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ABSTRACT∗ 
 

We characterize competitive equilibrium in markets (financial etc.) where price taking 
Bayesian decision makers screen to accept or reject applicants.  Unlike signaling models, 
equilibrium fails to resolve imperfect information.  In classical statistics terminology, some 
qualified applicants are rejected (type I error) and some unqualified applicants are accepted (type 
II error).  We report three new results: i. optimal firm behavior is deduced to be a Bayesian 
variant of the Neyman-Pearson theorem; ii. competitive equilibrium entails screening if and only 
if (net of screening costs) the cost of type II errors exceed the cost of type I errors, i.e. contrary to 
signaling (where buyers identify more qualified applicants who self screen to differentiate 
themselves e.g. Stiglitz 1975), price taking firms screen to avoid lower quality sellers; iii. 
equilibrium groups the least attractive applicants into a single high risk assignment pool. 

Depending on costs of screening, the unique equilibrium may involve complete pooling 
(all applicants trade at one price) or partial separation (there are m separate pools with successive 
pools supported by a single (rising) price and a subset of agents of different screen levels trading 
at that price).  A screening equilibrium has 2≥m  and the mth secondary market entails no 
screening, as the most adversely selected agents are assigned to the high risk pool.   

 Screening induces market segmentation.  Invariably secondary markets contain 
individuals who with better or different screening mechanisms could be accepted in the primary 
market.  What roles traits such as ethnicity, gender, and race might assume in such decision 
making is relegated to subsequent research to explore the statistical theory of discrimination.   

                                                 
∗ The author wishes to thank Donald J. Brown for stimulating discussions. 
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Under what circumstances do firms invest resources to purchase information about potential 

transaction partners, i.e. when do competitive firms screen?  Signaling models suggest that competitive 

firms confronting imperfect information about traders screen to identify and capture gains from trade 

with higher quality agents.1  But that intuition can be misleading.  In the setting examined here, when 

the gains from trade with higher quality agents are sufficiently high, firms do not screen!  Competitive 

firms screen only to avoid relatively costly low quality agents.  This paper examines the properties of 

competitive equilibrium in markets where price taking Bayesian decision makers use a screening 

mechanism to accept or reject applicants.  We consider market settings where signaling behavior is 

inappropriate.  Consumers seeking credit have every intention of repaying their loans and retaining the 

properties (homes, autos, consumer durables) purchased with their loans.  Each purchaser of insurance is 

optimistic about her prospects of not presenting an insurance claim.  In general, applicants are not (in 

any statistical sense) informed with respect to their relative merit vis a vis other applicants.2 

Firms offer the existing market price to applicants who pass the screen and reject those who do 

not.  Market segmentation is a natural outcome of the screening process.  Because rejected applicants are 

not permitted to participate in the primary market, their presence is the basis for the formation of 

secondary markets.  Screening equilibria are generally composed of 1>m  segmented markets where 

applicants face increasingly adverse terms of trade as they descend down the hierarchy of segmented 

markets.  The increasingly adverse terms of trade occur in secondary markets because prices are 

determined by the characteristics of applicants whose qualifications are characterized by a distribution 

truncated from above by the loss of previously accepted applicants who screen more favorably and 

hence trade in more advantageous markets. 

                                                 
1 The discussion in Stiglitz 1975, pp. 286 and 290 suggests this intuition. 
2 There exists no systematic asymmetry of information that could serve as foundation for a self-selected 
signal that is adequately correlated with applicants’ true relative quality. 
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The interpretation of the segmented markets depends on the institutional setting.  For example, in 

the setting examined here (financial markets) the same firm may operate in different segments of the 

market and applicants may simply be thought to be offered one of the firm’s loan packages or insurance 

policies.  In other institutional settings where up or down decisions are common practices such as 

education and job markets it is more appropriate to see institutions operating in only one of the 

segmented markets.  Acceptance decisions by schools and employers are important examples of the 

competitive screening processes examined in this paper and many of the market properties deduced for 

financial markets apply to them as well.  However, school and job markets present complexities that are 

not explored in this paper. 

What we shall call binary choice competitive screening is quite appropriate for investigating 

economic phenomena such as statistical discrimination.  One reason for this suitability is that binary 

choice screening decisions occur within an economic context that does not resolve the imperfect 

information inherent to the market transaction.3  Even in equilibrium, firms’ accept and reject decisions 

are inherently prone to error.  In the terminology of classical statistics, some qualified applicants are 

rejected (type 1 error) and some unqualified applicants are accepted (type 2 error).  This implies that 

invariably secondary markets will contain individuals who if firms had used better or simply different 

screening mechanisms could have been accepted in the primary market.  What role traits such as 

ethnicity, gender, and race assume in such decision-making and the allocation of resources becomes all 

the more important in light of a salient implication of binary choice screening.  We show (Remark 1) 

that competitive equilibrium entails screening only if the costs of making type II errors are high relative 

to the costs of making type I errors.  In effect, competitive firms screen to identify and avoid lower 

quality sellers, a motivation rife with discriminatory dangers when different social groups are subject to 

                                                 
3Allocation decisions are not predicated on a screening process whose equilibrium prices generate perfect 
information as in common models of signaling (cf. Spence 1973 and Stiglitz 1975). 



 5

stereotyping.  Subsequent research will examine the implications of such screening for understanding 

market phenomena such as statistical discrimination and so called predatory lending practices in markets 

where a wide degree of segmentation is actually observed.  This paper characterizes some important 

properties of competitive equilibrium with binary choice screening. 

The equilibrium concept used is the Nash equilibrium.  It is assumed that firms maximize 

expected profits without regard to competitors’ strategies and that there is free entry of firms so that only 

zero profit equilibria are considered.    Several interesting properties of such equilibria are demonstrated.  

First, under similar conditions where Nash equilibrium often fails to exist Rothschild-Stiglitz (1976), 

Wilson (1977), Jaynes (1979), and Riley (1979) the binary choice screening model studied has a Nash 

equilibrium under standard assumptions of economic competition.  We show a unique competitive 

equilibrium exists.  Furthermore, depending on the costs of screening relative to the value of its 

information, that equilibrium may involve complete pooling (all heterogeneous applicants trade at one 

price) or partial separation (there are m separate pools with each pool supported by a price and a subset 

of agents of different screen levels trading at that price).  The least desirable secondary market entails no 

screening, as the most adversely selected agents are assigned to the high-risk pool.   

 

1.  Screens and Screening Mechanisms 

In a variety of market settings, firms sort products and services into the binary categories 

qualified and unqualified.  Denote qualified and unqualified applicants by 11 =q  and 00 =q  

respectively.  It is assumed firms cannot determine whether an applicant is qualified or unqualified until 

after she is accepted.  However, for a cost a firm may observe a numerical indicator ]10[ ≤≤ xx that is 

positively correlated with applicant qualifications and therefore may be used to predict an applicant’s 

subsequent value to the firm.  A screen assigns to each applicant just such a numerical indicator.  
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Generally, a screen is a function RRh N →:  where z an element of NR  is a vector of observable 

characteristics (e.g. debt, late payments, past insurance claims, age, gender, income, etc).  An example 

of a screen is a regression model whose independent variables may be termed the screening criteria and 

whose dependent variable is used to rank applicants.  Less formally (and more commonly used) a screen 

is any scalar-valued ranking of applicants that is based on an objective or subjective probability model. 

Associated with a screen is a joint probability density ),( qxf  that gives the probability that an 

applicant of quality q is screened x.  In terms of the conditional probabilities computable from the joint 

probability density, a screen is associated with a probability density )( iqxf that gives the conditional 

probability that an applicant of true qualification i will be screened x .  A screening process is a screen 

h(.) mapping applicant characteristics to a scalar x and an associated conditional probability function 

)( iqxf  indicating the probability an applicant of quality qi is screened x.   Hereafter, the respective 

conditional probability densities will be denoted )(xfi and their cumulative distributions by )(xFi .  We 

refer to such probability functions as screening probabilities and we restrict the screening probabilities 

considered to those belonging to a subset of the continuously differentiable probability densities defined 

on the unit interval.   

For any screen screening process and ,0)(0 >xf  consider the likelihood ratio
)(
)()(

0

1

xf
xfxR = .  R(x) 

is the relative likelihood that an applicant screened x is qualified.  We say a screen is efficient if its 

likelihood ratio satisfies the monotone likelihood ratio condition (see Milgrom, 1981), 

 

.0)(
)()()()()( 2

0

'
01

'
10 xxf

xfxfxfxfxR ∀>
⋅−⋅

=′  

Eliminating the denominator of )(xR′  shows efficient screens satisfy condition 
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An increase in x increases the proportion of qualified applicants more than it increases the proportion of 

unqualified applicants.  Therefore, any increase in the observed screening value increases the relative 

likelihood that an applicant is qualified.  If this condition were not satisfied, all kinds of perverse results 

could occur and the underlying screening process would not be a very good one.  We only consider 

efficient screens. 

 A screening mechanism is composed of a screen and a decision criterion that accepts or rejects 

applicants on the basis of the indicator x  assigned to the applicant by the screen.  A decision criterion is 

a discrete function )(⋅d that maps the unit interval, the space of possible screen values, to the binary set 

q of possible qualification values so that 0 and 1 also signify reject and accept.  Thus, the value d(x) 

(equal 0 or 1) indicates whether an applicant screened x is accepted or rejected.  We exploit certain 

properties of efficient screens.  The most important of these properties is that a rational decision maker 

who has chosen to accept applicants who are screened at some indicator 1x  will accept all applicants for 

whom .1xx >    Thus, the screening mechanism will have the property that there exists an ∗x  such that 

the decision criterion )(⋅d satisfies: 

∗

∗

≥

<
=

xx

xx
xd

1

.0
)(  

Another important property of efficient screens is that the conditional probability densities they 

generate can cross at most one point.  Since R(x) is strictly increasing, once the densities cross at some 

screen value x′  (referred to as the switch point), 01 ff >  must be true for all greater values of the 

screen.  It follows that if both densities are to integrate to 1 on the unit interval, then P2 must be true: 

P2:   ).0()0( 10 ff >  
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2.  Competitive Screening Markets 
 
Consider a market where a very large number of applicants Ν  (each with the identical 

reservation price 0≥R  apply at no cost to one of many identical risk neutral firms.  Successful 

applicants receive a reward valued at 0>r  and unsuccessful applicants receive nothing.  All agents and 

firms are price takers, applicants accept any offer that equals or exceeds the reservation price and they 

reject any offer below the prevailing market price.  NNq < of the applicants are qualified and the 

remainder are not.  The returns to firms are normalized so that for each accepted applicant a firm 

receives an economic value 0>v  for each qualified and 0 for each unqualified applicant.  

 Decision makers base their choices on Bayesian expectations of applicants’ qualifications.  

Assume that any necessary learning process has taken place and that agents know the screening process 

and the distributions it generates.  Let 
N
N

q q=ˆ denote the true proportion of qualified applicants.  Then 

q̂  is the decision maker’s prior expectation of the probability that any given applicant is qualified.  If a 

firm elects to screen applicants, Bayes’ Law ensures that the posterior expectation an applicant is 

qualified is =)( 1 xqp ).()ˆ1()(ˆ)(,ˆ
)(
)(

01
1 xfqxfqxgwhereq

xg
xf

⋅−+⋅=⋅  

Ignoring screening costs, the expected return from accepting an applicant screened at x  is 

simply the expected value added minus the certain reward payment. 

.)()](1[)()()( 111 rvxqprxqprvxqpx −⋅=⋅−−−⋅=π  

Given a decision rule )(⋅d that accepts all applicants screened at or above some x  and rejects all others 

(neglecting screening costs) the expected return from n screened applications is  

 .)](1[ˆ)](1[)()()(),(ˆ 1

1

0

rxGnvqxFndxxgxdxndx ⋅−⋅−⋅⋅−⋅=⋅⋅= ∫ππ   
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The first four terms after the second equal sign represent expected value added from accepted applicants 

and the last three terms are expected payments to applicants who pass the screen.  Setting 0=x  and 

assuming free entry of firms will drive expected returns to zero so that 0ˆ =π  we find .ˆˆ rvq =⋅   This is 

the no screening pooling equilibrium.  As would be expected, in competitive equilibrium with free entry, 

if there is no screening of applicants and firms are risk neutral the expected return from a random 

applicant (as determined by firms’ prior q̂ ) will just equal the reward paid to each accepted applicant. 

Credit and insurance markets are two institutional specifications of the model. 

Credit Market:  Here r is the size of the loan received by borrowers, and v is the loan repayment 

(principal plus interest) required by the lender.  The stipulated gross return is 
r
v

=ρ  and the rate of 

interest is %.100)1(%100 •−=•
−

= ρ
r

rvi   In the pooling equilibrium, 
q̂
1

=ρ  and %.100
ˆ

ˆ1
•

−
=

q
qi   

Insurance Market: Here r is the insurance premium paid by the insured and v is the indemnity paid by 

the insurer in the event of a claim.4  

  Returning to the general model, we note that if 
v
Rq ≥ˆ  there always exists a unique allocation 

that pools all applicants at the same price and involves no screening.  Throughout the remainder of the 

paper it is assumed that this condition is satisfied.  The pooling allocation is the competitive equilibrium 

if screening is not cost effective.  If screening is cost effective, the competitive equilibrium is defined by 

the allocation (screening versus no screening) offering applicants the greater reward.  Below it will be 

shown that whether or not screening is present at the competitive equilibrium depends on the net value 

of the information obtainable from screening.  To examine this issue firms’ optimal behavior must be 

considered in more detail. 

                                                 
4 For the insurance market, variables must be redefined and the profit function rewritten to reflect the nature 
of the assets being traded. 
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All firms have access to the same screening technology.  Let )(nc equal the cost of screening n 

applicants.  We assume that the screen requires some kind of formal interview or application process 

followed by a checking of successful applicant’s references and background materials.  Under these 

conditions, assume that average screening costs conform to the classic case of the competitive firm 

whose average costs decrease initially and then increase after reaching the optimal scale ∗n . During the 

rest of the paper screening costs are assumed to conform to this case. 

Considering screening costs, the objective function of a firm utilizing a screening mechanism 

with the acceptance screen equal to x  and screening n applicants is )(),(ˆ ncdx −π or: 

).()](1[)](1[ˆ 1 ncxGnrxFnvq −−⋅⋅−−⋅⋅⋅  

This objective function warrants discussion.  Again the first four terms are expected revenues, the prior 

probability ( q̂ ) that an applicant is qualified times the expected gain from qualified applicants screened 

x  or above.  The middle two terms represent the expected total rewards paid to accepted applicants (the 

expected number screened at or above the rejection index).  The last term of course is total screening 

cost.  Unlike the no screening case, some applicants are now rejected.  Reading from right to left there is 

increasing attrition with respect to the three occurrences of n within the objective function.  All n 

applicants screened contribute to screening costs, but a smaller number ( )],(1[ xGn −⋅ those passing the 

screen) are accepted and paid the reward, and a still smaller number ( )],(1[ 1 xFn −⋅ those accepted and 

qualified) add value to the firm. 

 

3.  The Optimal Screening Rule and the Neyman-Pearson Theorem 

An optimal strategy for a firm entails its choices of the number of applicants to screen and an 

acceptance policy or decision rule defined by the minimum ∗x  required for an applicant to be accepted.  

Assuming an interior solution (i.e. the firm indeed screens): 
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0)()](1[)](1[ˆˆ ****
1 =′−−⋅−−⋅⋅= ncxGrxFvq

dn
dπ   (A) 

0)()(ˆˆ
1 =⋅+⋅⋅−= ∗∗∗ xgrxfvq

dx
dπ     (B) 

Condition (A) states that at the optimum the expected net value added of the last applicant screened 

should just equal the marginal cost of screening her.  (B) is an important condition that will aid 

understanding of screening equilibria.  With a little manipulation of the equation: 

∗∗
∗

∗

=⋅=⋅⋅ rvxqpvq
xg
xf )(ˆ

)(
)(

1
1 .    (C) 

The optimizing firm sets its decision rule so that the expected value added of the minimally acceptable 

applicant is just equal to the reward paid those accepted.  Note that the expectation is made in terms of 

the decision maker’s posterior probability that the applicant is qualified conditional on the screen. 

 Two aspects of the optimal decision rule are worthy of fuller discussion.  First, we note that with 

more rearrangement of terms equation (B) can be rewritten as 

.
)(ˆ

)ˆ1(
)(
)(

0

1 k
rvq
rq

xf
xf

=
−⋅

⋅−
= ∗

∗

∗

∗

                        (C’) 

The left hand side of this equation is the relative likelihood an applicant screened x* is qualified.  Since 

this likelihood function is monotone increasing in x, all rejected applicants have a relative likelihood less 

than k.  And thus, the optimal decision rule takes the form of the Neyman-Pearson likelihood ratio test 

(Degroot, 1969; Christian, 1994; Bernardo and Smith, 1994).  Moreover, because the optimal decision 

rule requires that an applicant be rejected if and only if the likelihood function [R(x)] is less than a 

constant k of this particular form (e.g. k is the relative expected cost of type II and type I errors), the 

optimal decision rule is equivalent to a Bayesian variant of the Neyman-Pearson theorem of classical 

statistics. 



 12

Recall that the Neyman-Pearson theorem refers to a test of a simple null hypothesis (e.g. 

)1qq = against a simple alternative ( ).0qq =   It states, if there exists a positive constant k  and a region 

C of the set of possible decision variables x with ∫ =
C

dxxf α)(1  such that 

CxforkxRandCxforkxR ∈<∉≥ )()( then C is a most powerful critical region of size α (equal 

probability of type 1 error) for rejecting the null hypothesis.  Alternatively, k  is equivalent to the 

inverse of the Lagrange multiplier determined by the optimization problem choose x to minimize the 

probability of a type II error subject to the constraint that the probability of a type I error equals α. 

A well known criticism of this classical theory is its arbitrary choice of α.  Since the value of the 

Lagrange multiplier may be interpreted as the shadow price of type II error probability in terms of type I 

error probability, the question becomes how do you determine an optimal tradeoff between the two error 

types?  The Bayesian firm maximizing expected profit eliminates the arbitrary choice of α by evaluating 

this tradeoff in terms of the relative costs of the two types of errors.  Equation (B) and its variants (C) 

and (C’) are easily seen to be the solution to the alternative optimization program: minimize the 

weighted sum of the probabilities of type I and type II errors.  That is, choose x to minimize the function  

)](1[)( 01 xFbxFa −⋅+⋅ . 

Where F1(x) and 1-F0(x) are the conditional probabilities of making type I and type II errors respectively 

when x is the minimum screen acceptable.  The weights a and b (whose ratio equals k) are equal to the 

expected losses incurred from the respective error types, .)ˆ1()(ˆ rqandrvq ⋅−−⋅   It follows from this 

discussion that the minimum x* determining the optimal decision criterion is a function of the relative 

costs of type II and type I errors.  Below this will prove important to our discussion of the equilibrium 

properties of the model. 

 The second point worthy of fuller discussion is the implication from optimization condition C 

that the optimal decision rule accepts applicants (those at or slightly above the optimal ∗x ) who are not 



 13

expected to contribute enough value to cover the marginal cost of accepting them, ).(ncr ′+∗  This is 

because screening costs are a sunk cost.  Once an applicant is screened, if she is expected to contribute 

more than ∗r  to the firm, accepting her is optimal because she contributes something to the payment of 

the fixed screening costs. 

 With free entry competition should drive firms’ returns to zero so a third condition is needed to 

characterize equilibrium with screening. 

0)()](1[)](1[ˆ 1 =−−⋅−−⋅⋅⋅ ∗∗∗∗∗∗ ncxGnrxFnvq    (D) 

Together conditions (A) and (D) require the standard competitive equilibrium result that average and 

marginal screening costs be equal and that therefore n* equals the optimal (low cost) number of 

applicants to screen.  Obviously, if there is no screening in equilibrium the strict inequality (<) obtains in 

equations (A) and (B). 

We are now in a position to clarify the concept of competitive equilibrium used in this paper.  

Let iη and iN denote respectively the number of firms and applicants in the ith market.  Define a 

competitive screening equilibrium as a sequence of m markets characterized by a 

set{ }NNnxr iiii ,,,,, * ∗∗∗∗ η ; i = 1….m where ,,, *11
i

i
iiii

N
nxxrr

η

∗
∗∗

+
∗∗

+
∗ =>> NNi ≤∗ and .0; ≥≥ ∗∗

ii xRr  

  If 0=∗
ix , competitive equilibrium entails no screening in market i.  In that case, condition (D) holds 

with c(0) = 0.  Letting iq̂  denote the proportion of applicants in segmented market i who are qualified, 

we have vqr ii ⋅=∗ ˆ and conditions (A) and (B) are satisfied with the strict inequality (<) holding.  In this 

case, it is obvious that i = m.  If 0>∗
ix competitive equilibrium entails screening in market i and each of 

conditions (A) (B) and (D) are satisfied by the equality signs. 
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4.  CHARACTERIZATION OF EQUILIBRIA 

We begin by discussing the primary market.  For convenience the subscript i =1 designating the 

primary market is omitted.  Condition (B) characterizing the firm’s optimal screening decision rule 

defines x as an implicit function of r, v, and .q̂  Suppressing the parameters v and ,q̂ denoting that 

function as ),(rx and differentiating implicitly: 

0
)]()()()([ˆ

)(

11

2

>
′⋅−′⋅⋅⋅

=
xgxfxfxgvq

xg
dr
dx  

because the monotone likelihood condition ensures that the value within the brackets is positive.  

Increasing the reward to accepted applicants intensifies the screening criterion.  An increase in r holding 

v and q̂ constant raises the relative cost of a false positive acceptance decision vis a vis a false negative 

and induces the firm to raise its indicator of quality to reduce the likelihood of accepting unqualified 

applicants.   

Let 10 randr  satisfy respectively, 1,0),( == irxi i  and define the function 

).())]((1[))]((1[ˆ)( 1
∗⋅∗∗ −−⋅⋅−−⋅⋅⋅=Φ ncrxGnrrxFnvqr  

From (D) we see that for each reward price r, )(rΦ defines the expected return to firms who have 

optimized with respect to conditions (A) and (B).  Therefore, any values of r that set Φ(r) = 0 will satisfy 

all three of the equilibrium conditions (A), (B), and (D) and will define an equilibrium with screening 

for the appropriate number of firms. 

Φ(r) is continuously differentiable on the open interval ( 10 , rr ) with a first derivative  

))].((1[))]((ˆ))(([)( 1 rxGn
dr
dxrxfvqrxgrnr −⋅−⋅⋅⋅−⋅⋅=Φ′ ∗∗  

By the optimal screening rule (condition (B)) the terms in the first set of brackets vanish everywhere on 

the interval ),( 10 rr .  Therefore,  
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.0))]((1[)( 10 rrrforrxGnr <<<−⋅−=Φ′ ∗ Moreover, 

 ≥⋅⋅=Φ ′′ ∗ .0))(()(
dr
dxrxgnr  

Furthermore, .0*)()( 1 <−= Φ ncr  Therefore, if we find necessary and sufficient conditions for )( 0rΦ to 

be positive we will have demonstrated that Φ(r) is a strictly decreasing convex continuous function on 

the interval ],[ 10 rr that attains positive and negative values at the respective endpoints and therefore 

must vanish at some unique ∗r  contained within the closed interval.  That unique ∗r  would be a 

candidate to be a competitive equilibrium with screening. 

We note ).(]ˆ[)( 00
∗∗ −−⋅⋅=Φ ncrvqnr  Recall 0)( 0 =rx  and note further that when there is 

screening and the reward is 0r , each firm plans to accept every applicant just as in the no screening 

allocation with complete pooling of applicants.  Therefore because every qualified applicant is hired in 

either case, the expected value added from an accepted applicant )ˆ( vq ⋅  is the same in both cases.  Thus 

the difference between expected returns per applicant in the two cases is just the difference in total costs 

per applicant.  This cost differential is given by )])((ˆ[ *

*

0 n
ncrr −−  and when it is positive, .0)( 0 >Φ r  To 

see this observe: 

.)(ˆ0)(ˆ)(ˆ)(
0*

*

00
0

∗

∗

∗

∗

∗ ≥−⇔≥−−=−−⋅=
 Φ

n
ncrr

n
ncrr

n
ncrvq

n
r

     (E) 

(E) says that if firms choose to move from the no screening allocation where all applicants are rewarded 

r̂  to the allocation where firms screen and reward successful applicants 0r , it must be true that the 

savings in the reward paid each accepted applicant )]ˆ[( 0rr −  exceeds the average cost of screening. 

Obviously, this cannot always be true.  There are two general cases to consider. 
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Case I: equilibrium with no screening and no segmented markets. 

Here we reverse the final inequality in (E) and assume 0)( 0 ≤ Φ r .  Since Φ(r) is strictly 

decreasing on the relevant interval, expected returns with screening are everywhere negative except 

possibly at 0r  where such returns may equal zero.  However, even if ,0)( 0 = Φ r  with the reward equal to 

0r  applicants would be paid less than under the no screening case. 5   So 0r cannot support a competitive 

equilibrium since an entering firm could offer a reward between 0r  and r̂ not screen and expect a 

positive return.  In this case, screening costs are too high so the no screening complete pooling 

equilibrium with zero firm profit is the unique competitive equilibrium.  

Alternatively, assume the inequality in (E) holds strictly at 0r .  This implies that Φ(r) vanishes 

uniquely at some reward ∗r .  There are three sub cases to consider.  In the first, rr ˆ<∗  and again the 

unique competitive equilibrium is at r̂  with no screening.   

Case II: equilibrium with screening and segmented markets. 

In subcase II.a rr ˆ=∗  and the unique equilibrium at r̂  could have all firms screening or no firms 

screening.  Only in sub case II.b (Figure 1) where rr ˆ>∗ are the costs of screening low enough to 

accommodate a competitive equilibrium with every firm screening.  In what follows, the boundary case 

( rr ˆ=∗ ) is ignored so that discussion of screening equilibrium assumes .̂rr >∗  

 

 

 

 
                                                 
5 By (C) vxqpr ⋅= )( 010  and vqr ⋅= ˆˆ  making it clear that rr ˆ0 <  because the conditional 
probability that the lowest screened applicant is qualified must be less than the proportion of all applicants 
who are qualified. 
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Figure 1 (Case IIb) 

 
 

)(rφ  
 
 
 
 
 
 
 
 ).(]ˆ[)( 00

∗∗ −−⋅=Φ ncrrnr   
  
 
 

 
 

    
0 r 

 0r  r̂  ∗r     1r   
 
 
 
 
 
 
 *)()( 1 ncr −= Φ  
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 What can be deduced about the properties of equilibrium in the primary market when screening 

costs are not too high?  From the final inequality exhibited in (E) we have surmised that if screening is 

to occur it must be true that ).()ˆ( 0
∗∗ ≥−⋅ ncrrn   In moving from the reward price at a no screening 

allocation ( )r̂  to the lowest reward price with screening ( 0r ), the savings in reduced reward payments 

must exceed the cost of screening.  In effect, if screening is to be adopted by competitive firms, it must 

pay for itself.  And to do that the introduction of a screen must lower a firm’s non-screening costs.  The 

major result of the paper gives this intuition a more specific economic interpretation. 

 

Proposition 1: 

If the direct costs of screening are positive and the market screen is efficient, there is a 

unique competitive equilibrium, it may or may not entail screening.  For the competitive 

equilibrium to entail screening it is necessary and sufficient that at the unique no 

screening allocation the introduction of an efficient screen would show that the reduction 

in the expected cost of accepting unqualified applicants (type II error) exceeds the 

increase in the expected cost of rejecting qualified applicants (type I error) by at least the 

cost of screening. 

A proof of proposition 1 is given directly below.  Prior to giving the proof, in order to appreciate 

the result it will be illuminating to discuss the nature of the full costs of screening.  As remarked earlier, 

whether or not competitive firms invest in screening depends on the value of information obtained from 

the screening mechanism.  In order to examine this information, consider starting from an allocation 

with no screening and zero profits.  If a firm were to introduce screening at this allocation it could 

anticipate increasing its return because the screen, by reducing the number of unqualified applicants 

accepted, would lower the firm’s total reward bill without affecting its value added.  However, this gain 
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would also entail two costs.  The first addition to costs would be the direct cost of screening c(n).  The 

second addition to costs would be the indirect cost associated with the fact that screening implies that 

some qualified applicants who were accepted under no screening will now be rejected.  It follows that if 

screening is to increase net return above the no screening allocation the expected gains from rejecting 

unqualified applicants must exceed the direct costs of screening plus the expected opportunity costs of 

rejecting qualified applicants.  If screening does pay for itself in this way, it is obvious that a firm active 

at the no screening allocation with zero profit that takes the price r̂  as given and begins to screen would 

raise its profits so .0)ˆ( > Φ r   It is clear that a screening equilibrium exists. 

To prove proposition one let )ˆ(ˆ rxx = (so x̂ equals a firm’s optimal acceptance policy at r̂ ) and 

assume that the expected gain from rejecting unqualified applicants does exceed the sum of the direct 

costs of screening plus the expected losses from rejecting qualified applicants, i.e.:  

.)()ˆ()ˆ(ˆ)ˆ(ˆ)ˆ1( 10 ∗

∗

+⋅−⋅>⋅⋅−
n
ncxFrvqxFrq ⇒ 

0]ˆˆ[)()ˆ()ˆ(ˆ)ˆ(ˆ)ˆ1( 10 >−⋅+−⋅−⋅−⋅⋅− ∗

∗

rvq
n
ncxFrvqxFrq because .0]ˆˆ[ =−⋅ rvq  Thus, recalling that 

),()ˆ1()(ˆ)( 01 xFqxFqxG ⋅−+⋅= we have  

.0)ˆ()())]ˆ()ˆ1()ˆ(ˆ(1[ˆ)]ˆ(1[ˆ 011 >Φ=−⋅⋅−+⋅−⋅−−⋅⋅⋅ ∗∗∗ rncnxFqxFqrxFnvq   And there must exist an 

equilibrium .ˆ 1rrrthatsuchr << ∗∗    This proves sufficiency.  To show necessity, suppose that a 

competitive equilibrium with screening exists.  This means there is a unique rr ˆ>∗  such that 0)( =Φ ∗r  

and therefore because )(rΦ is monotone decreasing in r, 0)ˆ( >Φ r .  Reversing the steps used to show 

sufficiency, the result follows immediately. 

In an important sense, screening in competitive markets is all about identifying and rejecting 

unqualified applicants.  In the framework under consideration, firms have two options, they may screen 
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or not screen.  Clearly, screening will be chosen if and only if the value of the information it produces is 

worth its cost.  In determining the net value of information from screening, the status quo against which 

the judgment to screen is made is to accept every applicant.  Since the baseline of no screening already 

accepts all qualified applicants firms cannot improve their returns by increasing the acceptance rates of 

qualified applicants.  The only way to increase returns is to use screening to reduce the proportion of 

unqualified applicants accepted.   

 The essentials of this point are contained within Proposition 1 from which it trivially follows: 

Remark 1: 

If competitive firms invest in screening the equilibrium expected cost of a type II error 

∗⋅− rq)ˆ1(  strictly exceeds the expected cost of a type I error )(ˆ ∗−⋅ rvq . 

 

Because it illuminates the relationship between Bayesian decision theory and the economics of 

firm optimization, an alternative demonstration of Remark 1 is provided.  The result follows from the 

firm’s choice of an optimal screening rule.  From (C) we have that in a competitive equilibrium with 

screening; 

)()(ˆˆ)( 011
∗∗∗∗ >⇒⋅=>=⋅ xfxfvqrrvxqp  

and the desired result follows immediately from (C’). 

We note that in the statement of Remark 1 the expected costs of type I and II errors are based on 

prior probabilities.  As a consequence, the previous equation allows us to arrive at the intuitively 

appealing result that for a competitive equilibrium to unambiguously entail screening the posterior 

probability that a marginal acceptee is qualified must exceed the prior probability that a marginal 

acceptee is qualified ( qxqp ˆ)( 1 >∗ ).  And it follows that if equilibrium entails screening it must be true 

that xx ′>∗  (the switch point where the likelihood ratio of the two densities equals one).  Equivalently, 
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in the border case where )ˆ(rxx =∗  we have, .ˆ)ˆ/( 1 rvxqp =⋅   For an allocation with screening to be a 

competitive equilibrium, the screening mechanism must signify that the screening index assigned to the 

marginal accepted applicant is more likely to have been generated from the probability density for 

qualified applicants.  Thus, a necessary condition for screening to exist in equilibrium is that the value of 

information be positive. 

 

5.  SECONDARY MARKETS 

Given an equilibrium with screening represented by the descriptive parameters { }∗∗ xr , the 

primary market has rejected NxG ⋅∗ )(  applicants.  However, qNxF ⋅∗ )(1 of these applicants are in fact 

qualified.  The existence of these unselected but qualified applicants gives firms incentives to contract 

with members of the pool of rejected applicants, and thus a secondary market may form.  The formal 

structure of the equilibrium in this secondary market is completely analogous to that in the primary 

market.  Let q
xG
xF

NxG
NxF

xq q ˆ
)(
)(

)(
)(

)(ˆ 11 ⋅=
⋅

⋅
= ∗

∗

∗

∗
∗  denote the proportion of qualified applicants in the pool of 

rejected applicants.  The analysis of equilibrium in secondary markets proceeds as it did in the primary 

market.  We first note that 
v
Rxq ≥∗ )(ˆ  is a sufficient condition for the formation of a secondary market.  

For in this case, denoting secondary market variables by the subscript i = 2,…m, it is possible that there 

exists an equilibrium without screening in the secondary market that is defined by .ˆ)(ˆ 2 Rrvxq ≥=⋅∗   To 

determine if there is an equilibrium with screening we return to Proposition One.  

From Proposition One, there will be an equilibrium with screening in any secondary market if 

and only if, starting from the market’s no screening pooling allocation,  the expected reduction in type II 

error costs exceed the expected increase in type I error costs by more than the cost of screening.  The 
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cost of a type II error )ˆ( ir is decreasing while type I error cost )ˆ( irv − is increasing in i.  However, since 

the probability of making a type II error is increasing while the probability of making a type I error is 

decreasing in i, the respective costs of type I and type II error appear to be indeterminate without further 

restrictions on the model.  In general there will be 1≥m  markets formed.  It is trivial to show that each 

such market has the property that its succeeding market has a smaller proportion of qualified applicants 

and a lower reward to applicants.  Moreover, if there is a final pool of rejected applicants failing to gain 

admittance to any market, it must be true that .ˆ 1 Rvqm <⋅+   

We make one final observation about the structure of screening equilibria and their segmented 

markets.  In markets where the value added of qualified applicants is large relative to applicants’ 

reservation price, there is a tendency for the mth secondary market to pool applicants without screening.  

This tendency is formalized in the following proposition.   Recall that x’ the switch point is defined by 

).'()'( 01 xfxf =  

Proposition 2: 

If Rvxq ≥⋅′)(ˆ , then the mth secondary market entails no screening and is a pooling 

equilibrium with every remaining applicant accepted at the terms of trade 

.)(ˆˆ *
1 vxqr mm ⋅= −  

To prove this proposition note if there is no screening in the primary market the proposition is 

shown.  Thus, assume there is screening in at least the primary market.  To see that market m must have 

a pooling equilibrium, assume otherwise.  We have shown that any market (j) that has equilibrium with 

screening must satisfy the condition that ).()( 01
∗∗ > jj xfxf   The last inequality implies xx j ′>∗  for every 

market j that has a screening equilibrium.  Note that *
mx  is the acceptance criterion in market m.  So if 

market m has a screening equilibrium, xxm ′>∗  and )(ˆ *
mxq is the proportion of qualified applicants 
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among those who remain rejected.  But .)'(ˆ)(ˆ *

v
Rxqxq m ≥>   This implies that the pooling allocation 

without screening defined by vxqr mm ⋅=+ )(ˆˆ *
1   is feasible and there exists an equilibrium in an (m+1)th 

market, a contradiction.  The mth market must be a pooling equilibrium without screening 

and vxqr mm ⋅= − )(ˆˆ *
1 .  

 

Robustness of Equilibrium 

Some comments about this model have suggested an alternative specification with firms offering 

applicants a continuous reward function r(x) giving a specific reward tailored to each value of the 

screen.  It is not difficult to show there exist such schedules which support a Nash equilibrium; e.g. let 

.
*
*)()/()( 1 n

ncvxqpxr −⋅=   Firms could of course make distinctions in applicants’ rewards based on 

infinitesimal differences in screen scores but the objective of this paper is to examine the properties of 

competitive equilibrium within the context of frequently observed firm behavior in a number of 

important market settings.  Moreover, it is straightforward to show that the competitive screening 

equilibrium cannot be undermined by a firm offering a reward schedule r(x) that varies with applicants’ 

screen values. 

Suppose a firm were to make such an offer in a market in competitive equilibrium at a reward 

price r*.  We note only applicants offered a reward greater than their competitive equilibrium offer will 

accept.  This requires r(x) > r* for all who accept the new offer.  Furthermore, no profit maximizing firm 

will offer any applicant a reward that exceeds the applicant’s expected value to the firm .)/( 1 vxqp ⋅   

Because )/( 1 xqp  is increasing in x and *)/( 1 rvxqp =⋅∗  by first order condition (C), it must be true 

that  .**)( xxallrxr ≤≤   Therefore, *xx ≥  for all applicants accepting r(x).  Moreover, the optimal 
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number of applicants to screen will still equal n* where screening costs are minimized.  Thus, for any 

such r(x) and n the new firm’s expected profit per applicant will equal: 

0
*
*)()(])/([)()()]()/([ *

* 1* 1
11 =−−⋅<−−⋅ ∫∫ n

ncdxxgrvxqp
n
ncdxxgxrvxqp

x

x

x

x
 (F) 

since r(x) > r* for all  x > x*. 

It is also true an entering firm could not make a profit by offering a reward schedule only 

acceptable to applicants screened above x*; i.e. for some *xx >  

.*
)(

*

xxforr
xr

xxforr

≥>

<<
 

To see this note that the inequality of integrals in (F) must hold for all x and not just x*.  Moreover, for 

any x other than x* the second integral must have a negative value.  Otherwise the firms earning zero 

profit in competitive equilibrium at r* could have chosen a different minimum acceptable x and earned a 

positive profit.  Since x* is the profit optimal screen value this is a contradiction. 

 A second means by which a competitive screening equilibrium might be undermined is by an 

outside firm raiding an active firm’s pool of clients.  In equilibrium, each successful applicant to a firm 

receives a reward ./)()(ˆ **** nncvxqr −⋅=   It has been suggested an inactive firm could (without cost) 

identify all of the clients of an active firm and offer a reward slightly higher than r* to every such client 

and make a profit because the poaching firm would not incur screening costs.  The problem here is how 

does the poacher uncover the information without cost?  In order to ensure that it is hiring the exact 

client base of an existing firm, the poacher must incur the same sorts of costs as did the active firms.  

The poacher must make its offer known to the pool of applicants, and it must screen all interested parties 

to ensure that it is contracting only with the clients of the firm it is poaching.  It is clear that in most 

market settings the poacher cannot obtain such information without cost.  In particular, for the financial 
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markets under discussion here it is unreasonable to assume that a poacher could identify another firm’s 

geographically dispersed client pool except through some kind of industrial espionage gaining access to 

the firm’s internal database of clients.  Furthermore, client poaching of this kind does not seem 

reasonable in markets where firms and clients are protected by contracts that obligate them to perform 

certain actions for the other party.  Even in labor markets, where contracts interpreted as indentured 

servitude will not be enforced by courts, there are service jobs where employers protect trade secrets 

from poaching by having new hires sign non-compete agreements.  These non-compete agreements 

prevent employees from doing the same kind of work for another employer for a defined length of time 

after severing employment with the original employer.  Such contracts are enforced in U.S. courts.1 

Generally, the poaching argument will not work if poaching costs are at least as expensive as the 

original screening costs.  That assumption seems reasonable in cases where the original screening costs 

are largely confined to interviewing and verification of information given by applicants as has been 

assumed here.  In the case where screening costs entail more substantial and costly actions so that 

poaching costs are less expensive, the payment of a single reward to all successful applicants may be 

vulnerable to poaching.  Therefore, the results of this paper apply to markets where firms can enter 

legally binding contracts with applicants that require the delivery of applicants’ services or payments, or 

where screening costs are no larger than the costs that would necessarily be incurred by a would be 

poacher. 

 

CONCLUSIONS 

Why do organizations screen?  This question can be answered in at least two ways.  Some people 

claim that the motivation behind screening is to identify the best applicants.  Others assert that screening 

is a mechanism whose primary function is to identify and keep out undesirables.  An economist might 
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answer that these two explanations amount to the same thing.  That is neoclassical economic intuition 

suggests that in equilibrium the two assertions are likely to be indistinguishable.  However, the results of 

this paper provide support for the view that, at least in competitive markets where, unlike signaling 

models information remains imperfect, screening is a gate keeping device.  Competitive firms’ 

motivation to screen is based on their incentive to cut costs by identifying and rejecting applicants 

perceived to be of lower quality. 

However, in competitive equilibrium free entry of firms drives the applicant reward price upward 

until firm profits equal zero.  As a consequence, all of the benefits provided by firms’ investment in 

better information ultimately accrue to successful applicants.  Moreover, because the information 

provided by the screen is imperfect, firms make errors in their acceptance decisions.  Unavoidably, 

applicants who screen well are rewarded more than those who do not screen well even in cases where 

the underlying quality of the former is lower.  In terms of social efficiency this result is disturbing.  

Indeed, we have seen (Proposition 3) that under general conditions, the mth secondary market will entail 

no screening and as a consequence ultimately all applicants are accepted by some market.  Thus, 

screening may merely redistribute income among applicants without any improvement in social 

efficiency.  In equilibrium, screening does not ultimately allocate resources any better than does pooling 

of applicants without screening.   

The model developed here provides a natural setting for investigating questions relating to 

statistical discrimination in labor and credit markets: questions concerning who gets screened out, under 

what conditions, and why.  Most importantly, the relationship between screening and the formation of 

segmented markets strongly suggests that reanalysis of the relationship between ethnic and gender 

relations (beliefs about phenotypically identifiable groups and behavioral interactions among them) and 

disparate economic treatment is likely to have starkly different implications than those suggested by 
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standard models of statistical discrimination that are similar to signaling models (Aigner and Cain, 1977; 

Phelps, 1972).  However, a review of the economics literature suggests that only Coate and Loury 

(1993) (who model the effects of affirmative action on promotion decisions in internal labor markets) 

have utilized Bayesian decision making to analyze questions related to those considered here.  The 

model of binary choice screening and market segmentation developed in this paper can be used to 

analyze a broad array of problems concerning resource allocation and equity in markets where 

probabilistic decision making may well have significant ramifications for the differential treatment of 

groups. 



 28

REFERENCES 

Aigner, Dennis J. and Glen G. Cain, “Statistical Theories of Discrimination in Labor Markets.”   

Industrial and Labor Relations Review, January 1977, 30, pp. 175-187. 

Bernardo, J.M. and Smith A.F.M.  Bayesian Theory.  Chichester, Canada: John Wiley & Sons Ltd, 1994. 

Coate, Stephen and Loury, Glenn C.  “Will Affirmative-Action Policies Eliminate Negative 

Stereotypes?”  American Economic Review, 1993, December, 83 (No. 5), pp.  1220-40. 

Degroot, Morris H.  Optimal Statistical Decisions.  New York:  McGraw-Hill Company, 1970. 

Doeringer, Peter B. and Piore, Michael J.  Internal Labor Markets and Manpower Analysis.  Armonk,  

N.Y.: M.E. Sharpe, 1985. 

Jaynes, Gerald David.  “Equilibria in Competitive and Monopolistically Competitive Insurance  

 Markets.”   Journal of Economic Theory, 1978, December, 19 (No 2), pp. 394-422. 

 Milgrom, Paul.  “Good News and Bad News: Representation Theorems and Applications.”  Bell 

Journal of Economics, 1981, 12, pp. 380-391. 

Phelps, Edmund S.  “The Statistical Theory of Racism and Sexism.”   American Economic Review, 

 September 1972, 62, pp. 659-661. 

 Robert, Christian P.  The Bayesian Choice.  New York: Springer-Verlag, 1994. 

Spence, A. Michael.  “Job Market Signalling.  Quarterly Journal Of  Economics,  May 1973, 87, pp.  

355-79. 

Riley, John G.  “Informational Equilibrium.”  Econometrica, 1979, March 47, pp. 331- 59.   

Rothschild, Michael and Stiglitz Joesph E.  “Equilibrium in Competitive Insurance Markets.”  Quarterly 

 Journal of Economics, 1976, 90, pp. 629-649. 

Stiglitz, Joesph E.  “The Theory of Screening. Education, and the Distribution of Income.”  American 

Economic Review, June 1975. 



 29

Williamson, Oliver E.  Markets and Hierarchies, Analysis and Antitrust implications: A  Study in the 

Economics of Internal Organization.   New York: Free Press, 1975. 

Wilson, Charles.  “A Model of Insurance Markets with Asymmetric Information.”  Journal of Economic 

Theory, 1977, 16, pp. 167-207. 

                                                 
1 Actually, the threat that legal fees will be incurred defending against a law suit alleging a new employee is 
engaged in an activity that she contracted not to do can deter such poaching. 


