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Abstract
Consider two agents who learn the value of an unknown parameter by observing

a sequence of private signals. The signals are independent and identically distrib-
uted across time but not necessarily across agents. We show that that when each
agent’s signal space is finite, the agents will commonly learn its value, i.e., that the
true value of the parameter will become approximate common-knowledge. The es-
sential step in this argument is to express the expectation of one agent’s signals,
conditional on those of the other agent, in terms of a Markov chain. This allows us
to invoke a contraction mapping principle ensuring that if one agent’s signals are
close to those expected under a particular value of the parameter, then that agent
expects the other agent’s signals to be even closer to those expected under the para-
meter value. In contrast, if the agents’ observations come from a countably infinite
signal space, then this contraction mapping property fails. We show by example
that common learning can fail in this case.
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1 Introduction

Consider two agents who observe sequences of private signals sufficiently rich
that they almost surely learn the value of an underlying parameter. The signals
are independent and identically distributed across time but not necessarily across
agents. Does it follow that the agents will commonly learn the parameter value,
i.e., that the true value will become approximate common knowledge? We show
that the answer is affirmative when each agent’s signal space is finite and show by
example that common learning can fail when observations come from a countably
infinite signal space.

Common learning is precisely what is needed to make efficient outcomes pos-
sible in coordination problems in which agents privately learn the appropriate
course of action. For example, suppose that in every period t = 0,1, . . ., each
agent receives a signal bearing information about a parameter θ . The agent can
then choose action A, action B, or to wait (W ) until the next period. Simultaneous
choices of A when the parameter is θA or B when it is θB bring payoffs of 1 each.
Lone choices of A or B or joint choices that do not match the parameter bring a
payoff of −c < 0 and cause the investment opportunity to disappear. Waiting is
costless. Figure 1 summarizes these payoffs.

Under what circumstances do there exist equilibria of this investment game in
which the agents do not always wait? Choosing action A is optimal for an agent
in some period t only if the agent attaches probability at least c

c+1 ≡ q to the joint
event that the parameter is θA and the other agent chooses A. Now consider the
set of histories A at which both agents choose A. At any such history, each agent
must assign probability at least q to A , that is A must be q-evident (Monderer
and Samet, 1989). Furthermore, at any history in A , each agent must assign
probability at least q to the parameter θA. But this pair of conditions is equivalent
to the statement that θA is common q-belief. The existence of histories at which
there is common q-belief is thus a necessary condition for eventual coordination
in this game. Conversely, the possibility of common q-belief is sufficient for a
nontrivial equilibrium, as it is an equilibrium for each agent ` to choose A on the
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A B W

A 1,1 −c,−c −c,0

B −c,−c −c,−c −c,0

W 0,−c 0,−c 0,0

Parameter θA

A B W

A −c,−c −c,−c −c,0

B −c,−c 1,1 −c,0

W 0,−c 0,−c 0,0

Parameter θB

Figure 1: Payoffs from a potential joint opportunity, with actions A, B, or wait
(W ) available to each agent in each period.

q-evident event on which θA is common q-belief.
Now suppose that various forms of this opportunity arise, characterized by

different values of the miscoordination penalty c. What does it take to ensure that
all of these opportunities can be exploited? It suffices that the information process
be such that the parameter eventually becomes arbitrarily close to common 1-
belief.

More generally, common learning is a potentially important tool in the analy-
sis of dynamic games with incomplete information. Examples include reputation
models such as Cripps, Mailath, and Samuelson (2007), where one player learns
the “type” of the other, and experimentation models such as Wiseman (2005),
where players learn about their joint payoffs in an attempt to coordinate on some
(enforceable) target outcome. Characterizing equilibria in these games requires
analyzing not only each player’s beliefs about payoffs, but also higher-order be-
liefs about the beliefs of others. Existing studies of these models have imposed
strong assumptions on the information structure in order to keep the analysis
tractable. We view our research as potentially leading to some general tools for
studying common learning in dynamic games.

Passing from individual to common learning requires showing that agent `

eventually attaches high probability to the true parameter value as well as to events
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such as agent ˆ̀’s attaching high probability to the true parameter value. This will
obviously hold in the special case of public signals, where beliefs are identical. At
the opposite extreme, suppose agents’ signals are stochastically independent, and
so (conditional on the parameter) each learns nothing about the other’s beliefs.
Signals typical of parameter value θ then lead agent ` to place high probability
on parameter value θ and—knowing that agent ˆ̀ is facing informative signals—
a high probability on ˆ̀ similarly having seen signals typical of θ . Moreover,
conditional on the parameter θ , the probability that ` assigns to ˆ̀ seeing typical
signals is independent of `’s signals. This uniformity in `’s beliefs plays a vital
role in establishing common learning (Proposition 2). However, when signals are
private but not independent, agent ` may observe signals that are highly likely
under some parameter θ but which lead ` to believe, conditional on θ , that agent
ˆ̀ has observed signals less typical of θ , disrupting the straightforward common-
learning argument that suffices for independent signals.

The key observation in our general argument is that when the set of signals
is finite, the distribution of one agent’s signals, conditional on the other agent’s
signals, has a Markov chain interpretation.1 This allows us to appeal to a contrac-
tion mapping principle that effectively replaces the uniformity in beliefs of the
independent-signals case, ensuring that if agent `’s signals are close to those that
would be expected under some parameter value θ , then ` believes that ˆ̀’s signals
are even closer to what would be expected under θ . In contrast, with a countably
infinite signal space, the corresponding Markov chain interpretation lacks the rel-
evant contraction mapping structure and common learning may fail.

1This perspective is inspired by Samet (1998).
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2 A Model of Multi-Agent Learning

2.1 Learning

Time is discrete and periods are denoted by t = 0,1,2, .... Before period zero,
nature selects a parameter θ from the finite set Θ according to the prior distribution
p. Remark 4 explains the extent to which we can relax the assumption that agents
share a common prior.

For notational simplicity, we restrict attention to 2 agents, denoted by ` = 1
(he) and 2 (she). Our positive results (Propositions 2 and 3) hold for arbitrary
finite number of agents (see Remarks 3 and 5).

Conditional on θ , a stochastic process ζ θ ≡{ζ θ
t }∞

t=0 ≡{ζ θ
1t ,ζ

θ
2t}∞

t=0 generates
a signal profile zt ≡ (z1t ,z2t) ∈ Z1×Z2 ≡ Z for each period t, where Z` is the set
of possible period-t signals for agent ` = 1,2.2 For each θ ∈Θ, the signal process
{ζ θ

t }∞
t=0 is independent and identically distributed across t. When convenient, we

let {θ} denote the event {θ}×Z∞, and often write θ rather than {θ} when the
latter appears as an argument of a function.

A state consists of a parameter and a sequence of signal profiles, with the set
of states given by Ω ≡ Θ×Z∞. We use P to denote the measure on Ω induced by
the prior p and the signal processes (ζ θ )θ∈Θ, and use E[ · ] to denote expectations
with respect to this measure. Let Pθ denote the measure conditional on a given
parameter and Eθ [ · ] expectations with respect to this measure.

A period-t history for agent ` is denoted by h`t ≡ (z`0,z`1, . . . ,z`t−1). We let
H`t ≡ (Z`)t denote the space of period-t histories for agent ` and let {H`t}∞

t=0

denote the filtration induced on Ω by agent `’s histories. The random variables
{P(θ |H`t)}∞

t=0, giving agent `’s beliefs about the parameter θ at the start of each
period, are a bounded martingale with respect to the measure P, for each θ , and so
the agents’ beliefs converge almost surely (Billingsley, 1979, Theorem 35.4). For
any state ω , h`t(ω) ∈H`t is the agent ` period-t history induced by ω . As usual,

2Monderer and Samet (1995) establish a common learning result for agents who observe one
realization of a private signal, and then observe only public signals.
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P(θ |H`t)(ω) is often written P(θ | h`t(ω)) or P(θ | h`t) when ω is understood.
For any event F ⊂ Ω, the H`t-measurable random variable E[1F |H`t ] is the

probability agent ` attaches to F given her information at time t. We define

Bq
`t(F)≡ {ω ∈Ω : E[1F |H`t ](ω)≥ q}.

Thus, Bq
`t(F) is the set of states where at time t agent ` attaches at least probability

q to event F .

Definition 1 (Individual Learning) Agent ` learns parameter θ if conditional on

parameter θ , agent `’s posterior on θ converges in probability to 1, i.e., if for each

q ∈ (0,1) there is T such that for all t > T ,

Pθ (Bq
`t(θ)) > q. (1)

Agent ` learns Θ if ` learns each θ ∈Θ.

Remark 1 Individual learning is equivalent to

lim
t→∞

Pθ (Bq
`t(θ)) = 1, ∀q ∈ (0,1). (2)

We have formulated individual learning using convergence in probability rather
than almost sure convergence to facilitate the comparison with common learning.
While convergence in probability is in general a weaker notion than almost sure
convergence, since P(θ |H`t) converges almost surely to some random variable,
(2) is equivalent to P(θ |H`t)→ 1 Pθ -a.s. �

We assume throughout that each agent individually learns the parameter—
there is no point considering common learning when individual learning fails.
Our aim is to identify the additional conditions that must be imposed to ensure
that the agents commonly learn the parameter.

The event that F ⊂Ω is q-believed at time t, denoted by Bq
t (F), occurs if each
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agent attaches at least probability q to F , that is,

Bq
t (F)≡ Bq

1t(F)∩Bq
2t(F).

The event that F is common q-belief at date t is

Cq
t (F)≡

⋂
n≥1

[Bq
t ]

n(F).

Hence, on Cq
t (F), the event F is q-believed and this event is itself q-believed and

so on. We are interested in common q-belief as a measure of approximate common
knowledge because this notion ensures the continuity of equilibrium behavior in
incomplete information games (Monderer and Samet, 1989).

We say that the agents commonly learn the parameter θ if, for any probability
q, there is a time such that, with high probability when the parameter is θ , it is
common q-belief at all subsequent times that the parameter is θ :

Definition 2 (Common Learning) The agents commonly learn parameter θ ∈Θ

if for each q ∈ (0,1) there exists a T such that for all t > T ,

Pθ (Cq
t (θ)) > q.

The agents commonly learn Θ if they commonly learn each θ ∈Θ.

Remark 2 Common learning is equivalent to

lim
t→∞

Pθ (Cq
t (θ)) = 1, ∀q ∈ (0,1).

Because Cq
t (θ)⊂ Bq

`t(θ), common learning implies individual learning (cf. (2)).

�

Rather than working with the countable collection of events {[Bq
t ]n(θ)}n≥1

directly, it is easier to work with q-evident events. An event F is q-evident at time
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t if it is q-believed when it is true, that is,

F ⊂ Bq
t (F).

Monderer and Samet (1989, Definition 1 and Proposition 3) show:

Proposition 1 (Monderer and Samet) F ′ is common q-belief at ω ∈Ω and time

t if and only if there exists an event F ⊂ Ω such that F is q-evident at time t and

ω ∈ F ⊂ Bq
t (F ′).

We use the following immediate implication:

Corollary 1 The agents commonly learn Θ if and only if for all θ ∈ Θ and q ∈
(0,1), there exists a sequence of events Ft and a period T such that for all t > T ,

(i) θ is q-believed on Ft at time t,

(ii) Pθ (Ft) > q, and

(iii) Ft is q-evident at time t.

2.2 Special Cases: Perfect Correlation and Independence

Suppose first the signals are public, as commonly assumed in the literature. Then
agent ` knows everything there is to know about ˆ̀’s beliefs, and we have P(θ |H1t)
= P(θ |H2t) for all θ and t—and hence beliefs are always common. Individual
learning then immediately implies common learning.

At the other extreme, we have independent signals. Here, the fact that agent `

learns nothing about agent ˆ̀’s signals ensures common learning.

Proposition 2 Suppose each agent learns Θ and that for each θ ∈Θ, the stochas-

tic processes {ζ θ
1t}∞

t=0 and {ζ θ
2t}∞

t=0 are independent. Then the agents commonly

learn Θ.

Proof. Fix θ . Abbreviating {θ}×Z∞ to {θ}, we set Ft ≡ {θ}∩B
√

q
t (θ) and

apply Corollary 1.
(i) Because Ft ⊂ B

√
q

t (θ)⊂ Bq
t (θ), parameter θ is q-believed on Ft at time t.
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(ii) Independence implies Pθ (Ft) = Pθ (B
√

q
1t (θ))Pθ (B

√
q

2t (θ)). By (1), we can
choose T sufficiently large that Pθ (B

√
q

`t (θ)) >
√

q for all ` and all t > T and hence
Pθ (Ft) > q.

(iii) To show that Ft is q-evident, we must show that Ft ⊂ Bq
`t(Ft) for ` = 1,2.

We have

Bq
`t(Ft) ={ω : E[1

B
√

q
`t (θ)

1
B
√

q
ˆ̀t

(θ)∩{θ}
|H`t ]≥ q}

={ω : 1
B
√

q
`t (θ)

E[1
B
√

q
ˆ̀t

(θ)∩{θ}
|H`t ]≥ q}

=B
√

q
`t (θ)∩Bq

`t(B
√

q
ˆ̀t

(θ)∩{θ}),

where the second equality uses B
√

q
`t (θ)∈H`t . By construction, Ft ⊂ B

√
q

`t (θ), and
so it suffices for Ft ⊂Bq

`t(Ft) that on the set Ft , we have P(B
√

q
ˆ̀t

(θ)∩{θ} |H`t) > q

for ˆ̀ 6= `. As above, (1) allows us to choose T sufficiently large that Pθ (B
√

q
`t (θ)) >

√
q for all ` and all t > T . The conditional independence of agents’ signals implies

that, given θ , agent `’s history is uninformative about ˆ̀’s signals, and hence

Pθ (B
√

q
ˆ̀t

(θ) |H`t) >
√

q (3)

for all agent-` histories.3 But, on Ft , we have P(θ | H`t) >
√

q. Consequently,
again on Ft ,

P(B
√

q
ˆ̀t

(θ)∩{θ} |H`t) = Pθ (B
√

q
ˆ̀t

(θ) |H`t)P(θ |H`t) > q, (4)

and we have the desired result.

3Since conditional probabilities are only unique for P-almost all states, the set Ft depends upon
the choice of version of the relevant conditional probabilities. In the proof, we have selected the
constant function Pθ (B

√
q

ˆ̀t
(θ)) as the version of Pθ (B

√
q

ˆ̀t
(θ) | H`t). For other versions of condi-

tional probabilities, the definition of Ft must be adjusted to exclude appropriate zero probability
subsets.
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Remark 3 (Arbitrary finite number of agents) The proof of Proposition 2 cov-
ers an arbitrary finite number of agents once we redefine Ft as {θ} ∩B

n√q
t (θ),

where n is the number of agents. �

One would expect common learning to be more likely the more information `

has about ˆ̀’s beliefs. Perhaps surprisingly, however, correlation that is less than
perfect can generate information that disrupts common learning. The danger is
that agent 1 may have observed signal frequencies that are typical of parameter θ

but which lead 1 to believe 2 has seen signals less typical of θ . This destroys the
uniform (across 1’s histories) bound on 1’s beliefs about 2’s beliefs (cf. (3)) that
played a central role in establishing q-evidence and hence common learning with
independent signals. We show by example in Section 4 that common learning can
fail as a result. The following section shows that common learning still obtains
when signal sets are finite, though the event Ft used in the proof of Proposition 2
no longer suffices to show that the conditions of Corollary 1 are satisfied.

3 Sufficient Conditions for Common Learning

3.1 Finite Signals Imply Common Learning

For our positive result, we assume that the signal sets are finite.

Assumption 1 (Finite Signal Sets) Agents 1 and 2 have finite signal sets, I and

J respectively.

We use I and J to also denote the cardinality of sets I and J, trusting the context
will prevent confusion.

We denote the probability distribution of the agents’ signals conditional on θ

by (πθ (i j))i∈I, j∈J ∈∆(I×J). Hence, πθ (i j) is the probability that (z1t ,z2t) = (i, j)
for parameter θ in period t. For each θ ∈Θ, let

Iθ ≡ {i ∈ I : ∑ j π
θ (i j) > 0}
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and Jθ ≡ { j ∈ J : ∑i π
θ (i j) > 0}

be the sets of signals that appear with positive probability under parameter θ .
Denote

(
πθ (i j)

)
i∈Iθ , j∈Jθ by Πθ .

We let φ θ (i) ≡ ∑ j πθ (i j) denote the marginal probability of agent 1’s signal
i and ψθ ( j) = ∑i πθ (i j) denote the marginal probability of agent 2’s signal j.
We let φ θ = (φ θ (i))i∈Iθ and ψθ = (ψθ ( j)) j∈Jθ be the row vectors of expected
frequencies of the agents’ signals under parameter θ . Notice that we restrict at-
tention to those signals that appear with positive probability under parameter θ in
defining the vectors φ θ and ψθ .

Given Assumption 1, the following is equivalent to (1).

Assumption 2 (Individual Learning) For every θ 6= θ ′, the marginal distribu-

tions are distinct, i.e. φ θ 6= φ θ ′ and ψθ 6= ψθ ′ .

Our main result is:

Proposition 3 Under Assumption 1 and Assumption 2, the agents commonly learn

Θ.

Remark 4 (The role of the common prior and agreement on πθ ) Though we
have presented Proposition 3 in terms of a common prior, the analysis applies
with little change to a setting where the two agents have different but commonly
known priors. Indeed, the priors need not be commonly known—it is enough that
there be a commonly known bound on the minimum probability any parameter
receives in each agent’s prior. We simply modify Lemma 1 to still find a neigh-
borhood of signal frequencies in which every “type” of agent i will assign high
probability to the true parameter. The rest of the proof is unchanged.

Our model also captures settings in which the agents have different beliefs
about the conditional signal-generating distributions (πθ (i j))i∈I, j∈J . In particu-
lar, such differences of opinion can be represented as different beliefs about a
parameter ρθ that determines the signal-generating process given θ . Our analy-
sis then applies to a reformulated model in which agents are uncertain about the
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joint parameter (θ ,ρθ ) (but know the signal-generating process conditional on
this parameter).

Our work is complementary to Acemoglu, Chernozhukov, and Yildiz (2006),
who consider environments in which even arbitrarily large samples of common
data may not reconcile disagreements in agents’ beliefs. Acemoglu, Chernozhukov,
and Yildiz (2006) stress the possibility that the agents in their model may not know
the signal-generating process (πθ (i j))i∈I, j∈J , but we have just argued that this is
not an essential distinction in our context. The key difference is that the signal-
generating processes considered by Acemoglu, Chernozhukov, and Yildiz (2006)
need not suffice for individual learning. In our context, it is unsurprising that
common learning need not hold when individual learning fails. �

3.2 Preliminaries

The main idea of the proof is to classify histories in terms of the realized frequen-
cies of the signals the agents have observed and to work with events exhibiting
appropriate signal frequencies.

Let ft(i j) denote the number of periods in which agent 1 has received the sig-
nal i and agent 2 received the signal j before period t. Defining f1t(i)≡ ∑ j ft(i j)
and f2t( j)≡ ∑i ft(i j), the realized frequencies of the signals are given by the row
vectors φ̂t ≡ ( f1t(i)/t)i∈I and ψ̂t ≡ ( f2t( j)/t) j∈J . Finally, let φ̂ θ

t = ( f1t(i)/t)i∈Iθ

denote the realized frequencies of the signals that appear with positive probability
under parameter θ , with a similar convention for ψ̂θ .

Denote by Mθ
1 the Iθ ×Jθ matrix whose i jth element is πθ (i j)/φ θ (i), i.e., the

conditional probability under parameter θ of signal j given signal i. At any date
t, when agent 1 has realized frequency distribution φ̂t , his estimate (expectation)
of the frequencies observed by agent 2 conditional on parameter θ is given by the
matrix product

φ̂
θ
t Mθ

1 .
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The corresponding matrix for agent two, Mθ
2 , is the Jθ × Iθ matrix with jith ele-

ment πθ (i j)/ψθ ( j).
We now make a key observation relating φ θ , ψθ , Mθ

1 , and Mθ
2 . Let Dθ

1 be the
Iθ × Iθ diagonal matrix with ith diagonal element (φ θ (i))−1 and let e be a row
vector of 1’s. It is then immediate that

φ
θ Mθ

1 = φ
θ Dθ

1 Π
θ = eΠ

θ = ψ
θ . (5)

A similar argument yields
ψ

θ Mθ
2 = φ

θ . (6)

Note that the product φ̂ θ
t Mθ

1 Mθ
2 gives agent 1’s expectation of agent 2’s expec-

tation of the frequencies observed by agent 1 (conditional on θ ). Hence, Mθ
12 ≡

Mθ
1 Mθ

2 is a Markov transition matrix on the set Iθ of signals for agent 1 with
stationary distribution φ θ .

Some elements of the matrix Mθ
12 may be zero, requiring further consideration.

Two signals i and i′ belong to the same recurrence class under the transition matrix
Mθ

12 if and only if the probability of a transition from i to i′ (in some finite number
of steps) is positive. We let (Rθ

1 (k))K
k=1 denote the collection of recurrence classes,

and we order the elements of Iθ so that the recurrence classes are grouped together
and in the order of their indices. The matrix Mθ

12Dθ
1 = Dθ

1 Πθ Dθ
2 [Πθ ]T Dθ

1 , where
Dθ

2 is the diagonal matrix whose jth diagonal element is (ψθ ( j))−1 for j ∈ Jθ ,
is obviously symmetric. This implies that the Markov process Mθ

12 with initial
distribution φ θ is reversible.4 Consequently, the process has φ θ as a stationary
distribution when run backward as well as forward, and hence (since φ θ (i) > 0
for all i ∈ Iθ ) has no transient states. The relation defined by belonging to a
recurrence class is thus an equivalence and the recurrence classes partition Iθ .5

4As Mθ
12Dθ

1 is symmetric, the detailed balance equations at φ θ hold, i.e.,

φ
θ (i)Mθ

12(ii
′) = φ

θ (i′)Mθ
12(i

′i)

(Brémaud, 1999, page 81).
5Since the Markov process has no transient states, if the probability of a (finite-step) transition
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Similarly, the matrix Mθ
21 ≡ Mθ

2 Mθ
1 is a Markov transition matrix with sta-

tionary distribution ψθ on the set Jθ that we can partition into recurrence classes
(Rθ

2 (k))K
k=1.

Define a mapping ξ from (Rθ
1 (k))K

k=1 to (Rθ
2 (k))K

k=1 by letting ξ (Rθ
1 (k)) =

Rθ
2 (k′) if there exist signals i ∈ Rθ

1 (k) and j ∈ Rθ
2 (k′) with πθ (i j) > 0. Then ξ is a

bijection (as already reflected in our notation). It is convenient therefore to group
the elements of Jθ by their recurrence classes in the same order as was done with
Iθ . We use the notation Rθ (k) to refer to the kth recurrence class in either Iθ or
Jθ when the context is clear. This choice of notation also reflects the equalities of
the probabilities of Rθ

1 (k) and Rθ
2 (k) under θ , that is

φ
θ (Rθ

1 (k))≡ ∑
i∈Rθ

1 (k)

φ
θ (i) = ∑

j∈Rθ
2 (k)

ψ
θ ( j)≡ ψ

θ (Rθ
2 (k)). (7)

Since agent 1 observes a signal in Rθ
1 (k) under parameter θ if and only if agent

2 observes a signal in Rθ
2 (k), conditional on θ the realized frequencies of the

recurrence classes also agree.
Let φ̂ θk denote the distribution over Iθ obtained by conditioning φ̂ on the kth

recurrence class Rθ (k) (for those cases in which φ̂ θ (Rθ (k)) > 0), and define φ θk,
ψθk, and ψ̂θk

t analogously.

3.3 Outline of the Proof

Fix a parameter θ . As in the proof of Proposition 2, we show the agents commonly
learn θ by identifying a set Ft satisfying the sufficient conditions of Corollary
1. Once again, Ft is built around requirements that each agent ` attaches high
probability to θ and attaches high probability to ˆ̀ attaching high probability to θ .

Our argument begins, in Lemma 1, by showing that there is a δ > 0 so that
whenever 1’s observed frequency distribution φ̂t is within a distance δ of φ θ ,
his marginal signal distribution under θ , the posterior probability he assigns to θ

from i to i′ is positive, then the probability of a (finite-step) transition from i′ to i is also positive.
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approaches 1 over time. Let F1t(0) denote this δ -neighborhood of φ θ ,6

F1t(0)≡
{

ω :
∥∥∥φ̂

θ
t −φ

θ

∥∥∥ < δ

}
.

Next, from (5), the continuity of the linear map Mθ
1 implies that if 1’s frequen-

cies are in a neighborhood of φ θ , then 1 expects that 2’s frequencies are in the
neighborhood of ψθ , and hence that 2 assigns high probability to θ . In order to
pass from “expecting” that 2’s signals are typical of θ to assigning high probabil-
ity to this event, we must bound the error in agent 1’s estimate of 2’s frequencies.
Lemma 3 provides such a bound, showing that conditional on θ , given any ε1 > 0
and ε2 > 0, there is a time T after which the probability that 2’s realized frequen-
cies are more than ε1 away from 1’s estimate (φ̂ θ

t Mθ
1 ) is less than ε2. A crucial

detail here is that this bound applies uniformly across all histories for 1. There is
thus a neighborhood of φ θ such that if 1’s frequency φ̂ θ

t falls in this neighborhood
for sufficiently large t, then agent 1 assigns high probability to the event that 2
assigns high probability to θ . Let F1t(1) denote this neighborhood, which we can
equivalently think of as a neighborhood of ψθ into which φ̂ θ

t Mθ
1 must fall, that is,

F1t(1)≡
{

ω :
∥∥∥φ̂

θ
t Mθ

1 −ψ
θ

∥∥∥ < δ − ε

}
,

where ε is small and determined below.
Let F1t(0)∩F1t(1)≡ F1t . A natural starting point for the set Ft would be F1t ∩

F2t (where F2t is defined similarly to F1t for agent 2). It simplifies the argument for
q-evidence to intersect these sets with the event {θ}, so that Ft ≡F1t∩F2t∩{θ}. It
is intuitive (and indeed true) that θ is q-believed on Ft at time t and that Pθ (Ft) > q

for sufficiently large t. It remains to verify that the set Ft is q-evident at time t, that
is, Ft ⊂ Bq

t (Ft) = Bq
1t(Ft)∩Bq

2t(Ft). It suffices for q-evidence to argue that (with a
symmetric argument for agent 2)

F1t ∩{θ} ⊂ Bq
1t(F1t ∩F2t ∩{θ}).

6For any x ∈ RN , ‖x‖ ≡ ∑
N
k=1 |xk| is the variation norm of x.
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Define F̂1t(1)≡
{

ω :
∥∥φ̂ θ

t Mθ
1 − ψ̂θ

t
∥∥ < ε

}
, the event that 2’s realized frequen-

cies are close to 1’s estimate. Then an application of the triangle inequality yields

F1t(1)∩ F̂1t(1)⊂ F2t(0).

Suppose that every element of Mθ
12 is strictly positive. In that case, Mθ

12 is
a contraction when viewed as a mapping on ∆Iθ with fixed point φ θ . Hence,
for some r ∈ (0,1), ω ∈ F1t(0) implies

∥∥φ̂ θ
t Mθ

12−φ θ Mθ
12

∥∥ =
∥∥φ̂ θ

t Mθ
12−φ θ

∥∥ <

rδ . Since Mθ
2 is a stochastic matrix, ω ∈ F̂1t(1) implies

∥∥φ̂ θ
t Mθ

1 Mθ
2 − ψ̂θ

t Mθ
2

∥∥ =∥∥φ̂ θ
t Mθ

12− ψ̂θ
t Mθ

2

∥∥ < ε . Setting ε small enough that rδ < δ −2ε , an application
of the triangle inequality gives

∥∥ψ̂θ
t Mθ

2 −φ θ
∥∥ < δ − ε , implying

F1t(0)∩ F̂1t(1)⊂ F2t(1).

Hence, F1t ∩ F̂1t(1)⊂ F2t , and so F1t ∩ F̂1t(1)∩{θ} ⊂ F2t ∩{θ}. But, the discus-
sion preceding the definition of F1t(1) implies F1t ∩{θ} ⊂ Bq

1t(F̂1t(1)∩{θ}) for
large t. Consequently,

F1t ∩{θ} ⊂ Bq
1t(F1t ∩ F̂1t(1)∩{θ})⊂ Bq

1t(F1t ∩F2t ∩{θ}),

and we are done.
The proof of Proposition 3 must account for the possibility that some elements

of Mθ
12 may not be strictly positive. However, as we show in Lemma 4, since Mθ

12

is irreducible when restricted to a recurrence class, some power of this restricted
matrix is a contraction. The proof then proceeds as outlined above, with the defi-
nition of F̀ t now taking into account the need to take powers of Mθ

12.

3.4 Frequencies Suffice for Beliefs

Our first result shows that when agent 1’s signal frequencies are sufficiently close
to those expected under any parameter θ , the posterior probability he attaches to
parameter θ approaches one.
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Lemma 1 There exist δ ∈ (0,1), β ∈ (0,1), and a sequence ξ : N → [0,1] with

ξ (t)→ 1 such that

P(θ | h1t)≥ ξ (t)

for all θ ∈ Θ and h1t satisfying P(θ | h1t) > 0,
∥∥φ̂ θk

t −φ θk
∥∥ < δ and β <

φ̂ θ
t (Rθ (k))/φ θ (Rθ (k)) < β−1 for all k. An analogous result holds for agent 2.

Proof. Fix a parameter θ and δ̃ < mini,θ{φ θ (i) : φ θ (i)> 0}. Then
∥∥φ̂ θk

t −φ θk
∥∥

< δ̃ for all k only if φ̂t puts strictly positive probability on every signal i ∈ Iθ . For
θ ′ and h1t with P(θ ′ | h1t) > 0, define the ratio

λ
θθ ′
1t ≡ log

P(θ | h1t)
P(θ ′ | h1t)

= log
φ θ (it−1)P(θ | h1t−1)
φ θ ′(it−1)P(θ ′ | h1t−1)

.

We now show that β and δ ≤ δ̃ can be chosen so that there exists η > 0 with the
property that

λ
θθ ′
1t ≥ λ

θθ ′
10 + tη ∀θ

′ 6= θ

for all histories h1t for which
∥∥φ̂ θk

t −φ θk
∥∥ < δ̃ for all k and for which λ θθ ′

1t is
defined. Notice that λ θθ ′

10 = p(θ)/p(θ ′) is the log-likelihood ratio at time zero,
that is, the ratio of prior probabilities.

Our choice of δ̃ , implying that every signal i ∈ Iθ has appeared in the history
h1t , ensures that P(θ ′|h1t) > 0 (and hence λ θθ ′

1t is well defined) only if Iθ ⊂ Iθ ′ .
This in turn ensures that the following expressions are well defined (in particular,
having nonzero denominators). Because signals are distributed independently and
identically across periods, λ θθ ′

1t can be written as

λ
θθ ′
1t = λ

θθ ′
10 +

t−1

∑
s=0

log
(

φ θ (is)
φ θ ′(is)

)
.

We find a lower bound for the last term. Let

Hθθ ′ ≡ Eθ

(
log

φ θ (i)
φ θ ′(i)

)
> 0

16



denote the relative entropy of φ θ with respect to φ θ ′ . Then,∣∣∣∣∣t−1

∑
s=0

log
(

φ θ (is)
φ θ ′(is)

)
− tHθθ ′

∣∣∣∣∣
=

∣∣∣∣∣ ∑
i∈Iθ

f1t(i) log
(

φ θ (i)
φ θ ′(i)

)
− t ∑

i∈Iθ

φ
θ (i) log

(
φ θ (i)
φ θ ′(i)

)∣∣∣∣∣
= t

∣∣∣∣∣ ∑
i∈Iθ

(φ̂ θ
t (i)−φ

θ (i)) log
(

φ θ (i)
φ θ ′(i)

)∣∣∣∣∣
≤ t ∑

i∈Iθ

∣∣∣∣(φ̂ θ
t (i)−φ

θ (i)) log
(

φ θ (i)
φ θ ′(i)

)∣∣∣∣
≤ t‖φ̂

θ
t −φ

θ‖ logb

for b = maxi,θ ,θ ′∈Θ

{
φ θ (i)/φ θ ′(i) : φ θ (i) > 0

}
. (By Assumption 2, b > 1.) Thus,

λ
θθ ′
1t ≥ λ

θθ ′
10 + t

(
Hθθ ′−

∥∥∥φ̂
θ
t −φ

θ

∥∥∥ logb
)

.

We now argue that δ ≤ δ̃ and β can be chosen to ensure Hθθ ′− logb
∥∥φ̂ θ

t −φ θ
∥∥ >

η for all θ ,θ ′ and some η > 0. For this, it is enough to observe that the mapping({
φ̂

θ
t (Rθ (k))

}
k
,
{

φ̂
θk
t

}
k

)
7→∑

k
∑
i∈k

∣∣∣φ̂ θ
t (Rθ (k))φ̂ θk

t (i)−φ
θ (i)

∣∣∣ =
∥∥∥φ̂

θ
t −φ

θ

∥∥∥
is continuous and equals zero if and only if φ̂ θ

t (Rθ (k)) = φ θ (Rθ (k)) and φ̂ θk
t =

φ θk for all k.
We thus have δ and β such that for θ and h1t satisfying the hypotheses of the

lemma and for θ ′ with P(θ ′ | h1t) > 0, it must be that λ θθ ′
1t ≥ λ θθ ′

10 + tη and hence

p(θ ′)
p(θ)

≥ P(θ ′|h1t)
P(θ |h1t)

etη .
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Noting that this inequality obviously holds for θ ′ with P(θ ′ | h1t) = 0, we can sum
over θ ′ 6= θ and rearrange to obtain

P(θ | h1t)
1−P(θ | h1t)

≥ p(θ)
1− p(θ)

etη ,

giving the required result.

We next note that with high probability, observed frequencies match their ex-
pected values. Together with Lemma 1, this implies that each agent learns Θ.

Lemma 2 For all ε > 0 and θ , Pθ (
∥∥φ̂ θ

t −φ θ
∥∥ < ε)→ 1 and Pθ (

∥∥ψ̂θ
t −ψθ

∥∥ <

ε)→ 1 as t → ∞.

Proof. This follows from the Weak Law of Large Numbers (Billingsley, 1979,
p. 86).

3.5 Beliefs about Others’ Frequencies

We now show that each agent believes that, conditional on any parameter θ , his or
her expectation of the frequencies of the signals observed by his or her opponent
is likely to be nearly correct. Recall that φ̂ θ

t Mθ
1 is agent 1’s expectation of 2’s

frequencies ψ̂θ
t and that ψ̂θ

t Mθ
2 is agent 2’s expectation of 1’s frequencies φ̂ θ

t .

Lemma 3 For any ε1 > 0, ε2 > 0, there exists T such that for all t > T and for

every ht with Pθ (ht) > 0,

Pθ

(∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1 | h1t

)
> 1− ε2 (8)

and

Pθ

(∥∥∥ψ̂
θ
t Mθ

2 − φ̂
θ
t

∥∥∥ < ε1 | h2t

)
> 1− ε2. (9)
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Proof. We focus on (8); the argument for (9) is identical. Defining ψ̄θ
t ≡

φ̂ θ
t Mθ

1 , the left side of (8) is bounded below:

Pθ

(∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

∣∣∣ h1t

)
≥ 1− ∑

j∈Jθ

Pθ

(∣∣∣ψ̄θ
t ( j)− ψ̂

θ
t ( j)

∣∣∣≥ ε1

Jθ

∣∣∣ h1t

)
.

(10)
Conditional on θ and h1t , agent 2’s signals are independently, but not iden-

tically, distributed across time. In period s, given signal is, agent 2’s signals are
distributed according to the conditional distribution (πθ (is j)/φ θ (is)) j. However,
we can bound the expression on the right side of (10) using a related process ob-
tained by averaging the conditional distributions. The average probability that
agent 2 observes signal j over the t periods {0,1, . . . , t−1}, conditional on h1t is

1
t

t−1

∑
s=0

πθ (is j)
φ θ (is)

= ∑
i

φ̂t(i)
πθ (i j)
φ θ (i)

= ψ̄
θ
t ( j),

agent 1’s expectation of the frequency that 2 observed j.
Consider now t independent and identically distributed draws of a random

variable distributed on Jθ according to the “average” distribution ψ̄θ
t ∈ ∆(Jθ ); we

refer to this process as the average process. Denote the frequencies of signals
generated by the average process by ηt ∈ ∆(Jθ ). The process generating the fre-
quencies ψ̂t attaches the same average probability to each signal j over periods
0, . . . , t − 1 as does the average process, but does not have identical distributions
(as we noted earlier).

We use the average process to bound the terms in the sum in (10). By Hoeffd-
ing (1956, Theorem 4, p. 718), the original process is more concentrated about its
mean than is the average process, that is,7

P̃
(∣∣∣ψ̄θ

t ( j)−ηt( j)
∣∣∣≥ ε1

Jθ

)
≥ Pθ

(∣∣∣ψ̄θ
t ( j)− ψ̂

θ
t ( j)

∣∣∣≥ ε1

Jθ

∣∣∣ h1t

)
, j ∈ Jθ ,

7For example, 100 flips of a (p,1− p) coin generates a more dispersed distribution than 100p
flips of a (1,0) coin and 100(1− p) flips of a (0,1) coin.
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where P̃ is the measure associated with the average process. Applying this upper
bound to (10), we have

Pθ

(∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

∣∣∣ h1t

)
≥ 1− ∑

j∈Jθ

P̃
(∣∣∣ψ̄θ

t ( j)−ηt( j)
∣∣∣≥ ε1

Jθ

)
. (11)

The event {|ψ̄θ
t ( j)−ηt( j)| > ε1/Jθ} is the event that the realized frequency of

a Bernoulli process is far from its mean. By a large deviation inequality ((42) in
Shiryaev (1996, p. 69)),

P̃
(
|ψ̄θ

t ( j)−ηt( j)|> ε1

Jθ

)
≤ 2e−2tε2

1 /(Jθ )2
.

Using this bound in (11), we have

Pθ

(∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

∣∣∣ h1t

)
≥ 1−2Jθ e−2tε2

1 /(Jθ )2
.

This inequality holds for any history h1t . We can thus choose t large enough so
that the right side is less than ε2 and the statement of the lemma follows.

3.6 Proof of Proposition 3

We fix an arbitrary parameter θ and define a sequence of events Ft (suppressing
notation for the dependence of Ft on θ ), and show that Ft has the three requisite
properties from Corollary 1 for sufficiently large t.

Let γθk denote a probability distribution over Iθ that takes positive values
only on the kth recurrence class Rθ (k), and denote the set of such distributions by
∆Rθ (k).

Lemma 4 There exist r < 1 and a natural number n such that for all k∈{1, . . . ,K}
and for all γθk, γ̃θk in ∆Rθ (k),∥∥∥γ

θk(Mθ
12)

n− γ̃
θk(Mθ

12)
n
∥∥∥≤ r

∥∥∥γ
θk− γ̃

θk
∥∥∥ (12)
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and similarly for (Mθ
21)

n.

Proof. The matrix Mθ
12Dθ

1 = Dθ
1 Πθ Dθ

2 [Πθ ]T Dθ
1 has a nonzero diagonal, im-

plying that Mθ
12 has a nonzero diagonal and hence is aperiodic. The restriction of

Mθ
12 to any given recurrence class is irreducible and hence ergodic. Thus, because

signals are grouped by their recurrence classes, there exists a natural number n

such that (Mθ
12)

n is block-diagonal, with each block containing only strictly pos-
itive entries. The blocks consist of the non-zero n-step transition probabilities
between signals within a recurrence class. The product of γθk with (Mθ

12)
n is just

the product of γθk restricted to Rθ (k) with the kth block of (Mθ
12)

n. Because it has
all non-zero entries, the kth block is a contraction mapping (Stokey and Lucas,
1989, Lemma 11.3). In particular, there exists an r < 1 such that (12) holds.

The event Ft . Let δ ∈ (0,1) and β ∈ (0,1) be the constants identified in Lemma 1.
Pick ε > 0 such that rδ < δ −2nε where r < 1 and n are identified in Lemma 4.
For each date t, we define the event Ft as follows.

First, we ask that agent 1’s realized frequency of signals from Iθ and 2’s from
Jθ be close to the frequencies expected under θ . For each k, define the events

Fk
1t(0)≡

{
ω :

∥∥∥φ̂
θk
t −φ

θk
∥∥∥ < δ

}
(13)

and Fk
2t(0)≡

{
ω :

∥∥∥ψ̂
θk
t −ψ

θk
∥∥∥ < δ

}
. (14)

Lemma 4 ensures that
∥∥φ̂ θk

t (Mθ
12)

n−φ θk(Mθ
12)

n
∥∥ is smaller than δ on Fk

1t(0). We
define our event so that the same is true for all powers of Mθ

12 between 0 and n.
For any l ∈ {1, . . . ,n} and for each k, let

Fk
1t(2l−1)≡

{
ω :

∥∥∥φ̂
θk
t (Mθ

12)
l−1Mθ

1 −ψ
θk

∥∥∥ < δ − (2l−1)ε
}

(15)

and Fk
1t(2l)≡

{
ω :

∥∥∥φ̂
θk
t (Mθ

12)
l −φ

θk
∥∥∥ < δ −2lε

}
. (16)
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Similarly, for agent 2,

Fk
2t(2l−1)≡

{
ω :

∥∥∥ψ̂
θk
t (Mθ

21)
l−1Mθ

2 −φ
θk

∥∥∥ < δ − (2l−1)ε
}

(17)

and Fk
2t(2l)≡

{
ω :

∥∥∥ψ̂
θk
t (Mθ

21)
l −ψ

θk
∥∥∥ < δ −2lε

}
. (18)

Next, define the events

F1t ≡
K⋂

k=1

2n−1⋂
κ=0

Fk
1t(κ)≡

K⋂
k=1

Fk
1t ≡

2n−1⋂
κ=0

F1t(κ),

F2t ≡
K⋂

k=1

2n−1⋂
κ=0

Fk
2t(κ)≡

K⋂
k=1

Fk
2t ≡

2n−1⋂
κ=0

F2t(κ),

[θ ]≡
{

ω ∈ {θ}× (I× J)∞ : Pθ (h`t) > 0, ` ∈ {1,2}, t = 0,1, . . .
}

,

and

Gθ
t ≡[θ ]∩

{
β <

φ̂t(Rθ (k))
φ θ (Rθ (k))

< β
−1, ∀k

}
≡ [θ ]∩G1t (19)

=[θ ]∩
{

β <
ψ̂t(Rθ (k))
ψθ (Rθ (k))

< β
−1, ∀k

}
≡ [θ ]∩G2t . (20)

The equality of the two descriptions of Gθ
t follows from (7) and the following

discussion. Finally, we define the event Ft :

Ft ≡ F1t ∩F2t ∩Gθ
t .

In the analysis that follows, we simplify notation by using {‖· ‖ < ε} to denote
the event {ω : ‖· ‖< ε}.

θ is q-believed on Ft . By definition Ft ⊂ F1t(0)∩F2t(0)∩Gθ
t . Lemma 1 then

implies that for any q < 1, we have Ft ⊂ Bq
t (θ) for all t sufficiently large.

22



Ft is likely under θ . If φ̂t = φ θ and ψ̂t = ψθ , then the inequalities (13)–(20) ap-
pearing in the definitions of the sets F1t , F2t , and Gθ

t are strictly satisfied (because
φ θkMθ

1 = ψθk and ψθkMθ
2 = φ θk for each k). The (finite collection of) inequali-

ties (13)–(20) are continuous in φ̂t and ψ̂t and independent of t. Hence, (13)–(20)
are satisfied for any φ̂t and ψ̂t sufficiently close to φ θ and φ θ . We can therefore
choose ε† > 0 sufficiently small such that

{‖φ̂t −φ
θ‖< ε

†, ‖ψ̂t −ψ
θ‖< ε

†}∩ [θ ] ⊂ Ft , ∀t.

By Lemma 2, the Pθ -probability of the set on the left side approaches one as t

gets large, ensuring that for all q ∈ (0,1), Pθ (Ft) > q for all large enough t.

Ft is q-evident. We now argue that for any q, Ft is q-evident when t is suf-
ficiently large. Recalling that ε and β were fixed in defining Ft , choose ε1 ≡
εβ min j∈Jθ ψθ ( j). Note that ε1/ψ̂θ (Rθ (k)) < ε on the events F1t ∩Gθ

t and F2t ∩
Gθ

t .
[STEP 1] The first step is to show that if the realized frequencies of agent 1’s

signals are close to their population frequencies under θ and his expectations of
agent 2’s frequencies are not too far away from agent 2’s realized frequencies,
then (conditional on θ ) the realized frequencies of agent 2’s signals are also close
to their population frequencies under θ . In particular, we show

F1t ∩Gθ
t ∩

{∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

}
⊂ F2t . (21)

First, fix k and note that for each l = 1, . . . ,n,

Fk
1t(2l)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε}

⊂ Fk
1t(2l)∩{

∥∥∥φ̂
θk
t (Mθ

12)
l − ψ̂

θk
t (Mθ

21)
l−1Mθ

2

∥∥∥ < ε}

= {
∥∥∥φ̂

θk
t (Mθ

12)
l −φ

θk
∥∥∥ < δ −2lε}∩{

∥∥∥φ̂
θk
t (Mθ

12)
l − ψ̂

θk
t (Mθ

21)
l−1Mθ

2

∥∥∥ < ε}

⊂ {
∥∥∥ψ̂

θk
t (Mθ

21)
l−1Mθ

2 −φ
θk

∥∥∥ < δ − (2l−1)ε}
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= Fk
2t(2l−1). (22)

The first inclusion uses the fact that (Mθ
21)

l−1Mθ
2 is a stochastic matrix. The equal-

ities use the definitions of Fk
1t(2l) and Fk

2t(2l− 1). The last inclusion is a conse-
quence of the triangle inequality. Similarly, for l = 1, . . . ,n, we have

Fk
1t(2l−1)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε} ⊂ Fk
2t(2(l−1)).

This suffices to conclude that

2n−1⋂
κ=1

Fk
1t(κ)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε} ⊂
2n−2⋂
κ=0

Fk
2t(κ). (23)

We next note that

Fk
1t(0)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε} ⊂ Fk
1t(2n)∩{

∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε}

⊂ Fk
2t(2n−1), (24)

where Fk
1t(0) ⊂ Fk

1t(2n) is an implication of φ θk(Mθ
12)

n = φ θk, Lemma 4, and
our choice of ε and n; while the second inclusion follows from (22) (for l = n).
Combining (23)–(24) for k = 1, . . . ,K, we have

F1t ∩
⋂
k

{∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε

}
⊂ F2t . (25)

As the matrix Mθ
1 maps recurrence classes to recurrence classes, on Gθ

t we
have, for any k,

‖φ̂
θ
t Mθ

1 − ψ̂
θ
t ‖ = ∑

k′
‖φ̂

θ
t (Rθ (k′))φ̂ θk′

t Mθ
1 − ψ̂

θ
t (Rθ (k′))ψ̂θk′

t ‖

≥ ‖φ̂
θ
t (Rθ (k))φ̂ θk

t Mθ
1 − ψ̂

θ
t (Rθ (k))ψ̂θk

t ‖

= ψ̂
θ
t (Rθ (k))‖φ̂

θk
t Mθ

1 − ψ̂
θk
t ‖,
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since φ̂ θ
t (Rθ (k)) = ψ̂θ

t (Rθ (k)) on [θ ] (recall the discussion following (7)). Our
choice of ε1 then yields, on F1t ∩Gθ

t ,∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1 ⇒ ε >
ε1

ψ̂θ
t (Rθ (k))

> ‖φ̂
θk
t Mθ

1 − ψ̂
θk
t ‖, ∀k.

Therefore

F1t ∩Gθ
t ∩

{∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

}
⊂ F1t ∩

⋂
k

{∥∥∥φ̂
θk
t Mθ

1 − ψ̂
θk
t

∥∥∥ < ε

}
,

and by (25) we have proved (21).
[STEP 2] We now conclude the proof of q-evidence. Pick p ∈

(√
q,1

)
and set

ε2 = 1− p in Lemma 3.
Consider the event F1t ∩Gθ

t . For t sufficiently large, given any history consis-
tent with a state in F1t∩Gθ

t , agent 1 attaches at least probability p to θ (F1t∩Gθ
t ⊂

Bp
1t(θ)) (Lemma 1). Conditional on θ we have, by Lemma 3, that for large t, agent

1 attaches probability at least p to
∥∥φ̂ θ

t Mθ
1 − ψ̂θ

t
∥∥ < ε1. Hence

F1t ∩Gθ
t ⊂ Bp2

1t

({∥∥∥φ̂
θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

}
∩ [θ ]

)
.

Since F1t ∩G1t is measurable with respect to H1t and Gθ
t = [θ ]∩G1t , we have

F1t ∩Gθ
t ⊂ Bp2

1t

(
F1t ∩Gθ

t ∩
{∥∥∥φ̂

θ
t Mθ

1 − ψ̂
θ
t

∥∥∥ < ε1

})
,

and hence, from (21),

F1t ∩Gθ
t ⊂ Bp2

1t

(
F1t ∩F2t ∩Gθ

t

)
= Bp2

1t (Ft) . (26)

A similar argument for agent 2 gives F2t ∩Gθ
t ⊂ Bp2

2t (Ft) and thus Ft ⊂ Bp2

t (Ft)⊂
Bq

t (Ft) for sufficiently large t.

Remark 5 (Arbitrary finite number of agents) The restriction to two agents sim-
plifies the notation, but the result holds for any finite number of agents. We illus-
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trate the argument for three agents (and keep the notation as similar to the two
agent case as possible). Denote agent 3’s finite set of signals by K. The joint
probability of the signal profile i jk ∈ I× J×K under θ is πθ (i jk). In addition to
the marginal distributions φ θ and ψθ for 1 and 2, the marginal distribution for 3
is ϕθ . As before, Mθ

1 is the Iθ × Jθ matrix with i jth element ∑k πθ (i jk)/φ θ (i)
(and similarly for M2). For the pair 1− 3, we denote by Nθ

1 the Iθ ×Kθ matrix
with ikth element ∑ j πθ (i jk)/φ θ (i) (and similarly for Nθ

3 ). Finally, for the pair
2−3, we have analogous definitions for the matrices Qθ

2 and Qθ
3 . As before, φ θ is

a stationary distribution of Mθ
1 Mθ

2 , but now also of Nθ
1 Nθ

3 ; similar statements hold
for ψθ and the transitions Mθ

2 Mθ
1 and Qθ

2 Qθ
3 , as well as for ϕθ and the transitions

Nθ
3 Nθ

1 and Qθ
3 Qθ

2 .
Suppose (for exposition only) that every element of the various Markov transi-

tion matrices is non-zero, and let r < 1 now be the upper bound on the modulus of
contraction of the various contractions. The argument of the outline still applies,
once we redefine F1t(1)≡ {ω :

∥∥φ̂ θ
t Mθ

1 −ψθ
∥∥ < δ − ε}∩{ω :

∥∥φ̂ θ
t Nθ

1 −ϕθ
∥∥ <

δ − ε} and F̂1t(1) ≡ {ω :
∥∥φ̂ θ

t Mθ
1 − ψ̂θ

∥∥ < ε}∩{ω :
∥∥φ̂ θ

t Nθ
1 − ϕ̂θ

∥∥ < ε} (with
similar definitions for the other two agents). The proof of Proposition 3 similarly
applies to the n agent case after analogous modifications. �

4 A Counterexample to Common Learning

This section presents an example in which Assumption 1 fails and common learn-
ing does not occur, although the agents do privately learn. There are two values
of the parameter, θ ′ and θ ′′, satisfying 0 < θ ′ < θ ′′ < 1. Signals are nonnegative
integers. The distribution of signals is displayed in Figure 2.8 If we set θ ′ = 0
and θ ′′ = 1 , then we can view one period of this process as an instance of the
signals in Rubinstein’s (1989) electronic mail game, where the signal corresponds

8It would cost only additional notation to replace the single value ε in Figure 2 with heteroge-
neous values, as long as the resulting analogue of (27) is a collection whose values are bounded
away from 0 and 1.
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Probability Agent-1 signal Agent-2 signal
θ 0 0

ε(1−θ) 1 0
(1− ε)ε(1−θ) 1 1

(1− ε)2ε(1−θ) 2 1
(1− ε)3ε(1−θ) 2 2
(1− ε)4ε(1−θ) 3 2
(1− ε)5ε(1−θ) 3 3

...
...

...

Figure 2: The distribution of signals for the counterexample given parameter θ ∈
{θ ′,θ ′′}, where ε ∈ (0,1).

to the number of “messages” received.9 It is immediate that the agents faced with
a sequence of independent draws from this distribution learn Θ. We now show
that common learning does not occur.

What goes wrong when trying to establish common learning in this context,
and how does this depend upon the infinite set of signals? Establishing common
q-belief in parameter θ requires showing that if agent 1 has observed signals just
on the boundary of inducing probability q that the parameter is θ , then agent 1
nonetheless believes 2 has seen signals inducing a similar belief (and believes that
2 believes 1 has seen such signals, and so on). In the case of finite signals, a
key step in this argument is the demonstration that (an appropriate power of) the
Markov transition matrix Mθ

12 is a contraction. In the current case, the correspond-
ing Markov process is not a contraction (though the marginal distribution is still
stationary). As a result, agent ` can observe signals on the boundary of inducing

9Rubinstein (1989) is concerned with whether a single signal drawn from this distribution
allows agents to condition their action on the parameter, while we are concerned with whether
an arbitrarily large number of signals suffices to commonly learn the parameter. Interestingly,
repeated observation of the original Rubinstein process (i.e., θ ′ = 0 and θ ′′ = 1) leads to common
learning. In particular, consider the event Ft at date t that the parameter is θ ′′ and no messages have
ever been received. This event is q(t)-evident where q(t) approaches 1 as t approaches infinity,
since 1 assigns probability 1 and 2 assigns a probability approaching 1 to Ft whenever it is true.
Similarly, the event that the parameter is θ ′ and each agent has received at least one signal is q(t)
evident for q(t) approaching 1.
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probability q of parameter θ while believing that agent ˆ̀ has observed signals on
the “wrong side” of this boundary.

We require the notion of iterated q-belief. The event that F is iterated q-belief
is defined to be

Iq
t (F)≡ Bq

1t(F)∩Bq
2t(F)∩Bq

1tB
q
2t(F)∩Bq

2tB
q
1t(F)∩ . . .

Morris (1999, Lemma 14) shows that iterated belief is (possibly strictly) weaker
than common belief:

Lemma 5 (Morris) Cq
t (F)⊂ Iq

t (F).

See Morris (1999, p. 388) for an example with strict inclusion.
Now let

q≡min
{

ε(1−θ ′′)
θ ′′+ ε(1−θ ′′)

,
(1− ε)
(2− ε)

}
. (27)

Note that regardless of the signal observed by agent 1, he always believes with
probability at least q that 2 has seen the same signal, and regardless of the signal
observed by 2, she always believes with probability at least q that 1 has seen a
higher signal.

We show that for all t sufficiently large there is (independently of the observed
history) a finite iterated q-belief that θ ′ is the true parameter. This implies that θ ′′

can never be iterated p-believed for any p > 1−q, with Lemma 5 then implying
that θ ′′ can never be common p-belief. That is, we will show that for t large
enough, Iq

t (θ ′) = Ω and so Ip
t (θ ′′) = ∅ and hence Cp

t (θ ′′) = ∅ for all p > 1−q.
Define for each k, the event that agent ` observes a signal of at least k before

time t:
D`t(k)≡ {ω : z`s ≥ k for some s≤ t}.

Note that D`t(0) is equal to Ω (the event that any t-length history occurs). For
every k ≥ 0 the definition of q implies:

D1t(k)⊂ Bq
1t(D2t(k)),
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and
D2t(k−1)⊂ Bq

2t(D1t(k)),

which together imply

D2t(k−1)⊂ Bq
2tB

q
1t(D2t(k)).

By induction, for all 0 ≤ m ≤ k,

D2t(m)⊂
(
Bq

2tB
q
1t

)k−m (D2t(k)). (28)

Now, for any K and any list
(
k1,k2, . . . ,kK)

, where ks ≥ ks−1, define the event
that agent ` observes distinct signals of at least ks before time t,

D`t
(
k1,k2, . . . ,kK)

≡ {ω : ∃ distinct τs ≤ t, s = 1, . . . ,K, s.t. z`τs ≥ ks}.

Note that for K ≤ t, D`t(0,k2, . . . ,kK) = D`t(k2, . . . ,kK). Whenever agent 1 ob-
serves a signal k he knows that agent 2 has seen a signal at least k−1. Hence, for
k2 ≥ 1,

D1t
(
k1,k2, . . . ,kK)

⊂ Bq
1t(D2t(k1,k2−1,k3−1, . . . ,kK −1))

and by similar reasoning

D2t
(
k1,k2, . . . ,kK)

⊂ Bq
2t(D1t(k1 +1,k2,k3, . . . ,kK)),

so that for all n, if 0 ≤ k1 ≤ k2−2n, then

D2t
(
k1,k2, . . . ,kK)

⊂
(
Bq

2tB
q
1t

)n D2t(k1 +n,k2−n,k3−n, . . . ,kK −n). (29)

¿From (28),
Ω = D2t(0)⊂

(
Bq

2tB
q
1t

)2t−1
D2t(2t−1) (30)
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and, for t ≥ 2, from (29),

D2t(2t−1) = D2t(0,2t−1)⊂
(
Bq

2tB
q
1t

)2t−2
D2t(2t−2,2t−2). (31)

Inserting (31) in (30) gives Ω ⊂
(
Bq

2tB
q
1t

)2t−1+2t−2
D2t(2t−2,2t−2). Continuing in

this fashion and noting that 2t−1 +2t−2 + . . .+2t−t = 2t −1, we obtain

Ω ⊂
(
Bq

2tB
q
1t

)2t−1 D2t(2t−t ,2t−t , . . . ,2t−t︸ ︷︷ ︸
t times

) =
(
Bq

2tB
q
1t

)2t−1 D2t(1,1, . . . ,1︸ ︷︷ ︸
t times

). (32)

Now choose t large enough so that after a t-length history in which signal 0
was never observed, agent 2 assigns probability at least q to θ ′, i.e.,10

D2t(1,1, . . . ,1︸ ︷︷ ︸
t times

)⊂ Bq
2t(θ

′).

Using (32), we then have Ω⊂
(
Bq

2tB
q
1t

)2t−1 Bq
2t(θ

′) and hence have shown that for
t large enough, regardless of the history, there cannot be iterated p-belief in θ ′′ for
any p > 1−q, i.e. Ip

t (θ ′′) = ∅. Now by Lemma 5, Cp
t (θ ′′) = ∅.

Remark 6 (Why did common learning fail?) The counterexample is not driven
by the cardinality of the signals per se. For example, if Θ is finite, but the private
signals are normally distributed conditional on θ , it can be shown that common
learning still holds (recall also from Proposition 2 that common learning holds
with finite Θ and independent signals, irrespective of the size of Z`). On the other
hand, when both the parameter and signals are normally distributed, arguments
mimicking those from global games (Carlsson and van Damme, 1993) show that
common learning fails. While there is common learning in every discrete parame-

10This is possible because after such a history

P(θ ′|h2t)
1−P(θ ′|h2t)

=
p(θ ′)
p(θ ′′)

(
1−θ ′

1−θ ′′

)t

.
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ter space approximation to the normal-normal example, we expect that the time
by which the parameter is common q-belief goes to infinity as the approximation
improves, and so there would be no discontinuity. �
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