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1 Introduction

This paper revisits Harsanyi�s (1953, 1955) utilitarian impartial observer theorem. Consider a

society of individuals I: The society has to choose among di¤erent social policies, each of which

induces a probability distribution or �lottery�` over a set of social outcomes X . Each individual i

has preferences %i over these lotteries. These preferences are known, and they di¤er.

To help choose among social policies, Harsanyi proposed that each individual should imagine

herself as an �impartial observer� who does not know which person she will be. That is, the

impartial observer faces not only the real lottery ` over the social outcomes in X , but also a

hypothetical lottery z over which identity in I she will assume. In forming preferences % over all

such �extended lotteries�, the impartial observer is forced to make interpersonal comparisons; for

example, she is forced to compare being person i in social state x with being person j in social

state x0.

Harsanyi assumed that when the impartial observer imagines herself being person i she adopts

person i�s preferences over the outcome lotteries. He also assumed that all individuals are expected

utility maximizers, and that they continue to be so in the role of the impartial observer. Harsanyi

argued that these �Bayesian rationality�axioms force the impartial observer to be a (weighted)

utilitarian. More formally, over all extended lotteries (z; `) in which the identity lottery and

the outcome lotteries are independently distributed, the impartial observer�s preferences admit a

representation of the form

V (z; `) =
X
i

ziUi (`)

where zi is the probability of assuming person i�s identity and Ui (`) :=
Z
X

ui (x) ` (dx) is person

i�s von Neuman-Morgenstern expected utility for the outcome lottery `.

Harsanyi�s utilitarianism has attracted many criticisms.1 We confront just two: one associated

1 Sen(1970, 1977), Weymark (1991) and others have observed that Harsanyi�s utilitarianism is not �welfare�
utilitarianism in the nineteenth-century sense. Harsanyi�s representation is additive in individuals�von Neumann-
Morgenstern utilities but not necessarily in individuals��welfares�. We will return to this issue in section 7.
There have been other criticisms beyond the scope of this paper. For example, it is unclear that placing di¤erent

individuals in the role of the impartial observer will lead them to agree on the appropriate interpersonal comparisons.
Even within Harsanyi�s utilitarian form, the impartial observer has to decide among a¢ ne transformations which
von Neumann-Morgenstern utility function to use for each individual, and which is the appropriate weighted identity
lottery (see, for example, Mongin (2001)). It is also unclear that actual individuals will (or even should) feel bound
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with Diamond (1967) concerning fairness; and one associated with Pattanaik (1968) concerning

di¤erent attitudes toward risk. To illustrate both criticisms, consider two individuals, i and j and

two social outcomes xi and xj . Person i strictly prefers outcome xi to outcome xj , but person

j strictly prefers xj to xi. Perhaps, there is some (possibly indivisible) good, and xi is the state

in which person i has the good while xj is the state in which person j has it. Suppose that the

impartial observer would be indi¤erent being person i in state xi and being person j in state xj ;

hence ui (xi) = uj (xj) =: u
H . She is also indi¤erent between being i in xj and being j in xi;

hence ui (xj) = uj (xi) =: u
L. And she strictly prefers the �rst pair (having the good) to the

second (not having the good); hence uH > uL.

To illustrate Diamond�s criticism, consider the two extended lotteries illustrated in tables (a)

and (b) in which rows are the people and columns are the outcomes.

xi xj xi xj

i 1=2 0 i 1=4 1=4

j 1=2 0 j 1=4 1=4

(a) (b)

In each, the impartial observer has a half chance of being person i or person j. But in table (a),

the good is simply given outright to person i: outcome xi has probability 1. In table (b), the good

is allocated by tossing a coin: the outcomes xi and xj each have probability 1=2. Diamond argued

that a fair-minded person might prefer the second allocation policy since it gives each person a

�fair shake�.2 But Harsanyi�s utilitarian impartial observer is indi¤erent to such considerations

of fairness. Each policy (or its associated extended lottery) involves a half chance of getting the

good and hence yields the impartial observer 12u
H+ 1

2u
L. The impartial observer cares only about

her total chance of getting the good, not how this chance is distributed between person i and j.

To illustrate Pattanaik�s criticism, consider the two extended lotteries illustrated in tables (c)

by their evaluations in the role of the impartial observer once they �resume� their role as real people (see, for
example, Broome (1991)).

2 Societies often use both simple lotteries and weighted lotteries to allocate goods (and bads), presumably for
fairness considerations. Examples include the draft, kidney machines, oversubscribed events, schools, and public
housing, and even whom should be thrown out of a lifeboat! For a long list and an enlightening discussion, see
Elster (1989).
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and (d).

xi xj xi xj

i 1=2 1=2 i 0 0

j 0 0 j 1=2 1=2

(c) (d)

In each, the impartial observer has a half chance of being in state xi or state xj , and hence a half

chance of getting the good. But in (c), the impartial observer faces this risk as person i, while in

(d), she faces the risk as person j. Pattanaik argued that if person i is more comfortable facing

such a risk than is person j then the impartial observer might prefer to face the risk as person i.

But Harsanyi�s utilitarian impartial observer is indi¤erent to such considerations of risk attitude.

Each of the extended lotteries (c) and (d) again yield 1
2u

H + 1
2u

L. Thus, the impartial does not

care who faces this risk.

Most attempts to adapt Harsanyi�s axioms to deal with these concerns have focussed on the

independence axiom of expected utility theory. For example, Karni & Safra (2002) relax inde-

pendence for the individual preferences, while Epstein & Segal (1992) relax independence for the

impartial observer.3 It is not clear, however that the independence axiom pe se is at the crux of

the disagreements between Harsanyi and his critics.4

In his own response to Diamond, Harsanyi (1975) argued that, even if randomizations were of

value for promoting �fairness�(which he doubted), any explicit randomization is super�uous since

�the great lottery of (pre-)life�may be viewed as having already given each child an equal chance

of being each individual. That is, for Harsanyi, it does not matter whether a good is allocated

entirely by �accidents of birth� (as in the extended lottery (a) above), or whether the good is

allocated entirely by individuals��life chances�(as in the extended lottery (c)): for Harsanyi, they

are equivalent. The dispute between Diamond and Harsanyi thus seems to rest on whether or not

3 Strictly speaking, Epstein & Segal�s paper is in the context of Harsanyi�s (1955) aggregation theorem, not his
impartial observer�s theorem.

4 Broome (1991) also argues that independence per se is not the key issue for Harsanyi�s utilitarianism. He
expands the outcome set to allow us to distinguish not just who gets the good but also the means of allocation.
Debates about independence then become debates about �rational indi¤erence�: that is, which such outcomes
should be viewed as equivalent. Somewhat analogously, we emphasize which lotteries should be viewed as equivalent.
Broome�s own critiques, however, both of the impartial observer theorem and of Diamond�s notion of fairness (see,
for example, Broome 1984) are on other grounds.
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we think (imagined) lotteries over identities are indeed equivalent to (real) lotteries over outcomes.

We will argue that such an equivalence is also at the heart of Pattanaik and Harsanyi�s dispute.

Which of Harsanyi�s axioms yield the equivalence between identity lotteries and outcome lot-

teries? In most formulations of Harsanyi�s theorem, the impartial observer is assumed to form

preferences not just over extended lotteries in which the identity lottery and outcome lottery are

independently distributed but over the entire set of joint distributions 4 (I � X ) over identities

and outcomes.5 In such a set up, it is hard even to distinguish the outcome lottery from the

identity lottery since the resolution of identity can partially or fully resolve the outcome. For

example, the impartial observer could face a joint distribution in which, if she becomes person

i then society holds the outcome lottery `, but if she becomes person j then social outcome x

obtains for sure. Harsanyi�s utilitarianism comes from later restricting the representation to the

set of independent or �product�lotteries.

Suppose instead that we restrict attention from the outset to product lotteries, 4 (I)�4 (X ),

That is, the impartial observer only forms preferences over extended lotteries in which the outcome

lottery she faces is the same regardless of which identity she assumes. This setting seems closer

to most informal accounts of Harsanyi�s thought experiment. Suppose we then impose each of

Harsanyi axioms in this simpler setting: in particular, each individual satis�es the independence

axiom for outcome lotteries, that the impartial observer respects these individuals�preferences

(and so inherits this independence), and that the impartial observer herself satis�es independence

for identity lotteries. In this case, we are no longer forced to Harsanyi�s utilitarianism. Instead

(see theorem 2 below), we obtain a generalized (weighted) utilitarian representation:

V (z; `) =
X
i

zi�i (Ui (`))

where zi is again the probability of assuming person i�s identity and Ui (`) is again person i�s

expected utility from the outcome lottery `, but each �i (:) is a (possibly non-linear) transfor-

mation of person i�s expected utility. Generalized utilitarianism is well known to applied welfare

economists but has, till now, lacked axiomatic foundations.

5 See, for example, Weymark (1991). An exception is Safra & Weissengrin (2002).
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Generalized utilitarianism can accommodate both Diamond and Pattanaik. Diamond�s concern

for fairness can be accommodated if the �i-functions are concave.
6 Pattanaik�s concern for di¤erent

risk attitudes can be accommodated by allowing the �i-functions to di¤er in their degree of

concavity or convexity.7 Harsanyi�s utilitarianism can be thought of as the special case where

each �i is a¢ ne.

Since generalized utilitarianism nests Diamond�s, Pattanaik�s and Harsanyi�s models, we pro-

ceed to axiomatize each in turn. We show formally that what separates Harsanyi from Diamond

is that Harsanyi assumes that identity lotteries (accidents of birth) and outcome lotteries (life

chances) are �equivalent�in the sense of being indi¤erent. By contrast, Diamond assumes a pref-

erence for life chances; that is, in the example above, he prefers that the good be allocated by a

real outcome lottery (as it is in (b),(c) and (d)) than by the imaginary chance of assuming the

right identity (as it is in (a)).8 What separates Harsanyi from Pattanaik is again that Harsanyi

assumes that identity lotteries and outcome lotteries are �equivalent�but this time in the sense

that all axioms are symmetric across the two types of lottery. By contrast, Pattanaik imposes in-

dependence over identity lotteries directly on the impartial observer but allows her only to inherit

independence over outcome lotteries indirectly from the individuals who will actually face those

lotteries.

These two di¤erent notions of equivalence yield two di¤erent new axiomatizations of Harsanyi�s

utilitarianism. Each is built by adding an axiom to those that delivered generalized utilitarianism.

More abstractly, we can also think of these as two new bi-linearity theorems for products of lottery

spaces.

Although restricting attention to product lotteries seems natural and yields the results we

want, it comes at a technical cost in that we can no longer rely on well-known results from decision

6 In our story, we have �i (ui (xi)) = �j (uj (xj)) > �i (ui (xj)) = �j (uj (xi)). Thus, if the �-functions
are (strictly) concave, the impartial observer evaluatation of allocation policy (c) �i

�
1
2
ui (xi) +

1
2
ui (xj)

�
>

1
2
�i (ui (xi)) +

1
2
�i (ui (xj)) =

1
2
�i (ui (xi)) +

1
2
�j (uj (xi)), her evaluation of policy (a). The argument comparing

(b) and (a) is similar.

7 For example, if �i is strictly concave but �j is linear, then the impartial observer�s evaluation of policy (c)
�i
�
1
2
ui (xi) +

1
2
ui (xj)

�
> 1

2
�i (ui (xi))+

1
2
�i (ui (xj)) =

1
2
�j (uj (xj))+

1
2
�j (uj (xi)) = �j

�
1
2
uj (xj) +

1
2
uj (xi)

�
,

her evaluation of policy (d).

8 Indeed, Diamond�s original example was between allocation policies like (a) and (c). He strictly preferred (c).
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theory. First, the set of product lotteries 4 (I)�4 (X ) is not a convex subset of 4 (I � X ). In

particular, we have to be careful that our independence axioms only involve mixtures that remain

in the set of product lotteries. Fortunately, we can adapt some axioms developed by Fishburn

(1982) to study mixed strategies in games.9

Second, the set of product lotteries does not have a nice recursive structure. With the full set

of joint distributions, it is as if each individual i faces his own �personal�outcome lottery. Each

vector of personal lotteries induces a vector of individual utilities. In this setting, by changing

person i�s personal outcome lottery, holding �xed the other people�s lotteries, we can induce a

rich range of these individual-utility vectors. With only the set of product lotteries, however, each

person faces the same outcome lottery (although their preferences over those lotteries may di¤er).

This limits the set of individual-utility vectors we can induce. If this set is not rich enough then

our axioms will lack bite.

The richness of this set depends on the degree to which di¤erent individuals di¤er in their

ranking of outcome lotteries, and the degree to which di¤erent outcome lotteries lead the impartial

observer to di¤erent welfare ranking of individuals. Most of the results below require relatively

mild richness conditions: either that individuals do not all agree in their preference for one outcome

over another or that the impartial observer does not always prefer to be one individual rather than

another.10 For one result, however, �our second axiomatization of Harsanyi�s utilitarianism �we

use a stronger condition that requires there to be three or more agents.

Section 2 sets up the product-lottery framework. Section 3 shows that, if we adapt the Harsanyi

axioms to that framework, we obtain an axiomatization of generalized utilitarianism. Section 4

provides an additional axiom to accommodate Diamond�s concern for fairness. It shows that

forcing the impartial observer to ignore these concerns corresponds to being indi¤erent between

identity and outcome lotteries. This yields our �rst new axiomatization of Harsanyi�s utilitarian-

ism. Section 5 shows how to accommodate Paittanaik�s concerns for di¤erent attitudes toward

risk. It shows that forcing the impartial observer to ignore these concerns corresponds to imposing

9 Axioms of this form were also used by Safra & Weissengrin (2002).

10 But, in most cases, these conditions are essential to the results. We provide counter-examples in appendix A.
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a weak form of independence axiom directly on the impartial observer. Going further and imposing

all axioms symmetrically on identity and outcome lotteries (given a rich environment) yields our

second new axiomatization of Harsanyi. There is a very large literature discussing Harsanyi, and

we do not attempt to summarize it, but 6 discusses some related technical papers. In particular, it

considers what happens if we impose less structure and what happens if, like Harsanyi, we impose

more. Section 7 (following, for example, Weymark (1991)) introduces an explicit notion of com-

parable welfare, and uses it to interpret some of our representation results. Appendix A provides

counter-examples to show that our axioms are essential. Appendix B provides those proofs not in

the text.

2 Set up and Notation

Let society consist of a �nite set of individuals I = f1; : : : ; Ig, I � 2, with generic elements i and

j. The set of �nal outcomes or social states is denoted by X with generic element x. The set X

is assumed to have more than one element and to be a compact metrizable space and associated

with it is the set of events E , which is taken to be the Borel sigma-algebra of X . Let 4 (X ) (with

generic element `) denote the set of outcome lotteries; that is the set of probability measures on

(X ; E) endowed with the weak convergence topology. We will sometimes refer to these lotteries

over outcomes as life chances: they represent the real risks faced by each individual in their real

lives. With slight abuse of notation, we will let x or sometimes [x] denote the degenerate outcome

lottery that assigns probability weight 1 to social state x.

Each individual i in I, is endowed with a preference relation %i de�ned over the set of life-

chances 4 (X ). We assume throughout that for each i in I, the preference relation %i is a

complete, transitive and continuous binary relation on 4 (X ), and that its asymmetric part �i

is non-empty. Hence for each %i there exists a non-constant function Vi : 4 (X ) ! R, satisfying

for any ` and `0 in 4 (X ), Vi (`) � Vi (`
0) if and only if ` %i `0. In summary, a society may be

characterized by the tuple


X ; E ; I; f%igi2I

�
.

In Harsanyi�s story, the impartial observer imagines herself behind a veil of ignorance, uncertain

about which identity she will assume in the given society. Let 4 (I) denote the set of identity
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lotteries on I. Let z denote the typical element of4 (I), and let zi denote the probability assigned

by the identity lottery z to individual i. We will sometimes refer to these lotteries over identity

as accidents of birth: they represent the imaginary risks in the mind of the impartial observer of

being born as someone else. With slight abuse of notation, we will let i or sometimes [i] denote the

degenerate identity lottery that assigns probability weight 1 to the impartial observer�s assuming

the identity of individual i.

As discussed above, we assume that the outcome and identity lotteries faced by the impartial

observer are independently distributed; that is, she faces a product lottery (z; `) 2 4 (I)�4 (X ).

We shall sometimes refer to this as a product identity-outcome lottery or (where no confusion

arises) simply as an product lottery.

The impartial observer is endowed with a preference relation % de�ned over4 (I)�4 (X ). We

assume throughout that % is complete, transitive and continuous, and that its asymmetric part �

is non-empty, and so it admits a (non-trivial) continuous representation V : 4 (I)�4 (X )! R.

That is, for any pair of product lotteries, (z; `) and (z0; `0), (z; `) % (z0; `0) if and only if V (z; `) �

V (z0; `0).

3 Generalized Utilitarianism

In this section, we adapt the axioms from Harsanyi�s impartial observer theorem to apply to

the product-lottery framework, add a richness condition that there is some disagreement in the

underlying individual preferences over policies, and hence provide an axiomatization of generalized

utilitarianism.

The �rst axiom is Harsanyi�s acceptance principle. In degenerate product lotteries of the form

(i; `) or (i; `0), the impartial observer knows she will assume identity i for sure. The acceptance

principle requires that, in this case, the impartial observer�s preferences % must coincide with that

individual�s preferences %i over life chances.

The Acceptance Principle. For all i in I and all `; `0 2 4 (X ), ` %i `0 if and only if (i; `) %

(i; `0).

Second, following Harsanyi, we assume that each individual i�s preferences satisfy the indepen-
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dence axiom for the lotteries he faces, that is over the set of outcome lotteries 4 (X ). We state

this axiom in a slightly non-standard form.

Independence over Outcome Lotteries (for Individual i). Suppose `, `0 2 4 (X ) are such

that ` �i `0. Then, for all ~̀, ~̀0 2 4 (X ), ~̀%i ~̀0 if and only if �~̀+(1� �) ` <i �~̀0+(1� �) `0

for all � in (0; 1].

Notice that the two outcome lotteries, ` and `0 that are �mixed in�with weight (1� �) to ~̀

and ~̀0 are themselves indi¤erent. The axiom states that �mixing in�two indi¤erent lotteries (with

equal weight) preserves the original preference order between ~̀ and ~̀0 prior to mixing.

The standard version of the independence axiom states that for all ~̀; ~̀0; ~̀00 in 4 (X ), ~̀%i ~̀0

if and only if �~̀+ (1� �) ~̀00 %i �~̀0 + (1� �) ~̀00 for all � in (0; 1]. That is, in its standard form,

the same outcome lottery ~̀00 is �mixed-in�with weight (1� �) to ~̀ and ~̀0. It is a simple exercise

to show that these two versions of independence are equivalent.11 We use the form above to

emphasize the symmetry with the next axiom.

Third, following Harsanyi, we assume that the impartial observer�s preferences also satisfy

independence. Here, however, we need to be careful. First, the set of product lotteries 4 (I) �

4 (X ) is not a convex subset of 4 (I � X ) and hence not all probability mixtures of product

lotteries are well de�ned. Second, the impartial observer faces two types of lottery, over outcomes

and over identities. The former risks are faced directly by real people, but are only faced indirectly

by the impartial observer once she assumes the identity of a real person. Once we impose the

independence axiom on each individual�s preferences, the acceptance principle already ensures

that the impartial observer respects those individual preferences (and hence independence) over

outcome lotteries. Identity lotteries, however, are not faced by real people, but only faced by the

impartial observer in her thought experiment. Thus, to get independence over identity lotteries,

we need to impose it directly on the impartial observer�s preferences. The following axiom achieves

this.12

11 In particular, the current form immediately implies the standard form. For the other direction, the standard
form implies that ` �i `0 if and only if �~̀0 + (1� �) ` �i �~̀0 + (1� �) `0.
12 This axiom is based on Fishburn�s (1982, p.88) and Safra & Weissengrin�s (2003) substitution axioms for
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Independence over Identity Lotteries (for the Impartial Observer). Suppose (z; `), (z0; `0) 2

4 (I) �4 (X ) are such that (z; `) � (z0; `0). Then, for all ~z, ~z0 2 4(I): (~z; `) % (~z0; `0) if

and only if (�~z + (1� �) z; `) % (�~z0 + (1� �) z0; `0) for all � in (0; 1].

To understand this axiom, �rst notice that the two mixtures on the right side of the implication

are identical to �(~z; `)+(1� �) (z; `) and �(~z0; `0)+(1� �) (z0; `0) respectively. These two mixtures

of product lotteries are well de�ned: they mix identity lotteries holding the outcome lottery �xed.

Second, notice that the two product lotteries, (z; `) and (z0; `0), that are �mixed in�with weight

(1� �) are themselves indi¤erent. The axiom states that �mixing in� two indi¤erent lotteries

(with equal weight) preserves the the original preference order between (~z; `) and (~z0; `0) prior to

mixing.13 Finally, notice that this axiom only applies to mixtures of identity lotteries holding

the outcome lotteries �xed, not to the opposite case: mixtures of outcome lotteries holding the

identity lotteries �xed. We will discuss this �opposite�axiom in section 5 below.

How do these axioms relate to the discussion in the introduction? Given acceptance, the

impartial observer inherits her preferences over outcome lotteries from the preferences of the

individuals who will face those lotteries and whose identities she will assume. In particular,

the impartial observer inherits independence over outcome lotteries indirectly from individuals�

preferences. By contrast, we can think of Harsanyi imposing such independence directly. We

will show in section 5 that this distinction allows us to accommodate Pattanaik�s concern about

di¤erent individuals�di¤erent attitudes toward risk. None the axioms above say anything about

how the impartial observer compares identity and outcome lotteries. In particular, unlike Harsanyi,

we do not implicitly assume that she is indi¤erent between accidents of birth and life chances. We

product lottery spaces. Their axioms, however, apply whereever probability mixtures are well de�ned in this space.
For example, in our context, their axioms would apply to mixtures of outcome lotteries. We only allow mixtures of
identity lotteries. In this respect, our axiom is similar to Karni & Safra�s (2000) �constrained independence�axiom,
but their axiom applies to all joint distributions over identities and outcomes, not just to product lotteries.

13 One technical remark might interest some readers. In the axiom, we allow the mixing of identity lotteries to
occur at two di¤erent outcome lotteries; that is, we do not restrict ` to equal `0. We could de�ne a weaker axiom �
call in conditional independence �that simply imposes independence over identity lotteries at each �xed outcome
lottery �̀. That is, for all �̀2 4(X ), if z; z0 2 4 (I) are such that (z; �̀) � (z0; �̀) then for all ~z; ~z0 2 4(I), (~z; �̀) %
(~z0; �̀) if and only if (�~z + (1� �) z; �̀) % (�~z0 + (1� �) z0; �̀) for all � in (0; 1]. Our stronger axiom is necessary for
the representation results that follow. To show this, example 2 in appendix A shows that preferences can satisfy
the acceptance principle, independence over outcome lotteries for individuals, and conditional independence over
identity lotteries for the impartial observer but not satisfy the (unconditional) independence axiom over identity
lotteries de�ned above.
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will show in section 4 that this allows us accommodate Diamond�s concerns about fairness.

To obtain our representation results, we work with a richness condition on the domain of

individual preferences: we assume that none of the outcome lotteries under consideration are

Pareto dominated.

Absence of Unanimity For all `; `0 2 4 (X ) if ` �i `0 for some i in I then there exists j in

I such that `0 �j `.

This condition is perhaps a natural restriction in the context of Harsanyi�s thought experiment.

That exercise is motivated by the need to make social choices when agents disagree. We do not

need to imagine ourselves as an impartial observer facing a identity lottery to rule out social

alternatives that are Pareto dominated.14

The following lemma does yet not impose independence over outcome lotteries on individuals

and hence yields a more general representation. The idea for this lemma comes from Karni & Safra

(2000) but they work with the full set of joint distributions 4 (I � X ) whereas we are restricted

to the set of product lotteries 4 (I)�4 (X ).

Lemma 1 Suppose absence of unanimity applies. Then the impartial observer satis�es the ac-

ceptance principle and independence over identity lotteries if and only if there exist a continuous

function V : 4 (I) � 4 (X ) ! R that represents %, and, for each individual i in I, a function

Vi : 4 (X )! R, that represents %i, such that for all (z; `) in 4 (I)�4 (X ),

V (z; `) =
IX
i=1

ziVi(`):

Moreover the functions Vi are unique up to common a¢ ne transformations.

The proof is in the appendix but a sketch is as follows. The �rst step follows Karni & Safra

(2000).15 Fix some outcome lottery `1. Notice that, by independence, there exist two individual

14 For example, if absence of unanimity fails but individuals satisfy independence, we could �rst discard all those
outcomes that are Pareto dominated by other outcome lotteries and then carry out the Harsanyi thought experiment
on the set of lotteries over the remaining undominated outcomes. Given independence, the set of undominated
lotteries over the original outcomes is equal to the set of lotteries over the undominated outcomes, and absence of
unanimity will hold for the new domain.

15 An alternate strategy would be to prove it as a special case of Theorem 8.
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i1 and i1 such that
�
i1; `1

�
%
�
z; `1

�
%
�
i1; `

1
�
for all z; that is, i1 is a best identity and i1 is

a worst identity to assume given that the impartial observer will then face the outcome lottery

`1. Next, construct a representation for all product lotteries (z; `) such that
�
i1; `1

�
% (z; `) %�

i1; `
1
�
by �nding the weight � in [0; 1] such that the identity lottery �

�
i1
�
+ (1� �) [i1] facing

the outcome lottery `1 is indi¤erent to the identity lottery z facing the outcome lottery `. Set

V (z; `) := �. Independence over identity lotteries ensures that this representation is unique and

a¢ ne.16

Up to this point the argument resembles a standard proof of the von Neumann-Morgenstern

theorem except that (so far) we have only constructed an a¢ ne representation for those identity-

outcome lotteries (z; `) such that
�
i1; `1

�
% (z; `) %

�
i1; `

1
�
; that is, those (z; `) that are indi¤erent

to
�
z0; `1

�
for some identity lottery z0 at the particular �xed outcome lottery `1. Loosely speaking,

we have only represented an �interval�of the impartial observer�s preferences. To go further, Karni

& Safra exploit the fact that (for them) each individual faces a di¤erent outcome lottery. Instead,

we rely on our richness condition.

Lemma 9 in the appendix shows that, given absence of unanimity, we need at most two ��xed�

outcome lotteries (i.e., at most two �intervals�) to cover the entire range of the impartial observer�s

preferences. To keep the notation consistent with that in the appendix, let these two outcome

lotteries be denoted `1 and `2. That is, there exists two outcome lotteries `1 and `2 such that for

all product lotteries (z; `) either (z; `) �
�
z0; `1

�
for some z0, or (z; `) � (z00; `2) for some z00 or

both. Moreover we can choose `1 and `2 such that their �intervals�overlap. With this step in hand,

standard arguments ensure that the a¢ ne representations are consistent on the two �intervals�,

and satisfy the usual uniqueness condition.

Finally, applying a¢ nity implies that the representation takes the form
P

i ziV (i; `), and, by

acceptance, we can set V (i; �) := Vi (�) to complete the proof.

In section 6, we show that without absence of unanimity, we can still obtain a representation

similar to that in Lemma 1 but it will lack the uniqueness properties.

16 For uniqueness: strictly speaking, we need
�
i1; `1

�
�
�
i1; `1

�
. For a¢ nity, this step is where the weaker condi-

tional independence discussed in footnote X would not be su¢ cient: the product lotteries (z; `) we are representing
contain outcome lotteries other than just `1.
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The representation in Lemma 1 puts no restriction on the Vi-functions. But, if we now add

the assumption that each individual satis�es independence over outcome lotteries then it follows

immediately that each Vi-function must be a strictly increasing transformation of a von Neumann-

Morgenstern expected-utility representation. Thus, we obtain a generalized utilitarian represen-

tation.

Theorem 2 (Generalized Utilitarianism) Suppose that absence of unanimity applies. Then

the following are equivalent:

(a) The impartial observer satis�es the acceptance principle and independence over identity lot-

teries, and each individual satis�es independence over outcome lotteries

(b) There exist a continuous function V : 4 (I)�4 (X ) ! R that represents %, and, for each

individual i in I, a von Neumann-Morgenstern function Ui : 4 (X )! R that represents %i

and a continuous, strictly increasing function �i : R! R, such that, for all (z; `) in 4 (I)�

4 (X ),

V (z; `) =

IX
i=1

zi�i [Ui(`)] .

where, for each i, Ui(`) =
Z
X

Ui (x) ` (dx). Moreover the functions Ui are unique up to a¢ ne

transformations, and the composite functions �i � Ui are unique up to a common a¢ ne

transformation.

Notice that, while the representation of each individual�s preferences Ui is a¢ ne in outcome

lotteries, in general, the representation of the impartial observer�s preferences V is not.

4 Accommodating Fairness: Harsanyi vs. Diamond.

In this section, we �rst introduce a new axiom on the impartial observer�s preferences to ensure

that the generalized utilitarian representation is concave and hence accommodates Diamond. We

then show that tightening this axiom yields Harsanyi�s utilitarianism.

So far we have placed no restriction on the shape of the �i-functions except that they are

increasing. An analogy may help to see why we want concavity. In a standard utilitarian so-

cial welfare function, each ui-function maps individual i�s income to an individual utility. These
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incomes di¤er across people, and concavity is associated with income egalitarianism. In a general-

ized utilitarian social welfare function, each �i-function maps individual i�s expected utility Ui (`)

to a utility of the impartial observer. These expected utilities di¤er across people, and concavity

is associated with expected-utility egalitarianism.17

It is easy to show that, if the �i-functions are concave then the impartial observer will respect

Diamond�s preferences in our initial example.18 But having preferences respect Diamond�s choice

in this particular example is not enough to ensure in general that the �i-functions are concave:

for example, the underlying social choice problem may not contain two outcomes and two people

with (i; xi) � (j; xj) and (i; xj) � (j; xi). We need to generalize the idea of the example.

The example involved two indi¤erence sets of the impartial observer, that containing (i; xi)

and (j; xj) and that containing (i; xj) and (j; xi). Diamond preferred a randomization between

these indi¤erence sets in outcome lotteries (i.e., real life chances) to a randomization in identity

lotteries (i.e., imaginary accidents of birth). To generalize, suppose the impartial observer is

indi¤erent between (z; `0) and (z0; `), and consider the product lottery (z; `) that (in general) lies

in a di¤erent indi¤erence set. There are two ways to randomize between these indi¤erence sets

while remaining in the set of product lotteries. The product lottery (z; �`+ (1� �) `0) randomizes

between these indi¤erence sets in outcome lotteries (i.e., real life chances); while the product lottery

(�z + (1� �) z0; `) randomizes between these indi¤erence sets in identity lotteries (i.e., imaginary

accidents of birth). The example suggests that Diamond prefers the former.

Preference for Life Chances. For any pair of identity lotteries z and z0 in 4 (I), and any

pair of outcome lotteries ` and `0 in 4 (X ), (z; `0) � (z0; `) then (z; �`+ (1� �) `0) %

(�z + (1� �) z0; `) for all � in (0; 1).

If the preference sign is reversed in the above axiom, we say that the impartial observer exhibits

preference for accidents of birth. If both apply, we say that the impartial observer is indi¤erent

between accidents of birth and life chances.

17 This is sometimes called �ex ante egalitarianism�. See for example, Broome (1984), Myerson (1981), Hammond
(1981, 1982) and Meyer (1991). In our context, it is perhaps better to call this �interim� egalitarianism since it
refers to distributions �after�the resolution of the identity lottery but �before�the resolution of the outcome lottery.

18 See footnote 6. To get Diamond�s strict preference, we require strict concavity.
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If we add this axiom to the conditions of Theorem 2, then we obtain concave generalized

utilitarianism.

Proposition 3 (Concavity) Suppose that absence of unanimity and all the axioms of Theorem

2 apply, so that V (z; `) =
PI

i=1 zi�i [Ui(`)] is a generalized utilitarian representation. Then the

impartial observer exhibits preference for life chances if and only if each of the �i-functions is

concave.

To show that concavity is su¢ cient, recall that V is a¢ ne in identity lotteries and each Ui is

a¢ ne in outcome lotteries. Thus, if we set Vi (`) := �i [Ui(`)] for all `, then Vi is concave if and only

if �i is concave. Imposing concavity, we obtain V (z; �`+ (1� �) `0) =
PI

i=1 ziVi(�`+(1� �) `0) �PI
i=1 zi[�Vi (`)+ (1� �)Vi (`0)] = �V (z; `)+ (1� �)V (z; `0). Using the fact that (z; `0) � (z0; `),

the last expression is equal to �V (z; `) + (1� �)V (z0; `) = V (�z + (1� �) z0; `). Hence the

impartial observer exhibits a preference for life chances.

The proof that preference for life chances implies concavity is in the appendix but a discussion

follows. At �rst glance, the representation in Lemma 1 resembles a recursive expected-utility

model such as
P

i ziv (`i) in which zi is the probability of being faced by the outcome lottery `i.

In that setting, an analog of preference for life chances implies that the function v is concave.19

But there are two ways in which the current model di¤ers from this recursive one. First, in place

of a single v, each Vi represents a di¤erent individual�s preferences. Second, in place of a vector

of `i�s, each individual faces the same outcome lottery `, thus the set of product lotteries (our

objects of choice) are not isomorphic to the set of compound lotteries. In a sense, however, the

�rst problem alleviates the second.

The role of absence of unanimity in the proof is to ensure that there is enough variation in the

individual preferences to make up for the lack of variation in the outcome lottery. Consider the

map that takes each outcome lottery ` to its corresponding vector of utilities (V1 (`) ; : : : ; VI (`)).

Absence of unanimity ensures that the range of this map is rich enough for our axioms to bite.

And absence of unanimity is essential: example 3 in appendix A shows that without this richness

19 See, for example, Kreps & Porteus (1979) or Grant, Kajii & Polak (1998).
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condition on the underlying individual preferences, the Vi�s (and hence the �i�s) need not be

concave.

In contrast to Diamond, Harsanyi implicitly imposes indi¤erence between life chances and

accidents of birth. If we impose this indi¤erence as an explicit axiom then, as a corollary of

Proposition 3, we obtain that each �i-function must be a¢ ne. In this case, if we let Ûi := �i �Ui,

then Ûi is itself a von Neumann-Morgenstern expected-utility representation of %i. Thus, we

immediately obtain our �rst new axiomatization of Harsanyi�s utilitarian representation.

Theorem 4 (Utilitarianism I) Suppose that absence of unanimity applies. Then the following

are equivalent:

(a) The impartial observer satis�es the acceptance principle and independence over identity lot-

teries, each individual satis�es independence over outcome lotteries, and the impartial ob-

server is indi¤erent between life chances and accidents of birth.

(b) There exist a continuous function V : 4 (I) � 4 (X ) ! R that represents %, and, for

each individual i in I, a function Ûi : 4 (X ) ! R that is a von Neumann-Morgenstern

expected-utility representation of %i, such that for all (z; `) in 4 (I)�4 (X ),

V (z; `) =

IX
i=1

ziÛi(`)

where, for each i, Ûi(`) =
Z
X

Ûi (x) ` (dx). Moreover the functions Ûi are unique up to

common a¢ ne transformation.

To summarize: if we start from the axioms that gave us a generalized utilitarianism and add

Diamond�s preference for life chances then we obtain concave generalized utilitarianism. But if we

assume that life chances and accidents of birth are equivalent in the sense of indi¤erence we are

forced back to Harsanyi�s utilitarianism.

5 Di¤erent risk attitudes: Harsanyi vs. Pattanaik

In this section, we �rst show how generalized utilitarianism can accommodate di¤erent risk at-

titudes. More interestingly, we then show that if we impose a weak form of independence over
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outcome lotteries directly on the impartial observer (rather than just allow her to inherit outcome-

lottery independence via the acceptance principle), then she is forced to ignore di¤erent risk atti-

tudes. Finally, we will show that strengthening this axiom �so that identity and outcome lotteries

are treated symmetrically in terms of the axioms �(almost) forces us again back to Harsanyi�s

utilitarianism.

Recall that Pattanaik�s critique concerned di¤erent risk attitudes of di¤erent individuals. The

impartial observer�s interpersonal welfare comparisons might rank (i; xi) � (j; xj) and (i; xj) �

(j; xi), but if person i is more comfortable facing risk than person j, she might rank
�
i; 12 [xi] +

1
2 [xj ]

�
��

j; 12 [xi] +
1
2 [xj ]

�
. Harsanyi�s utilitarianism rules this out. An analogy might be useful. In the

standard representative-agent model of consumption over time, each time period is assigned one

utility function. This utility function must re�ect both risk aversion in that period and substi-

tutions between periods. Once utilities are scaled for inter-temporal welfare comparisons, there

is limited scope to accommodate di¤erent risk attitudes across periods. Harsanyi�s utilitarian

impartial observer assigns one utility function per person. This utility function must re�ect both

risk aversion of that person and substitutions between people. Once utilities are scaled for in-

terpersonal welfare comparisons, there is limited scope to accommodate di¤erent risk attitudes

across people.

Given the analogy, it is not surprising that generalized utilitarianism can accommodate Pat-

tanaik. Each person is now assigned two functions, �i and ui, so we can separate interpersonal

welfare comparison from risk aversion. To be more speci�c, we generalize Pattanaik�s example.

Suppose the impartial observer ranks (i; `) � (j; `0) and (i; ~̀) � (j; ~̀0). Then, for all � in (0; 1), we

say that the two outcome lotteries �~̀+(1� �) ` and �~̀0+(1� �) `0 are similar risks for individu-

als i and j respectively. Suppose that the generalized utilitarian impartial observer always prefers

to face similar risks as person i than as person j. In this case, loosely speaking, we require the

function �i to be a concave transformation of �j on the �relevant domain�. The next proposition

makes this precise.

Proposition 5 (Di¤erent Risk Attitudes.) Suppose that absence of unanimity and all the ax-

ioms of Theorem 2 apply, so that V (z; `) =
PI

i=1 zi�i [Ui(`)] is a generalized utilitarian represen-
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tation. Then the impartial observer always (weakly) prefers to face similar risks as individual i

than as individual j if and only if the composite function ��1i � �j is convex on the the domain

Uji := fu 2 R : there exists `; `0 2 4 (X ) with (i; `) � (j; `0) and Uj (`0) = ug.

The proof is in the appendix but a discussion follows. Recall that we say that agent j is more

(income) risk averse than agent i if the function that maps income to agent j�s von Neumann-

Morgenstern utility is a concave transformation of that for agent i. For each i, the function �i

maps agent i�s von Neumann-Morgenstern utility to utilities of the impartial observer. Thus, to

say that ��1i � �j is convex is to say that the function that maps the impartial observer�s utility

to agent j�s von Neumann-Morgenstern utility (i.e., ��1j ) is a concave transformation of that of

agent i. We return to this discussion in section 7 when we introduce a cardinally measurable and

comparable welfare.

In contrast to Pattanaik, Harsanyi implicitly imposes indi¤erence as to which person should

face similar risks; that is, he ignores di¤erent risk attitudes.20 Harsanyi makes this assumption

when he imposes independence over outcome lotteries directly on the impartial observer, rather

than just allowing such independence to be inherited from individual preferences via the acceptance

principle. In fact, even the following weak independence su¢ ces.

Weak Independence over Outcome Lotteries (for the impartial observer). Suppose (i; `),

(j; `0) 2 I �4 (X ) are such that (i; `) � (j; `0). Then, for all ~̀, ~̀0 2 4(X): (i; ~̀) % (j; ~̀0) if

and only if (i; �~̀+ (1� �) `) % (j; �~̀0 + (1� �) `0) for all � in (0; 1]

Notice �rst that this axiom is almost symmetric to independence over identity lotteries for the

impartial observer: there the mixing involves identity lotteries holding the outcome lotteries �xed;

here the mixing involves outcome lotteries holding the identity lotteries �xed. But this axiom is

weak in that it restricts the (�xed) identity lotteries to be degenerate. Second, given acceptance,

imposing weak independence over outcome lotteries directly on the impartial observer implies

independence over outcome lotteries for each individual i, but the converse is not true. Third, if

20 We know from section 4 that indi¤erence as to which agent should face similar risks is implied by indi¤erence
between accidents of birth and life chances. But the converse is not true: indi¤erence as to which agent should face
similar risks is weaker.
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we look at the case where both (i; `) � (j; `0) and (i; ~̀) � (j; ~̀0), the new axiom immediately forces

the impartial observer to be indi¤erent between facing similar risks as person i and person j. Thus

(given Proposition 5), the �i and �j-functions must be identical up to a¢ ne transformations.

To obtain a tighter result, we introduce a second richness condition that is the symmetric

analog of absence of unanimity.

Redistributive Scope For all z; z0 in 4 (I), if (z; x) � (z0; x) for some x in X then there exists

x0 in X such that (z0; x0) � (z; x0).

Given acceptance, absence of unanimity implies: for all `; `0 in 4 (X ), if (i; `) � (i; `0) for some

i in I then there exists j in I such that (j; `0) � (j; `). With absence of unanimity, there are no

Pareto dominated outcome lotteries. With redistributive scope, there are no �dominated�identity

lotteries. In particular, for each pair of individuals i and j, if there is an outcome at which the

impartial observer would prefer to be individual i then there is another outcome at which she

would prefer to be individual j. Intuitively, there is some other policy outcome in which either

person i has been made su¢ ciently worse o¤ or person j has been made su¢ ciently better o¤

(or both) such that their ranking has been reversed. Despite the formal symmetry between these

two richness conditions, redistributive scope is perhaps more restrictive in practice: for example,

there may be policy settings in which, under every policy under consideration, one agent is always

better o¤ than an other. It will apply however, in standard private-good allocation problems with

(ex ante) symmetric agents.

With redistributive scope, imposing weak independence over outcome lotteries directly on

the impartial observer yields a generalized utilitarian representation in which there is a common

�-function.

Proposition 6 (Common �-Function) Suppose that absence of unanimity and redistributive

scope both apply. Then the impartial observer satis�es the acceptance principle, independence

over identity lotteries and weak independence over outcome lotteries if and only if there exist a

continuous function V : 4 (I) �4 (X ) ! R that represents %, for each individual i in I, a von

Neumann-Morgenstern function Ûi : 4 (X )! R that represents %i, and a ( common) continuous,
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strictly increasing function � : R! R, such that, for all (z; `) in 4 (I)�4 (X ),

V (z; `) =
IX
i=1

zi�
h
Ûi(`)

i
.

where, for each i, Ûi(`) =
Z
X

Ûi (x) ` (dx). Moreover the functions Ûi are unique up to a common

a¢ ne transformations, and the composite functions � � Ûi are unique up to a common a¢ ne

transformation.

The proof is in the appendix but a sketch follows. Given acceptance, weak independence

over outcome lotteries for the impartial observer implies independence over outcome lotteries

for each individual. Hence, theorem 2 implies that preferences admit a generalized utilitarian

representation. Weak independence over outcome lotteries also implies that the impartial observer

is indi¤erent between facing similar risks as person i or person j. Proposition 5 then tells us that

��1i � �j is a¢ ne on the relevant interval, Uji.

Our redistributive scope condition ensures that there exist two individuals, call them i1 and

i2, such that for all individuals j either Uji1 or Uji2 is not trivial. Thus, loosely speaking, all the

�j-functions are a¢ ne transformations of one another. The proof then constructs a common �-

function (applying appropriate a¢ ne transformations to each von Neumann-Morgenstern utility

function Ui to form Ûi). Without the redistributive scope condition we could still construct a

representation with a common �-function �a remark in the appendix gives an example �but we

would lose the tight uniqueness conditions.

Recall that when we assumed that the impartial observer was indi¤erent between identity and

outcome lotteries �that is, she ignored Diamond�s concerns �we were forced back to Harsanyi�s

utilitarianism. If we assume that the impartial observer is indi¤erent as to who should face similar

risks �that is, she ignores Pattanaik�s concerns � we are not forced back to Harsanyi, but only to

a common �-function. Nevertheless, once we introduce weak independence over outcome lotteries

directly on the impartial observer, it seems natural to ask what happens if we impose strong

independence; that is, if we treat identity and outcome lotteries symmetrically in terms of the

axioms.
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Strong Independence over Outcome Lotteries (for the Impartial Observer). Suppose (z; `),

(z0; `0) 2 4 (I) �4 (X ) are such that (z; `) � (z0; `0). Then for all ~̀, ~̀0 2 4(X ): (z; ~̀) %

(z0; ~̀0) if and only if (z; �~̀+ (1� a) `) % (z0; �~̀0 + (1� a) `0) for all � in (0; 1].

This axiom is the symmetric analog of our independence over identity lotteries for the impartial

observer reversing the roles of identity lotteries and outcome lotteries. It is stronger than weak

independence over outcome lotteries in that it allows the (�xed) identity lotteries z and z0 to be

non-degenerate.

One might conjecture that treating identity and outcome lotteries symmetrically in terms of

the axioms would force us back to Harsanyi: more precisely, given the acceptance principle, if we

symmetrically impose absence of unanimity and redistributive scope, and we symmetrically impose

(strong) independence both over outcome lotteries and over identity lotteries on the impartial

observer then we would again obtain Harsanyi�s utilitarianism. After all, we know from lemma

1 that absence of unanimity and independence over identity lotteries gives us a representation

that is a¢ ne in identity lotteries. Symmetrically, redistributive scope and (strong) independence

over outcome lotteries give us a representation that is a¢ ne in outcome lotteries. This suggests

that having both sets of properties gives us a representation that is a¢ ne in both identity and

outcome lotteries; i.e., utilitarianism. But there is a �aw in this argument: the representation

that is a¢ ne in identity lotteries need not be the same representation as that which is a¢ ne in

outcome lotteries. The following example illustrates what can go wrong.

For the purpose of the example, let I = f1; 2g and X= fx1; x2g. To simplify notation, for each

z 2 4 (I), let q = z2; and for each ` 2 4 (X ) let p := `(x2). With slight abuse of notation, we

will write (q; p) % (q0; p0) for (z; `) % (z0; `0), and write V (q; p) for V (z; `).

Example 1 Let agent 1�s preferences be given by U1 (p) = (1� 2p), and let agent 2�s preferences

be given by U2 (p) = (2p� 1). Let the impartial observer�s preferences be given by V (q; p) :=

(1� q)� [U1 (p)] + q� [U2 (p)], where the (common) �-function is given by:

� [u] =

�
uk for u � 0
� (�u)k for u < 0

, for some k > 0
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These preferences are not utilitarian unless k = 1. Nevertheless, it is clear that absence

of unanimity and redistributive scope both apply in this example. And, by proposition 6 (the

common � result), this impartial observer satis�es acceptance and independence over identity

lotteries. It remains to show that she also satis�es strong independence over outcome lotteries.

Consider the inverse function ��1 (u) = u1=k for u � 0 and ��1 (u) = � (�u)1=k for u < 0.

This is a strictly increasing function. Therefore, the function ��1 [V (�; �)] represents the same

preferences as V (�; �). Some simple algebra (provided in the appendix) shows that we can write

��1 [V (q; p)] = (1� p)��1 [(1� 2q)] + p��1 [(2q � 1)] :

This alternative representation is symmetric to the original representation V (�; �) with the p�s and

q�s reversed and ��1 replacing �. Since the alternative representation is a¢ ne in p, preferences

must satisfy strong independence over outcome lotteries.

Notice that the underlying preferences in this example resemble those in the example in the

introduction. We could think of x1 as the outcome in which person 1 gets some indivisible good,

and x2 as the outcome in which person 2 gets it. As advocated by Harsanyi, if the impartial

observer thinks she is equally likely to be either person, she is indi¤erent as to whom is given the

good. And if the impartial observer thinks the good is equally likely to be given to either person,

she is indi¤erent as to whom she is when she faces that risk. Nevertheless, her preferences are not

utilitarian for more complicated randomizations.

Although this example is special, some aspects of it are quite general. For any generalized

utilitarian representation V with common �, the associated function ��1 � V will always be an

alternative representation of the same preferences. Moreover, lemma 11 in the appendix shows

that, if we start from the conditions of proposition 6 (the common � result) but replace weak with

strong independence over outcome lotteries then this alternative representation ��1 � V is always

a¢ ne in outcome lotteries.

Our alternative representation takes the form:

��1 [V (z; `)] := ��1

 
IX
i=1

zi�i

h
Ûi(`)

i!
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We can think of this as a �generalized mean�of the distribution of utilities induced by (z; `).21

In particular, given each individual�s (expected) utility function Ûi, we can again think of each

outcome lottery ` as inducing a vector of individual (expected) utilities
�
Û1 (`) ; : : : ; ÛI (`)

�
. Thus,

each product lottery (z; `) induces a distribution of individual utilities where each Ûi (`) is assigned

probability zi. Since �
�1 �V and each Ûi function are a¢ ne on outcome lotteries, the generalized

mean must be a¢ ne on the induced set of utility vectors. If the generalized mean were a¢ ne

over all utility vectors (or over a su¢ ciently rich set) then it would have to be the ordinary

arithmetic mean; that is, � would have to be a¢ ne and our representation would reduce to

Harsanyi�s utilitarianism.22 But since, in our product-lottery setting, every individual faces the

same outcome lottery, the set of utility vectors that are induced by outcome lotteries need not be

rich. In example 1, the induced utility vectors all lie in the line segment from (1;�1) to (�1; 1).

Once again, we need a rich set of underlying outcomes and/or preferences to induce a su¢ ciently

rich set of utility lotteries to be forced to utilitarianism.

The example shows that the two richness conditions we have used so far, absence of unanimity

and redistributive scope, are not enough. But they are close. The �-function in the example is

a homogenous function. Again, this is general: lemma 12 in the appendix shows that if start

from the conditions of proposition 6 but replace weak with strong independence over outcome

lotteries then the common �-function is always homogenous; that is homogeneity is necessary.23

But homogeneity is not su¢ cient except in very special cases. Notice in the example that the

point of in�ection of the homogenous �-function (the �zero�) occurs exactly at outcome lottery

p = 1=2 where the impartial observer is indi¤erent over which identity lottery she faces. This is

a very �knife-edge�property, and it can be ruled out in a number of ways. The following extra

richness condition su¢ ces.

Three-Player Richness For all outcomes x; y in X, and all � in [0; 1], there exist individuals i

21 See, for example, Hardy, Littlewood and Polya (1934) ch.3.

22 Strictly speaking, an a¢ ne transformation of the arithmetic mean. For a proof, see Hardy, Littlewood and
Polya (1934) p.86.

23 Strictly speaking, it must be an a¢ ne transformation of a homogenous function since our representation is
only unique up to a¢ ne transformations.
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and j in I such that (i; � [x] + (1� �) [y]) � (j; � [x] + (1� �) [y]).

Given redistributive scope, three-player richness implies that there must be at least three individ-

uals. In words, it says that there is no outcome lottery involving just two outcomes at which the

impartial observer is indi¤erent over all the possible identities she could assume. In example 1,

the condition was violated at p = 1=2, since the impartial observer was indi¤erent between being

either person there. If we add a third person to the example, then the condition would be met

provided that either the outcome lottery at which the impartial observer is indi¤erent between

being person 1 or person 3 or the outcome lottery at which she is indi¤erent between being person

2 or person 3 is not exactly equal to 1=2.24

With this extra condition in place (and hence troublesome examples like example 1 ruled out),

the symmetric richness conditions and symmetric independence axioms over identity and outcome

lotteries yield Harsanyi�s utilitarianism.

Theorem 7 (Utilitarianism II) Suppose that absence of unanimity, redistributive scope and

three-player richness all apply. Then the following are equivalent:

(a) The impartial observer satis�es the acceptance principle, independence over identity lotteries

and (strong) independence over outcome lotteries

(b) There exist a continuous function V : 4 (I) �4 (X ) ! R that represents % and, for each

i in I, a function Ûi : 4 (X ) ! R that is a von Neumann-Morgenstern expected-utility

representation of %i, such that for all (z; `) in 4 (I)�4 (X ),

V (z; `) =
IX
i=1

ziÛi(`)

where, for each i, Ûi(`) =
Z
X

Ûi (x) ` (dx). Moreover the functions Ûi are unique up to

common a¢ ne transformation.

24 Notice that, if there are three or more possible outcomes, the condition still only places restrictions for lotteries
involving just two. In particular, there still could be some lottery on the interior of the simplex where the impartial
observer is indi¤erent as to identity. The condition would, however, be violated if there were divisible and disposable
private goods and (hence) some outcome that equalized the welfare of all individuals. In that setting, however,
since the outcome set is itself very rich, we can anyway induce a su¢ ciently rich set of utility lotteries.
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The proof is in the appendix. Example 1 shows that three-player richness is essential. Example

4 in appendix A shows that redistributive scope is also essential.

To summarize: if we start from the axioms that gave us generalized utilitarianism then it is easy

to accommodate Pattanaik�s concerns about di¤erent attitudes toward risk. Forcing the impartial

observer to be indi¤erent as to who faces risk, does not force us to Harsanyi�s utilitarianism

but only to a common �-function. Such indi¤erence however, is equivalent to imposing a weak

form of independence over outcome lotteries directly on the impartial observer. If we go further

and assume that identity and outcome lotteries are equivalent in the sense that all axioms are

symmetric across the two types of lottery, then (provided the underlying problem is rich) we are

again forced to Harsanyi�s utilitarianism.

6 Assuming less and assuming more: related literature.

In this section, we �rst ask what happens to our representations if we assume less. In particular,

we consider dropping our richness considerations altogether. Then we switch around and compare

our results to those in the literature that assume more. In particular, we show how Harsanyi�s

axioms (imposed on preferences over all joint distributions over identities and outcomes) imply

all of the axioms (imposed just on preferences over product lotteries) of each of our utilitarian

theorems.

Assuming less. If we are not worried about uniqueness, we can obtain a representation of

the form
PI

i=1 ziVi(`) without imposing absence of unanimity. Recall our sketch proof of lemma

1. Absence of unanimity ensured there exists two outcome lotteries `1 and `2 such that for all

product lotteries (z; `) either (z; `) �
�
z0; `1

�
for some z0, or (z; `) � (z00; `2) for some z00 or both.

Moreover we can choose `1 and `2 such that the �intervals�of such indi¤erent lotteries �overlap�. If

we do not impose absence of unanimity then two complications arise. First we may require many

more than two �intervals�to cover the indi¤erence sets of the impartial observer. The main step

in the proof of theorem 8 is to show that we can always �nd a countable number of �intervals�

that cover these indi¤erence sets, and to construct a representation using these intervals. The

second complication is that the intervals may not overlap. Without such overlapping, we do not
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obtain uniqueness. Absence of unanimity is su¢ cient but not necessary to obtain uniqueness. The

precise condition is given in case one of the proof of theorem 8. This theorem provides the most

general representation result in the paper.

Theorem 8 The following are equivalent:

(a) The impartial observer�s preferences % satisfy the acceptance principle and independence

over identity lotteries.

(b) There exist a continuous function V : 4 (I) �4 (X ) ! R and, for each i in I, a function

Vi : 4 (X )! R, such that V represents %; for each i, Vi represents %i; and for all (z; `) in

4 (I)�4 (X ),

V (z; `) =
IX
i=1

ziVi(`):

Assuming more. At a technical level, the papers closest to ours are Karni & Safra (2000),

Fishburn (1982, ch 7) and Safra & Weissengrin (2002). Karni & Safra produce a representation

similar to lemma 1. The key di¤erence is that their axioms apply to the full set of joint distributions

so they can apply recursive arguments. Both Fishburn and Safra & Weissengrin work with product

lottery spaces like ours. Fishburn provides axioms on product spaces of mixture sets to obtain

multi-linear representations. His context was games in which opponents�mixed strategies are

independent. Safra & Weissengrin adapt this approach to derive Harsanyi�s utilitarianism in a

setting where the impartial observer faces only product lotteries. The key di¤erence between their

result and our two utilitarianism theorems (theorem 4 and theorem 7) is that Safra & Weissengrin

directly impose independence on the impartial observer for all mixtures that are well de�ned in

the space of product lotteries. Implicitly, therefore, they not only impose both independence over

identity lotteries and strong independence over outcome lotteries, but also a third independence

axiom over hybrids of the other two:

Independence over Hybrid Lotteries (for the Impartial Observer). Suppose (z; `), (z0; `0) 2

4 (I)�4 (X ) are such that (z; `) � (z0; `0). Then for all 2 4(I) and all ~̀0 24(X ): (~z; `) %
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(z0; ~̀0) if and only if (�~z + (1� �) z; `) % (z0; �~̀0 + (1� a) `0) for all � in (0; 1].

This axiom is similar to the other independence axioms for the impartial observer except that

the lotteries being mixed on the left are identity lotteries (holding outcome lotteries �xed), while

the lotteries being mixed on the right are outcome lotteries (holding identity lotteries �xed).

This hybrid independence axiom is quite strong: in particular, it can be shown that it implies

indi¤erence between life chances and accidents of birth. Thus, we can think of Safra & Weissengrin

as assuming the union of our axioms from theorem 4 and theorem 7, our two utilitarianism results.

The Safra & Weissengrin theorem helps explain how Harsanyi comes implicitly to assume both

indi¤erence between life chances and accidents of birth and indi¤erence over who should face

similar risks; and hence con�ict with Diamond and Pattanaik. Recall that Harsanyi works with

the full set of joint distributions 4 (I � X ). He imposes independence directly on the impartial

observer for all mixtures de�ned on that space. If we then restrict these preferences from the larger

set4 (I � X ) to just the product lotteries4 (I)�4 (X ) then independence applies to any mixture

that is still well de�ned. That is, all three of Safra & Weissengrin�s independence axioms apply.

But, as we have just argued, the third of the Safra & Weissengrin axioms (independence over

hybrid lotteries for the impartial observer) implies indi¤erence between life chances and accidents

of birth; in con�ict with Diamond. And, as we argued in section 5, the second of the Safra

& Weissengrin axioms (strong independence over outcome lotteries for the impartial observer)

implies indi¤erence over who should face similar risks; in con�ict with Pattanaik.

Notice that these con�icts are not over the idea of independence per se. We can assume that

each individual satis�es independence over the lotteries he faces, namely outcome lotteries; that

the impartial observer respects these individual preferences over outcome lotteries; and that she

satis�es independence over the lottery she faces, namely identity lotteries, but this does not imply

Harsanyi�s utilitarianism: it only implies generalized utilitarianism.

7 Welfare Inequality and Risk

In this section, we introduce an explicit notion of comparable welfare, and use it to interpret

some of our representation results. Let wi : 4 (X ) ! R be agent i�s welfare function, and let
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w : 4 (I) �4 (X ) ! R be the impartial observer�s welfare function. These wi�s are functions of

life chances rather than �nal outcomes, so think of them as interim welfares. Similarly, we can

think of the impartial observer�s welfare function w as ex ante welfare. Let us assume that these

welfare functions guide choice. That is,

Congruence For each individual i in I and for `; `0 in 4 (X ), ` %i `0 if and only if wi (`) �

wi (`
0). For the impartial observer, for all (z; `) ; (z0; `0) in 4 (I) �4 (X ), (z; `) % (z0; `0) if

and only if w (z; `) � w (z0; `0).

Following Weymark (1991), let us further assume that the impartial observer adopts the welfare

of agent i when she puts herself in the shoes of agent i.

Principle of Welfare Identity For each individual i in I and for ` in 4 (X ), wi (`) = w (i; `).

For the remainder of this section, we assume that both of these axioms apply. As Weymark

(1991) notes, taken together, congruence and the principle of welfare identity imply acceptance.

Furthermore, they entail that for any pair of individuals i and j, and any pair of life-chances ` and

`0, the ranking between (i; `) and (j; `0) is completely determined by the ranking between wi (`)

and wj (`0). That is, the welfare functions (w1 (:) ; : : : ; wI(:)) are at least ordinally measurable and

fully comparable.

To relate these welfare measures to the generalized utilitarian representation obtained in the-

orem 2, de�ne for each individual i, the function gi : R ! R that maps individual i�s interim

welfare to his von Neumann-Morgenstern expected utility. That is, for each individual i, and for

all ` in 4 (X ):

gi (wi (`)) = Ui (`)

Similarly, let g : R ! R denote the mapping from the impartial observer�s ex ante welfare to her

von Neumann-Morgenstern utility. Thus, if the conditions of theorem 2 apply, then for all (z; `)

in 4 (I)�4 (X ):

g (w (z; `)) =
IX
i=1

zi�i � Ui (`)
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Given this, we can now re-interpret the functions �i in terms of welfare. Applying the principle

of welfare identity, we get �i � Ui (`) = g [w(i; `)] = g [wi(`)] = g
�
g�1i (Ui (`))

�
. Thus, for each

individual i, the function �i is given by the function g � g�1i .

We can then re-express the generalized utilitarian social welfare function from theorem 2 in

terms of our g-functions and welfare to yield

w (z; `) = g�1

 
IX
i=1

zigi (wi(`))

!
:

With only ordinally measurable welfares, the shape and hence degree of curvature of g can

vary as one considers di¤erent (common) monotonic transformations of (w1 (:) ; : : : ; wI(:)). In this

case (following Sen (1977)), we can no more interpret the shape of g than can Harsanyi interpret

his social welfare function as being linear in welfare. We know from theorem 2, however, that �i

(which is equal to g � g�1i ) is invariant to any common increasing transformations of the welfare

functions (w1 (�) ; : : : ; wI (�)). That is, if we take (ŵ1 (�) ; : : : ; ŵI (�)), where ŵi = h � wi and h : R

! R is an increasing function, then the functions that map the transformed welfares to the von

Neumann-Morgenstern utilities are now given by ĝi = gi � h�1 and ĝ = g � h�1 And so, �̂i �

ĝ � ĝ�1i = g �h�1 �h� g�1i = g � g�1i . This provides some intuition why the �i-functions are unique

up to positive a¢ ne transformations.

Suppose we go further and however assume that welfares are cardinally measurable. In this

case, we can give more interpretation to the g-functions. In particular, for a �xed identity lottery z

(for example, a uniform lottery), we can associate the representation w (z; `) above with a Bergson-

Samuelson social welfare function that maps the induced vectors of individual interim welfares,

(w1 (`) ; : : : ; wI(`)), to �social welfare�(that is, the impartial observer�s ex ante welfare, before she

knows whom she will become).25

In such an interpretation, since we have imposed cardinal measurability, g is uniquely-de�ned

up to positive a¢ ne transformations. In this case, the degree of concavity of g may be interpreted

as measuring the degree of the impartial observer�s aversion to interim welfare inequality or her

attitudes toward the risks embodied in accidents of birth.

25 Analogous to the discussion in sections 4 and 5, we need a rich set of underlying preferences to induce a rich
set of individual interim welfares.
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This is exactly what we should expect. Had we started from the viewpoint of a Bergson-

Samuelson social welfare function, then we would immediately have interpreted Diamond�s notion

of fairness as aversion to interim welfare inequality. This in turn would have led us to a social

welfare function which is concave in individual interim utilities. Instead we started from the

viewpoint of representing an impartial observer�s preferences, and replaced Harsanyi�s implicit

assumption that the impartial observer is indi¤erent between life chances and accidents of birth

with Diamond�s preference for life chances. If we now impose cardinally measurable welfare, we

arrive at the same point.

An explicit notion of welfare also helps us interpret the di¤erent attitudes to risk in Proposition

5. Recall that the impartial observer is more willing to take on similar risks in the identity of

person i than that of person j if and only if �i is a concave transformation of �j . If welfare

is cardinally measurable then �i is a concave transformation of �j if and only if gi is a convex

transformation of gj . This corresponds to our usual notion of income risk aversion except that

instead of being risk averse over income, our individuals are risk averse over welfares: individual i

is less welfare risk averse than individual j. In other words, each function gi captures individual

i�s attitudes toward the welfare risk embodied in her life chances. In this setting, imposing either

that the impartial observer is indi¤erent between life chances and accidents of birth or imposing

directly that she respect even weak independence over outcome lotteries forces all people to have

the same welfare risk aversion.

Once we allow our social welfare function to take into account that di¤erent agents may have

di¤erent degrees of welfare risk aversion, we may in fact no longer wish to accept Diamond�s

fairness axiom. There may be cases where the impartial observer may actually prefer accidents

of birth to life chances. Suppose society contains people who are extremely welfare risk averse,

but suppose that our impartial observer is only mildly (interim) welfare inequality averse. In

this case, the functions gi might be more concave than the function g, and hence the functions

�i = g � g�1i would be convex. The impartial observer, anticipating the discomfort that real-life

uncertainty would cause real people, prefers to absorb the risk in the imaginary world of her

thought experiment.
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Although the case of convex �i functions may seem odd, it corresponds to an argument some-

times used by conservatives to defend caste-like societies. Preferring accidents of birth to life

chances corresponds to preferring risks that resolve early. In a di¤erent context, Grant, Kajii &

Polak (1998) argue that a preference for early resolution corresponds to an intrinsic preference for

information: anxious agents may prefer to know their fate soon. In the context of the impartial

observer, if individuals are highly risk averse over their welfares, they may prefer for uncertainty

to have been resolved by the time they are born. They might prefer �to know their place�.

Appendix A: Examples

For each of the following examples, let I = f1; 2g and X= fx1; x2g. To simplify notation, for each

z 2 4 (I), let q = z2; and for each ` 2 4 (X ) let p := `(x2). Then, with slight abuse of notation,

we write (q; p) % (q0; p0) for (z; `) % (z0; `0), and write V (q; p) for V (z; `).

Example 1 is introduced and discussed in the text. It shows that absence of unanimity and

redistributive scope can apply and the impartial observer can satisfy acceptance and (strong)

independence over both identity lotteries and outcome lotteries but that the impartial observer

need not be utilitarian in Harsanyi�s sense; in particular, the �-function need not be a¢ ne. That

is, three-person richness is essential for theorem 7 (Utilitarianism II).

Here we just complete the argument to show we can write:

��1 [V (q; p)] = (1� p)��1 [(1� 2q)] + p��1 [(2q � 1)] .
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To see this, it is instructive to rewrite V (q; p) as follows:

V (q; p) =

8>><>>:
(1� 2q) (1� 2p)k for p < 1=2

(2q � 1) (2p� 1)k for p > 1=2

=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(1� 2q) (1� 2p)k for q < 1=2, p < 1=2 (and V (q; p) > 0)

� (2q � 1) (1� 2p)k for q > 1=2, p < 1=2 (and V (q; p) < 0)

0 for (2q � 1) (2p� 1) = 0

� (1� 2q) (2p� 1)k for q < 1=2, p > 1=2 (and V (q; p) < 0)

(2q � 1) (2p� 1)k for q > 1=2, p > 1=2 (and V (q; p) > 0)

.

Hence,

��1 � V (q; p) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(1� 2q)1=k (1� 2p) for q < 1=2, p < 1=2

� (2q � 1)1=k (1� 2p) for q > 1=2, p < 1=2

0 for (2q � 1) (2p� 1) = 0

� (1� 2q)1=k (2p� 1) for q < 1=2, p > 1=2

(2q � 1)1=k (2p� 1) for q > 1=2, p > 1=2

=

8>>>>>><>>>>>>:
(1� p)

h
(1� 2q)1=k

i
+ p

h
� [� (2q � 1)]1=k

i
for q < 1=2

0 for q = 1=2

(1� p)
h
� [� (1� 2q)]1=k

i
+ p

h
(2q � 1)1=k

i
for q > 1=2

= (1� p)��1 [(1� 2q)] + p��1 [(2q � 1)]

which equals (1� p)��1 [(1� 2q)] + p��1 [(2q � 1)] as desired. �

Example 2 shows that preferences can satisfy the acceptance principle, independence (over

outcome lotteries) for individuals, and conditional independence over identity lotteries for the

impartial observer (as de�ned in footnote 13 but not satisfy the (unconditional) independence

axiom over identity lotteries.26

26 Karni & Safra (2000, p.324) provide an example of preferences de�ned on 4 (I) �X that satisfy the analog
of conditional independence but not the analog of unconditional independence. This example extends the idea to
4 (I)�4 (X) :
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Example 2 Let agent 1�s preferences be given by U1 (p) = � (2p� 1) =4, and let agent 2�s pref-

erences be given by U2 (p) = 3 (2p� 1) =4. Notice that these individual preferences satisfy inde-

pendence. Let the impartial observer�s preferences be given by V (q; p) = (2p� 1)
�
q2 � 1=4

�
.

By construction, these preferences satisfy the acceptance principle. To show that they satisfy

conditional independence over identity lotteries, notice that for each �xed �p, the function V (q; �p)

is monotone in q. If �p = 1=2, then the impartial observer is indi¤erent over all q and conditional

independence follows trivially. If �p > 1=2, then (~q; �p) % (~q0; �p) if and only if ~q � ~q0. Thus, for all

� 2 (0; 1], (�~q + (1� �) q; �p) % (�~q0 + (1� �) q; �p) if and only if ~q � ~q0. The case for �p < 1=2 is

similar.

To show that these preferences violate (unconditional) independence over identity lotteries,

let p := 0 and let p0 := 1. Let q = q0 := 1=2 so that V (q; p) = V (q0; p0) = 0. Let ~q := 0 and

let ~q0 = 1=
p
2 so that V (~q; p) = V (~q0; p0) = 1=4. Let � := 1=2. Then V (�~q + (1� �) q; p) =

�
�
(1=4)

2 � 1=4
�
= 3=16. But V (�~q0 + (1� �) q0; p0) =

�
1=4 + 1=

�
2
p
2
��2 � 1=4 = (1=16+ 1=8+

1=
�
4
p
2
�
� 1=4) =

�
3=16 +

�
1�

p
2
�
=
�
4
p
2
��
< 3=16, violating (unconditional) independence. �

Example 3 shows that the impartial observer�s preferences can satisfy all the conditions of

proposition 3 (the concavity result) except absence of unanimity and yet the functions �i need

not be concave. That is, absence of unanimity is essential.

Example 3 Let the individual�s preferences be given by U1 (p) = U2 (p) = p, and let the impartial

observer�s preferences be given by V (q; p) := (1� q)�1 [U1 (p)] + q�2 [U2 (p)] where

�1 (u) :=

�
1=4 + u=2 for u � 1=2
u for u > 1=2

�2 (u) :=

�
u for u � 1=2
2u� 1=2 for u > 1=2

Since U1 = U2, both individuals have the same ranking over outcome lotteries and so the

impartial observer�s preferences violate absence of unanimity. Clearly, the functions �1 (:) and

�2 (:) are not concave. To see that the impartial observer satis�es preference for life chances,

without loss of generality let p � p0 and notice that (q; p0) � (q0; p) implies either p � p0 � 1=2

or p0 � p � 1=2. But in either case, the functions �1 and �2 are concave (in fact, a¢ ne) on the

domain [p; p0] and hence V (�q + (1� �) q0; p) � (in fact, =) V (q0; �p+ (1� �) p0), as desired.

33



Notice that redistributive scope cannot replace absence of unanimity in this proposition. In-

deed, the preferences above satisfy redistributive scope. �

Example 4 shows that preferences can satisfy all the conditions of Theorem 7 except redistributive

scope yet the �i�s are not a¢ ne. That is, redistributive scope is essential.

Example 4 Let agent 1�s preferences be given by Û1 (p) = 1� bp, and let agent 2�s preferences be

given by Û2 (p) = �1+bp = �Û1 (p), for some b 2 (0; 1). Fix k > 0, k 6= 1 and set � (u) := uk, for

u in [0; 1] and set � (u) = � (�u)k, for u in [�1; 0). Suppose the impartial observer�s preference

relation % is represented by the following function:

V (q; p) = (1� q)�
�
Û1 (p)

�
+ q�

�
Û2 (p)

�
= (1� 2q) (1� bp)k

The impartial observer�s preference relation, %, generated by V (q; p) clearly fails to satisfy

redistributive scope, since for all p in [0; 1),

�
�
Û1 (p)

�
� �

�
Û2 (p)

�
= 2 (1� bp)k > 0.

That is, (1; `) � (2; `) for all `. For the same reason, three-player richness holds trivially: V is

decreasing in q.

Absence of unanimity holds, sinceh
Û1 (p)� Û1 (p0)

i h
Û2 (p)� Û2 (p0)

i
= �b2 (p� p0)2 < 0

for all p 6= p0.

To see that strong independence over outcome lotteries holds, notice that

��1 � V (q; p) =

8>><>>:
(1� 2q)1=k (1� bp) if q � 1=2

(2q � 1)1=k (�1 + bp) if q > 1=2

which for given q is a¢ ne in p. �

Appendix B: Proofs

Proof of Lemma 1. Since the representation is a¢ ne in identity lotteries, it is immediate that the

represented preferences satisfy the axioms. We will show that the axioms imply the representation.

34



Let outcome lotteries `1; `2 (not necessarily distinct) and identity lotteries z1; z2 (not necessar-

ily distinct) be such that
�
z1; `1

�
� (z2; `2) and such that

�
z1; `1

�
% (z; `) % (z2; `2) for all product

lotteries (z; `). That is, the product lottery
�
z1; `1

�
is weakly better than all other product lotter-

ies, and the product lottery (z2; `2) is weakly worse than all other product lotteries. And let the

identity lotteries z1 and z2 (not necessarily distinct) be such that
�
z1; `1

�
%
�
z; `1

�
%
�
z1; `

1
�
for

all product lotteries
�
z; `1

�
, and

�
z2; `2

�
% (z; `2) % (z2; `2) for all product lotteries (z; `2). That

is, given outcome lottery `1, the identity lottery z2 is (weakly) worse than all other identity lotter-

ies; and, given outcome lottery `2, the identity lottery z2 is (weakly) better than all other identity

lotteries. Their existence of these special lotteries follows from continuity of %, non-emptyness of

�; and the compactness of �(I)��(X ). Moreover, by independence over identity lotteries, we

can take z1; z1; z2; and z2 each to be a degenerate identity lottery. Let these be i1; i1; i2; and i2

respectively.

The following lemma is helpful.

Lemma 9 Assume absence of unanimity applies and that the impartial observer satis�es accep-

tance and independence over identity lotteries. Let i1; i1; i2; i2; `1; and `2 be de�ned as above. Then

(a) either
�
i1; `

1
�
� (i2; `2), or

�
i2; `2

�
�
�
i1; `1

�
, or

�
i2; `2

�
�
�
i1; `

1
�
. And (b), for all product

lotteries (z; `), either
�
i1; `1

�
% (z; `) %

�
i1; `

1
�
or
�
i2; `2

�
% (z; `) % (i2; `2) or both.

Proof. (a) If `1 = `2, then the �rst two cases both hold. Otherwise, suppose that the �rst two

cases do not hold; that is,
�
i1; `

1
�
� (i2; `2) and

�
i1; `1

�
�
�
i2; `2

�
. By the de�nition of i1, we know

that
�
i2; `

1
�
%
�
i1; `

1
�
, and hence

�
i2; `

1
�
� (i2; `2). Using absence of unanimity and acceptance ,

there must exist another individual {̂ 6= i2 such that (̂{; `2) �
�
{̂; `1

�
. Again by the de�nition of i1,

we know that
�
{̂; `1

�
%
�
i1; `

1
�
, and hence (̂{; `2) �

�
i1; `

1
�
. By the de�nition of i2, we know that�

i2; `2
�
% (̂{; `2), and hence

�
i2; `2

�
�
�
i1; `

1
�
, as desired. Part (b) follows immediately from (a).

�

Given continuity, an immediate consequence of the lemma is that there exists two outcome

lotteries `1 and `2 such that for all product lotteries (z; `) either (z; `) �
�
z0; `1

�
for some z0, or

(z; `) � (z00; `2) for some z00 or both. Moreover, we can choose the z0 such that its support only
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contains individuals i1 and i1. And similarly for z00 with respect to i2 and i2.

The proof of lemma now proceeds with two cases.

Case (1)27 The easiest case to consider is where the lotteries `1 and `2, de�ned above are equal.

In this case, for the individuals i1 and i1 de�ned in lemma 9,
�
i1; `1

�
�
�
i1; `

1
�
, and

�
i1; `1

�
%

(z; `) %
�
i1; `

1
�
, for all (z; `). Then, for each (z; `), let V (z; `) be de�ned by

�
V (z; `)

�
i1
�
+ (1� V (z; `)) [i1] ; `1

�
� (z; `) :

By continuity and independence over identity lotteries, such a V (z; `) exists and is unique.

To show that this representation is a¢ ne, notice that if
�
V (z; `)

�
i1
�
+ (1� V (z; `)) [i1] ; `1

�
�

(z; `) and
�
V (z0; `)

�
i1
�
+ (1� V (z0; `)) [i1] ; `1

�
� (z0; `) then independence over identity lotteries

implies ([�V (z; `) + (1� �)V (z0; `)]
�
i1
�
+[1��V (z; `)�(1� �)V (z0; `)] [i1] ; `1) � (�z + (1� �) z0; `).

Hence �V (z; `) + (1� �)V (z0; `) = V (�z + (1� �) z0; `).

Since any identity lottery z in �(I) can be written as z =
P

i zi [i], proceeding sequentially

on I, a¢ nity implies V (z; `) =
P

i ziV (i; `). Finally, by acceptance, V (i; �) agrees with %i on

�(X ) Hence, if we de�ne Vi : � (X ) ! R by Vi (`) = V (i; `), then Vi represents individual i�s

preferences. The uniqueness argument is standard: see for example, Karni & Safra (2000, p.321).

Case (2). Let outcome lotteries `1; `2 be de�ned as above, and let individuals i1; i1; i2; i2 be

de�ned as in lemma 9 and its proof. If
�
i1; `

1
�
� (i2; `2) then

�
i1; `1

�
% (z; `) %

�
i1; `

1
�
for all

(z; `) and hence case (1) applies. Similarly, if
�
i2; `2

�
�
�
i1; `1

�
then

�
i2; `2

�
% (z; `) % (i2; `2) for

all (z; `), and again case (1) applies (with `2 in place of `1). Hence suppose that
�
i1; `1

�
�
�
i2; `2

�
and that

�
i1; `

1
�
� (i2; `2). Then, by lemma 9,

�
i1; `1

�
�
�
i2; `2

�
�
�
i1; `

1
�
� (i2; `2); that is, we

have two overlapping intervals that �span�the entire range of the impartial observer�s preferences.

Then, just as in case (1), we can construct an a¢ ne function V 1(�; �) to represent the impartial

observer�s preferences % restricted to those (z; `) such that
�
i1; `1

�
% (z; `) %

�
i1; `

1
�
, and we can

construct an a¢ ne function V 2(�; �) to represent % restricted to those (z; `) such that
�
i2; `2

�
%

27 This case is similar to case (1) in Safra & Weisengrin (2003, p.184). This case is also analogous to case (1) of
Karni & Safra (2000, p.320) except that, in their setting, the analog of `1 is a vector of outcome lotteries, with a
di¤erent outcome lottery for each agent. One implication of this is that, in their setting, if case (1) does not apply,
then there must exist an agent i and two (vectors of) outcome lotteries `0 and `00 such that (i; `0) % (z; `) % (i; `00)
for all (z; `). This is not true here.
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(z; `) % (i2; `2). We can then apply an a¢ ne re-normalization of either V1 or V2 such the (re-

normalized) representations agree on the �overlap�
�
i2; `2

�
% (z; `) %

�
i1; `

1
�
. Since V1(�; �) and

V2(�; �) are a¢ ne, the re-normalized representation is a¢ ne, and induction on I (plus acceptance)

gives us V (z; `) =
P

i ziVi (`) as before. Again, uniqueness follows from standard arguments. �

Proof of Theorem 2 (Generalized Utilitarianism): In the text.

Proof of Proposition 3 (Concavity) The proof of su¢ ciency is in the text. For necessity,

again de�ne Vi (`) := �i � Ui (`). We need to show that for all i and all `, `0 2 4 (X ), Vi(�` +

(1� �) `0) � �Vi (`) + (1� �)Vi (`0) for all � in [0; 1]. By acceptance, it is enough to show that

V (i; �` + (1� �) `0) ��V (i; `) + (1� �)V (i; `0) for all � in (0; 1). So let % exhibit preference

for life chances, �x i and consider `, `0 2 4 (X ). Assume �rst that ` �i `0 By acceptance,

V (i; `) = V (i; `0). Hence, by preference for life chances,

V (i; �`+ (1� �) `0)

� V (� [i] + (1� �) [i] ; `) (by preference for life chances)

= V (i; `)

= �V (i; `) + (1� �)V (i; `0) (since V (i; `) = V (i; `0)),

as desired.

Assume henceforth that ` �i `0 (and, by acceptance, V (i; `) > V (i; `0)). By absence of una-

nimity, there must exist a j such that V (j; `) < V (j; `0). There are three cases to consider.

(a) If V (i; `0) � V (j; `) then, by the representation in lemma 1, there exists z0 (of the form

� [i] + (1� �) [j]) such that V (z0; `) = V (i; `0). Thus, for all � in (0; 1),

V (i; �`+ (1� �) `0)

� V (� [i] + (1� �) z0; `) (by preference for life chances)

= �V (i; `) + (1� �)V (z0; `)

= �V (i; `) + (1� �)V (i; `0) (since V (z0; `) = V (i; `0)),

as desired.
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Assume henceforth that V (j; `) > V (i; `0) (which implies V (j; `0) > V (i; `0)).

(b) If V (j; `0) � V (i; `) then, by the representation in lemma 1, there exists z (of the form

� [i] + (1� �) [j]) such that V (z; `0) = V (i; `). Thus, for all � in (0; 1),

V (i; �`0 + (1� �) `)

� V (� [i] + (1� �) z; `0) (by preference for life chances)

= �V (i; `0) + (1� �)V (z; `0)

= �V (i; `0) + (1� �)V (i; `) (since V (z; `0) = V (i; `) ),

as desired.

(c) Finally, let V (i; `) > V (j; `0) > V (j; `) > V (i; `0). By the continuity of V , there exist �0; �0

in (0; 1) such that �0 > �0, and such that V (i; �
0` +

�
1� �0

�
`0) = V (j; `0) and V (i; �0` +

(1� �0) `0) = V (j; `). Denote `0 = �0`+ (1� �0) `0. Then, similarly to part (a),

Vi(
`+ (1� 
) `0) � 
Vi (`) + (1� 
)Vi (`0)

for all 
 2 (0; 1). Next, denote `0 = �0`+
�
1� �0

�
`0. Then, similarly to part (b),

Vi(
`
0 + (1� 
) `0) � 
Vi (`0) + (1� 
)Vi

�
`0
�

for all 
 2 (0; 1). Therefore, restricted to the line segment [`0; `], the graph of Vi lies weakly

above the line connecting (`0; Vi (`0)) and
�
`0; Vi

�
`0
��
(as does the point (`0; Vi (`0))) and weakly

above the line connecting (`0; Vi (`0)) and (`; Vi (`)) (as does the point
�
`0; Vi

�
`0
��
). Hence,

Vi(�`+ (1� �) `0) � �Vi (`) + (1� �)Vi (`0) for all � 2 (0; 1). �

Proof of Theorem 4 (Utilitarianism I): In the text.

Proof of Proposition 5 (Di¤erent Risk Attitudes). First, notice that if Uji is not empty

then it is a closed interval. If Uji has an empty interior then the proposition holds trivially true.

Therefore, assume that Uji = [uji; �uji] where uji < �uji.

To prove that ��1i � �j convex is su¢ cient, �x `; `0; ~̀ and ~̀0 such that V (i; `) = V (j; `0) and

V
�
i; ~̀
�
= V

�
j; ~̀0
�
. We want to show that V

�
i; �~̀+ (1� �) `

�
� V

�
j; �~̀0 + (1� �) `0

�
. By
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construction, both Uj (`0) and Uj
�
~̀0
�
lie in Uji. Moreover, we have Ui (`) = ��1i � �j [Uj (`0)] and

Ui

�
~̀
�
= ��1i � �j

h
Uj

�
~̀0
�i
Applying the representation we obtain,

V
�
i; �~̀+ (1� �) `

�
= �i

h
Ui

�
�~̀+ (1� �) `

�i
(by the representation)

= �i

h
�Ui

�
~̀
�
+ (1� �)Ui (`)

i
(by a¢ nity of Ui)

= �i

h
���1i � �j

h
Uj

�
~̀0
�i
+ (1� �)��1i � �j [Uj (`0)]

i
(by the representation)

� �i
h
��1i � �j

h
�Uj

�
~̀0
�
+ (1� �)Uj (`0)

ii
(by convexity of ��1i � �j)

= �j

h
Uj

�
�~̀0 + (1� �) `0

�i
(by a¢ nity of Uj)

= V
�
j; �~̀0 + (1� �) `0

�
(by the representation)

�

To prove that ��1i � �j convex is necessary, �x v,w in Uji. By the de�nition of Uji, there exists

outcome lotteries `; `0 2 4 (X ) such that Uj (`0) = v and Ui (`) = ��1i � �j (v); and there exists

outcome lotteries ~̀; ~̀0 2 4 (X ) such that Uj
�
~̀0
�
= w and Ui

�
~̀
�
= ��1i ��j (w). By construction,

we have V (i; `) = V (j; `0) and V
�
i; ~̀
�
= V

�
j; ~̀0
�
. Therefore, for all � in (0; 1)

�i

h
Ui

�
�~̀+ (1� �) `

�i
� �j

h
Uj

�
�~̀0 + (1� �) `0

�i
)

�Ui

�
~̀
�
+ (1� �)Ui (`) � ��1i � �j

h
�Uj

�
~̀0
�
+ (1� �)Uj (`0)

i
)

���1i � �j (w) + (1� �)��1i � �j (v) � ��1i � �j (�w + (1� �) v)

Since v and w were arbitrarily, the last inequality corresponds to the convexity of ��1i ��j on Uji.

�

Proof of Proposition 6 (Common �-function) . To show that a common � function is

su¢ cient, it is enough to show that the representation V (�; �) (as de�ned in the proposition)

satis�es weak independence over outcome lotteries. If (i; `) � (j; `0) then �
h
Ûi (`)

i
= �

h
Ûj (`

0)
i
,

hence Ûi (`) = Ûj (`0). Similarly, (i; ~̀) % (j; ~̀0) implies Ûi
�
~̀
�
� Ûj

�
~̀0
�
. By a¢ nity of Ûi and Ûj ,
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we have

V (i; �~̀+ (1� �) `) = �
h
�Ûi

�
~̀
�
+ (1� �) Ûi (`)

i
and

V (j; �~̀0 + (1� �) `0) = �
h
�Ûj

�
~̀0
�
+ (1� �) Ûj (`0)

i
:

Hence (i; �~̀+ (1� �) `) % (j; �~̀0 + (1� �) `0). �

To show that weak independence implies a common �, �rst notice that weak independence over

outcome lotteries and the acceptance principle imply that all individuals satisfy independence over

outcome lotteries. Thus the conditions of theorem 2 are met. Let V (z; `) =
PI

i=1 zi�i [Ui(`)] be

the corresponding representation.

Suppose individuals i and j are such that the interval Uji as de�ned in Proposition 5 has a

non-empty interior. Clearly, the corresponding interval Uij must also have non-empty interior.

We argued in the text that weak independence implies that the impartial observer is indi¤erent

between facing similar risks as person i or person j. By Proposition 5, it follows that ��1i � �j is

a¢ ne on Uji. Since Uji has a non-empty interior, ��1i � �j has a unique extension on R. De�ne

a new von Neumann-Morgenstern utility function Ûj for agent j by the a¢ ne transformation,

Ûj (`) := ��1i � �j [Uj (`)] for all ` in 4 (X ). De�ne a new transformation function �̂j for agent

j by setting �̂j
�
Ûj (`)

�
:= �j (Uj (`)). Thus, in particular, if �j [Uj (`

0)] = �i [Ui (`)] (and hence

Ui (`) 2 Uij), then Ûj (`0) = Ui (`), and hence �̂j (u) = �i (u) for all u in Uij . By construction, the

new social welfare function with Uj replaced by Ûj and �j replaced by �̂j still has a generalized

utilitarian form and represents the same preferences. With slight abuse of notation we can write

�̂j = �i, even if this extends the domain of �i.

To complete the proof, it is su¢ cient to show that any two individuals (call them j1 and jN )

can be �connected�by a sequence of �intermediary�individuals (call them j2 through jN�1) such

that Ujnjn+1 has non-empty interior for all n = 1; : : : ; N � 1. This is where we use our second

richness condition, redistributive scope. In fact, we never need more than two such intermediaries.

As in lemma 9, let outcome lotteries `1; `2 (not necessarily distinct) and identity lotteries z1; z2

(not necessarily distinct) be such that
�
z1; `1

�
� (z2; `2) and such that

�
z1; `1

�
% (z; `) % (z2; `2)

for all identity-outcome lotteries (z; `). That is, the product lottery
�
z1; `1

�
is weakly better than
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all other product lotteries, and the product lottery (z2; `2) is weakly worse than all other product

lotteries. And (symmetric to lemma 9), let `1 and `2 (not necessarily distinct) be such that�
z1; `1

�
%
�
z1; `

�
%
�
z1; `1

�
and

�
z2; `

2
�
% (z2; `) % (z2; `2) for all outcome lotteries `. That is,

given identity lottery z1, the outcome lottery `1 is (weakly) worse than all other outcome lotteries;

and, given identity lottery z2, the outcome lottery `2 is (weakly) better than all other outcome

lotteries. The existence of these special lotteries follows from continuity of %, non-emptyness of

�; and the compactness of �(I)��(X ).

By independence over identity lotteries, we can take z1 and z2 each to be a degenerate identity

lottery. Let these be i1and i2 respectively. But then, by weak independence over outcome lotteries,

we can take `1; `1; `2; and `2 each to be a degenerate identity lottery. Let these be x1; x1; x2; and

x2 respectively.

The following lemma is symmetric to lemma 9. The proof is essentially the same with redis-

tributive scope playing the role of absence of unanimity.

Lemma 10 Assume redistributive scope holds and that the impartial observer satis�es indepen-

dence over identity lotteries and weak independence over outcome lotteries. Let i1; i1; x1; x1; x2;

and x2 be de�ned as above. Then (a) either
�
i1; x1

�
� (i2; x2), or

�
i2; x

2
�
�
�
i1; x1

�
, or�

i2; x
2
�
�
�
i1; x1

�
. And (b), for all product lotteries (z; `), either

�
i1; x1

�
% (z; `) %

�
i1; x1

�
or
�
i2; x

2
�
% (z; `) % (i2; x2) or both.

Given acceptance and the fact that individual preferences are not degenerate,
�
i1; x1

�
�
�
i1; x1

�
and

�
i2; x

2
�
� (i2; x2). Hence an immediate consequence of lemma 10 is that Ui1i1 has non-empty

interior and that, for all individuals j in I, either Uji1 has non empty interior or Uji2 has non

empty interior (or both). Thus all individuals are connected as desired.

The uniqueness of � �Ui up to common a¢ ne transformations follows from Lemma 1. For the

uniqueness of the Ûi functions, notice that (i; `) � (j; `0) implies Ûi (`) = Ûj (`0), and that (by the

redistributive scope), for each i there exists a j such that bUji has a non-empty interior. �

Remark. If we drop redistributive scope, we can still construct the representation but we would

lose the uniqueness result. For example, consider a two person society in which (i; `) % (j; `0)
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for all `; `0 in 4 (X ). In this case, let Ûi be an a¢ ne transformation of Ui such that Ûi (`) >

Uj (`
0) if (i; `) � (j; `0) and such that Ûi (`) = Uj (`

0) if (i; `) � (j; `0). And let �̂i be such that

�̂i � Ûi � �i � Ui. Then simply set � := �̂i on range of Ûi and � := �j on the range of Uj . These

ranges have at most one point in common.

Proof of Theorem 7 (Utilitarianism II). It is clear that (b) implies (a). We will show

(a))(b). Clearly, strong independence implies weak independence over outcome lotteries, hence

proposition 6 applies. Let V (z; `) =
PI

i=1 zi�
h
Ûi(`)

i
be as de�ned there. It is enough to show

that the common �-function is a¢ ne. Since the proof is long, we will break it into 6 steps, and

we will signpost some parts.

Step 1 of the proof consists of the following lemma showing that the function ��1 � V is a¢ ne

on 4 (X ).

Lemma 11 Suppose that absence of unanimity and redistributive scope both apply, and that the

impartial observer satis�es the acceptance principle, independence over identity lotteries and strong

independence over outcome lotteries. Let V and � be de�ned as in proposition 6; that is, V (z; `) =PI
i=1 zi�

h
Ûi(`)

i
. Then for each z in 4 (I) the function ��1 � V (z; �) : 4 (X )! R is a¢ ne.

Proof. Fix an identity lottery z and an individual i. Similar to the notation in proposition 5,

let bUi � R be the interval such that u 2 bUi implies that there exists an ` such that Ûi (`) = u. We
will �rst show that ��1�V (z; �) is a¢ ne on the inverse image of bUi; that is, on the subset of outcome
lotteries f` 2 4 (X ) : ��1 � V (z; `) 2 bUig. If this inverse image is empty then a¢ nity is trivial.
Hence consider two outcome lotteries `; `0 (not necessarily distinct) such that ��1 � V (z; `) 2 bUi
and ��1 � V (z; `0) 2 bUi. By the de�nition of bUi, there exists two outcome lotteries �̀ and �̀0 such
that ��1 � V (z; `) = Ûi

�
�̀
�
and ��1 � V (z; `0) = Ûi

�
�̀0
�
; that is, (z; `) �

�
i; �̀
�
and (z; `0) �

�
i; �̀0
�
.

Applying independence over outcome lotteries, yields

(z; �`+ (1� �) `0) �
�
i; ��̀+ (1� �) �̀0

�
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for all � in [0; 1] (hence ��1 � V (z; �`+ (1� �) `0) 2 bUi). Applying the representation yields:
��1 � V (z; �`+ (1� �) `0) = Ûi

�
��̀+ (1� �) �̀0

�
= �Ûi

�
�̀
�
+ (1� �) Ûi

�
�̀0
�

(by a¢ nity of Ûi)

= ���1 � V (z; `) + (1� �)��1 � V (z; `0) .

where the third line is by de�nition of �̀ and �̀0. This argument holds for all i.

An immediate consequence of the lemma 10 is that there exist two individuals i1 and i2 such

that range
�
��1 � V (z; �)

�
� bUi1 [ bUi2 and the inverse image of bUi1 [ bUi2 is �(X ). We know that

��1 � V (z; �) is a¢ ne on the inverse image of bUi1 and bUi2 . Moreover, by lemma 10, the interior ofbUi1i2 (= interior bUi1 \ bUi2) is not empty. Hence ��1 � V (z; �) is a¢ ne on �(X ). This argument
holds for all z. �

Let the individuals i1; i1; i2 and i2 (not necessarily distinct) and outcome lotteries `1 and

`2 (not necessarily distinct) be de�ned as in lemma 9. By strong independence over outcome

lotteries, we can take `1 and `2 each to be a degenerate identity lottery. Let these be x1

and x2 respectively. Recall that, given our representation with a common �-function, (i; `) �

(j; `0) implies Ûi(`) = Ûj(`
0). Hence, by lemma 9(a) either Ûi1(x

1) = Ûi2(x2), or Ûi2(x2) =

Ûi1(x
1), or Ûi2(x2) > Ûi1(x

1). And, by lemma 9(b), for all product lotteries (z; `), we have

��1
�P

i zi�
h
Ûi (`)

i�
2
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
[
h
Ûi2 (x2) ; Ûi2 (x2)

i
. We will �rst concentrate on

the interval
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
, but we will return to the interval

h
Ûi2 (x2) ; Ûi2 (x2)

i
in step 5.

If Ûi1
�
x1
�
= Ûi1

�
x1
�
then a¢ nity is trivial.28 Hence assume Ûi1

�
x1
�
< Ûi1

�
x1
�
.

De�ning x̂ and �u. Since
�
i1; x1

�
�
�
i1; x

1
�
, by redistributive scope, there exists an outcome x̂

such that (i1; x̂) �
�
i1; x̂

�
. Consider the outcome lotteries `[�] de�ned by `[�] := � [x̂]+(1� �)

�
x1
�
.

By continuity of both Ûi1 and Ûi1 , there must exist an outcome lottery �̀ (:= `[��]) such that�
i1; �̀

�
�
�
i1; �̀

�
. Let �u be given by

�u := ��1
�
V
�
i1; �̀

��
= ��1

�
V
�
i1; �̀

��
(1)

The level of utility �u is going to be important in the argument below. By the de�nition of x1, if

28 In this case, lemma 9 implies Ûi2 (x2) = Ûi1 (x
1) and hence showing � is a¢ ne on [Ûi2 (x2); Ûi2 (x2)] would be

enough.
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�u does not lie in the interval
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
then �u < Ûi1

�
x1
�
.

Step 2 of the proof is to show that, for all u0 and u00 2
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
and all � and � in

[0; 1],

��1 [�� [�u0 + (1� �) �u] + (1� �)� [�u00 + (1� �) �u]]

= ���1 [�� (u0) + (1� �)� (u00)] + (1� �) �u. (2)

To show this, �x u0 and u00 2
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
such that u0 < u00. Denote by z0 = �0

�
i1
�
+�

1� �0
�
[i1] and z00 = �

00 �i1�+ �1� �00� [i1], the identity lotteries with support just on i1 and i1
for which ��1

�
V
�
z0; x1

��
= u0, and ��1

�
V
�
z00; x1

��
= u00. Also �x � and � in [0; 1], and de�ne

u� by:

u� := ��1
�
V
�
�z0 + (1� �) z00; x1

��
(3)

By the de�nition of �u and the fact that V is a¢ ne in identity lotteries, we have

�u = ��1
�
V
�
�z0 + (1� �) z00; �̀

��
(4)

By lemma 11, the function ��1 � V (�z0 + (1� �) z00; �) is a¢ ne on �(X ), hence combining ex-

pressions (3) and (4), we get

��1
�
V
�
�z0 + (1� �) z00; �

�
x1
�
+ (1� �) �̀

��
= �u� + (1� �) �u (5)

Our two a¢ nity properties allows us to expand the left side of expression . First, by the a¢ nity

of V
�
�; �
�
x1
�
+ (1� �) �̀

�
on �(I), we get

V
�
�z0 + (1� �) z00; �

�
x1
�
+ (1� �) �̀

�
= �V

�
z0; �

�
x1
�
+ (1� �) �̀

�
+ (1� �)V

�
z00; �

�
x1
�
+ (1� �) �̀

�
= ��

�
��1 � V

�
z0; �

�
x1
�
+ (1� �) �̀

��
+ (1� �)�

�
��1 � V

�
z00; �

�
x1
�
+ (1� �) �̀

��
(6)

Second, by the a¢ nity of ��1 � V (z0; �) and ��1 � V (z00; �) on �(X ), we have

�
��1 � V

�
z0; �

�
x1
�
+ (1� �) �̀

��
=

�
���1 � V

�
z0; x1

�
+ (1� �)��1 � V

�
z0; �̀

��
and (7)�

��1 � V
�
z00; �

�
x1
�
+ (1� �) �̀

��
=

�
���1 � V

�
z00; x1

�
+ (1� �)��1 � V

�
z00; �̀

��
. (8)
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Substituting u0 = ��1 � V
�
z0; x1

�
, and u00 = ��1 � V

�
z00; x1

�
, and �u = ��1 � V

�
z0; �̀

�
= ��1 �

V
�
z00; �̀

�
, expressions (7) and (8) become

[�u0 + (1� �) �u] and [�u00 + (1� �) �u]

respectively. Substituting these back into expression (6) and then substituting back into the left

side of expression (5), yields

��1 [�� [�u0 + (1� �) �u] + (1� �)� [�u00 + (1� �) �u]] = �u� + (1� �) �u. (9)

Using the de�nition of u� in expression (3) and the a¢ nity of V
�
�; x1

�
on �(I), we have

u� = ��1
�
V
�
�z0 + (1� �) z00; x1

��
= ��1

�
�V

�
z0; x1

�
+ (1� �)V

�
z00; x1

��
= ��1

�
��
�
��1

�
V
�
z0; x1

���
+ (1� �)�

�
��1

�
V
�
z00; x1

����
= ��1 [�� (u0) + (1� �)� (u00)] (10)

where the last line follows from the de�nition of u0 and u00. Substituting expression (10) back into

expression (9) yields expression (2) as desired. Our choice of u0; u00; � and � was arbitrary, so this

completes step 2. �

Re-normalization. Recall that functions
h
Ûi

i
i2I

are unique only up to a common a¢ ne trans-

formation and that the composite functions
h
� � Ûi

i
i2I

are also unique only up to a common

a¢ ne transformation. Hence we can re-normalize such that the utility level �u = 0. With slight

abuse of notation, we will continue to use � and
h
Ûi

i
i2I

to denote these re-normalized functions.

With this re-normalization, expression (2) becomes

��1 [�� (�u0) + (1� �)� (�u00)] = ���1 [�� (u0) + (1� �)� (u00)] (11)

Since u0 < u00 were arbitrary, expression (11) holds (for all � and � in [0; 1]) for all utility pairs in

the (re-normalized) interval
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
. Recall that 0 need not lie in this interval.

Step 3 is to show that expression (11) also holds (for all � and � in [0; 1]) for all utility pairs

u0 < u00 in
h
0; Ûi1

�
x1
�i
even if 0 < Ûi1

�
x1
�
; that is, even if �u does not lie in

h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
.
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To show this, we will establish that expression (11) holds in each interval in a sequence of intervals

I0; I1,. . . , with (i) I0 :=
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
; (ii) In \ In+1 an interval with positive length (and

so having a non-empty interior), for all n = 0; 1; : : :; and (iii)
[1

n=0
In =

�
0; Ûi1

�
x1
�i
.

Fix an ~� 2 (0; 1), for which ~�Ûi1
�
x1
�
> Ûi1

�
x1
�
(> ~�Ûi1

�
x1
�
). Set In :=

h
~�nÛi1

�
x1
�
; ~�nÛi1

�
x1
�i
.

By construction In \ In+1 is an interval with positive length and
[1

n=0
In =

�
0; Ûi1

�
x1
�i
. To

see that In satis�es (11), consider a pair of utilities u0 and u00 in In and �x �; � in [0; 1]. By

construction both û0 := u0=~�n and û00 := u00=~�n are in
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
. Since ~�n and �~�n are

in [0; 1], expression (11) implies

��1 [�� (~�nû0) + (1� �)� (~�nû00)] = ~�n��1 [�� (û0) + (1� �)� (û00)] (12)

and

��1 [�� (�~�nû0) + (1� �)� (�~�nû00)] = �~�n��1 [�� (û0) + (1� �)� (û00)] . (13)

Substituting u0 for ~�nû0 and u00 for ~�nû00 and then combining expressions (12) and (13), we obtain

��1 [�� (�u0) + (1� �)� (�u00)] = ���1 [�� (u0) + (1� �)� (u00)] ,

as required. �

Step 4 consists of the following lemma showing that � must be an a¢ ne transformation of a

homogenous function.

Lemma 12 Suppose � (:) satis�es equation (11) for all u0; u00 in
h
min

n
0; Ûi1

�
x1
�o
; Ûi1

�
x1
�i
and

all � and � in [0; 1], then

� (u) =

�
Cuk +D u � 0

�C (�u)k +D u < 0

for some C; k in R++ and some D in R.

Case 1.29 Ûi1
�
x1
�
� 0. We shall show that

� (�u00)� � (�u0) = 
 (�) [� (u00)� � (u0)] . (14)

29 This draws on Moulin�s [1988 p45] proof of Robert�s [1980] theorem that a social welfare ordering that is
additively separable and independent of common utility scale admits a generalized utilitarian representation with
a power function.
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for all u0; u00 2
h
0; Ûi1

�
x1
�i
and all � 2 (0; 1).

Consider four positive numbers u1, û1, u2, û2 in
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
, such that u1 < û1,

u2 > û2 and suppose (contra-hypothesis) that for some � 2 (0; 1),

� (�u1)� � (�û1)
� (�u2)� � (�û2)

6= � (u1)� � (û1)
� (u2)� � (û2)

=: �r. (15)

Then we have,

��1
�
1

1 + r
� (u1) +

r

1 + r
� (u2)

�
= ��1

�
1

1 + r
� (û1) +

r

1 + r
� (û2)

�
And (15) implies that

��1
�
1

1 + r
� (�u1) +

r

1 + r
� (�u2)

�
6= ��1

�
1

1 + r
� (�û1) +

r

1 + r
� (�û2)

�
.

But (11) implies (setting � = 1= (1 + r))

��1
�
1

1 + r
� (�û1) +

r

1 + r
� (�û2)

�
= ���1

�
1

1 + r
� (û1) +

r

1 + r
� (û2)

�
,

and ��1
�
1

1 + r
� (�u1) +

r

1 + r
� (�u2)

�
= ���1

�
1

1 + r
� (u1) +

r

1 + r
� (u2)

�
,

leading to a contradiction. Hence, (14) obtains.

The continuous solutions of (14) are known (Aczel [1966]) to be

� (u) = C+uk
+

+D+

for some C+; k+ in R++ and some D+ in R.

Case 2. 0 2
�
Ûi1
�
x1
�
; Ûi1

�
x1
��
. By an analogous argument to the one employed in case 1, for

u in the sub-interval
h
0; Ûi1

�
x1
�i
, we obtain � (u) = C+uk

+

+D+; and for u in the sub-intervalh
Ûi1
�
x1
�
; 0
�
� R�, we obtain � (u) = �C� (�u)k

�
+D�, for some C�; k� in R++ and some D�

in R. Continuity of � implies D+ = D� =: D. Thus we obtain:

� (u) =

8>><>>:
C+uk

+

+D u � 0

�C� (�u)k
�
+D u < 0

. (16)

It remains to show k+ = k� and C+ = C�.
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To show k+ = k�, we again exploit expression (11). Consider u0; u00 2
�
Ûi1
�
x1
�
; Ûi1

�
x1
��

such that u0 < 0, u00 > 0. Then, for any �; � in (0; 1)

�� (�u0) + (1� �)� (�u00) = ��C� (��u0)k
�
+ (1� �)C+ (�u00)k

+

+D

and �� (u0) + (1� �)� (u00) = ��C� (�u0)k
�
+ (1� �)C+ (u00)k

+

+D.

Choose �; � in (0; 1), such that

��C� (��u0)k
�
+ (1� �)C+ (�u00)k

+

> 0 and � �C� (�u0)k
�
+ (1� �)C+ (u00)k

+

> 0.

Therefore, on the left side of (11) we have

��1 (�� (�u0) + (1� �)� (�u00)) =
 
��C��k� (�u0)k

�
+ (1� �)C+ (�u00)k

+

C+

!1=k+

and on the right side of (11) we have

���1 (�� (u0) + (1� �)� (u00)) = �

 
��C� (�u0)k

�
+ (1� �)C+ (u00)k

+

C+

!1=k+

=

 
��C��k+ (�u0)k

�
+ (1� �)C+ (�u00)k

+

C+

!1=k+
.

This is possible only if k+ = k� =: k.

It only remains to show that C+ = C�. Recall that, by redistributive scope and strong

independence over outcome lotteries, there exists an outcome x̂ such that Ûi1 (x̂) > Ûi1 (x̂). We

used this fact to construct �u. Case 2 (i.e., �u = 0 2
�
Ûi1
�
x1
�
; Ûi1

�
x1
��
) corresponds to the

situation in which Ûi1 (x̂) > 0 > Ûi1
�
x1
�
.

Recalling the notation we used to de�ne �u, let `[�] := � [x̂] + (1� �)
�
x1
�
. By strong inde-

pendence over outcome lotteries and our construction, Ûi1
�
`[�]
�
is linear and decreasing in �,

and is positive at � = 0 and negative at � = 1; and Ûi1
�
`[�]
�
is linear and increasing in �,

and is negative at � = 0 and positive at � = 1. Let �� correspond to �u; that is, `[��] =
�̀ and

Ûi1

�
`[��]

�
= Ûi1

�
`[��]

�
= 0. By outcome independence, �� is implicitly given by

��Ûi1 (x̂) +
�
1� ��

�
Ûi1
�
x1
�
= 0 = ��Ûi1 (x̂) +

�
1� ��

�
Ûi1
�
x1
�
. (17)
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Using �� we can write for � > ��, Ûi1
�
`[�]
�
= Ûi1 (x̂)

�
�� ��

�
=
�
1� ��

�
and Ûi1

�
`[�]
�
= Ûi1 (x̂)

�
�� ��

�
=
�
1� ��

�
,

and so,

Ûi1
�
`[�]
�

Ûi1
�
`[�]
� = Ûi1 (x̂)

Ûi1 (x̂)
.

Similarly, for � < ��, Ûi1
�
`[�]
�
= Ûi1

�
x1
� �
��� �

�
=�� and Ûi1

�
`[�]
�
= Ûi1

�
x1
� �
��� �

�
=��, and so,

Ûi1
�
`[�]
�

Ûi1
�
`[�]
� = Ûi1

�
x1
�

Ûi1 (x1)
.

Furthermore, again from equation (17), since�Ûi1
�
x1
�
=Ûi1 (x̂) =

��=
�
1� ��

�
= �Ûi1

�
x1
�
=Ûi1 (x̂),

we have Ûi1 (x̂) =
h
�Ûi1 (x̂)

i
=
h
�Ûi1

�
x1
�i
=Ûi1

�
x1
�
. Hence

Ûi1
�
`[�]
�

Ûi1
�
`[�]
� = Ûi1

�
x1
�

Ûi1 (x1)
(18)

for all � 6= ��.

Also to simplify notation, let z[
] := 
 [i1] + (1� 
)
�
i1
�
. Using this notation, case 2 implies

V
�
z[0]; `[0]

�
� V

�
z[1]; `[1]

�
> V

�
z[1]; `[0]

�
and V

�
z[1]; `[1]

�
> V

�
z[0]; `[1]

�
. Let �v := V

�
z[1]; `[��]

�
=

� (0). By independence over identity lotteries, V
�
z[
]; `[��]

�
= �v for all 
.

By construction, for all � < ��, V
�
z[0]; `[�]

�
> V

�
z[0]; `[��]

�
> V

�
z[1]; `[�]

�
; and for all � > ��,

V
�
z[0]; `[�]

�
< V

�
z[0]; `[��]

�
< V

�
z[1]; `[�]

�
. Thus, by the a¢ nity of V (�; `) on �(I), for all �,

V
�
z[
]; `[�]

�
is a¢ ne in 
. Thus there exists a unique �
 2 (0; 1) such that V

�
z[�
]; `[0]

�
= �v. That

is,
�
z[�
]; `[0]

�
�
�
z[�
]; `[��]

�
. An immediate implication of independence over outcome lotteries, is

that V
�
z[�
]; `[�]

�
= �v for all � � ��. We claim that V

�
z[�
]; `[�]

�
= �v for all �. Suppose not: that is,

without loss of generality, there exists a � > �� such that V
�
z[�
]; `[�]

�
> �v. Then, by independence

over outcome lotteries, by mixing with
�
z[�
]; `[0]

�
, we would have V

�
z[�
]; `[�]

�
> �v for all � > 0, a

contradiction. Thus V
�
z[�
]; `[�]

�
= �v for all �.

We can solve for �
 using the de�nition of V and the fact that

�
�
�
Ûi1
�
x1
��
+ (1� �
)�

�
Ûi1
�
x1
��
= �
�

�
Ûi1 (x̂)

�
+ (1� �
)�

�
Ûi1 (x̂)

�
Hence

�
 =
�
�
Ûi1
�
x1
��
� �

�
Ûi1 (x̂)

�
�
�
�
Ûi1 (x̂)

�
� �

�
Ûi1 (x

1)
��
+
�
�
�
Ûi1 (x1)

�
� �

�
Ûi1 (x̂)

��
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By the de�nition of �
, we have

�
�
h
Ûi1
�
`[�]
�i
+ (1� �
)�

h
Ûi1
�
`[�]
�i
= �v (19)

for all �. By the a¢ nity of Û , we have Ûi1
�
`[�]
�
= �Ûi1 (x̂) + (1� �) Ûi1

�
x1
�
and Ûi1

�
`[�]
�
=

�Ûi1 (x̂) + (1� �) Ûi1
�
x1
�
. Since this holds for all �, and since � is di¤erentiable almost every-

where, we have

�
�0
h
Ûi1
�
`[�]
�i �

Ûi1 (x̂)� Ûi1
�
x1
��
+ (1� �
)�0

h
Ûi1
�
`[�]
�i �

Ûi1 (x̂)� Ûi1
�
x1
��
= 0 (20)

at almost all �.

Indeed, for all � 6= �� such that Ûi1
�
`[�]
�
and Ûi1

�
`[�]
�
lie in

�
Ûi1
�
x1
�
; Ûi1

�
x1
��
, we can use

our homogenous expression for � and obtain:

�0
h
Ûi1
�
`[�]
�i
= K�0

h
Ûi1
�
`[�]
�i
, (21)

where K := (1� �
)
�
Ûi1
�
x1
�
� Ûi1 (x̂)

�
=
h
�

�
Ûi1 (x̂)� Ûi1

�
x1
��i

is a constant (that is, does not

depend on �).

Since � is a power function we have by plugging in to expression (21), for � > ��,

kC+
�
Ûi1
�
`[�]
��k�1

= KkC�
�
�Ûi1

�
`[�]
��k�1

.

This reduces to "
Ûi1
�
`[�]
�

�Ûi1
�
`[�]
�#k�1 = KC�

C+
.

Similarly for for � < ��,

kC�
�
�Ûi1

�
`[�]
��k�1

= KkC+
�
Ûi1
�
`[�]
��k�1

.

This reduces to "
�Ûi1

�
`[�]
�

Ûi1
�
`[�]
� #k�1 = KC+

C�
.

But, by expression (18), the ratio in the left side of both these expressions is equal to�Ûi1
�
x1
�
=Ûi1

�
x1
�

for all � 6= ��. Thus we have shown that C+ = C�. �

Step 5 extends the argument to cover the interval
h
Ûi2 (x2) ; Ûi2 (x2)

i
. So far we have shown

that � must have the form given in Lemma 12 �that is, an a¢ ne transformation of a homogenous
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function �on the interval
h
Ûi1
�
x1
�
; Ui1

�
x1
�i
. We next show that the same function extends overh

Ûi2 (x2) ; Ûi2 (x2)
i
.

We can repeat step 2 through step 4 above focussing on the interval
h
Ûi2 (x2) ; Ûi2 (x2)

i
. The

argument is the same except that we need to be careful about the normalization that set �u = 0

prior to step 3. Since we are re-normalizing a second time, we have to keep track of how this

second re-normalization is related to the �rst.

In particular, to be consistent with our notational convention above, let
h
Ûi

i
i2I

and � be the

individual levels and �-function given the normalization that set �u = 0 above. In these utility

units, let the utility level that is analogous to �u (see expression (1) for the de�nition) for our

analysis of the interval
h
Ûi2 (x2) ; Ûi2 (x2)

i
be �u2. Denote our re-normalized utility function for

each individual i by ~Ui (`) := Ûi (`) � �u2 (so that the utility level �u2 is re-normalized to zero as

before). For each utility level u, let ~u denote the corresponding re-normalized individual utility

level and let ~� denote the correspondingly re-normalized �-function. Then we can re-normalize ~�

such that for all u in R, ~� [~u] = ~� [(u� �u2)] = � [u].

By repeating steps 2 to 4, we know that ~� [~u] must have a form analogous to that in Lemma

12 on the interval
h
Ûi2 (x2) ; Ûi2 (x2)

i
. With slight abuse of notation, we can keep track of the

re-normalization by writing

~� (u) =

8>><>>:
~C [u� �u2]

~k
+ ~D u� �u2 � 0

� ~C (� (u� �u2))
~k
+ ~D u� �u2 < 0

.

By lemma 9, we know that
h
Ûi2 (x2) ; Ûi2 (x2)

i
\
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
has a non-empty interior.

Thus, the ~� (u) and � (u) must coincide on this interval. Clearly if either function were a¢ ne then

both functions must be a¢ ne and we would be done. Suppose then that k 6= 1 and ~k 6= 1. We

will show that this implies �u2 = 0; that is, the two normalizations must be the same.

Suppose �rst that the overlap
h
Ûi2 (x2) ; Ûi2 (x2)

i
\
h
Ûi1
�
x1
�
; Ûi1

�
x1
�i
contains a subinterval

in which both u > 0 and u� �u2 > 0. Then we know that

~C [u� �u2]
~k
+ ~D = Cuk +D (22)
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for all u in that subinterval. Di¤erentiating yields

~k ~C [u� �u2]
~k�1

= kCuk�1:

Notice that, if k = ~k = 2, then we would have [u� �u2] =u = C= ~C and, since the right side is

constant, this implies �u2 = 0. Therefore assume k 6= 2 or ~k 6= 2. Di¤erentiating again, dividing

the second derivative by the �rst, and rearranging yields

[u� �u2]
u

=
~k � 1
k � 1 .

But again the right side is constant, implying �u2 = 0. The argument on subintervals where either

u < 0 or u� �u2 < 0 is similar.

Since �u2 = 0 (if k 6= 1), the �rst derivative reduces to uk�~k = ~k ~C=kC but again the right side

is a constant hence k = �k so that ~k ~C=kC = uk�~k = 1, and hence C = ~C. Finally, using expression

(22), we obtain D = ~D. In other words, the two functions � and ~� must be the same. �

Step 6 completes the proof by showing that k = 1. To do this, we invoke our third richness

condition, three-player richness.

Recall from the proof of Lemma 12, for the outcome lottery `[��] :=
�� [x̂] +

�
1� ��

� �
x1
�
we

had Ûi1
�
`[��]

�
=Ûi1

�
`[��]

�
. That is,

�
i1; `[��]

�
�
�
i1; `[��]

�
. Hence by three-player richness, there

exists another individual {̂, such that
�
{̂; `[��]

�
�
�
i1; `[��]

�
. That is, Û{̂

�
`[��]

�
6= 0. Consider the

graphs of Ûi1
�
`[�]
�
and Û{̂

�
`[�]
�
as functions of � 2[0; 1] to R. Both are lines. The �rst passes

through the point
�
��; 0
�
, while the second does not. And, by the de�nition of x1, x̂ and i1, the line

Ûi1
�
`[�]
�
is strictly decreasing. Suppose Û{̂

�
`[��]

�
> 0 �the argument for the case Û{̂

�
`[��]

�
< 0

is similar. Then we can �nd � and �0 such that 0 < � < �0 < �� and such that the vectors�
Ûi1
�
`[�]
�
; Û{̂

�
`[�]
��
� 0 and

�
Ûi1
�
`[�0]

�
; Û{̂

�
`[�0]

��
� 0. Moreover, since Û{̂

�
`[��]

�
6= 0, these

vectors are not colinear.

By the a¢ nity of ��1 � V (lemma 11), for all z; `; `0 and all �,

��1

"X
i

zi�
h
�Ûi (`) + (1� �) Ûi (`0)

i#

= ���1

"X
i

zi�
h
Ûi (`)

i#
+ (1� �)��1

"X
i

zi�
h
Ûi (`

0)
i#

(23)
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In particular, this must hold for z = (1=2)
�
i1
�
+(1=2) [̂{], `[�] and `[�0]. Substituting in these values

along with our homogenous functional forms � (u) = Cuk+D and ��1 (v) = [(v �D) =C]1=k, The

left side of expression (23) becomes:

��1
�
1

2
�
�
�Ûi1

�
`[�]
�
+ (1� �) Ûi1

�
`[�0]

��
+
1

2
�
�
�Û{̂

�
`[�]
�
+ (1� �) Û{̂

�
`[�0]

���
= ��1

�
1

2
C

��
�Ûi1

�
`[�]
�
+ (1� �) Ûi1

�
`[�0]

��k
+
�
�Û{̂

�
`[�]
�
+ (1� �) Û{̂

�
`[�0]

��k�
+D

�
=

1

21=k

��
�Ûi1

�
`[�]
�
+ (1� �) Ûi1

�
`[�0]

��k
+
�
�Û{̂

�
`[�]
�
+ (1� �) Û{̂

�
`[�0]

��k�1=k
And the right side of expression (23) becomes:

1

21=k

 
�

��
Ûi1
�
`[�]
��k

+
�
Û{̂
�
`[�]
��k�1=k

+ (1� �)
��
Ûi1
�
`[�0]

��k
+
�
Û{̂
�
`[�0]

��k�1=k!

Combining these yields:��
�Ûi1

�
`[�]
�
+ (1� �) Ûi1

�
`[�0]

��k
+
�
�Û{̂

�
`[�]
�
+ (1� �) Û{̂

�
`[�0]

��k�1=k
= �

��
Ûi1
�
`[�]
��k

+
�
Û{̂
�
`[�]
��k�1=k

+ (1� �)
��
Ûi1
�
`[�0]

��k
+
�
Û{̂
�
`[�0]

��k�1=k
(24)

Notice that if �=�were replaced by ���then expression (24) becomes the Minkowski inequality.

Recall that if the Minkowski inequality holds with equality (and the vectors involved are not

colinear) then k = 1. Since the vectors we chose were not colinear, we have k = 1, completing the

proof. �

Remark. Notice that our third richness condition, three-player richness, was only used in the last

step (step 6) of the proof. Speci�cally, it allowed us to construct vectors that were not colinear,

and hence to apply the Minkowski inequality.30

The previous step (step 5) illustrates how our counterexample (example 1) relies on their

being two outcomes and two agents. Recall the construction of �u. Starting from the intervalh
Ûi1
�
x1
�
; Ui1

�
x1
�i
, redistributive scope ensured there existed an outcome x̂ such that (i1; x̂) ��

i1; x̂
�
. Continuity then ensures there exits an outcome lottery `[��] between x

1 and x̂ such that

30 Even here, we only need this condition if Ûi1 (x̂) � 0. If Ûi1 (x̂) > 0, then we have
�
i1; x1

�
� (i1; x̂) and�

i1; x1
�
�
�
i1; x̂

�
. In this case, our �rst richness condition (absence of unanimity) already implies there exists an {̂

such that ({̂; x̂) �
�
{̂; x1

�
%
�
i1; x1

�
, hence Û{̂

�
`[��]

�
> 0.
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�
i1; `[��]

�
�
�
i1; `[��]

�
, and �u corresponded to the utility level at that lottery. Similarly, starting

from the interval
h
Ûi2 (x2) ; Ûi2 (x2)

i
, redistributive scope ensured there exists an outcome x̂2 such

that (i1; x̂2) �
�
i1; x̂2

�
and continuity ensures there exits an outcome lottery `[��2] between x2 and

x̂2 such that
�
i2; `[��2]

�
�
�
i2; `[��2]

�
, and �u2 corresponded to the utility level at that lottery. An

implication of step 5 is that if �u 6= �u2 then � is a¢ ne. In the example, there are only two outcomes

and two agents, hence `[��] and `[��2] must be the same lottery, and therefore �u and �u2 are trivially

equal. But in a world with three agents or three outcomes, such a coincidence is knife edge.

Proof of Theorem 8. Remark: in the proof of lemma 1, for each product lottery (z; `) except

the best and the worst, we found some lottery `0 and two individuals i and j such that (i; `0) �

(z; `) � (j; `0). Absence of unanimity ensured us that such a lottery and pair of individuals existed.

We then constructed a �local�representation V (z; `) that solves

(V (z; `) [i] + (1� V (z; `)) [j] ; `0) � (z; `) .

When we attempt to generalize this idea without absence of unanimity, there might exist �prob-

lem�product lotteries (z; `), other than just the best or the worst, such that no lottery `0 and

individuals i and j exist with the property above. If (z; `) is a such a �problem�product lottery

then all product lotteries in its indi¤erence set have the same problem.

More formally, let ~V be a continuous utility function representing % that we can use as a

benchmark to label indi¤erence sets. Without loss of generality, assume that ~V �s image is equal

to [0; 1]. Let us de�ne the set of �problem�indi¤erence levels as follows

# =
n
v 2 (0; 1) : @i; j 2 I and ` 2 4 (X ) s.t. ~V (i; `) > v > ~V (j; `)

o
.

We claim that the set # is closed (relative to (0; 1)). Suppose not. That is, let vn ! v be a

sequence in # (where v 2 (0; 1)) and assume there exists i; j 2 I and ` 2 4 (X ) such that ~V (i; `) >

v > ~V (j; `). Then for su¢ ciently large n, ~V (i; `) > vn > ~V (j; `): a contradiction.

For all v in #, continuity of ~V implies ~V (z; `) = v for some product lottery (z; `). By the

de�nition of #, if ~V (z; `) = v 2 # then either mini ~V (i; `) � v or maxi ~V (i; `) � v. By indepen-

dence over outcome lotteries, maxi ~V (i; `) � ~V (z; `) � mini ~V (i; `). Hence, ~V (z; `) = v implies

there exists at least one individual j such that ~V (j; `) = v. And, using independence over identity
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lotteries again, ~V (z; `) = v implies V (i; `) = v for all individuals i in the support of the identity

lottery z.

Moreover, we claim that, for all v in the interior of #, if ~V (j; `) = v for some individual j then

~V (i; `) = v for all individuals i. Suppose not. That is, without loss of generality, let ~V (i; `) < v.

Then for all v0 such that ~V (i; `) < v0 < v, we have ~V (i; `) < v0 < ~V (j; `). But this contradicts v

being interior.

The proof proceeds in three cases.

Case 1: the set # is empty. Lemma 1 is a special case of this case, and this case yields the

same uniqueness conditions as lemma 1. Fix " > 0 and denote

BL" =
n
(z; `) 2 4 (I)�4 (X) : 1� " � ~V (z; `) � "

o
Since # is empty, for each t in (0; 1) we can �nd an outcome lottery `t for which there exist

individuals i and j such that ~V (i; `t) > t > ~V (j; `t). Let

BLt =
n
(z; `) 2 4 (I)�4 (X) : ~V

�
i; `t
�
> ~V (z; `) > ~V

�
j; `t

�o
.

As in the proof of lemma 1, construct a function V t that represents % on the closure of BLt

and which is a¢ ne in identity lotteries. Since fBLtg"�t�1�" is an open cover of the compact set

BL", we can �nd a �nite cover fBLt1 ; : : : ; BLtKg. The intersection of any two adjacent sets is

non-empty. Therefore, we can therefore re-normalize these �local�representations to �nd an a¢ ne

function V " that represents % on BL". For "0 in (0; "), the a¢ ne function V "
0
can be chosen

to agree with V " on BL". By continuity, the limit function V = lim"!0 V
" is well de�ned. By

a¢ nity, as in the proof of lemma 1, we can write V (z; `) = �iziVi (`) where, for each i in I, by

acceptance, the function Vi (`) := V (i; `) represents %i on 4 (X).

Case 2: the set # is �nite. Then we can write # = fv1; : : : ; vK�1g where k0 > k implies

vk0 > vk. Let v0 := 0 and vK := 1. Fix an interval of the form [vk�1; vk], k = 1; : : : ; K. By

independence over identity lotteries, if ~V (z; `) 2 (vk�1; vk) then mini ~V (i; `) < vk. Hence, by the

de�nition of #, maxi ~V (i; `) � vk. Similarly, maxi ~V (i; `) > vk�1 and hence mini ~V (i; `) � vk�1.

That is, if ~V (z; `) 2 (vk�1; vk) then ~V (i; `) 2 [vk�1; vk] for all i. Moreover, if ~V (z; `) = vk�1 (resp.
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vk) then ~V (i; `) = vk�1 (resp. vk) for all i in the support of z. Therefore, following the method of

case 1, we can construct a function V k (z; `) = �iziV ki (`) that represents % on f(z; `) 2 4 (I)�

4 (X) : ~V (z; `) 2 [vk�1; vk]g. To complete the representation, we simply re-normalize these K

functions such that they agree on the product lotteries (z; `) such that ~V (z; `) = vk for k = 1;

: : : ;K. For example, we can re-normalize such that the range of V k is [k � 1; k]. Notice that, as

this construction suggests, we do not have uniqueness in this case.

Case 3: the set # is in�nite. Choose � 2 (0; 1) n# De�ne

�+ = min f1;min fv 2 # : v > �gg

�� = max f0;max fv 2 # : v < �gg

Clearly �� < � < �+ (recall # is a closed set). As in cases 1 and 2, de�ne functions V and Vi

on [��; �+]. The set (0; 1) n# is covered by a countable number of disjoint intervals of the form

(��; �+), and hence the functions V and Vi can be constructed (inductively and continuously)

on their closed union. In this way the functions are also de�ned for #0, the set of #�s boundary

points.

Let v be an interior point of # and let

v+ = min
�
1;min

�
v0 2 #0 : v0 > v

		
v� = max

�
0;max

�
v0 2 #0 : v0 < v

		
Clearly, v� < v < v+ and all %i agree on f` 2 4 (X) : ~V (z; `) 2 (v�; v+) for some zg.

Choose V that (with continuity) agrees with V of the former step at the indi¤erence sets that are

associated with v� and v+, such that it represents % on this set. To conclude, de�ne

Vi : f` 2 4 (X) : ~V (z; `) 2
�
v�; v+

�
for some zg ! R

by Vi (`) = V (z; `) and note that V (z; `) = �iziVi (`) is trivially satis�ed.

Finally, as the number of (non trivially) open components of # is also countable, the construc-

tion of the desired functions can be carried out easily. �
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