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Abstract

Stable autoregressive models of known finite order are considered with martingale differ-

ences errors scaled by an unknown nonparametric time-varying function generating hetero-

geneity. An important special case involves structural change in the error variance, but in

most practical cases the pattern of variance change over time is unknown and may involve

shifts at unknown discrete points in time, continuous evolution or combinations of the two.

This paper develops kernel-based estimators of the residual variances and associated adap-

tive least squares (ALS) estimators of the autoregressive coefficients. These are shown to

be asymptotically efficient, having the same limit distribution as the infeasible generalized

least squares (GLS). Comparisons of the efficient procedure and ordinary least squares (OLS)

reveal that least squares can be extremely inefficient in some cases while nearly optimal in

others. Simulations show that, when least squares work well, the adaptive estimators perform

comparably well, whereas when least squares work poorly, major efficiency gains are achieved

by the new estimators.
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1 Introduction

The failure of the assumption of homogenous innovations in many time series models has been well

documented in the macroeconomics and empirical finance literatures. Ignoring this problem leads

to inefficient estimation and unreliable inference on the conditional mean function. To account for

conditional heteroskedasticity, it is common practice to assume that the innovations follow some

parametric ARCH or GARCH models based on those proposed by Engle (1982) and Bollerslev

(1986). Efficient estimation of the mean function in this case is achieved by quasi-maximum

likelihood based or other adaptive procedures, and recent developments on this topic have been

surveyed by Li, Ling and McAleer (2002).

Although the GARCH-type model is successful in capturing many important features in macro-

economic or financial time series such as volatility clustering and persistent autocorrelation, a

crucial weakness is its non-robustness to the stationarity assumption. In typical GARCH-type

models, the time-varying volatility is exclusively attributed to the conditional variance or covari-

ance structure, while the unconditional variance is assumed to be constant over time. When this

condition fails, ARCH or GARCH-based approaches may lead to serious model mis-specification.

For instance, artifical IGARCH effects may be observed due to nonstationary changes in the un-

conditional volatility (Diebold, 1986, Mikosch and Stărică, 2004). This problem is particularly

relevant in view of the strong evidence against constancy of unconditional second moments shown

in the empirical literatures, e.g., in time series of exchange rates, interest rates, GDP and other

macroeconomic variables (inter alia, Loretan and Phillips, 1994, Watson, 1999, McConnell and

Perez Quiros, 2000, van Dijk et al, 2002). Recently, more complicated GARCH-type models have

been proposed to allow for unconditional heteroskedasticity, e.g. varying coefficients GARCH

models (Polzehl and Spokoiny, 2006) and spline GARCH models (Engle and Rangel, 2004).

An alternative approach to modeling time-varying volatility is to use a smooth deterministic

nonparametric framework, assuming that the unconditional variance is the main time-changing

feature to be captured (see, e.g. Hsu, Miller and Wichern, 1974, Officer, 1976, Merton, 1980,

and French, Schwert and Stambaugh, 1987). Compared to stochastic heteroskedasticity model-

ing like GARCH-type models, this deterministic framework is technically easier to handle and

allows for nonstationarity. Recently, Drees and Stărică (2002) and Stărică (2003) used a de-

terministic nonstationary framework to analyze time series of S&P 500 returns, and found that
2



this approach outperforms the GARCH-type models in both fitting the data and forecasting the

next-day volatility. However, in the typical setting of this framework, the volatility is specified as

a smooth function of time thereby ruling out important practical features like structural breaks

in the underlying series. Meanwhile, there are other contributions focusing particularly on mod-

eling structural changes in volatility. For instance, Wichern, Miller and Hsu (1976) investigated

the AR(1) model when there are a finite number of step changes at unknown time points in the

error variance. These authors used iterative maximum likelihood methods to locate the change

points and then estimated the error variances in each block by averaging the squared least squares

residuals. The resulting feasible weighted least squares estimator was shown to be efficient for

the specific model considered. Alternative methods to detect step changes in the variances of

time series models have been studied by Abraham and Wei (1984), Baufays and Rasson (1985),

Tsay (1988), Park, Lee and Jeon (2000), Lee and Park (2001), de Pooter and van Dijk (2004) and

Galeano and Peña (2004).1

However, in practice the pattern of variance changes over time, which may be discrete or

continuous, is unknown to the econometrician and it seems desirable to use methods that can adapt

for a wide range of possibilities. Accordingly, this paper combines two strands of the literatures

mentioned above by providing a general framework to modeling nonparametric deterministic

volatility in a stable linear AR(p) model, and develops an efficient estimation procedure that

adapts for the presence of different and unknown forms of variance dynamics. Specifically, the

model errors are assumed to be martingale differences multiplied by a time-varying scale factor

which is a continuous or discontinuous function of time, thereby permitting a spectrum of variance

dynamics that include step changes and smooth transitions.

Efficient estimation of linear models under heteroskedasticity with iid predictors was earlier

investigated by Carroll (1982) and Robinson (1987), and more recently by Kitamura, Tripathi

and Ahn (2004) using empirical likelihood methods in a general conditional moment restriction

setting. In the time series context, Kuersteiner (2002) developed efficient instrumental variables

estimators for autoregressive models under conditional heteroskedasticity but assuming constancy

of the unconditional variances over time. Harvey and Robinson (1988) focused on a regression

model with deterministically trending regressors only, whose error is an AR(p) process scaled by

1Related literature also includes testing and estimation of structural change points of the mean function in
parametric (Bai, 1994, Bai and Perron, 1998 and references therein) and nonparametric (Yin, 1988, Muller, 1992,
Wu and Chu, 1993, Delgado and Hidalgo, 2000) frameworks.
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a continuous function of time, thereby allowing for both serial correlation and nonstationarity but

ruling out jump behavior in the innovations. In a closely related paper, Hansen (1995) considered

the linear regression model, nesting autoregressive models as special cases, when the conditional

variance of the model error is a function of a covariate that has the form of a nearly integrated

stochastic process with no deterministic drift. Using a kernel-weighted technique similar to ours,

he also obtained the adaptive estimation results. There are some important differences between

Hansen’s paper and ours. The first is model formulation. Instead of focusing on stochastic trends

in volatility as in Hansen (1995), we consider deterministic trends in volatility allowing particularly

for single or multiple abrupt structural breaks. By doing so, a different scale parameter is employed

to obtain sensible limit theory. Second, in constructing the adaptive least squares estimator,

we consider two-sided kernel estimates of the residual variances, which are more accurate than

Hansen’s one-sided kernel estimates when variances are discontinuous over time. For this reason

his proof of adaptiveness can not be extended here. Third, we allow for multiple covariates

in the mean function by studying pth order autoregressive processes. Fourth, we analyze how

specific nonstationary variance patterns, such as shifts and monotone trends in variance, affect

the inefficiency of the OLS estimator relative to the GLS estimator. Finally, we also mention that

regression models in which the conditional variance of the error is an unscaled function of an

integrated time series were recently investigated by Chung and Park (2006) using Brownian local

time limit methods developed in Park and Phillips (1999, 2001).

The remainder of the paper proceeds as follows. Section 2 describes the autoregressive model

with general nonstationary deterministic volatility. Several assumptions are introduced and dis-

cussed. A limit theory is developed in Section 3 for a class of weighted least squares estimators,

including efficient (infeasible) generalized least squares (GLS). A range of examples show that

OLS can be extremely inefficient asymptotically in some cases while nearly optimal in others.

Section 4 proposes a kernel-based estimator of the residual variance and shows the associated

adaptive least squares estimator to be asymptotically efficient, in the sense of having the same

limit distribution as the infeasible GLS estimator. Simulation experiments are conducted in Sec-

tion 5 to assess the finite sample performance of the adaptive estimator. Section 6 concludes.

Proofs of the main results are collected in two appendices.
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2 The Model and Assumptions

Let (Ω,F , P ) be a probability space and {Ft} a sequence of increasing σ−fields of F . Suppose

the sample {Y−p+1, · · · , Y0,Y1, · · · , YT } from the following data generating process for the time

series Yt is observed

A(L)Yt = ut (1)

ut = σtεt, (2)

where L is the lag operator, A(L) = 1 − β1L − β2L
2 − · · · − βpL

p, βp 6= 0, is assumed to

have all roots outside the unit circle and the lag order p is finite and known. We assume {σt}

is a deterministic sequence and {εt} is a martingale difference sequence with respect to {Ft},

where Ft = σ(εs, s ≤ t) is the σ−field generated by {εs, s ≤ t}, with unit conditional variance,

i.e. E(ε2t |Ft−1) = 1, a.s., for all t. The conditional variance of {ut} is characterized fully by

the multiplicative factor σt, i.e. E(u2t |Ft−1) = σ2t , a.s.. This paper focuses on unconditional

heteroskedasticity and σ2t is assumed to be modeled as a general deterministic function, which rules

out conditional dependence of σt on the past events of Yt. The autoregressive coefficient vector

β = (β1, β2, · · · , βp)0 is the parameter of interest. Ordinary least squares (OLS) estimation givesbβ =
³PT

t=1Xt−1X
0
t−1

´−1 ³PT
t=1Xt−1Yt

´
, where Xt−1 = (Yt−1, Yt−2, · · · , Yt−p)0. Throughout

the rest of the paper we impose the following conditions.

Assumption

(i). The variance term σt = g
¡
t
T

¢
, where g(·) is a measurable and strictly positive function

on the interval [0, 1] such that 0 < C1 < inf
r∈[0,1]

g(r) ≤ sup
r∈[0,1]

g(r) < C2 < ∞ for some positive

numbers C1 and C2, and g(r) satisfies a Lipschitz condition except at a finite number of points

of discontinuity;

(ii). {εt} is strong mixing (α-mixing) and E(εt|Ft−1) = 0, E(ε2t |Ft−1) = 1, a.s., for all t.

(iii). There exist μ > 1 and C > 0, such that supt E|εt|4μ < C <∞.

Under Assumption (i) the function g is integrable on the interval [0, 1] to any finite order. For

brevity, we write
R 1
0
gm(r)dr as

R
gm for any finite positive integer m. Formally, of course, the

assumption induces a triangular array structure to the processes ut and Yt, but we dispense with
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the additional affix T in the arguments that follow. Assumption (ii) stipulates {εt} is a martingale

difference (m.d.) sequence and therefore uncorrelated, but may be dependent via higher moments.

In contrast to modeling σt in a setting with finitely many parameters, Assumption (i) is

nonparametric and σt depends only on the relative position of the error in the sample. It allows

for a wide range of nonstationary variance dynamics including single or multiple step changes and

smooth transitions (e.g. trending or periodic variances. See Examples 1 and 2 below). Assumption

(i) excludes the dependence of E(u2t |Ft−1) on past events. A more flexible formulation is to assume

σt as a function of scaled (T−1) integrated time series with a time trend (see the discussion in

the next paragraph).

Our model of nonstationary volatility is related to that of Hansen (1995). In his paper,

the volatility process is specified as a function of a first-order nearly integrated process, viz.

E(u2t |Ft−1) = g2(c1 + c2St/
√
T ), where St = (1 − c3/T )St−1 + zt with martingale differences

zt and constants ci, i = 1, 2, 3. Without accounting for structural breaks explicitly, his model

focuses on stochastic volatility, which asymptotically reduces to ours in Assumption (i) by a

simple extension. To illustrate, suppose a time trend (or drift) c4t is added to the nearly unit

root process St. Since a stochastic trend is dominated by a deterministic trend in the long run at

least for a scalar process, Hansen’s model in this case is no longer applicable and the normalization

factor needs to be adjusted to 1/T rather than 1/
√
T , as in Hansen’s formulation, to achieve a

non-degenerate asymptotic theory.

Combining (1) with (2) is particularly useful in accounting for nonstationary volatility that

may be present in macroeconomic and financial data. Watson (1999) and McConnell and Perez

Quiros (2000) found evidence of monotone trending behavior in variability (corresponding to a

monotone version of the function g(·) in Assumption (i)) for US short and long term interest rates

and GDP series over specified periods. The volatility structure in (2) was also used by Stărică,

Herzel and Nord (2005) in the analysis of the dynamics of stock indexes - see also Stărică and

Granger (2005).

We conclude this section by mentioning that much attention has recently been paid to potential

structural error variance changes in integrated process models. The effects of step breaks in the

innovation variance on unit root tests and stationarity tests were studied by Hamori and Tokihisa

(1997), Kim, Leybourne and Newbold (2002), Busetti and Taylor (2003) and Cavaliere (2004a).
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A general framework to analyze the effect of time varying variances on unit root tests was given in

Cavaliere (2004b) and Cavaliere and Taylor (2004). By contrast, little work of this general nature

(as in Assumption (i), which is attributed to Cavaliere, 2004) has been done on autoregressions

with coefficients satisfying the stable condition, most of the attention in the literature being

concerned with the case of step changes or smooth transitions in the error variance, as discussed

above. The present paper therefore contributes by focusing on efficient estimation of the AR(p)

model with time varying variances of a general form that includes step changes as a special case.

3 Limit Theory

Under the stated assumptions, the process Yt has the following representation

Yt =
∞X
i=0

αiut−i, (3)

where the coefficients {αi} satisfy

∞X
i=0

|αi| <∞. (4)

Under Assumptions (i)-(iii), bβ is asymptotically normal with limit distribution (Phillips and Xu,
2006a): 2

√
T (bβ − β)

d→ N
µ
0,Λ

¶
, (5)

where

Λ =

R
g4

(
R
g2)2

Γ−1,

2 In a more general framework allowing for both stochastic and deterministic nonstationary volatility, this limit
distribution assumes a general form involving stochastic integrals (Xu, 2006, see also Hansen, 1995).

7



and Γ is the p× p positive definite matrix with the (i, j)-th element γ|i−j|, and γk =
∞P
i=0

αiαi+k <

∞, for 0 ≤ k ≤ p− 1. The matrix Γ−1 can be consistently estimated by

bΓ−1 = µbγ|i−j|¶−1
i,j

, (6)

where bγ0, bγ1, · · · , bγp−1 are the first p elements in the first column of the (p2 × p2) matrix [Ip2 −

F ⊗ F ]−1, where ⊗ indicates the Kronecker product and

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

bβ1 bβ2 · · · bβp
0

Ip−1
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Result (5) is a consequence of the following more general theorem.

Theorem 1 Suppose ω2t is non-stochastic and satisfies (i) 0 < ω2t < C < ∞ for all t and

some finite positive number C > 0; (ii) there exists a function ω(·) on [0, 1], continuous except

for a finite number of discontinuities, such that ω2[Tr] → ω2(r) for any r ∈ [0, 1] at which ω(·) is

continuous ; (iii)
R
ω2 > 0. Then, under Assumption (i)-(iii), the weighted least squares (WLS)

estimator

bβWLS =

µ
TP
t=1

ω2tXt−1X
0
t−1

¶−1µ TP
t=1

ω2tXt−1Yt

¶
(7)

satisfies

√
T (bβWLS − β)

d→ N
µ
0,

ω4g4

( ω2g2)2
Γ−1

¶
, (8)

as T →∞.

Naturally, the estimator with the smallest asymptotic variance matrix in the class (7) is

achieved by generalized least squares (GLS)

β∗ =

µ
TP
t=1

Xt−1X
0
t−1σ

−2
t

¶−1µ TP
t=1

Xt−1Ytσ
−2
t

¶
, (9)
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with weights ω2t = σ−2t (The optimality of β∗ can also be justified by the theory of unbiased linear

estimating equations, as in Godambe, 1960 and Durbin, 1960) in which case

√
T (β∗ − β)

d→ N (0,Γ−1), (10)

as T →∞.

Remarks. Clearly, the asymptotic variance matrix of bβ differs from that of β∗ by the factorR
g4/(

R
g2)2, and since Γ−1 is invariant to the function g(·) the inefficiency of the OLS estimatorbβ depends crucially on this factor. The following examples3 show that the factor can be large and

OLS can be very inefficient in some cases, whereas in others, the factor is close to unity and OLS

is close to optimal.

Example 1 (A single abrupt shift in the innovation variance) Let τ ∈ [0, 1] and g(r) be the

step function

g(r)2 = σ20 + (σ
2
1 − σ20)1{r≥τ}, r ∈ [0, 1],

giving error variance σ20 before the break point [Tτ ], and σ21 afterwards. The steepness of the

variance shift is measured by the ratio δ := σ1/σ0 of the post-break and pre-break standard

deviation. By (5) the asymptotic variance matrix of OLS is

Λ =
τ + (1− τ)δ4

(τ + (1− τ)δ2)2
Γ−1 := f21 (τ , δ)Γ

−1,

where f21 (τ , δ) =

µ
τ + (1− τ)δ2

¶−2µ
τ + (1− τ)δ4

¶
, which is a function of the break date τ

and the shift magnitude δ.

Figure 1 plots the value of f1(τ , δ) across δ ∈ [0.01, 100] for different values of τ . The variance

of the OLS estimator largely depends on where the break in the innovation variance occurs. For

the negative (δ < 1) shift, f1(τ , δ) increases steeply as δ decreases when τ = 0.1, and is relatively

steady and nearly unity when τ = 0.9. The graph shows that OLS has large variance when the

3We follow the formulation of the variance function in Cavaliere (2004) (Section 5, page 271-283), who investi-
gates heteroskedastic unit root testing.

9



break occurs at the beginning (τ = 0.1) but much smaller variance, and in fact close to that of

infeasible GLS, when the break is at the end (τ = 0.9) of the sample. This difference is explained by

the fact that when the break in variance occurs early in the sample, the large innovation variance

in the early part of the sample affects all later observations via the autoregressive mechanism. By

contrast, when the break occurs near the end of the sample, only later observations are directly

affected, so the impact of a negative shift is small. This argument applies when there is a negative

shift - a shift to a smaller variance at the end of the sample - and a reverse argument applies in

the case of a positive shift.

In fact, under a positive (δ > 1) shift, OLS has large variance when the shift occurs late

(τ = 0.9) but small variance and more closely approximates infeasible GLS when it is early

(τ = 0.1) in the sample. These phenomena are confirmed in the simulation experiment of Gaussian

AR(1) case, reported in Section 5.

Example 2 (Trending variances in the innovations) Let m be a positive integer and g(r) be

g(r)2 = σ20 + (σ
2
1 − σ20)r

m, r ∈ [0, 1],

giving error variance changing from σ20 to σ21 continuously according to an m-th order power

function. Then

Λ =
1 + 2(δ2 − 1)/(m+ 1) + (δ2 − 1)2/(2m+ 1)

[1 + (δ2 − 1)/(m+ 1)]2
Γ−1 := f22 (m, δ)Γ−1,

where f22 (m, δ) =

µ
1 + δ2−1

m+1

¶−2µ
1 + 2(δ2−1)

m+1 + (δ2−1)2
2m+1

¶
and δ = σ1/σ0.

Figure 2 plots the value of f2(m, δ) across δ ∈ [0.01, 100] for different values of m, so that

both positive (δ > 1) and negative (δ < 1) trending heteroskedasticity is allowed. Compared with

the case of a single abrupt shift in the innovation variance (Example 1), the multiplicative factor

f2(m, δ) changes more steadily for a given value of m, especially when m is small (say, m = 1).

In the case of large m (say, m = 6), much inefficiency in OLS is sustained when there is positive

trending heteroskedasticity (δ > 1).
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4 Adaptive Estimation

The GLS estimator β∗ in (9) is infeasible, since the true values of σt are unknown. To produce a

feasible procedure, we propose a kernel-based estimator eβ employing nonparametric estimates of
the residual variances and having the same asymptotic distribution as β∗. This entails a prelim-

inary estimate of σ2t , denoted by bσ2t , which we motivate as follows. Model (1) can be rewritten
in the form (A(L)Yt)

2 = g2(t/T ) + t, where t = σ2t (ε
2
t − 1) satisfies E t = 0. Let K(z) be a

continuous kernel function defined on the real line such that 0 ≤ supzK(z) < C for some finite

real number C and
R∞
−∞K(z)dz = 1. Applying standard kernel-based nonparametric techniques,

g2(t/T ) can be estimated by
TP
i=1

wti(A(L)Yt)
2, where

wti =

µ
TP
i=1

Kti

¶−1
Kti,

with

Kti =

⎧⎪⎨⎪⎩
K

µ
t−i
Tb

¶
, if t 6= i

0, if t = i

. (11)

Here b is a bandwidth parameter, dependent on T. Since the true value of A(L)Yt is unknown,

the squared OLS residuals bu2t = (Yt −X 0
t−1
bβ)2 may be used to define the variance estimator and

define bσ2t as the weighted sum
bσ2t = TX

i=1

wtibu2i . (12)

While (12) is based on the Nadaraya-Watson (or local constant) method, a variety of nonpara-

metric procedures like local polynomial fitting (Fan and Gijbels, 1996, Fan and Yao, 1998) or

empirical likelihood re-weighted methods (Phillips and Xu, 2006b) may be used instead. For

technical reasons in (12), we use the leave-one-out procedure and omit the observation bu2t . Now
we are able to define the adaptive least squares (ALS) estimator of β as

eβ = µ TP
t=1

Xt−1X
0
t−1bσ−2t ¶−1µ TP

t=1
Xt−1Ytbσ−2t ¶

. (13)

11



The implementation of the estimator bσ2t depends on the choice of kernel function K and the

bandwidth b. Commonly used kernels such as the uniform, Epanechnikov, biweight and Gaussian

functions can be applied. Bandwidth selection is more crucial. As usual, too small bandwidth

produces less bias for the true residual variance but has higher variability. A simple data driven

method to choose the parameter b is cross-validation on the average squared error — see Wong

(1983). The cross-validatory choice of b is the value b∗ which minimizes

dCV (b) = 1

T

TX
t=1

µbu2t − bσ2t¶2 .
We use the following assumptions that modify and extend the earlier assumptions to facilitate

the development of an asymptotic theory for eβ.
Assumption

(iii’). There exists some finite positive number C such that sup
t
E(ε8t ) < C <∞;

(iv). As T →∞, b+ 1
Tb2 → 0.

We replace Assumption (iii) by the stronger assumption (iii’), which requires the existence of

eighth moments of εt for all t. This moment condition simplifies the proof of the main theorem

and is, no doubt, stronger than necessary. Assumption (iv) is a rate condition that requires b→ 0

at a slower rate than T−1/2.

The main result is as follows.

Theorem 2 Let g2(r−) = lim
r̄↑r

g2(r̄) and g2(r+) = lim
r̄↓r

g2(r̄). Under Assumptions (i)-(iv) with

(iii’) instead of (iii), as T →∞,

bσ2[Tr] p→ g2(r−)
Z 0

−∞
K(z)dz + g2(r+)

Z ∞
0

K(z)dz, (14)

and

√
T (eβ − β) =

√
T (β∗ − β) + op(1)

d→ N (0,Γ−1), (15)

12



where Γ−1 is estimated by (6).

Result (14) shows that bσ2[Tr] converges in probability to g2(r) at the point r ∈ [0, 1] when

the function g is continuous, but in general to a point between g2(r−) and g2(r+) depending on

the shape of the kernel. The inconsistency of the error variance function estimator at points of

discontinuities has a diminishing effect on the behavior of adaptive estimators of the autoregressive

coefficients when the sample size is large, as is clear from (15). A one-sided kernel estimator of

the residual variance at time t, as proposed by Hansen (1995), can be also constructed by using

information up to time t− 1. But this estimator has larger bias in small samples at discontinuous

points since it always converges in probability to g2(r−), although the difference on adaptive

estimation diminishes as the sample size increases.

Another adaptive estimator is suggested by Harvey and Robinson (1988), who dealt with time

series regression in the presence of trending regressors. Rather than estimating each σ2t separately,

they split the data into K blocks and estimated σ2t in one block by the average of bu2t in this block.
So only K distinct estimators are used. It can be shown under the regularity assumptions, the

resulting weighted least squares estimator of β also has the same asymptotic distribution as eβ if
1
T1
+ T

T21
+ T2

T → 0, as T →∞, where T1 and T2 are the minimum and maximum lengths of the K

blocks. Compared to our estimator, this estimator is faster to compute but it does not integrate

in an efficient way the information of bu2s where s is close to t when estimating σ2t , especially when
t is close to the boundary of the block.

5 Simulations

This section examines the finite sample performance of the ALS efficient procedure proposed in

Section 4 using simulations of the heteroskedastic AR(1) model

Yt = βYt−1 + ut, ut = σtεt,

where σt = g
¡
t
T

¢
. We use β ∈ {0.1, 0.9}, and εt ∼ iidN (0, 1).

Our simulation design basically follows Cavaliere (2004) and Cavaliere and Taylor (2004). The

13



g function generating heteroskedasticity is taken as the step function used in Examples 1, viz.,

g(r)2 = σ20 + (σ
2
1 − σ20)1{r≥τ}, r ∈ [0, 1].

The break date is chosen from {0.1, 0.9} and the ratio of post-break and pre-break standard

deviations δ = σ1/σ0 is set to the values {0.2, 5}. Without loss of generality, we let σ0 = 1. The

estimates of β are obtained with sample size T = 50 and T = 200, and the number of replications

is set to 10,000. Other models (say the trending variance in Example 2) are also considered in

our experiments, although not reported here, and they yield the results similar to those obtained

below.

We report estimates for β obtained by OLS, infeasible GLS and ALS. For the ALS estimator

(13), we use the Gaussian kernel function, K(z) = (2π)−1/2 exp(−z2/2), for −∞ < z < ∞.

When a different kernel (such as Epanechnikov kernel) is used, the results do not change much.

Five bandwidths are considered, i.e., four fixed bandwidths hi = ciT
−0.4, i = 1, · · · , 4, where

{c1, c2, c3, c4} = {0.25, 0.4, 0.6, 0.75} as well as a data-driven bandwidth chosen by the cross-

validation (CV) procedure described in Section 4.

Table 1 reports the ratios of the root mean squared errors (RMSE) of estimators considered

relative to the RMSE of GLS. The levels (rather than the ratios) of RMSE are reported for GLS

in brackets. Clearly, OLS is inefficient and the ALS estimator works reasonably well in all cases

considered. The largest inefficiency in OLS is observed when an early shift in the innovation

variance is negative, for instance, (τ , δ) = (0.1, 0.2), and when a late shift is positive, for instance,

(τ , δ) = (0.9, 5). The former is explained by the fact that the large variance early in the sample

affects all later observations and the latter is explained by the fact that the large variance in

the last part of the sample means that the OLS estimator is more closely approximated by the

terms involving the last few observations, thereby effectively reducing the sample size. In both

these cases, substantial efficiency gains are achieved by the ALS estimator. In contrast, when

there is a positive early shift or a negative late shift in the innovation variance, for instance,

(τ , δ) = (0.1, 5) or (0.9, 0.2), OLS works nearly as well as GLS, especially when the sample size is

large. The ALS estimator performs comparably well with OLS in those cases. When the sample

size is increased from T = 50 to T = 200, the ALS estimators have the smaller ratio of RSME,

while no improvement (or even larger inefficiency) is observed for OLS.
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We also note that the cross-validation procedure to choose the bandwidth of the ALS esti-

mator works satisfactorily. Sometime the ALS estimator with the cross-validated bandwidth is

outperformed by certain specified fixed bandwidth in certain cases (in most case by h2), but is

not uniformly dominated by a single fixed bandwidth from the four we considered. In practice

we recommend using the cross-validated bandwidth or the fixed bandwidth h2.

Simulations results, along with those not reported here, also show that, in both models the

improvement of the ALS procedure relative to OLS is insensitive to the location of the true value

of the autoregressive parameter β, as long as |β| < 1.

We also check the homoskedastic case when δ = 1 and show results in Table 1. OLS is

equivalent to GLS when the errors are homoskedastic, so the ratio of RMSE of OLS relative to

GLS is unity. We observe that in this case the the ALS estimator is also close to one, so that

ALS may be used satisfactorily even when the errors are homoskedastic.

Furthermore, to check the robustness of our ALS procedure to skewed or heavy-tailed error

distributions, we let εt be subject to a χ2(5) or a t(5) distribution each with degree of freedom five,

normalized so that it has zero mean and unit variance. Apparently when εt ∼ t(5), the technical

assumption (iii’) is violated. This model is incorporated to illustrate that the conclusion of

Theorem 2 extends to more general error distributions. The corresponding results are reported

only for the case of a positive late shift (i.e. τ = 0.9, δ = 5) in Table 2. Again, we can see that

major efficiency gains are achieved by the ALS estimator compared to the OLS procedure. Just

as the cases with Gaussian errors we consider above, ALS is almost as efficient as the infeasible

GLS estimator when T is increased from 50 to 200.

In summary, our kernel-based ALS estimator and cross-validation procedure both appear

to perform reasonablly well, at least within the simulation design considered. The advantages

are clear - they are convenient for practical use and have uniformly good performance over the

parameter space.

6 Further Remarks

This paper considers efficient estimation of finite order autoregressive models under unconditional

heteroskedasticity of unknown form. Several extensions of the approach taken in the paper are

possible. One of these is to consider efficient estimation of unconditionally heteroskedastic stable
15



autoregressions of possible infinite order. The issue here is whether the nonparametric feasible

GLS estimator considered here is still asymptotically efficient when the order of autoregression,

p, increases with the sample size, T. We leave this and other extensions for future research.

7 Appendix A: Proofs of the Theorems.

This section gives the proofs of Theorem 1 and Theorem 2. In what follows, C is a generic

positive constant. We use | · | to denote the Euclidean norm |X| = (X2
1 + · · · + X2

n)
1/2 for

X = (X1, · · · ,Xn)
0, and || · || K to denote the LK-norm, so that ||ξ||K = (E|ξ|K)1/K for a random

vector ξ.

The Proof of the Theorem 1. The WLS estimator bβWLS satisfies

√
T (bβWLS − β) =

µ
1
T

TP
t=1

ω2tXt−1X
0
t−1

¶−1µ
1√
T

TP
t=1

ω2tXt−1ut

¶
. (16)

It is easy to show that under Assumption (i)-(iii), {ω2tYt−hYt−h−k − ω2tE(Yt−hYt−h−k)} is mean-

zero L1-NED (near-epoch dependent) on {εt} (see e.g. Theorem 17.9 in Davidson, 1994) for

1 ≤ h ≤ p, 0 ≤ k ≤ p − h, and therefore a L1-mixingale with respect to Ft. It is uniform

integrable by applying Lemma A (a) with μ = 2. By the law of large numbers for L1-mixingales

(Andrews, 1988) we have

1

T

TX
t=1

µ
ω2tYt−hYt−h−k − ω2tE(Yt−hYt−h−k)

¶
p→ 0. (17)

Lemma A(ii) of Phillips and Xu (2006a) shows that for every continuous point r of g(·), limT→∞ EY[Tr]−h·

Y[Tr]−h−k = g2(r)γk, where [·] refers to the integer part. Let r1 < r2 <, · · · , < rQ be the

discontinuous points of g(·) and w(·), where Q is a finite number (independent of T ). So by

(17), for sufficiently large T, T−1
PT

t=1 ω
2
tYt−hYt−h−k = T−1

PT
t=1 ω

2
tE(Yt−hYt−h−k) + op(1) =PT

t=1

R t+1
T

t
T

ω2[Tr]EY[Tr]−hY[Tr]−h−kdr+op(1) =
R r1
1
T
ω2[Tr]EY[Tr]−hY[Tr]−h−kdr+

PQ−1
j=1

R rj+1
rj

ω2[Tr] ·

EY[Tr]−hY[Tr]−h−kdr+
R T+1

T

rQ
ω2[Tr]EY[Tr]−hY[Tr]−h−kdr +op(1)

p→ (
R
ω2g2)γk. So we have T

−1PT
t=1Xt−1·

X 0
t−1σ

−2
t

p→ (
R
ω2g2)Γ. Next we show that T−1

PT
t=1 ω

4
t ·Xt−1X

0
t−1u

2
t

p→ (
R
ω4g4)Γ, which holds if

T−1
PT

t=1 ω
4
tYt−hYt−h−ku

2
t

p→ γk for 1 ≤ h ≤ p, 0 ≤ k ≤ p−h. Indeed, since {ω4tYt−hYt−h−ku2t −
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ω4tσ
2
tEYt−hYt−h−k,Ft} are martingale differences, so T−1

PT
t=1 ω

4
tYt−hYt−h−ku

2
t = T−1

PT
t=1 ω

4
t ·

σ2tEYt−hYt−h−k+op(1)
p→ (
R
ω4g4)γk by similar arguments used above. Furthermore, E|ω2tXt−1ut|4

<∞ by Lemma A (b) with μ = 2. By the central limit theorem for vector martingale differences,

T−1/2
PT

t=1 ω
2
tXt−1ut

d→ N
µ
0, (
R
ω4g4)Γ

¶
. Then Theorem 1 follows from (16).

The Proof of the Theorem 2. First we prove (14). Recall that bui’s are the OLS residuals.
Let σ2t =

TP
i=1

wtiσ
2
i , and it is easy to see that

¯̄̄̄µ
1
Tb

TP
i=1

Kti

¶µbσ2t − σ2t

¶¯̄̄̄
≤
¯̄̄̄
1
Tb

TP
i=1

Kti

µ
u2i − σ2i

¶¯̄̄̄
+ op(1) = op(1). (18)

Actually, if we let ai = u2i − σ2i , then {ai} is an m.d. sequence and E( 1Tb
PT

i=1Ktiai)
2 =

1
(Tb)2

PT
i=1K

2
tiEa

2
i ≤ 1

Tb

µ
supiKti

¶µ
supiEa

2
i

¶µ
1
Tb

PT
i=1Kti

¶
= O( 1Tb)→ 0, in view of Lemma

A (c). On the other hand, we have

1

Tb

TX
i=1

K[Tr]iσ
2
i =

1

b

Z (T+1)/T

1/T

K(
[Ts]− [Tr]

Tb
)g2(

[Ts]

T
)ds+ o(1)

z=(s−r)/b
=

Z (T+1−Tr)/Tb

(1−T )/Tb
K(
[T (r + bz)]− [Tr]

Tb
)g2(

[T (r + bz)]

T
)dz + o(1)

→ g2(r−)
Z 0

−∞
K(z)dz + g2(r+)

Z ∞
0

K(z)dz. (19)

Combining (18) and (19) gives bσ2[Tr] = µ
1
Tb

PT
i=1K[Tr]i

¶
σ2[Tr] + op(1) =

1
Tb

PT
i=1K[Tr]iσ

2
i +

op(1)
p→ g2(r−)

R 0
−∞K(z)dz + g2(r+)

R∞
0

K(z)dz as claimed.

Now we prove (15). We follow closely the proof of the theorem in Robinson (1987) using some

of his notation. First, note that eβ satisfies

√
T (eβ − β) =

µ
1
T

TP
t=1

Xt−1X
0
t−1bσ−2t ¶−1µ

1√
T

TP
t=1

Xt−1utbσ−2t ¶
.

Define a(f) = 1√
T

PT
t=1Xt−1utf

−2
t and A(f) = 1

T

PT
t=1Xt−1X

0
t−1f

−2
t , then we have

√
T (β∗ −

β) = A(σ)−1a(σ) and
√
T (eβ − β) = A(bσ)−1a(bσ) = A(σ)−1a(σ) + A(bσ)−1(a(bσ) − a(σ)) −

A(σ)−1(A(bσ)−A(σ))A(bσ)−1a(σ).We have A(σ) p→ Γ which is positive definite, and a(σ) = Op(1),
17



which follows from Markov’s inequality and E
µ

1√
T

PT
t=1 Yt−hutσ

−2
t

¶2
= 1

T

PT
t=1 σ

−4
t EY 2

t−hu
2
t ≤

C 1
T

PT
t=1 EY 2

t−hu
2
t <∞, by Lemma A (b). Hence (15) follows if we prove

A(bσ)−A(σ)
p→ 0, a(bσ)− a(σ)

p→ 0. (20)

Define eσ2t = PT
i=1 wtiu

2
i and σ2t =

PT
i=1wtiσ

2
i , and (20) follows from the following six results

as in Robinson (1987): (a) a(bσ) − a(eσ) p→ 0; (b) a(eσ) − a(σ)
p→ 0; (c) a(σ) − a(σ) →p 0; (d)

A(bσ)−A(eσ) p→ 0; (e) A(eσ)−A(σ)
p→ 0; (f) A(σ)−A(σ)

p→ 0. These will be shown as follows:

(a) Since a(bσ)−a(eσ) = 1√
T

P
tXt−1ut

σ2t−σ2t
σ2tσ

2
t
, we have |a(bσ)−a(eσ)| ≤ (mint eσ2t )−1(mint bσ2t )−1 ·PT

t=1
|Xt−1ut|√

T
|eσ2t−bσ2t | ≤ (mint eσ2t )−1(mint bσ2t )−1µ 1

T

PT
t=1 |Xt−1ut|2

¶1/2µPT
t=1 |eσ2t − bσ2t |2¶1/2 =

Op(
1
Tb )

p→ 0, by Lemma A (b, h, j, k).

(b) We write

a(eσ)− a(σ) =
1√
T

TX
t=1

Xt−1ut(eσ−2t − σ−2t )

=
1√
T

TX
t=1

Xt−1ut(σ
2
t − eσ2t )σ−4t +

1√
T

TX
t=1

Xt−1ut(σ
2
t − eσ2t )2eσ−2t σ−4t , (21)

which holds since for two any nonzero real numbers p and q we have the following equality

p−1 − q−1 = (q − p)q−2 + (q − p)2p−1q−2. We will show the two terms of (21) vanishes in

probability. For the first term, we note that {Xt−1ut(σ
2
t − eσ2t )σ−4t ,Ft} is an m. d. sequence.

Indeed, we have

E(Xt−1ut(σ
2
t − eσ2t )σ−4t |Ft−1)

= σ−2t E(Xt−1ut|Ft−1)− σ−4t E(Xt−1ut
X
i<t

wtiu
2
i |Ft−1)− σ−4t E(Xt−1ut

X
i>t

wtiu
2
i |Ft−1). (22)
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Both the last two terms are zero, since for the term i > t, E(Xt−1utu
2
i |Ft−1) = Xt−1E(utu2i |Ft−1) =

Xt−1E(utE(u2i |Fi−1)|Ft−1) = Xt−1E(ut|Ft−1) = 0, and for the term i < t, E(Xt−1utu
2
i |Ft−1) =

Xt−1u
2
i ·E(ut|Ft−1) = 0. Thus, by (22) E(Xt−1ut(σ

2
t −eσ2t )σ−4t |Ft−1) = 0. So the first term of (21)

converges to zero in probability by the Markov inequality and E
¯̄̄̄
1√
T

PT
t=1Xt−1ut(σ

2
t − eσ2t )σ−4t ¯̄̄̄2

≤
C
T

PT
t=1 E|Xt−1ut|2(σ2t−eσ2t )2 ≤ C

T

PT
t=1(E|Xt−1ut|4)1/2·(E(σ2t−eσ2t )4)1/2 ≤ (maxt E(σ2t−eσ2t )4)1/2·

C
T

PT
t=1(E|Xt−1ut|4)1/2 = Op(

1
Tb )

p→ 0, by Lemma A (a, f). For the second term of (21),¯̄̄̄PT
t=1

Xt−1ut√
T
(σ2t − eσ2t )2eσ−2t σ−4t

¯̄̄̄
≤ C

µ
1
T

PT
t=1 |Xt−1ut|2

¶1/2µPT
t=1(σ

2
t − eσ2t )4¶1/2 = Op(

1
T1/2b

)

p→ 0, by Lemma A (a, f). This completes the proof of (b).

(c) First we note

σ2t

µ
σ−2t − σ−2t

¶2
≤ σ−4t σ−2t

¯̄̄̄
σ2t + σ2t

¯̄̄̄
·
¯̄̄̄
σ2t − σ2t

¯̄̄̄
≤ C

¯̄̄̄
σ2t − σ2t

¯̄̄̄
. (23)

Since {Xt−1ut} is an m.d. sequence, we get E|a(σ)−a(σ)|2 = 1
T

PT
t=1 E(|Xt−1|2u2t )(σ−2t −σ−2t )2 =

1
T

PT
t=1 E(|Xt−1|2E(u2t |Ft−1))(σ−2t −σ−2t )2 = 1

T

PT
t=1 E|Xt−1|2σ2t |σ−2t −σ−2t |2 ≤ C

T

PT
t=1 E|Xt−1|2·

|σ2t − σ2t | ≤ Cmaxt E|Xt−1|2 · 1T
PT

t=1 |σ2t − σ2t | = op(1), by Lemma A (a, l).

(d) It follows from |A(bσ) − A(eσ)| ≤ (mint eσ2t )−1(mint bσ2t )−1 1T PT
t=1 |Xt−1|2|eσ2t − bσ2t | ≤ C ·

maxt |eσ2t − bσ2t | · 1T PT
t=1 |Xt−1|2 = Op(

1√
Tb
), by Lemma A (a, h, i, j).

(e) This can be proved in the same way as (d) by employing Lemma A (g).

(f) It follows from |A(σ)−A(σ)| ≤ (mint σ2t )−1(mint σ2t )−1 1T
PT

t=1 |Xt−1|2|σ2t−σ2t | ≤ (mint σ2t )−1·

(mint σ
2
t )
−1 ·maxt |Xt−1|2 · 1T

PT
t=1 |σ2t − σ2t | = op(1),

by Lemma A (a, e, l).

8 Appendix B: Supplementary Results and Proofs.

This section states and proves some results (Lemma A) used in the proofs of the theorems.

Lemma A (a) If sup
1≤t≤T

E|εt|2μ < ∞, 1 ≤ μ < ∞, then sup
1≤t≤T

E|Yt−h|2μ < ∞ holds for
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1 ≤ h ≤ p;

(b) If sup
1≤t≤T

E|εt|4μ <∞, 1 ≤ μ <∞, then sup
1≤t≤T

E|Yt−hut|2μ <∞ holds for 1 ≤ h ≤ p;

(c) Let t = [Tr] for any fixed r ∈ (0, 1], then 1
Tb

PT
i=1Kti →

R∞
−∞K(z)dz = 1, where Kti is

defined in (11);

(d) max
t,i

wti = O( 1Tb);

(e) min
1≤t≤T

σ2t ≥ C > 0;

(f) max
1≤t≤T

E|eσ2t − σ2t |4 = O

µ
1

(Tb)2

¶
;

(g) max
t
|eσ2t − σ2t |δ = Op(T

−δ/4b−δ/2), for δ = 1, 2;

(h) ( min
1≤t≤T

eσ2t )−1 = Op(1), as T →∞;

(i) max
1≤t≤T

¯̄̄̄bσ2t − eσ2t ¯̄̄̄ = Op(
1√
Tb
);

(j) ( min
1≤t≤T

bσ2t )−1 = Op(1), as T →∞;

(k)
PT

t=1(bσ2t − eσ2t )2 = Op(
1

(Tb)2 );

(l) 1
T

TP
t=1
|σ2t − σ2t | = o(1).

The Proof of Lemma A. (a) Note that Y 2
t−h =

P∞
k=0

P∞
l=0 αkαlut−h−kut−h−l and E|ut−h−k·

ut−h−l|μ ≤ (E|ut−h−k|2μE|ut−h−l|2μ)1/2 <∞. So we have E|Yt−h|2μ = ||Y 2
t−h||μμ ≤ (

P∞
k=0

P∞
l=0 |αkαl|·

||ut−h−kut−h−l||μ)μ ≤ C(
P∞

k=0

P∞
l=0 |αkαl|)μ = C(

P∞
k=0 |αk|)2μ <∞.

(b) Since Y 2
t−hu

2
t =

P∞
k=0

P∞
l=0 αkαlut−h−kut−h−lu

2
t and E|ut−h−kut−h−lu2t |μ ≤ (E|ut−h−k|4μ·

E|ut−h−l|4μ)1/4·(E|ut|4μ)1/2 <∞, so E|Yt−hut|2μ = ||Y 2
t−hu

2
t ||μμ ≤

µP∞
k=0

P∞
l=0 |αkαl| · ||ut−h−kut−h−lu2t ||μ

¶μ
≤ C ·

µP∞
k=0

P∞
l=0 |αkαl|

¶μ
<∞.

(c) Let t− i = [Tx], where x is a real number, |x| < 1. Then 1
Tb

PT
i=1Kti =

1
Tb

PT
i=1K(

t−i
Tb )+

o(1) =
PT

i=1

R (t−i+1)/T
(t−i)/T K( [Tx]Tb )d

µ
x
b

¶
+ o(1)

z=x/b
=

PT
i=1

R (t−i+1)/Tb
(t−i)/Tb K( [Tbz]Tb )dz + o(1)

=
R t/Tb
(t−T )/TbK(

[Tbz]
Tb )dz + o(1)→

R∞
−∞K(z)dz = 1.

(d) It follows from wti =

µ
1
Tb

PT
i=1Kti

¶−1
Kti

Tb and (c).

(e) It follows from min
1≤t≤T

σ2t ≥ min
1≤i≤T

σ2i · (
PT

i=1wti) ≥ inf
s∈[0,1]

g2(s) ≥ C > 0.

(f) We make use of the Burkholder’s inequality (BI) (c.f. Shiryaev (1995), p499): for the m.d.

sequence ξ1, · · · , ξT and p > 1, there exists constant Ap and Bp, such that

Ap

°°°°(PT
t=1 ξ

2
t )
1/2

°°°°
p

≤
°°°°PT

t=1 ξt

°°°°
p

≤ Bp

°°°°(PT
t=1 ξ

2
t )
1/2

°°°°
p

.
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Let ai = u2i −σ2i , then ai is a m.d. sequence and Ea4i <∞. Then E(eσ2t −σ2t )4 = EµPT
i=1wtiai

¶4
BI(p=4)

≤ E
µPT

i=1 w
2
tia

2
i

¶2 (d)

≤ 1
(Tb)2E

µPT
i=1wtia

2
i

¶2
Jensen
≤ 1

(Tb)2

PT
i=1wtiEa4i = O

µ
1

(Tb)2

¶
,

where the last inequality is by Jensen’s f(
PT

i=1 wtia
2
i ) ≤

PT
i=1wtif(a

2
i ) with convex function

f(x) = x2.

(g) It holds since for arbitrary C > 0, P(maxt |eσ2t−σ2t |δ > CT−δ/4b−δ/2) ≤
PT

t=1 P(|eσ2t−σ2t |δ >
CT−δ/4b−δ/2)

Markov
≤

⎧⎪⎪⎨⎪⎪⎩
C−4Tb2

TP
t=1
E|eσ2t − σ2t |4

(f)
= O(C−4), δ = 1;

C−2Tb2
TP
t=1
E|eσ2t − σ2t |4

(f)
= O(C−2), δ = 2.

(h) It follows from 0 < C
(e)

≤ min
1≤t≤T

σ2t ≤ min
1≤t≤T

eσ2t +max
t
|eσ2t − σ2t | = min

1≤t≤T
eσ2t + op(1).

(i) Note that bσ2t−eσ2t =PT
i=1wti(bu2i−u2i ) =PT

i=1wti

µ
(bβ − β)0Xi−1X

0
i−1(

bβ − β)− 2uiX 0
i−1(

bβ − β)

¶
,

and max
t,i

PT
i=1w

2
ti ≤ max

t,i
wti ·

PT
i=1wti = O( 1Tb). We also have

bβ − β = O(T−1/2) by (5). Thus

max
1≤t≤T

|bσ2t − eσ2t | ≤ max
1≤t≤T

PT
i=1 wti|(bβ − β)0Xi−1X

0
i−1(

bβ − β)− 2uiX 0
i−1(

bβ − β)|

≤ max
1≤t≤T

PT
i=1 wti|bβ − β|2|Xi−1|2 + 2 max

1≤t≤T

PT
i=1 wti|uiX 0

i−1| · |bβ − β|

≤ max
t,i

wti · |bβ − β|2
PT

i=1 |Xi−1|2 + 2|bβ − β| · (max
t,i

PT
i=1w

2
ti)
1/2 ·

µPT
i=1 |uiX 0

i−1|
¶1/2

= Op(
1
Tb) +Op(

1√
Tb
) = Op(

1√
Tb
).

(j) It follows from 0 < C
(h)

≤ min
1≤t≤T

eσ2t ≤ min
1≤t≤T

bσ2t +max
t
|bσ2t − eσ2t || = min

1≤t≤T
bσ2t + op(1).

(k) Since bσ2t−eσ2t =PT
i=1wti(bu2i−u2i ) = (bβ−β)0(PT

i=1w
2
tiXi−1X

0
i−1)(

bβ−β)−2(PT
i=1w

2
tiuiX

0
i−1)·

(bβ − β), then
PT

t=1(bσ2t − eσ2t )2 is bounded by
TX
t=1

C

Ã
|bβ − β|4

¯̄̄̄
TP
i=1

w2tiXi−1X
0
i−1

¯̄̄̄2
+

¯̄̄̄
TP
i=1

w2tiuiX
0
i−1

¯̄̄̄2
|bβ − β|2

!

≤ |bβ − β|4
TX
t=1

C

µ
TP
i=1

w2ti|Xi−1|2
¶2
+ |bβ − β|2

TX
t=1

C

µ
TP
i=1

w2ti|uiX 0
i−1|

¶2
(24)

The first term of (24) is bounded by
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|bβ − β|4
TX
t=1

C

µ
sup
i
|Xi−1|2 ·max

t,i
wti ·

TP
i=1

wti

¶2
= Op(

1

T 3b2
),

by (a) and (d), and similarly the second term of (24) is Op(
1

T2b2 ). So (k) follows.

(l) Let r1 < r2 <, · · · , < rD be the discontinuous points of g(·), where D is finite. Then for

sufficiently large T,

1
T

PT
t=1 |σ2t−σ2t | =

PT
t=1

R (t+1)/T
t/T

|σ2[nr]−σ2[nr]|dr =
R r1
1/T

|σ2[nr]−σ2[nr]|dr+
PD−1

j=1

R rj+1
rj

|σ2[nr]−

σ2[nr]|dr +
R (T+1)/T
rD

|σ2[nr] − σ2[nr]|dr→ 0, provided that

σ2[nr] → g2(r) (25)

when g is continuous at r. Indeed, following the proof of (c) we can similarly have 1
Tb

PT
i=1Ktiσ

2
i →

g2(r) when g is continuous at r. Thus (25) holds by (c).
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Figure 1: The values of f1(τ , δ) ( y-axis) in Example 1 across δ (x-axis) for different values of
τ : (a) τ = 0.1; (b) τ = 0.5; (c) τ = 0.9.
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Figure 2: The values of f2(m, δ) ( y-axis) in Example 2 across δ (x-axis) for different values of
m: (a) m = 1; (b) m = 2; (c) m = 6.

28



Table 1: The ratios of the RMSEs of OLS estimator and ALS estimators using four fixed band-
widths and cross-validated bandwidth, relative to that of GLS (The levels of RMSE are reported
for GLS in brackets). Error distribution: normal. Parameter values: β ∈ {0.1, 0.9}, τ ∈ {0.1, 0.9},
δ ∈ {0.2, 5} and the sample size T = {50, 200}.

ALS
τ δ T OLS h1 h2 h3 h4 CV GLS

β = 0.1

0.1 0.2 50 1.9749 1.5029 1.5278 1.6169 1.6865 1.5612 [.1236]
200 2.4751 1.1501 1.1501 1.1830 1.2182 1.1538 [.0636]

1 50 1.0000 1.1586 1.0745 1.0375 1.0241 1.0329 [.0885]
200 1.0000 1.0466 1.0280 1.0187 1.0151 1.0155 [.0374]

5 50 1.0333 1.1220 1.0754 1.0561 1.0498 1.0612 [.1471]
200 1.0351 1.0780 1.0676 1.0631 1.0600 1.0594 [.0667]

0.9 0.2 50 1.1801 1.3196 1.2625 1.2339 1.2199 1.2359 [.1170]
200 1.1100 1.1253 1.1172 1.1164 1.1151 1.1198 [.0691]

5 50 1.9576 1.1925 1.1958 1.2583 1.3177 1.2555 [.1433]
200 2.2333 1.0859 1.0784 1.0952 1.1208 1.0795 [.0701]

β = 0.9

0.1 0.2 50 2.0748 1.4599 1.4968 1.5742 1.6417 1.5380 [.0633]
200 2.3822 1.1994 1.2020 1.2270 1.2450 1.1995 [.0283]

1 50 1.0000 1.0931 1.0374 1.0172 1.0110 1.0191 [.0851]
200 1.0000 1.0398 1.0213 1.0115 1.0080 1.0103 [.0346]

5 50 1.0427 1.1260 1.0749 1.0628 1.0592 1.0754 [.0885]
200 1.0225 1.0571 1.0425 1.0380 1.0354 1.0362 [.0374]

0.9 0.2 50 1.2853 1.2581 1.2763 1.2875 1.2904 1.2838 [.0664]
200 1.1856 1.1315 1.1540 1.1781 1.1866 1.1844 [.0291]

5 50 2.0607 1.2049 1.1773 1.2188 1.2769 1.2068 [.0887]
200 2.2663 1.0903 1.0748 1.0825 1.0983 1.0823 [.0346]
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Table 2: The ratios of the RMSEs of OLS estimator and ALS estimators using four fixed band-
widths and cross-validated bandwidth, relative to that of GLS (The levels of RMSE are reported
for GLS in brackets). Error distribution: χ2(5) or t5. Parameter values: β ∈ {0.1, 0.9}, τ = 0.9,
δ = 5 and the sample size T = {50, 200}.

error ALS
dist. T OLS h1 h2 h3 h4 CV GLS

β = 0.1

χ2(5)−5√
10

50 2.0441 1.3597 1.3298 1.3983 1.4721 1.4277 [.1375]
200 2.1478 1.1170 1.1022 1.1148 1.1364 1.1157 [.0701]

√
0.6t5 50 1.9072 1.4207 1.3863 1.4259 1.4834 1.4405 [.1394]

200 2.1648 1.1687 1.1477 1.1583 1.1767 1.1545 [.0704]

β = 0.9

χ2(5)−5√
10

50 2.0241 1.3419 1.3424 1.3853 1.4286 1.4208 [.0902]
200 2.2665 1.1729 1.1345 1.1278 1.1364 1.1457 [.0327]

√
0.6t5 50 2.0371 1.3108 1.3060 1.3605 1.4243 1.3851 [.0850]

200 2.1579 1.1515 1.1233 1.1216 1.1337 1.1321 [.0364]
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