Local and exact local Whittle estimation for nonstationary

fractional integrated processes has most recently been developed by Phillips and Shimotsu

(2004) and Shimotsu and Phillips (2005), the latter showing consistent estimation for all

values of d. A related approach based on a piecewise extension of local Whittle estimation

to the nonstationary case has been given in Abadir, Distaso and Giraitis (2005).

Some intriguing simulation results were reported in Hurvich and Ray (1995). According

to table III in their paper, the log periodogram estimates are very close to unity regardless of
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the true fractional value of d in a range of values over the interval (1.0, 1.4). A later simulation

in Velasco (1999b) revealed an estimated probability density for the log periodogram estimate

when d = 1.8 that is sharply peaked around unity and has a long tail to the right. These

simulations indicate that, in cases where d > 1, log periodogram regression generally produces

estimates of d that are very close to unity, irrespective of the true value of d when d ≥ 1.
The present paper provides an explanation for this pattern of simulation results. Specifically,

we show that log periodogram regression is inconsistent when d > 1 and that the probability

limit of the estimate is unity for all values of d ∈ [1, 2). The reason for the inconsistency
is that the formulation of the log periodogram regression ‘model’, which is inspired by the

local behavior of the spectrum near the origin, omits terms that become dominant in the

nonstationary case when d > 1. These results correspond with the inconsistency of local

Whittle estimation for d > 1 found in Phillips and Shimotsu (2004).

We make use of a representation of the discrete Fourier transform (dft) of a fractionally

integrated time series under assumptions on the short memory component ut that are quite

weak. This representation and some related results were originally obtained in unpublished

work of Phillips (1999) and are briefly reviewed here. Utilizing the representation of the dft,

under some restrictive assumptions on the number of periodogram ordinates in the regres-

sion, but with no distributional restrictions, we provide here an inconsistency result for log

periodogram regression when d > 1, showing that the estimator converges in probability to

unity, and we give a consistency result that applies when 1
2 < d ≤ 1.

The paper is organized as follows. The following section gives some useful alternate

representations of the dft of a fractionally integrated time series. Section 3 contains our main

results, and some concluding remarks are made in Section 4. Proofs are given in Section 5.

2. Representation of the DFT of a Fractionally Integrated
process

This section briefly reviews some representations of the dft of a fractionally integrated time

series obtained in Phillips (1999). These are valid in both the stationary, long memory

case and the nonstationary case, and they turn out to be particularly helpful in analyzing

regressions in the nonstationary case.

The fractionally integrated process Xt in this paper is defined as in (1), with ut = 0 for

all t ≤ 0. More explicit conditions on ut (t > 0) are given in the following assumption that

applies throughout this paper.

2.1 Assumption (Error Condition) For all t > 0, ut has Wold representation



4

ut = C (L) εt =
∞X
j=0

cjεt−j ,
∞X
j=0

j |cj | <∞, C(1) 6= 0, (2)

with εt = iid
¡
0, σ2

¢
with E (|εt|p) <∞ with p > 4.

The linear process error condition in (2) covers a wide class of short memory processes

and, as in Phillips (1999), enables us to use a decomposition technique to develop a convenient

representation of the dft of a fractionally integrated process. Nonetheless, (2) is restrictive

and implies the spectrum of ut is continuously differentiable for all frequencies, which may

be regarded as a stronger than necessary in the context of a narrow band semiparametric

regression.

To proceed, we expand the fractional process (1) as

Xt = (1− L)−d ut =
tX

k=0

(d)k
k!

ut−k, with ut = 0 for all t ≤ 0 (3)

where

(d)k =
Γ (d+ k)

Γ (d)

is Pochammer’s symbol for the forward factorial function. Next, define the operatorDn (L; d) =Pn
k=0

(−d)k
k! Lk, and expand Dn (L; d) about L = eiλ as in Phillips (1999) as

Dn (L; d) = Dn

³
eiλ; d

´
+ eDnλ

³
e−iλL; d

´³
e−iλL− 1

´
where eDnλ

¡
e−iλL; d

¢
=
Pn−1

p=0
edλpe−ipλLp and edλp = Pn

k=p+1
(−d)k
k! eikλ. Writing the dft of

Xt as wx(λ) =
1√
2πn

Pn
t=1Xte

itλ, the result below gives an exact representation of wx(λ) in

terms of the dft, wu(λ), of the error process ut.

2.2 Lemma (Phillips, 1999)

wu (λ) = wx (λ)Dn

³
eiλ; d

´
+

1√
2πn

³ eXλ0(d)− einλ eXλn(d)
´

(4)

where

eXλn(d) = eDnλ

³
e−iλL; d

´
Xn =

n−1X
p=0

edλpe−ipλXn−p.
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When ut = 0 for t ≤ 0 as is assumed above, Xt = 0 for t ≤ 0 and, hence, eXλ0(d) = 0. In this

case, expression in (4) becomes

wu (λ) = wx (λ)Dn

³
eiλ; d

´
− einλ√

2πn
eDnλ

³
e−iλL; d

´
Xn

= wx (λ)Dn

³
eiλ; d

´
− 1√

2πn
einλ eXλn(d). (5)

Equation (5) shows that the exact relation between wx(λ) and wu(λ) involves a correction

term that depends on eXλn(d). This term therefore needs to be considered in studying the

asymptotic behavior of wx(λ), and any function of it, like the log periodogram regression

estimator. The asymptotic behavior of eXλn(d) at the fundamental frequencies λs is given in

lemma 3.1 of Phillips (1999) and is shown to be sensitive to the value of s in λs =
2πs
n . Here,

our main focus of interest is to develop the behavior of eXλn(d) when λ = λs =
2πs
n → 0,

the situation we allow for in log periodogram regression. The following lemma is based on

theorem 3.2 of Phillips (1999), extends that theorem to the case where d > 1, and shows the

asymptotic form of eXλn(d) when Xt is a nonstationary fractional process.

2.3 Lemma For λ = λs =
2πs
n → 0 as n→∞, and for all s ≤ m, m = o (n) ,

(a) When 1
2 < d < 1 and nα

s → 0 for some α ∈ (12 , 1), or 1 < d < 2, then

1

nd

eXλsn(d)√
n

= − 1
nd

eiλs

(1− eiλs)
1−d

Xn√
n
+ op

Ã
1

nd
eiλs

(1− eiλs)
1−d

Xn√
n

!
(6)

(b) If Xt follows (1) with d = 1, then

1

n

eXλsn(d)√
n

= −e
iλs

n

Xn√
n
. (7)

This result shows that the same formulae as those given in Phillips (1999) for the case

d ∈ (12 , 1) also apply when d > 1. The formula (7) is particularly simple for d = 1, and the

restriction on the range of s in case of 12 < d < 1 is relaxed for d > 1. As might be expected,

the leading term in the asymptotic approximation of 1
nd

Xλsn(d)√
n

is the same as when d ∈ (12 , 1).
When d = 3

2 , the formula (6) is still valid because we assume ut = 0, t ≤ 0. As shown in Liu
(1998), if we allow for prehistorical influence in the fractional process Xt, then the order of

Xn when d = 3
2 is n

d− 1
2

√
lnn, i.e., n

1
2
−d(lnn)−

1
2Xn = Op (1) , whereas n

1
2
−dXn = Op (1) for

d ∈ (12 ,
3
2). In that case, a minor change in part (a) of the lemma 2.3 is needed to incorporate

the effect of the slowly varying factor
√
lnn. However, if ut = 0, t ≤ 0, then we have the MA

representation as in (3) above, and the order of magnitude of Xt is 1n , as is easily determined

(c.f., Gourieroux, Maurel, and Monfort, 1987).
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Lemma 2.4 below gives an asymptotic expression for the dft wx (λ) in term of wu (λ) and

Xn. Our main interest is in the case where λ = λs =
2πs
n → 0. From (5)

wx (λs) = Dn

³
eiλ; d

´−1 ∙
wu (λs) +

1√
2πn

eXλn(d)

¸
, (8)

and using lemma 2.3 and an expansion for the sinusoidal polynomial Dn

¡
eiλ; d

¢
given in

lemma 3.1 of Phillips (1999), we have the following asymptotic representation for wx (λs) .

2.4 Lemma For λ = λs =
2πs
n → 0 as n → ∞, and for all s ≤ m, m = o (n), and when

1
2 < d < 1 and nα

s → 0 for some α ∈ (12 , 1) or 1 < d < 2, then

1

nd
wx (λs) =

³
1− eiλs

´−d 1
nd

wu (λs)−
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

+ op

µ
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

¶
(9)

The representation (9) facilitates the development of an asymptotic theory for fractionally

integrated time series. It shows that the dft of a fractionally integrated process is composed of

two separate components. The first of these involves the dft of the innovation ut, the second

involves the value of the final sample observation Xn. The limit behavior of these two com-

ponents is already known. Hence, we can develop dft asymptotics for fractionally integrated

processes by analyzing these two terms, rather than by attempting to work directly with the

dft of Xt itself. A second advantage of the new representation is that it follows by algebraic

simplification and does not depend upon distributional specifications like Gaussianity. All

that is needed to obtain (9) is the general linear process formulation (2). A third advantage

is that the representation in lemma 2.2 holds for all frequencies λs = 2πs
n , s = 0, 1, ..., n− 1,

making it helpful in the asymptotic analysis of a wide variety of quantities that arise in the

study of fractional processes. The asymptotic representations in lemma 2.3 and 2.4 hold for

the frequencies near the origin, which is enough for most semiparametric analyses of frac-

tionally integrated processes. We can, in fact, go further and develop asymptotic forms for

the dft of Xt when s is fixed, and when s→∞ and λs → φ 6= 0, as well as when λs → 0 as

n → ∞. These forms are given in Phillips (1999) for d ∈ (12 , 1). However, only those where
λs → 0 as n→∞, as in lemma 2.4, are needed in the present paper.

3. Log-Periodogram Regression: the nonstationary case

(a) Inconsistency over 1 < d < 2
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Start by writing the normalized dft of Xt according to the lemma 2.4 as

1

nd
wx (λs) =

³
1− eiλs

´−d 1
nd

wu (λs)−
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

+ op

µ
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

¶
(10)

Then, the normalized periodogram of Xt can be written as

Ix (λs)

n2d
=

¯̄̄̄³
1− eiλs

´−d 1
nd

wu (λs)−
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

+ op

µ
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

¶¯̄̄̄2
(11)

Here, the dominant term is 1√
2π

1
n

eiλs

(1−eiλs)
Xn

nd−
1
2
as we will show in the appendix, and all the

other terms are of lesser order. Therefore, (11) can be put in the form

Ix (λs)

n2d
=

µ
1

2π

¶Ã ¯̄
eiλs

¯̄2
|1− eiλs |2

!µ
1

n

¶2µ Xn

nd−
1
2

¶2
|1 + ζns|2 , (12)

where

ζns =

⎛⎜⎝(2π)¡1− eiλs
¢1−d

eiλs
n1−d

wu (λs)³
Xn

nd−
1
2

´
⎞⎟⎠+ op (1)

= 2πξns + op (1) ,

and op (1) is asymptotically negligible uniformly in s.

ξns =

¡
1− eiλs

¢1−d
eiλs

n1−d
wu (λs)³

Xn

nd−
1
2

´ .
Rewriting (12) as

Ix (λs) =

µ
1

2π

¶Ã
1

|1− eiλs |2

!µ
nd

n

¶2µ
Xn

nd−
1
2

¶2
|1 + ζns|2 ,

we obtain the following representation of the logarithm of the periodogram:

ln (Ix (λs)) = ln

µ
1

2π

¶
+ 2 ln

µ
nd

n

¶
− 2 ln

³¯̄̄
1− eiλs

¯̄̄´
+ 2 ln

µ¯̄̄̄
Xn

nd−
1
2

¯̄̄̄¶
+ 2 ln |1 + ζns| .

(13)

The log periodogram regression estimator of the memory parameter d is based on linear

least squares regression of log Ix (λs) on logλs over frequencies {λs, s = 1, ...,m} . It has the
explicit form
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2bd = −" mX
s=1

x2s

#−1 " mX
s=1

xs log Ix (λs)

#
, (14)

where xs = log
¡¯̄
1− eiλs

¯̄¢
− log (|1− eiλs |), and log (|1− eiλs |) = 1

m

Pm
s=1 log

¡¯̄
1− eiλs

¯̄¢
.

From (13) we deduce that

2(bd− 1) = −2" mX
s=1

x2s

#−1 " mX
s=1

xs log |1 + ζns|
#
, (15)

where vn = log
³¯̄̄

Xn

nd−
1
2

¯̄̄´
, and noting that

Pm
s=1 xs = 0.

The following result gives the inconsistency of bd when 1 < d < 2.

3.1 Theorem For 1 < d < 2, if m
n +

m logm

n
1
2−

1
p
→ 0, then bd p→ 1.

The conditions on the frequency band {λs, 1 < s < m} where m logm

n
1
2−

1
p
→ 0 restrict the

range of the effective sample size m (the number of periodogram ordinates) in the regression

(14). In particular, the restriction on m is far more restrictive than commonly used rules like

m = Op(n
2
3 ), Op(n

1
2 ), or the optimal choice, m = Op(n

4
5 ), suggested by Hurvich, Deo, and

Brodsky (1998). This restriction is mainly due to our strong approximation approach without

assuming Gaussianity, and to the treatment of reciprocal and logarithmic functions of random

variables shown in appendix. Trimming low frequencies (Künsch, 1987; Robinson, 1995a)

is not necessary, as shown in Hurvich, Deo, and Brodsky (1998) for stationary fractional

processes (see also Velasco, 1999a).

Theorem 3.1 shows that the log periodogram regression estimator is inconsistent and has

unity as its limit in probability over the interval 1 < d < 2. The estimator can therefore

be expected to be systematically biased when the true value of d is greater than unity, and

severely biased when d is well above unity. This behavior is apparent in the simulation results

of Hurvich and Ray (1995) and Velasco (1999b).

We conclude that the estimator bd has unity as its probability limit over the whole in-
terval 1 < d < 2. On the other hand, the log periodogram estimator is consistent over the

nonstationary domain 1
2 ≤ d < 1, as the following section shows.

(b) Consistency over 1
2 < d < 1

From lemma 2.4, the representation of wx(λs)
nd

is the same as (9) for the 1
2 < d < 1 case
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and, therefore, the formula for the normalized periodogram is also the same as (11). Thus,

Ix (λs)

n2d
=

¯̄̄̄³
1− eiλs

´−d 1
nd

wu (λs)−
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

+ op

µ
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

¶¯̄̄̄2
(16)

=

µ
1

2π

¶Ã ¯̄
eiλs

¯̄2
|1− eiλs |2

!µ
1

n

¶2
|1 + ζns|2 ,

where the same formula for ζns applies. The dominant term in (16) is
¯̄̄¡
1− eiλs

¢−d 1
nd

¯̄̄2d
|wu (λs)|2

as we will show in the appendix, and it is the other terms that are now of lesser order. Ar-

ranging (16) gives

Ix (λs)

n2d
=

1

n2d

¯̄̄
1− eiλs

¯̄̄−2dµ Xn

nd−
1
2

¶2 ¯̄̄̄¯̄̄wu (λs)³
Xn

nd−
1
2

´ + 1√
2π

nd

n

eiλs

(1− eiλs)
1−d (1 + op (1))

¯̄̄̄
¯̄̄
2

=
1

n2d

¯̄̄
1− eiλs

¯̄̄−2dµ Xn

nd−
1
2

¶2 ¯̄̄̄¯ξns + 1√
2π

nd

n

eiλs

(1− eiλs)
1−d (1 + op (1))

¯̄̄̄
¯
2

, (17)

where

ξns =
wu (λs)³

Xn

nd−
1
2

´ and vns =
1√
2π

nd

n

eiλs

(1− eiλs)
1−d (1 + op (1)) .

Now, (17) can be written as

Ix (λs) =
¯̄̄
1− eiλs

¯̄̄−2dµ Xn

nd−
1
2

¶2
|ξns + vns|2 ,

and the log periodogram regression equation can be formulated as

ln (Ix (λs)) = −2d lnλs + 2υn + 2 ln |ξns + vns| , (18)

where υn = ln
h¯̄̄

Xn

nd−
1
2

¯̄̄i
. The formulation in (18) holds strictly over frequencies λs with s ≥ l

and nα

l → 0 for some α ∈ (12 , 1). However, it turns out that we can relax this trimming
restriction (viz. s > l) in our asymptotic development, so that the log periodogram estimator

we consider has the usual definition as the linear least squares regression of ln Ix (λs) on λs

over the full set of frequencies {λs, s = 1, ...,m} . As we show in the appendix, the represen-
tation of the logarithm of the periodogram is a little different from (16) over the frequencies

{λs, s = 1, ..., l} . The following result gives the consistency of bd over 12 < d < 1.
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3.2 Theorem If Xt follows (1) with 1
2 < d < 1, if ut satisfies (2) and εt fulfills a Cramér

type condition, i.e.

∃ δ > 0, p > 0, such that ∀ |t| > p |E exp (itεt)| ≤ 1− δ, (19)

and Z
|E exp (itεt)|p dt <∞for some integer p ≥ 1, (20)

and if m
n +

l(lnn)2

m + m logm

n
1
2−δ

→ 0→ 0 for any 0 < δ < 1
2 , then

bd p→ d, where bd is defined in
(14).

The two additional conditions (19) and (20) on εt are needed for the proof of the con-

sistency of the estimator. Neither is very restrictive. Condition (19) is a form of Cramér

condition (see, e.g. Bhattacharya and Rao, 1976), and holds for distributions with a non

zero absolutely continuous part. Condition (20) ensures that the density of
Pn

t=1 εt exists

whenever n ≥ p. Some further discussion is given in the appendix.

A related consistency result for log periodogram regression over 1
2 < d < 1 has been

established by Velasco (1999a) under different conditions. In that work, the regression esti-

mator trims out low frequency ordinates, the restrictions on the number of ordinates in the

regression are a little stronger than those of Robinson (1995a), and Gaussianity is required,

as in earlier analysis of log periodogram regression. The results in the present paper rely,

in the main, on the representation of lemma 2.4 and are free from specific distributional

assumptions whereas ut is a linear process defined in (2). However, our linear process as-

sumption is somewhat restrictive in the sense that the condition (2) implies the spectrum of

ut is continuously differentiable for all frequencies, whereas much of earlier work has made

only local smoothness of the spectrum near origin.

4. Concluding Remarks

This paper has addressed consistency issues for log periodogram regression with nonstation-

ary, fractionally integrated time series, showing that there is a major difference between the

two nonstationary cases where 1
2 < d < 1 and d > 1. When d > 1, the log periodogram re-

gression estimator is inconsistent, converges to unity in probability for all d ∈ (1, 2), and, as
previous simulation experiments have shown, appears to be seriously biased in finite samples.

On the other hand, when 1
2 < d < 1, the log periodogram regression estimator is shown to

be consistent with no Gaussianity assumption, but with strong restrictions on the number

ordinates included in the regression. The case d = 1 has been studied by Phillips (2006), and

in this case the estimator is consistent and has a mixed normal limit distribution.
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In all of these cases, the time series are nonstationary. But, there is an important difference

between nonstationary series with 1
2 < d < 1 and those with d ≥ 1. In particular, when d < 1,

the constituent innovations in the time series are not persistent, in the sense that the impact

of a unit innovation at time t on the process eventually vanishes; whereas for nonstationary

processes with d ≥ 1, the effects of the innovations do not eventually vanish.
From the practical standpoint of empirical research the inconsistency for d > 1 has the

most important consequences. In practice, we rarely have any prior information about the

magnitude of the memory parameter and it is therefore desirable to have procedures of

estimation and inference that have satisfactory properties over a range of plausible parameter

values. For some series, like prices and monetary aggregates, the range of plausible parameter

values seem most likely to include the region d > 1. Inference about the memory parameter for

the levels of such series using log periodogram regression using conventional log periodogram

regression is clearly inappropriate.

The formulae given in Lemma 2.4 reveal the modifications to the log periodogram esti-

mator that are needed to avoid the inconsistency over d > 1. In particular, the second term

on the right side of the dft representation (9) suggests that we may replace the dft wx() in

log periodogram calculations by the observable quantity

wx (λs) +
1√
2π

eiλs

(1− eiλs)

Xn√
n
,

which directly eliminates the term that is responsible for the bias, leading to a procedure that

is essentially equivalent to first differencing the series, applying log periodogram regression

and adding back unity. However, as discussed in Phillips (1999, 2006) consistent semipara-

metric estimation for all values of d by log periodogram regression without trimming or

tapering can be accomplished using an exact log periodogram regression (ELP) procedure,

which takes into account the exact form of the dft given in (8). An asymptotic theory for this

estimator has not been developed, but the approach is entirely analogous to the exact local

Whittle (ELW) estimator studied in Shimotsu and Phillips (2005). Since both estimators

involve nonlinear optimization, the ELP procedure loses the advantage of linear regression

that makes log periodogram regression appealing in practice, and ELW is in any event likely

to be the preferred choice in terms of asymptotic efficiency.

5. Appendix

5.1 Proof of Lemma 2.3 When 1
2 < d < 1, and d = 1 the results for parts (a) and (b)

are given in Phillips (1999). So we need only show the d > 1 case for the proof of part (a).
Start with part (a) when d > 1. Following the proof of theorem 3.2 of Phillips (1999), we

write eXλsn(d) as the sum of two components with p ≤ c and p > c. The choice of c will be
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discussed later. We have

eXλsn(d) =
n−1X
p=0

edλspe−ipλsXn−p =
n−1X
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλsXn−p

=
cX

p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλsXn−p +
n−1X
p=c+1

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλsXn−p.(21)

Then, as in the proof of theorem 3.2 in Phillips (1999), we get

1

n1−d

cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs

= eiλs
1

n1−d

∞X
p=0

(−d)p+1
(p+ 1)!

2F1

³
1 + p− d, 1; p+ 2; eiλs

´
+O

µ
c

ns

¶

+eiλs
1

n1−d

∞X
p=c+1

(−d)p+1
(p+ 1)!

2F1

³
1 + p− d, 1; p+ 2; eiλs

´
where 2F1 denotes the hypergeometric function. Now

∞X
p=0

(−d)p+1
(p+ 1)!

2F1

³
1 + p− d, 1; p+ 2; eiλs

´
=

∞X
p=0

(−d)p+1
(p+ 1)!

∞X
k=0

(1 + p− d)k (1)k
(k)! (p+ 2)k

eiλsk

=
∞X
p=0

∞X
k=0

Γ (p+ 1− d)

Γ (−d)Γ (p+ 2)
Γ (k + p+ 1− d)

Γ (p+ 1− d)

Γ (p+ 2)

Γ (k + p+ 2)
eiλsk

=
∞X
p=0

∞X
k=0

Γ (k + p+ 1− d)

Γ (−d)Γ (k + p+ 2)
eiλsk.

Note that
∞X
p=0

∞X
k=0

¯̄̄̄
Γ (k + p+ 1− d)

Γ (−d)Γ (k + p+ 2)
eiλsk

¯̄̄̄
<∞,

for d > 1, which is a sufficient condition for exchanging summation and convergence of double
summation w.r.t. p, k. Following the manipulation in Phillips (1999), we have

∞X
p=0

(−d)p+1
(p+ 1)!

2F1

³
1 + p− d, 1; p+ 2; eiλs

´
= − eiλs

(1− eiλs)
1−d ,

which is finite for all values of λs for d > 1. Moreover
∞X

p=c+1

(−d)p+1
(p+ 1)!

2F1

³
1 + p− d, 1; p+ 2; eiλs

´
= o (1)
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since it is a tail sum of a convergent series. We therefore have

1

n1−d

cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs = − 1

n1−d
eiλs

(1− eiλs)
1−d +O

µ
c

ns

¶
+ o

³
n1−d

´
(22)

Hence,

1

nd

⎡⎣ 1

n1−d

cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs

⎤⎦ = − 1
nd

1

n1−d
eiλs

(1− eiλs)
1−d +O

µ
1

nd
c

ns

¶
+ o

³
n1−2d

´
(23)

= O

µ
sd−1

nd

¶
+O

µ
1

nd
c

ns

¶
+ o

³
n1−2d

´
,

which holds in the d > 1 case. The first term in (23) is O
¡
sd−1/nd

¢
, which clearly dominates

the second term when c = n1−β with β > 1
2 (see below) and also dominates the third term.

Therefore, the limit behavior of the first term in (21) can be written as

1

nd

⎡⎣ cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs
Xn−p√

n

⎤⎦
=

1

nd

⎡⎣ 1

n1−d

cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs
Xn−p

nd−
1
2

⎤⎦
=

1

nd

⎡⎣ 1

n1−d

cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs
∙
Xn

nd−
1
2

+ op (1)

¸⎤⎦
=

1

nd

⎡⎣ 1

n1−d

cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs
Xn

nd−
1
2

⎤⎦+ op

µ
sd−1

nd

¶

= − 1
n

eiλs

(1− eiλs)
1−d

Xn

nd−
1
2

+ op

µ
sd−1

nd

¶
,

since Xn−p

nd−
1
2
= Xn

nd−
1
2
+ op (1) uniformly over p < c with c = n1−β, β > 1

2 , a property that

can be shown to hold in the same way as in the proof of theorem 3.2 in Phillips (1999). It
remains to show that the second term in (21) is of lesser order than the first term. Observe
that for d > 1,

n−1X
p=c+1

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs =
∞X
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs −
cX

p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs

(24)

−
∞X
p=n

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs . (25)
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Since the difference between two terms in (24) is negligible according to (22), and so is the

tail sum in (25), it follows that the order of the second term in (21) is op
³
sd−1

nd

´
, and hence

it may be neglected.
To conclude part (a), we may therefore extend the result in theorem 3.2(b) in Phillips

(1999) to the d > 1 case as follows. For λ = λs =
2πs
n → 0 as n→∞, we have

1

nd

eXλsn(d)√
n

= − 1
nd

eiλs

(1− eiλs)
1−d

Xn−p√
n
+ op

Ã
1

nd
eiλs

(1− eiλs)
1−d

Xn−p√
n

!

= − 1
n

eiλs

(1− eiλs)
1−d

Xn

nd−
1
2

+ op

µ
sd−1

nd

¶
,

as required.

5.2 Proof of Lemma 2.4 From lemma 3.1 in Phillips (1999), we have the following relation
for the sinusoidal polynomial

Dn

³
eiλs ; d

´
=
³
1− eiλs

´d
+

1

Γ (−d)nd
1

2πis

∙
1 +O

µ
1

s

¶¸
,

for λ = λs =
2πs
n → 0 and s → ∞ as n → ∞. With this behavior of Dn

¡
eiλ; d

¢
and lemma

2.3(a), it is easily deduced that

1

nd
wx (λs) = Dn

³
eiλs ; d

´−1 ∙ 1
nd

wu (λs) +
1

nd
1√
2πn

eXλsn(d)

¸
=

∙³
1− eiλs

´d
+O

µ
1

nd
1

s

¶¸−1 " 1
nd

wu (λs) +
1√
2π

1

nd

eXλsn(d)√
n

#

=
³
1− eiλs

´−d 1
nd

wu (λs)−
1√
2π

1

n

eiλs

(1− eiλs)

Xn

nd−
1
2

+ op

µ
1

s

¶
=

"
1

(−2πis)d
wu (λs)−

1√
2π

1

(−2πis)
Xn

nd−
1
2

# h
1 + o

³ s
n

´i
+ op

µ
1

s

¶
, (26)

as stated in lemma 2.4 under the condition s
n → 0.

5.3 Proof of Theorem 3.1 As is well known, 1m
Pm

s=1 x
2
s → 1 since

mX
s=1

x2s ∼ m− (1
2
+
1

4
m−1) (lnm)2 + (1− 2Dm −m−1Dm) lnm+ Cm + 2Dm −m−1D2

m,

where Cm and Dm are constants (e.g., equation (6) in Geweke and Porter-Hudak, 1983).
Noting that

1

(lnm)m1−α

mX
j=1

ln j

jα
∼ 1

1− α
+O

µ
1

lnm

¶
, α < 1,
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we have

1

(lnm)m2−d

mX
s=1

ln s

sd−1
≈ 1

2− d
+ o(1),

and then

(lnm)m2−d

m

1

(lnm)m2−d

mX
s=1

ln s
1

sd−1
→ 0, (27)

for all d > 1. We also have

1

m2−d

mX
s=1

1

sd−1
=

1

2− d
+ o(1),

so that

(lnm)m2−d

m

1

m2−d

mX
s=1

1

sd−1
→ 0.

We have

2(bd− 1) = −2" mX
s=1

x2s

#−1 " mX
s=1

xsvn

#
− 2

"
mX
s=1

x2s

#−1 " mX
s=l+1

xs ln |1 + ζns|
#

(28)

from the representation of the logarithm of the periodogram in (13) and (15). Now, observe
that the first term of (28) is identically zero, and therefore we need to show that the second
term in (28) converges to zero in order to establish the inconsistency of the log periodogram
estimator. First, we show that

1

m

mX
s=1

xs ln |1 + ζns| = op (1) . (29)

Throughout the following proof we use a domination argument to establish (29). That is, we
will show ¯̄̄̄

¯ 1m
mX
s=1

xs ln |1 + ζns|
¯̄̄̄
¯ = op (1) .

Note that the following inequality holds for all x

|ln |1 + x|| ≤ |x|+ |x|
|1 + x| .

Therefore, we have¯̄̄̄
¯ 1m

mX
s=1

xs ln |1 + ζns|
¯̄̄̄
¯ ≤ 1

m

mX
s=1

|xs| |ln |1 + ζns||

≤ 1

m

mX
s=1

|xs| |ζns|
∙
1 +

1

|1 + ζns|

¸

=
1

m

mX
s=1

|xs| |ζns|+
1

m

mX
s=1

|xs|
1

|1 + ζns|
. (30)
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Now, we have to show that both terms in (30) converge to zero in probability. To prove the
convergence in the first term in (30), it suffices to show that

1

m

mX
s=1

|xs| |ξns|
p→ 0, (31)

where ξns is already defined. The proof of (31) follows and will be called Step (i) for future
reference.

Step (i).
Let

ξns =

¡
1− eiλs

¢1−d
eiλs

n1−d
wu (λs)³

Xn

nd−
1
2

´ =: ¡1− eiλs
¢1−d

eiλs
n1−dυns,

then we need to show that

1

m

mX
s=1

|xs| |ξns| =
1

m

mX
s=1

|xs|
¯̄̄̄
1

sd−1
υns

¯̄̄̄
p→ 0. (32)

Note that

1

m

mX
s=1

|xs|n1−d
¯̄̄
1− eiλs

¯̄̄1−d
|υns|

=
1

m

mX
s=1

|xs|
³
n
¯̄̄
1− eiλs

¯̄̄´1−d
|wu (λs)|

⎛⎜⎝ 1¯̄̄
Xn

nd−
1
2

¯̄̄
⎞⎟⎠

≤

⎛⎜⎝ 1¯̄̄
Xn

nd−
1
2

¯̄̄
⎞⎟⎠Ã 1

m

mX
s=1

µ
|xs|

³
n
¯̄̄
1− eiλs

¯̄̄´1−d¶2! 1
2
Ã
1

m

mX
s=1

|wu (λs)|2
!1

2

.

From (27), we deduce that

1

m

mX
s=1

¯̄̄̄
|xs|

³
n
¯̄̄
1− eiλs

¯̄̄´1−d ¯̄̄̄
→ 0,

since

1

m

mX
s=1

¯̄̄ xs
sd−1

¯̄̄
=
1

m

mX
s=1

¯̄
ln s− ln s

¯̄
sd−1

= O

µ
ln(m)m2−d

m

¶
, where ln s =

1

m

mX
s=1

ln s,

and hence it follows that

1

m

mX
s=1

¯̄̄ xs
sd−1

¯̄̄
→ 0 and hence

1

m

mX
s=1

¯̄̄ xs
sd−1

¯̄̄2
→ 0. (33)
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It is known (e.g., Marinucci and Robinson, 2000) that

Xn

nd−
1
2

d→ ω

Γ(d)

Z 1

0
(1− s)d−1 dW (s),

where ω2 is the long run variance of ut and W is a standard Brownian motion. Hence,¯̄̄
Xn/n

d− 1
2

¯̄̄−1
= Op (1) . We now need to show that

1

m

mX
s=1

|wu (λs)|2 = Op (1) ,

a result which can be obtained by a strong approximation approach. Phillips (2006) showed
that asymptotically infinite collections of dft’s of ut at the fundamental frequencies in the
vicinity of the origin can be treated as asymptotically independent normal variates. A suitable
strong approximation that applies when ut is a linear processes satisfying the condition (2)
is given in Phillips (2006). Setting Snk = n−1/2Σkj=1uj , we can write this approximation in
the form

sup
0≤k≤n

¯̄̄̄
Snk −B(

k

n
)

¯̄̄̄
= op

µ
1

n
1
2
− 1
p

¶
. (34)

The following argument is based on the proof of Lemma C and the proof of theorem 3.3 in
Phillips (2006). Using the embedding (34), we can write for s = 1, ...,m

wu (λs) =
1√
2π

Z 1

0
e2πisrdB (r) + op

µ
m

n
1
2
− 1
p

¶
, (35)

where the error magnitude holds uniformly in s ≤ m. Let

ζs =:
1√
2π

Z 1

0
e2πisrdB (r) ,

then the collection of random variates {ζs}ms=1 are independent complex GaussianNc (0, fu (0)) ,where
fu (0) = (2π)

−1 |C (1)|2 σ2 is the spectral density of ut at origin. Writing

wu (λs) = ζs + op

µ
m

n
1
2
− 1
p

¶
,

uniformly over s ≤ m, then we have

1

m

mX
s=1

|wu (λs)|2 =
1

m

mX
s=1

|ζs +As|2 =
1

m

mX
s=1

|ζs|2
¯̄̄̄
1 +

As

ζs

¯̄̄̄2
≤ sup

s

¯̄̄̄
1 +

As

ζs

¯̄̄̄2 1
m

mX
s=1

|ζs|2 ,
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where As = op

µ
m

n
1
2−

1
p

¶
uniformly in s ≤ m. By the application of lemma C in Phillips

(2006), it follows that

sup
s

¯̄̄̄
As

ζs

¯̄̄̄
≤ sup

s
|As| sup

s

¯̄̄̄
1

ζs

¯̄̄̄
≤ sup

s
|As|

X
s≤m

1

|ζs|
= Op

µ
m logm

n
1
2
− 1
p

¶
,

and note that

1

m

mX
s=1

|ζs|2 = Op (1) ,

since {ζs}ms=1 are independent complex Gaussian Nc (0, fu (0)) . Therefore, we have

1

m

mX
s=1

|wu (λs)|2 = Op

µ
m logm

n
1
2
− 1
p

¶
Op (1) = op (1)

if m logm

n
1
2−

1
p
→ 0, which leads

1

m

mX
s=1

|xs| |ξns| = o(1)Op (1)Op (1) = op(1), (36)

giving (32) and completing Step (i).

Step (ii).
Next, we need to show that the second term of (30) converges to zero in probability. It

suffices to show that

1

m

mX
s=1

|xs|
1

|1 + ζns|
= op (1) . (37)

The proof proceeds in a similar way to Step (i). Note that

1

m

mX
s=1

|xs|
1

|1 + ζns|
=

1

m

mX
s=1

¯̄̄ xs
sd−1

¯̄̄ 1¯̄
1

sd−1
+ 1

sd−1
ζns
¯̄

≤ sup
s

1¯̄
1

sd−1
+ 1

sd−1
ζns
¯̄ 1
m

mX
s=1

¯̄̄ xs
sd−1

¯̄̄
= sup

s

1¯̄̄̄
1

sd−1
+
³

Xn

nd−
1
2

´−1
wu (λs)

¯̄̄̄ 1
m

mX
s=1

¯̄̄ xs
sd−1

¯̄̄

Now we have

inf
s

µ
Xn

nd−
1
2

¶−1
wu (λs) =

µ
Xn

nd−
1
2

¶−1
inf
s
wu (λs) = Op (1) (38)
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uniformly in s ≤ m by the strong approximation given in (35) as long as m

n
1
2−

1
p
→ 0, and 1

sd−1

is bounded above zero for all s ≤ m. By (33) and (38), we have

sup
s

1¯̄̄̄
1

sd−1
+
³

Xn

nd−
1
2

´−1
wu (λs)

¯̄̄̄ 1
m

mX
s=1

¯̄̄ xs
sd−1

¯̄̄
= Op (1) o (1)

and hence

1

m

mX
s=1

|xs|
1

|1 + ζns|
= op (1) (39)

as required, completing Step (ii).
Combining (36) and (39) from these two steps we get

1

m

mX
s=1

|xs| |ζns|+
1

m

mX
s=1

|xs|
1

|1 + ζns|
p→ 0,

and hence ¯̄̄̄
¯ 1m

mX
s=1

xs ln |1 + ζns|
¯̄̄̄
¯ p→ 0,

by the inequality in (30), which further implies that

1

m

mX
s=1

xs ln |1 + ζns|
p→ 0. (40)

From (40), the stated inconsistency result follows, viz.,

2(bd− 1) p→ 0, (41)

when 1 < d < 2.

Next, we give a lemma which enables us to calculate the moments of the logarithmic
function of the periodogram, which is needed for the proof of Theorem 3.3. The statistical
properties of non-linear functions of the periodogram of stationary processes have been ex-
plored earlier in the literature, notably by Chen and Hannan (1980), Von Sachs (1994), and
Janas and Von Sachs (1995), and their results for the moments of such non-linear functions
are not dependent upon Gaussianity assumptions. We will use the following lemma, which is
a slightly modified version of Lemma A.1 in Janas and Von Sachs (1995).

5.4 Lemma Assume that i.i.d. sequence εt satisfies the Cramér condition (19) and condi-
tion (20) and has unit variance and finite fourth moments. Then

(i) E ln (Iε (λj)) = E [lnZ] +O
¡
n−1

¢
= γ +O

¡
n−1

¢
, uniformly in λj ,
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(ii) Var ln (Iε (λj)) = Var [lnZ] +O
¡
n−1

¢
= π2

6 +O
¡
n−1

¢
, uniformly in λj ,

(iii) Cov [ln (Iε (λi)) , ln (Iε (λj))] = O
¡
n−1

¢
, uniformly in λi 6= ±λj ,

where Z denotes a standard exponentially distributed random variable (i.e. with parameter 1)
and γ is the Euler’s Gamma. The frequency index j can be any number such that 1 < j < n

2 ,

i.e., the lemma holds irrespective of j.

The Cramér condition is needed for the approximation of the joint density of discrete
Fourier transforms and for non-linear functions of the dft, but is not enough for the loga-
rithmic function because of the singular behavior of lnx at x = 0, as discussed in the proof
of Corollary 3.4 of Janas and Von Sachs (1995). The additional assumption (20) takes care
of this difficulty by ensuring that the distribution of

P
Iε (λj) is absolutely continuous for

sufficiently large n.
To extend the results of lemma 5.4 to linear processes, we use the spectral form of the

BN decomposition used in Phillips and Solo (1992), as we now demonstrate. In particular,
we may write

1

m

mX
s=1

Iu (λs) =
1

m

mX
s=1

Iε (λs) + op (1) ,

which is deduced as follows. As in Phillips and Solo (1992), decompose the operator C (L)
as

C (L) = C
³
eiλs

´
+ eC ³e−iλsL´³e−iλsL− 1´ , eC (L) = ∞X

j=0

⎛⎝ ∞X
k=j+1

cke
iλsk

⎞⎠Lj ,

where
P∞

j=0

¯̄̄P∞
k=j+1 ck

¯̄̄
<∞ in view of the summability condition in (2). The dft of ut can

then be written as

wu (λs) = C
³
eiλs

´
wε (λs) +

1√
2πn

(ελs0 − ελsn) , (42)

with

ελsn = eC ³e−iλL´ εn = ∞X
j=0

⎛⎝ ∞X
k=j+1

cke
iλsk

⎞⎠ e−iλsjεn−j

=
∞X
j=0

⎛⎝ ∞X
k=j+1

ck

⎞⎠ eiλs(k−j)εn−j =
∞X
j=0

ecjλse−iλsjεn−j ,
where ecjλs =P∞

k=j+1 cke
iλsk. The following lemma shows that the second component in this

decomposition is negligible uniformly over s and is needed in our log periodogram regression
application.

5.5 Lemma If Assumption 2.1 holds, maxs
¯̄
1
nδ
ε
λsn

¯̄ p→ 0 for all δ > 0.
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Proof We have

max
s

¯̄
εελsn

¯̄
= max

s

¯̄̄̄
¯̄ ∞X
j=0

ecjλse−iλsjεn−j
¯̄̄̄
¯̄

≤ max
s

⎡⎣ ∞X
j=0

|ecjλsεn−j |
⎤⎦ ≤

⎡⎣ ∞X
j=0

|cjεn−j |

⎤⎦ ,
where cj =

P∞
k=j+1 |ck| . So,

Emax
s

¯̄
ε
λsn

¯̄
≤ E

⎡⎣ ∞X
j=0

|cjεn−j |

⎤⎦ = E
⎡⎣ ∞X
j=0

|cjε−j |

⎤⎦ .
It follows that, for any η, δ > 0

P

µ
1

nδ
max
s

¯̄
ε
λsn

¯̄
> η

¶
<

Emaxs
¯̄
ε
λsn

¯̄
ηnδ

≤
E
hP∞

j=0 |cjε−j |
i

ηnδ

≤
P∞

j=0 |cj |E |ε0|
ηnδ

=
(
P∞

k=0 k |ck|)E |ε0|
ηnδ

→ 0,

in view of (2), so that

max
s

¯̄̄̄
1

nδ
ε
λsn

¯̄̄̄
,max

s

¯̄̄̄
1

nδ
ε
λs0

¯̄̄̄
p→ 0.

as required.

The next lemma applies the Phillips and Solo (1992) device to the log periodogram
ln Iu (λs).

5.6 Lemma If Assumption 2.1 and the assumptions in theorem 3.3 hold and m logm

n
1
2−δ

→ 0

for any δ > 0, then

1

m

mX
s=1

xs ln Iu (λs) =
1

m

mX
s=1

xs ln Iε (λs) + op (1) .

Proof Using (42), we have

1

m

mX
s=1

xs ln Iu (λs) =
1

m

mX
s=1

xs ln

¯̄̄̄
C
³
eiλs

´
wε (λs) +

1√
2πn

(ελs0 − ελsn)

¯̄̄̄2
=

1

m

mX
s=1

xs ln
¯̄̄
C
³
eiλs

´¯̄̄2
Iε (λs) +

1

m

mX
s=1

xs ln |1 +Ψs|2 ,

where

Ψs =

1√
2πn

(ελs0 − ελsn)

C (eiλs)wε (λs)
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We need to show that

1

m

mX
s=1

xs ln |1 +Ψs|
p→ 0.

Note that¯̄̄̄
¯ 1m

mX
s=1

xs ln |1 +Ψs|
¯̄̄̄
¯ ≤ 1

m

mX
s=1

|xs| |ln |1 +Ψs|| ≤
1

m

mX
s=1

|xs| sup
s
|ln |1 +Ψs|| .

On the other hand, from the inequality |ln(1 + Y )| ≤ 2 |Y | for |Y | ≤ 1
2 , we deduce that

P [|ln (1 + Y )| > �] ≤ P [|Y | > �/2] for � ≤ 1,

which holds for nonnegative 1 + Y , from Robinson (1995a). Then, if

sup
s
|Ψs|

p→ 0, (43)

it follows that

sup
s
|ln |1 +Ψs||

p→ 0. (44)

Observe that

sup
s
|Ψs| = sup

s

¯̄̄̄
¯
1√
n
(ελs0 − ελsn)

C (eiλs)wε (λs)

¯̄̄̄
¯ = sups

¯̄̄̄
¯ 1

nδ
(ελs0 − ελsn)

n
1
2
−δC (eiλs)wε (λs)

¯̄̄̄
¯

≤ 1

n
1
2
−δ
sup
s

¯̄̄̄
1

nδ
(ελs0 − ελsn)

¯̄̄̄
sup
s

¯̄̄̄
1

C (eiλs)wε (λs)

¯̄̄̄
for 0 < δ < 1

2 . From lemma 5.5, we have

sup
s

¯̄̄̄
1

nδ
(ελs0 − ελsn)

¯̄̄̄
p→ 0.

As before, by the application of the lemma C and the proof of theorem 3.2 in Phillips (1996),
we have

sup
s

¯̄̄̄
1

C (eiλs)wε (λs)

¯̄̄̄
= Op (m logm) ,

and therefore, for all s < m, it follows that

sup
s
|Ψs| = op

µ
m logm

n
1
2
−δ

¶
.

Therefore, we have the desired result in (43), and (44) follows as long as m logm

n
1
2−δ

→ 0. Since
1
m

Pm
s=1 |xs| = O (1) , as shown in Robinson (1995b), it follows that

1

m

mX
s=1

xs ln

¯̄̄̄
¯1 +

1√
2πn

(ελs0 − ελsn)

C (eiλs)wε (λs)

¯̄̄̄
¯ = op (1) .
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Therefore, we have

1

m

mX
s=1

xs ln Iu (λs) =
1

m

mX
s=1

xs ln
¯̄̄
C
³
eiλs

´¯̄̄2
Iε (λs) + op (1)

=
1

m

mX
s=1

xs ln Iε (λs) + op (1) ,

since |C (1)|2 <∞ and

1√
m

mX
s=1

xs ln
¯̄̄
C
³
eiλs

´¯̄̄2
→ 0

as shown in lemma 1 of Hurvich, Deo, and Brodsky (1998) under m5

n4
→ 0.

5.7 Proof of Theorem 3.2 As defined in (14), the log periodogram regression estimator
employs the frequencies {λs, s = 1, ...,m} . From (13) in section 3 of the paper, we have
the following representation of the periodogram over frequencies {λs, s = l + 1, ...,m} where
nα

l → 0 for some α ∈ (12 , 1),

ln (Ix (λs)) = ln

µ
1

2π

¶
+ 2 ln

µ
nd

n

¶
− 2 ln (λs) + 2 ln

µ¯̄̄̄
Xn

nd−
1
2

¯̄̄̄¶
+ 2 ln |1 + ζns| .

The representation over frequencies {λs, s = 1, ..., l} should be slightly changed as the fol-
lowing argument shows for 12 < d < 1. We work from the representation of wx(λs) given in
(8) and the representation of eXλsn(d) given in (21). Proceeding as in the proof of lemma 2.3
and using the proof of theorem 3.2 in Phillips (1999), the first term of (21) has a factor of
the form

1

n1−d

cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs

= − 1

n1−d
eiλs

(1− eiλs)
1−d +

1

n1−d

∞X
p=c+1

(−d)p+1
(p+ 1)!

2F1

³
1 + p− d, 1; p+ 2; eiλs

´
+O

µ
c

ns

¶
.

(45)

However, unlike the proof of lemma 2.3, we will not here assume that nα

s → 0 (for some
α ∈ (12 , 1)). Hence, the first term in (45) does not necessarily dominate the second term in

(45). Let C(c, d, s) =
P∞

p=c+1

(−d)p+1
(p+1)! 2F1

¡
1 + p− d, 1; p+ 2; eiλs

¢
for notational simplicity.
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Then, we have

1

nd

⎡⎣ cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs
Xn−p√

n

⎤⎦
=

1

nd

⎡⎣ 1

n1−d

cX
p=0

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs
∙
Xn

nd−
1
2

+ op (1)

¸⎤⎦
=

1

nd

"
− 1

n1−d
eiλs

(1− eiλs)
1−d +

1

n1−d
C(c, d, s)

#
Xn

nd−
1
2

+Op

µ
1

nd
c

ns

¶
, (46)

since Xn−p

nd−
1
2
= Xn

nd−
1
2
+ op (1) uniformly over p < c such that c = n1−β, β > 1

2 , as before.

Moreover, the second term in (21) is of lesser order than the first term, as we now show. In
particular, using lemma C(b) in Phillips (1999), we have

1

n1−d

n−1X
p=c+1

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs
Xn−p

nd−
1
2

= Op

⎛⎝ 1

n1−d

n−1X
p=c+1

1

pds

Xn−p

nd−
1
2

⎞⎠ = Op

⎛⎝1
s

1

n1−d

⎛⎝ ∞X
p=c+1

1

pd
−

∞X
p=n

1

pd

⎞⎠ Xn−p

nd−
1
2

⎞⎠
= Op

µ
1

s

1

n1−d
1

cd−1

¶
= Op

µ
1

s

³n
c

´d−1¶
.

Therefore, the order of the second term in (21) can be written as

1

nd

⎡⎣ 1

n1−d

n−1X
p=c+1

⎛⎝ nX
k=p+1

(−d)k
k!

eikλs

⎞⎠ e−ipλs
Xn−p

nd−
1
2

⎤⎦ = Op

µ
1

s

1

cd−1
1

n

¶
, (47)

which may be neglected because the order of the first term in (46) exceeds the order of (47).
Therefore, for s = 1, ..., c, we have

1

nd

eXλsn(d)√
n

= − 1
n

"
eiλs

(1− eiλs)
1−d − C(c, d, s)

#
Xn

nd−
1
2

+Op

µ
1

nd
c

ns

¶
,

which includes the additional term C(c, d, s) compared to the representation given in the
lemma 2.3. Now, the dft over frequencies {λs, s = 1, ..., c} will be

1

nd
wx (λs) = Dn

³
eiλs ; d

´−1 ∙ 1
nd

wu (λs) +
1

nd
1√
2πn

eXλsn(d)

¸
=

³
1− eiλs

´−d 1
nd

wu (λs)

− 1
n

µ
eiλs

(1− eiλs)
−
³
1− eiλs

´−d
C(c, d, s)

¶
Xn√
2πnd−

1
2

+Op

µ
c

nsd+1

¶
.(48)
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As shown in Phillips (1999), we have the following representation

C(c, d, s) =
∞X
k=0

⎡⎣ ∞X
p=c+1

(−d)p+1
(p+ 1)!

(1− d+ k)p (2)p
(1− d)p (k + 2)p

⎤⎦ (1− d)k
(2)k

eiλsk

=
∞X
k=0

⎡⎣(−d) ∞X
p=c+1

(1− d+ k)p
(k + 2)p

⎤⎦ (1− d)k
(2)k

eiλsk

= O

⎛⎝ ∞X
k=0

⎡⎣(−d)Γ (k + 2)
Γ (1− d+ k)

∞X
p=c+1

1

p1+d

⎤⎦ (1− d)k
(2)k

eiλsk

⎞⎠
= O

Ã
1

cd
(−d)
Γ (1− d)

∞X
k=0

eiλsk

!
= O

µ
1

cd
1

(1− eiλs)

¶
.

That is,

C(c, d, s) ∼ 1

cd
1

(1− eiλs)
c,

where c is a constant. Therefore, the dft in (48) can be rewritten as

1

nd
wx (λs) =

³
1− eiλs

´−d 1
nd

wu (λs)

−
∙
1

n

eiλs

(1− eiλs)
− c

n

³
1− eiλs

´−d 1
cd

1

(1− eiλs)

¸
Xn√
2πnd−

1
2

+Op

µ
c

nsd+1

¶
=

"
1

(−2πis)d
wu (λs)−

µ
1

(−2πis) −
c1
s1+d

nd

cd

¶
Xn√
2πnd−

1
2

# h
1 + o

³ s
n

´i
+Op

µ
c

nsd+1

¶
,

where c1 = c/ (−2πi)1+d . Then, the periodogram is

Ix (λs)

n2d
=

¯̄̄̄
¯
"

1

(−2πis)d
wu (λs)−

µ
1

(−2πis) −
c1
s1+d

nd

cd

¶
Xn√
2πnd−

1
2

# h
1 + o

³ s
n

´i
+Op

µ
c

nsd+1

¶¯̄̄̄
¯
2

.

(49)

From (49), the periodogram over frequencies {λs, s = 1, ..., c} can be rearranged as

Ix (λs) =
³ n

2πs

´2dµnd
cd

¶2µ
Xn

nd−
1
2

¶2 ¯̄̄̄
ξns

cd

nd
+O

µ
1

s

¶
+O

µ
1

s1−d
cd

nd

¶¯̄̄̄2
, (50)

where

ξns =
wu (λs)³

Xn

nd−
1
2

´ ,
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and the relation (50) holds uniformly in s ≤ m. Next, break the estimator bd in (14) down
into the following two components

2bd = −
"

mX
s=1

x2s

#−1 " mX
s=1

xs ln Ix (λs)

#

= −
"

mX
s=1

x2s

#−1 " lX
s=1

xs ln Ix (λs) +
mX

s=l+1

xs ln Ix (λs)

#
.

Using (17), (18) and (50), we have

2(bd− d) = −
Ã

mX
s=1

x2s

!−1 mX
s=l+1

xsυ −
Ã

mX
s=1

x2s

!−1 mX
s=l+1

xs ln |ξns|

−
Ã

mX
s=1

x2s

!−1 lX
s=1

xsυn −
Ã

mX
s=1

x2s

!−1 lX
s=1

xs ln

¯̄̄̄
ξns

cd

nd

¯̄̄̄
+ op (1)

= −
Ã

mX
s=1

x2s

!−1 mX
s=1

xsυn −
Ã

mX
s=1

x2s

!−1 mX
s=1

xs ln |ξns|

−
Ã

mX
s=1

x2s

!−1 lX
s=1

xs ln
cd

nd
+ op (1) . (51)

As before, the first term of (51) is zero, so we need only show that

1

m

mX
s=1

xs ln |ξns|
p→ 0,

and

1

m

lX
s=1

xs ln
cd

nd
→ 0.

Observe that

1

m

mX
s=1

xs ln |ξns| =
1

m

mX
s=1

xs ln
|wu (λs)|¯̄̄

Xn

nd−
1
2

¯̄̄
=

1

m

mX
s=1

xs ln |wu (λs)|−
1

m

mX
s=1

xs ln

¯̄̄̄
Xn

nd−
1
2

¯̄̄̄
,

where the second term is also zero. Using lemma 5.6, we have

1

m

mX
s=1

xs ln Iu (λs) =
1

m

mX
s=1

xs ln Iε (λs) + op (1) ,
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and, hence, for

1

m

mX
s=1

xs ln |wu (λs)| =
1

2

1

m

mX
s=1

xs ln |Iu (λs)|
p→ 0

to hold, we need only show that

1

m

mX
s=1

xs ln Iε (λs)
p→ 0.

To do so, we evaluate the first two moments. By lemma 5.4, we have

E

"
1

m

mX
s=1

xs ln Iε (λs)

#
→ 0.

The variance term is

Var

"
1

m

mX
s=1

xs ln Iε (λs)

#
=

1

m2

mX
s=1

x2sVar [ln Iε (λs)] + 2
1

m2

mX
s=1

mX
r=s+1

xsxrCov [ln Iε (λs) , ln Iε (λr)] ,

the first term of which is clearly op (1) . Moreover,

1

m2

mX
s=1

mX
r=s+1

xsxrCov [ln Iε (λs) , ln Iε (λr)] = o(1),

from result (iii) of lemma 5.4 and the fact that 1
m

Pm
s=1 |xs| = O (1) , which is given in

Robinson (1995b). Therefore, we have

1

m

mX
s=1

xs ln |wu (λs)| = op (1) . (52)

It remains to show that the third term in (51) goes to zero, which clearly holds because

lX
s=1

|xs| =
lX

s=1

¯̄
ln s− ln s

¯̄
= O (l ln l) +O (l lnm) ,

and

1

m

lX
s=1

xs ln
cd

nd
= O

Ã
l (lnn)2

m

!
= o (1) , (53)

under the assumption l(lnn)2

m → 0. From (52) and (53), we have bd − d = op(1), giving the
consistency of log periodogram regression for 12 < d < 1.
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