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Abstract

A social choice function is robustly implementable if there is a mechanism under which the

process of iteratively eliminating strictly dominated messages leads to outcomes that agree with

the social choice at every type pro�le. In an interdependent value environment with single

crossing preferences, we identify a strict contraction property on the preferences which together

with strict ex post incentive compatibility is su¢ cient to guarantee robust implementation in

the direct mechanism. Strict EPIC and the contraction property are also necessary for robust

implementation in any mechanism.

The contraction property essentially requires that the interdependence is not too large. In a

linear signal model, the contraction property is equivalent to an interdependence matrix having

an eigenvalue less than one.

Keywords: Mechanism Design, Implementation, Robustness, Common Knowledge, Interim

Equilibrium, Iterative Deletion, Direct Mechanism.

Jel Classification: C79, D82

�This research is supported by NSF Grant #CNS-0428422 and #SES-0518929. Morris is grateful for �nancial sup-

port from the John Simon Guggenheim Foundation and the Center for Advanced Studies in the Behavioral Sciences.

We would like to thank Sandeep Baliga, Federico Echenique, Donald Goldfarb, Matt Jackson, Jim Jordan, Vijay Kr-

ishna, Tom Palfrey, Ilya Segal and Daniel Spielman for helpful discussions; seminar audiences at Northwestern, Ohio

State, Penn State, Pittsburgh, Stanford, UBC, UCLA and UC San Diego for comments; and Tomasz Strzalecki for

pointing out an error in an earlier draft. This paper supersedes and extends results we �rst reported in Bergemann

and Morris (2005a).
yDepartment of Economics, Yale University, 28 Hillhouse Avenue, New Haven CT 06511,

dirk.bergemann@yale.edu.
zDepartment of Economics, Princeton University, Prospect Street, Princeton NJ 08544, smorris@princeton.edu.

1



Robust Implementation: The Case of Direct Mechanisms May 25, 2007 2

1 Introduction

The mechanism design literature provides a powerful characterization of which social choice func-

tions can be achieved when the designer has incomplete information about agents� types. If we

assume a commonly known common prior over the possible types of agents, the revelation principle

establishes that if the social choice function can arise as an equilibrium in some mechanism, then

it will arise in a truth-telling equilibrium of the direct mechanism (where each agent truthfully

reports his type and the designer chooses an outcome assuming they are telling the truth). Thus

the Bayesian incentive compatibility constraints characterize whether a social choice function is

implementable in this sense.

But even if a truth-telling equilibrium of the direct mechanism exists, there is no guarantee

that there do not exist non truth-telling equilibria that deliver unacceptable outcomes. For this

reason, the literature on full implementation has sought to show the existence of a mechanism all of

whose equilibria deliver the social choice function. A classic literature on Bayesian implementation �

Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson (1991) - characterized

when this is possible: a Bayesian monotonicity1 condition is necessary for full implementation, in

addition to the Bayesian incentive compatibility conditions. Bayesian monotonicity and Bayesian

incentive compatibility are also �almost�su¢ cient for full implementation.2

This important literature has had a limited impact on the more applied mechanism design

literature, despite the fact that the problem of multiple equilibria is real. One di¢ culty is that the

key su¢ cient condition - Bayesian monotonicity - is hard to interpret. Another di¢ culty is that,

in general, positive results rely on complicated indirect, or �augmented,� mechanisms in which

agents report more than their types. Such mechanisms appear impractical to many researchers. We

believe that both di¢ culties arise because the standard formulation of the Bayesian implementation

problem - assuming common knowledge of a common prior on agents�types and using equilibrium

as solution concept - endows the planner with more information than would be available in practise.

The implementing mechanism and equilibrium then rely on that information in an implausible way.

In this paper, we characterize when a social choice function can be robustly implemented.

We �x a social choice environment including a description of the set of possible payo¤ types for

1The Bayesian monotonicity condition is an incomplete information analogue of the classic �Maskin monotonicity�

condition shown to be necessary and almost su¢ cient for complete information implementation by Maskin (1999).
2Jackson (1991) shows that they are su¢ cient in economic environments and a slight strengthening is su¢ cient in

non-economic environments.
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each agent. We ask when does there exist a mechanism with the property that every outcome

consistent with common knowledge of rationality agrees with the social choice function, making no

assumptions about agents�beliefs and higher order beliefs about other agents�payo¤ types. This

requirement gives rise to an iterative deletion procedure: �x a mechanism and iteratively delete

messages for each payo¤ type that are strictly dominated by another message for each payo¤ type

pro�le and message pro�le that has survived the procedure. This notion of robust implementation

is equivalent to requiring that every equilibrium on every type space corresponding to the social

choice environment delivers the right outcome.

This paper identi�es a class of environments where there are easily understood and tight char-

acterizations of when robust implementation is possible. As always, there will be an incentive

compatibility condition that is necessary: strict ex post incentive compatibility is necessary for

robust implementation.3 We show that if, in addition, a contraction property - which we explain

shortly - is satis�ed, robust implementation is possible in the direct mechanism. If strict ex post

incentive compatibility or the contraction property fail, then robust implementation is not possible

in any mechanism. Thus the �augmented�mechanisms used in the earlier complete information

and Bayesian full implementation literatures do not perform better than the simpler direct mech-

anisms. An intuition for this result is that the strong common knowledge assumptions used in

the complete information and Bayesian implementation literatures can be exploited via complex

augmented mechanisms. Thus an attractive feature of our approach is that the robustness require-

ment reduces the usefulness of complexity in mechanism design (without any ad hoc restrictions

on complexity).

In the case of private values, strict ex post incentive compatibility is equivalent to strict dom-

inant strategies incentive compatibility. Thus full implementation is obtained for free. It follows

that the contraction property must have bite only if there are interdependent values. In fact, the

contraction property requires exactly that there is not too much interdependence in players�types.

The contraction property can be nicely illustrated in a class of interdependent preferences in which

the private types of the agents can be linearly aggregated. If �j is the type of agent j, then agent i�s

utility depends on �i + 

P
j 6=i

�j . Thus if 
 6= 0, there are interdependent values - agent j�s type will

enter agent i�s utility assessment - but each agent i cares di¤erently about his own type than about

3Our earlier work on robust mechanism design, Bergemann and Morris (2005b), showed that ex post incentive com-

patibility was necessary and su¢ cient for partial robust implementation (i.e, ensuring that there exists an equilibrium

consistent with the social choice function).
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other agents� types. In this example, the contraction property reduces to the requirement that

j
j < 1= (I � 1), where I is the number of agents. We provide characterizations of the contraction
property - all equivalent to the intuition that there is not too much interdependence - in more

general linear environments and when there is non-linear aggregation of agents�types.

The results of this paper apply to environments where each agent�s type pro�le can be ag-

gregated into a one dimensional su¢ cient statistic for each player, where preferences are single

crossing with respect to that statistic. These restrictions incorporate many economic models with

interdependence in the literature: we illustrate our results with a public good example with lin-

ear aggregator described above; we also apply our results to the classic problem of allocating a

single private good with quasilinear utility (i.e., a single unit auction with interdependent utility).

While these restrictions are strong, we provide a simple informational story that would explain

environments with the properties we describe.

We focus in this paper on economically important environments and well behaved mechanisms

where we get clean and tight characterizations of the robust implementation problem with direct

or augmented mechanisms. An attractive feature of the methods and results here is that they

could alternatively be derived as applications of the rather abstract arguments in the Bayesian

implementation literature. Thus the contraction property is equivalent to the robust monotonicity

condition that is necessary and almost su¢ cient for full implementation on all type spaces in general

environments. Robust monotonicity is equivalent to requiring Bayesian monotonicity on all type

spaces. In this paper we derive the results directly and discuss robust implementation in general

environments in section 8. We refer the reader for the indirect derivation to Bergemann and Morris

(2005a).

An important paper of Chung and Ely (2001) analyzed auctions with interdependent valuations

under iterated elimination of weakly dominated strategies. In a linear and symmetric setting, they

reported su¢ cient conditions for direct implementation that coincide with the ones derived here.

We show that in the environment with linear aggregation, under strict incentive compatibility,

the basic insight extends from the single unit auction model to general allocations models, with

elimination of strictly dominated actions only (thus Chung and Ely (2001) require deletion of weakly

dominated strategies only because incentive constraints are weak). We also prove a converse result:

if there is too much interdependence, then neither the direct nor any augmented mechanism can

robustly implement the social choice function.4

4Bergemann and Morris (2007b) describe how to derive a strong converse to the original Chung and Ely (2001)
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The ex post incentive constraints necessary for robust implementation are already strong (even

without the contraction property). Jehiel, Moldovanu, Meyer-Ter-Vehn, and Zame (2006) have

recently shown that in an environment with multi-dimensional signals, the ex post incentive con-

straints are �generically�impossible to satisfy with multi-dimensional signals. If ex post incentive

compatibility fails, our positive results are moot. While this provides a natural limit for our analy-

sis, there are many interesting applications for which ex post equilibria do exist, among them

one-dimensional signal models (Dasgupta and Maskin (2000), Perry and Reny (2002), Bergemann

and Välimäki (2002)), models without allocative externalities (Bikhchandani (2006)) and other

models (see the recent survey Jehiel and Moldovanu (2006) for many positive and negative results).

The remainder of the paper is organized as follows. Section 2 describes the formal environment

and solution concepts. Section 3 considers a public good example that illustrates the main ideas

and results of the paper. Section 4 establishes necessary conditions for robust implementation in

the direct mechanism. Section 5 considers the preference environment with a linear aggregation

of the types and obtains sharp implementation results. Section 6 reports su¢ cient conditions for

robust implementation. Section 7 considers a single unit auction with interdependent values as a

second example of robust implementation. Section 8 concludes.

2 Setup

2.1 Payo¤ Environment

We consider a �nite set of agents, 1; 2; :::; I. Agent i�s payo¤ type is �i 2 �i, where �i is a compact
subset of the real line. We write � 2 � = �1 � � � � ��I . Let X be a compact set of deterministic

outcomes and let Y = �(X) be the lottery space generated by the deterministic outcome space X.

Each agent has a von Neumann Morgenstern expected utility function ui : Y ��! R. Let agent

i�s utility if outcome y is chosen and agents�type pro�le is � be ui (y; �). A social choice function

is a mapping f : �! Y .5

We assume the existence of a monotonic aggregator hi (�) for each i, which allows us to rewrite

result for iterated deletion of weakly dominated strategies.
5We require the lottery space Y rather than the deterministic outcome space X only for the necessity argument

of robust implementation (Theorem 2), but not for the su¢ ciency argument (Theorem 1). In addition, the necessity

of the contraction property for direct mechanism (but not for indirect mechanism) also holds in the deterministic

outcome space X if the social choice function f is continuous in �i.
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the utility function of every agent i as:

ui (y; �) � vi (y; hi (�)) ;

where hi : � ! R is continuous, strictly increasing in �i and vi : Y � R! R is continuous.6 The

content of the aggregation assumption comes from the continuity requirement and the restrictions

that we will later impose on vi in section 4.1.

2.2 Mechanisms

A planner must choose a game form or mechanism for the agents to play in order the determine

the social outcome. Let Mi be a compact set of messages available to agent i. Let g (m) be the

outcome chosen if action pro�le m is chosen. Thus a mechanism is a collection:

M = (M1; :::;MI ; g (�)) ;

where g :M ! Y . The direct mechanism has the property that Mi = �i for all i and g (�) = f (�).

2.3 Robust Implementation

In a �xed mechanismM, we call a correspondence S = (S1; ::::; SI), with each Si : �i ! 2Mi
�
?,

a message pro�le of the agents. We will refer to a message pro�le in the direct mechanism where

truthtelling is always possible as a report pro�le. Thus a report pro�le � = (�1; :::; �I), with

�i : �i ! 2�i
�
?; for all i.

and �i 2 �i (�i) for all i and �i. Let �� be the minimal, truthful, report, with ��i (�i) = f�ig for all
i and �i.

Next we de�ne the process of iterative elimination of never best responses. We denote the belief

of agent i over message and payo¤ type pro�les of the remaining agents by a Borel measure �i:

�i 2 �(M�i ���i) :
6The non-existence of non-trivial ex post incentive compatible social choice functions with multi-dimensional

signals, shown by Jehiel, Moldovanu, Meyer-Ter-Vehn, and Zame (2006) and discussed in the introduction, are

obtained in a setting where the utility function is de�ned separately for every allocation y. In our setting, the

aggregation of private types acts independently of the particular allocation. Yet, provided the existence of an

aggregating function hi (�), we could allow the signal space of each agent i to be multi-dimensional without any

further modi�cation. Our analysis uses the single-crossing condition and provided that aggregation is possible, the

dimensionality of the signal per se is not an issue.
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We initiate S0i =Mi and de�ne inductively:

Sk+1i (�i) =

8>>>>>><>>>>>>:
mi 2Mi

������������
9�i s.th.:

(1) �i

hn
(m�i; ��i) ; mj 2 Skj (�j) ; 8 j 6= i;

oi
= 1

(2)

R
ui (g (mi;m�i) ; (�i; ��i)) d�i �R

ui (g (m
0
i;m�i) ; (�i; ��i)) d�i; 8m0

i 2Mi:

9>>>>>>=>>>>>>;
:

We observe that Ski is (weakly) decreasing in k. We denote the limit set by S
M (�), or

SM (�) , lim
k!1

Sk (�) , for all � 2 �.

By compactness of the message sets, we have

SMi (�i) , \
k�1

Ski (�i) .
7

We refer to the messages mi 2 SMi (�i) as rationalizable messages. We call a social choice

function f robustly implementable if there exists a mechanismM under which the social choice can

be recovered through a process of iterative elimination of never best responses.

De�nition 1 (Robust Implementation)

Social choice function f is robustly implemented by mechanismM if m 2 SM (�)) g (m) = f (�).

The set of rationalizable messages for mechanismM is equal to the set of messages that could

be played in a Bayesian equilibrium of the game generated by the mechanism M and some type

space. The basic logic of the argument follows the well-known argument of Brandenburger and

Dekel (1987) for complete information games, showing the equivalence of correlated rationalizable

actions and the set of actions that could be played in a subjective correlated equilibrium. Battigalli

and Siniscalchi (2003) describe the incomplete information extension of this observation. A formal

version of the equivalence is reported in Proposition 1 of our working paper, Bergemann and Morris

(2005a).

3 A Public Good Example

We precede the formal results with an example illustrating the main insights of the paper and

reviewing some key ideas from the implementation literature. The example involves the provision
7Because of the compactness of the message set, this procedure is equivalent, by a standard duality argument, to

the iterated deletion of actions which are dominated by mixed strategies against all message type pro�les that have

not yet been deleted.
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of a public good with quasilinear utility. The utility of each agent is given by:

ui (�; x) =

0@�i + 
X
j 6=i

�j

1Ax0 + xi;

where x0 is the level of public good provided and xi is the monetary transfer to agent i. The utility

of agent i depends on his own type �i 2 [0; 1] and the type pro�le of other agents, with 
 � 0. The
utility function of agent i has the aggregation property with

hi (�) = �i + 

X
j 6=i

�j ;

but we notice the aggregator function hi (�) depends on the agent i. In particular, a given type

pro�le � leads to a di¤erent aggregation result for i and j, provided that �i 6= �j .

The cost of establishing the public good is given by c (x0) = 1
2x
2
0. The planner must choose

(x0; x1; :::; xI) 2 R+ � RI to maximize social welfare, i.e., the sum of gross utilities minus the cost

of the public good:  
(1 + 
 (I � 1))

IX
i=1

�i

!
x0 �

1

2
x20.

The socially optimal level of the public good is therefore equal to

f0 (�) = (1 + 
 (I � 1))
IX
i=1

�i.

The generalized Vickrey-Clarke-Groves (VCG) transfers, essentially unique up to a constant, that

give rise to ex post incentive compatibility are:

fi (�) = � (1 + 
 (I � 1))

0@
�iX
j 6=i

�j +
1

2
�2i

1A . (1)

It is useful to observe that the generalized VCG transfers given by (1) guarantee ex post incentive

compatibility for any 
 2 R+. Hence, ex post incentive compatibility does not impose any constraint
on the interdependence parameter 
.

Now we shall argue that if 
 < 1
I�1 , the social choice function f is robustly implementable in

the direct mechanism where each agent reports his payo¤ type �i and the planner chooses outcomes

according to f on the assumption that agents are telling the truth. Consider an iterative deletion

procedure. Let �0 (�i) = [0; 1] and, for each k = 1; 2; :::, let �k (�i) be the set of reports that agent

i might send, for some conjecture over his opponents�types and reports, with the only restriction

on his conjecture being that each type �j of agent j sends a message in �k�1 (�j).
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Suppose that agent i has payo¤ type �i, but reports himself to be type �0i and has a point

conjecture that other agents have type pro�le ��i and report their types to be �0�i. Then his

expected payo¤ is a constant (1 + 
 (I � 1)) times:0@�i + 
X
j 6=i

�j

1A0@�0i +X
j 6=i

�0j

1A�
0@
�0iX

j 6=i
�0j +

1

2

�
�0i
�21A .

The �rst order condition with respect to �0i is then

�i + 

X
j 6=i

�j � 


0@X
j 6=i

�0j

1A� �0i = 0,
so he would wish to set

�0i = �i + 

X
j 6=i

�
�j � �0j

�
.

In other words, his best response to a misreport �0�i by the other agents is to report a type so

that the aggregate type from his point of view is exactly identical to the true aggregate type

generated by the true type pro�le �. Note that the above calculation also veri�es the strict ex

post incentive compatibility of f , since setting �0i = �i is a best response if �0j = �j for all j 6= i.

The quadratic payo¤ / linear best response nature of this problem means that we can characterize

�k (�i) restricting attention to such point conjectures. In particular, we have

�k (�i) =
h
�k (�i) ; �

k
(�i)

i
;

where

�
k
(�i) = min

8<:1; �i + 
 max
f(�0�i;��i):�0j2�k(�j) for all j 6=ig

X
j 6=i

�
�j � �0j

�9=;
= min

8<:1; �i + 
 max
��i

X
j 6=i

�
�j � �k�1 (�j)

�9=; .
Analogously,

�k (�i) = max

8<:0; �i � 
 max
��i

X
j 6=i

�
�
k�1

(�j)� �j
�9=; .

Thus

�
k
(�i) = min

n
1; �i + (
 (I � 1))k

o
;
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and

�k (�i) = max
n
0; �i � (
 (I � 1))k

o
.

Thus �0i 6= �i ) �0i =2 �k (�i) for su¢ ciently large k, provided that 
 < 1
I�1 .

Now consider what happens when this condition fails, i.e., 
 � 1
I�1 . In this case, it is possible to

exploit the large amount of interdependence to construct beliefs over the opponents�types such that

all types are indistinguishable. In particular, suppose that every type �i 2 [0; 1] has a degenerate
belief over the types of his opponents. In particular, type �i is convinced that each of his opponents

is of type �j given by:

�j =
1

2
+

1


 (I � 1)

�
1

2
� �i

�
,

where the belief of i about j evidently depends on his type �i. In this case the aggregated type

pro�le is given by

�i + 

X
j 6=i

�j =
1

2
(1 + 
 (I � 1)) ;

independent of �i. Thus in any mechanism, for each type, we can construct beliefs so that there

will be no di¤erences across types of agent i in terms of the actions which get deleted at each round

of the process.

At the end of the paper we shall present an additional example, namely a single unit auction

with symmetric bidders. The generalized VCG mechanism for the single unit auction only satis�es

weak rather than strict incentive compatibility constraints. We therefore propose an "-e¢ cient

allocation rule with strict ex post incentive constraints. This rule can be robustly implemented if

there is not too much interdependence among the payo¤ types.

4 Robust Implementation

4.1 Strict Single Crossing Environment

The following strict version of the standard single crossing property is the key economic assumption

that we make about the environment in this paper:

De�nition 2 (Strict Single Crossing)

The utility function vi (�; �) satis�es strict single crossing (SSC) if for all � < �0 < �00:

vi (y; �) > vi
�
y0; �

�
and vi

�
y; �0

�
= vi

�
y0; �0

�
) vi

�
y; �00

�
< vi

�
y0; �00

�
:
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The property is de�ned relative to the aggregation of all agents� types. The combination of

monotonic aggregator representation of preferences and the strict single crossing condition will

drive our results. The public good model in the previous section satis�es the property and so will

many environments with interdependent preferences that have been studied in the literature.

How strong is this restriction on the environment? It requires that the payo¤ types of the players

can be aggregated into a variable that changes preferences in a monotonic way. To get some sense

of the strength of this restriction, we next consider two examples. The �rst example involves a

binary outcome space which naturally guarantees the aggregation property; the second example

uses an informational foundation by means of Bayes�law to obtain the aggregation property.

In a quasi-linear environment one of two allocations, a or b, must be chosen. The pure outcome

space can be written as X = fa; bg � [�K;K]I . We write y = (y0; x) 2 [0; 1]� [�K;K]I where y0
is the probability of allocation a (and 1� y0 is the probability of allocation b) and xi is the transfer
to individual i (since lotteries over transfers will not be important). Now if vzi (�) is i�s utility from

allocation z when the type pro�le is �, we have

ui (y; �) = y0v
a
i (�) + (1� y0) vbi (�) + xi:

An equivalent representation is

ui (y; �) = y0

h
vai (�)� vbi (�)

i
+ xi:

Clearly, we can give this a monotonic aggregator representation by setting hi (�) = vai (�) � vbi (�)

and vi (y; hi (�)) = y0hi (�) + xi, we have

ui (y; �) = vi (y; hi (�)) ,

and now vi indeed satis�es the strict single crossing condition. So with quasilinear utility, the

binary allocation case automatically falls in our environment.8 But when we move beyond two

allocations, this would no longer necessarily be true. For example, if player i�s signal was more

relevant for ranking one pair of outcomes rather than another, then the aggregation property could

fail.

A natural source of interdependence in preferences is informational, when an agent�s payo¤ type

corresponds to a signal which ends up being correlated with all agents�expected values of a state. In
8A similar logic applies if there are two allocations and no transfers. Thus the voting example in Palfrey and

Srivastava (1989) (Example 3) �ts our framework: since the contraction property fails, robust implementation is not

possible in any mechanism.
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particular, suppose that each player�s utility depends on the expected value of an additive random

variable !0 + !i, where !0 is a common value component and !i is the private value component.

The random variables !0; !1; !2 are assumed to be independently and normally distributed with

zero mean and variance �2i . Let each agent observe one signal �i = !0 + !i + "i, where each "i is

independently normally distributed with mean 0 and variance �2i . We are thus assuming that each

agent observes only a one dimensional signal, �i, of both the common and idiosyncratic component.

Thus agent i is unable to distinguish with his noisy signal �i between the common and the private

value components. But naturally his own signal is more informative about his valuation than the

others�signals because it contains his own idiosyncratic shock.

Now standard properties of the normal distribution (see DeGroot (1970)) imply that agent i�s

expected value of !0 + !i, given the vector of signals (�i; �j) is a constant

�20�
2
i + �

2
0�
2
j + �

2
0�
2
i + �

2
0�
2
j + �

2
i �
2
j + �

2
i�
2
j + �

2
j�
2
i + �

2
i�
2
j

�20�
2
i + �

2
0�
2
i + �

2
0�
2
j + �

2
j�
2
i + �

2
i�
2
j

times

hi (�) = �i +
�20�

2
i

�20�
2
j + �

2
0�
2
i + �

2
0�
2
j + �

2
j�
2
i + �

2
i�
2
j

�j : (2)

The calculations are reported in the appendix. Now if we assume each agent i�s preferences condi-

tional on hi (�) satisfy strict single crossing with respect to hi (�), then we have an informational

microfoundation for the strict single crossing environment of the paper. Moreover, in this example

the aggregator takes the linear form:

hi (�) = �i + 
ij�j ;

with


ij =
�20�

2
i

�20�
2
j + �

2
0�
2
i + �

2
0�
2
j + �

2
j�
2
i + �

2
i�
2
j

.

This conclusion is quite intuitive. If the variance of the common component (�20) is small or if the

noise in own�s own signal (�2i ) is small, then the interdependence goes away. But a reduction in

variance of one�s own idiosyncratic component (�2i ), in one�s opponent�s idiosyncratic component

(�2j ) or in one�s opponent�s noise (�
2
j ) all tend to increase the interdependence.

9

9The additive model with a private and a common component also appears in Hong and Shum (2003) to describe

the valuation of each bidder in an ascending single unit auction. Interestingly, they prove the existence and uniqueness

of an increasing bidding strategy by appealing to a dominant diagonal condition, which is implied by the contraction

property to be de�ned shortly. The example of a normal distribution fails the compact type space assumption of our

model, but we use the normal distribution here merely for its transparent updating properties.
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With this interpretation the single crossing property with respect to the aggregator reduces to

assuming that there is a one dimensional parameter whose expected value e¤ects the preferences

and that there is a su¢ cient statistic for the vector of signals that agents observe.

4.2 Main Positive Result

Before we state our �rst positive result, we introduce the incentive compatibility condition and the

contraction property as they appear in the necessary and su¢ cient condition for robust implemen-

tation. The standard condition for truthful implementation is:

De�nition 3 (Ex Post Incentive Compatibility)

Social choice function f satis�es ex post incentive compatibility (EPIC) if for all i, � and �0i:

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
:

In the subsequent analysis we use the strict version of the incentive constraints.

De�nition 4 (Strict Ex Post Incentive Compatibility)

Social choice function f satis�es strict ex post incentive compatibility (strict EPIC) if for all i,

�0i 6= �i and ��i:

ui (f (�i; ��i) ; (�i; ��i)) > ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
.

The key property for our analysis is the following contraction property.

De�nition 5 (Contraction Property)

The aggregator functions h = (hi)
I
i=1 satisfy the contraction property if, for all � 6= ��, there exists

i and �0i 2 �i (�i) with �0i 6= �i, such that

sign
�
�i � �0i

�
= sign

�
hi (�i; ��i)� hi

�
�0i; �

0
�i
��

for all ��i and �0�i 2 ��i (��i).

The contraction property essentially says that for some agent i the direct impact of his private

signal �i on the aggregator hi (�) is always su¢ ciently strong such that the di¤erence in the aggre-

gated value between the true type pro�le and the reported type pro�le always has the same sign

as the di¤erence between the true and reported type of agent i by itself.
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Theorem 1 (Robust Implementation)

If strict EPIC and the contraction property are satis�ed, then there is robust implementation in the

direct mechanism.

Proof. We argue by contradiction. Let � = SM and suppose that � 6= ��. Continuity of each

ui with respect to � implies that each �i (�i) will be a compact set. By the contraction property,

there exists i and �0i 2 �i (�i) such that

sign
�
�i � �0i

�
= sign

�
hi (�i; ��i)� hi

�
�0i; �

0
�i
��
.

for all ��i and �0�i 2 ��i (��i). Let

� , min
��i;�

0
�i2��i(��i)

��hi (�i; ��i)� hi ��0i; �0�i��� ,
where � > 0 by compactness of � and the contraction property. Suppose (without loss of generality)

that �i > �0i. Let

� (") , max
�0�i

�
hi
�
�0i + "; �

0
�i
�
� hi

�
�0i; �

0
�i
�	
.

As hi (�) is strictly increasing in �i, we know that � (") is increasing in " and by continuity of hi in
�i, � (")! 0 as "! 0.

Thus we have

hi (�i; ��i)� hi
�
�0i; �

0
�i
�
� �; (3)

for all ��i and �0�i 2 �i (��i); and

hi
�
�0i; �

0
�i
�
� hi

�
�0i + "; �

0
�i
�
� � (") ; (4)

for all �0�i. By strict EPIC,

vi
�
f
�
�0i; �

0
�i
�
; hi
�
�0i; �

0
�i
��
> vi

�
f
�
�0i + "; �

0
�i
�
; hi
�
�0i; �

0
�i
��
;

for all " > 0 and

vi
�
f
�
�0i + "; �

0
�i
�
; hi
�
�0i + "; �

0
�i
��
> vi

�
f
�
�0i; �

0
�i
�
; hi
�
�0i + "; �

0
�i
��
,

for all " > 0. Now continuity of ui with respect to � implies that for each " > 0 and �0�i, there

exists

��
�
"; �0�i

�
� hi

�
�0i + "; �

0
�i
�
; (5)
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such that

vi
�
f
�
�0i; �

0
�i
�
; ��

�
"; �0�i

��
= vi

�
f
�
�0i + "; �

0
�i
�
; ��

�
"; �0�i

��
;

and SSC implies that

vi
�
f
�
�0i; �

0
�i
�
; �
�
< vi

�
f
�
�0i + "; �

0
�i
�
; �
�
;

for all � > ��
�
"; �0�i

�
. Now �x any " with

� (") < �. (6)

Now for all �0�i 2 ��i (��i),

hi (�i; ��i) � hi
�
�0i; �

0
�i
�
+ �, by (3)

� hi
�
�0i + "; �

0
�i
�
� � (") + �, by (4)

> hi
�
�0i + "; �

0
�i
�
, by (6)

� ��
�
"; �0�i

�
, by (5).

So

vi
�
f
�
�0i + "; �

0
�i
�
; hi (�i; ��i)

�
> vi

�
f
�
�0i; �

0
�i
�
; hi (�i; ��i)

�
;

for every ��i and �0�i 2 ��i (��i). This contradicts our assumption that � = SM.

The surprising element in this result is that we do not need to impose any conditions on how

the social choice function varies with the type pro�le. In particular, it does not have to respond

to the reported pro�le � in a manner similar to the response of any of the aggregators hi. Merely,

the strong single crossing condition is su¢ cient to make full use of the contraction property. In

contrast to the classic results in Nash and Bayesian Nash implementation we do not have to impose

a condition on the number of agents, such as I > 2:

The argument is centered around the true type pro�le � = (�i; ��i) and a reported pro�le

�0 =
�
�0i; �

0
�i
�
. Without loss of generality we may assume that �i > �0i: We use the contraction

property to establish a positive lower bound on the di¤erence h (�i; ��i) � h
�
�0i; �

0
�i
�
for all ��i

and �0�i 2 ��i (��i). With this positive lower bound, we then show that agent i is strictly better
o¤ to move his misreport �0i marginally upwards in the direction of �i, in other words to report

�0i + ". This is achieved by showing that there is an intermediate value �
� for the aggregator, with

hi
�
�0i; �

0
�i
�
< �� < hi

�
�0i + "; �

0
�i
�
, such that agent i with the utility pro�le corresponding to the

aggregator value �� would be indi¤erent between the social allocations f
�
�0i; �

0
�i
�
and f

�
�0i + "; �

0
�i
�
.

By choosing " su¢ ciently small, we know that h (�i; ��i) > �� and strict single crossing then allows
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us to assert that an agent with a true preference pro�le � = (�i; ��i) would also prefer to obtain

f
�
�0i + "; �

0
�i
�
rather than f

�
�0i; �

0
�i
�
. But this yields the contradiction to �0i 2 �i (�i) being part

of the �xed point of the iterative elimination. Consequently we show that the misreport �0i; which

established the same sign on the di¤erence between private type pro�les and aggregated public

pro�les can be eliminated as a best response to the set of misreports of the remaining agents.

In the present environment with single crossing and aggregation, the contraction property is

equivalent to the notion of robust monotonicity in Bergemann and Morris (2005a). We say that a

social choice function f satis�es robust monotonicity if for report pro�le � 6= ��, there exist i, �i,

�0i 2 �i (�i) such that, for all �0�i 2 ��i, there exists y such that

ui (y; (�i; ��i)) > ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
(7)

for all ��i such that �0�i 2 ��i (��i); and

ui
�
f
�
�00i ; �

0
�i
�
;
�
�00i ; �

0
�i
��
� ui

�
y;
�
�00i ; �

0
�i
��

(8)

for all �00i 2 �i.
It is now easy to see that the contraction property guarantees the validity of the (7) and (8).

Fix �i and �0i and without loss of generality assume �i > �0i. By the contraction property it follows

that for every �0�i, we have hi (�i; ��i) > hi
�
�0i; �

0
�i
�
. Hence we can �nd an " > 0 such that

hi (�i; ��i) > hi
�
�0i + "; �

0
�i
�
> hi

�
�0i; �

0
�i
�
. (9)

But now we can choose the allocation y to be y = f
�
�0i + "; �

0
�i
�
. Now (7) follows from (9) and

single crossing, and (8) follows from strict EPIC.

Bergemann and Morris (2005a) show that robust monotonicity is a necessary and almost su¢ -

cient condition if we want to guarantee Bayesian equilibrium implementation for all possible priors.

Bergemann and Morris (2005a) followed the classical implementation literature in allowing the

use of complicated -perhaps unbounded - augmented mechanisms. In contrast, here we focus on

robust implementation in the direct mechanism, yet as the argument above showed the robust

monotonicity condition is a su¢ cient condition for implementation in the direct mechanism in the

environment with single crossing and aggregation.
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5 The Linear Model

In this section, we consider the special case in which the preference aggregator hi (�) is linear for

each i and given by:

hi (�) =
IX
j=1


ij�j ;

with 
ij 2 R for all i, j and 
ii > 0 for all i. Without loss of generality, we set 
ii = 1 for all i:

hi (�) = �i +
X
j 6=i


ij�j .

The parameters 
ij represent the in�uence of the signal of agent j on the value of agent i. With

the exception of 
ii > 0 for all i, we do not impose any further a priori sign restrictions on 
ij .

We denote the square matrix generated by the absolute values of 
ij ; namely
��
ij�� ; for all i; j with

i 6= j and zero entries on the diagonal by �:

� ,

26666664
0 j
12j � � � j
1I j
j
21j 0
...

. . .

j
I1j 0

37777775 .

We refer to the matrix � as the interdependence matrix. The matrix � = 0 then constitutes the

case of pure private values.

5.1 Contraction Property

We shall �rst give necessary and su¢ cient conditions for the matrix � to satisfy the contraction

property. We then use duality theory to give a dual characterization of the contraction property,

which is very useful to �nally obtain necessary and su¢ cient conditions for the contraction property

in terms of the eigenvalue of the matrix �.

Lemma 1 (Linear Aggregator)

Linear aggregator functions h satisfy the contraction property if and only if, for all c 2 RI+ with
c 6= 0, there exists i such that

ci >
X
j 6=i

��
ij�� cj : (10)
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Proof. We proof the contrapositive. Thus suppose there exists c 2 RI+ with c 6= 0, such that
for all i:

ci �
X
j 6=i

��
ij�� cj .
We now show that this implies that the contraction property fails. Choose " > 0 such that

2ci" < �i � �i for all i. Now consider reports of the form:

�i (�i) = [�i � "ci; �i + "ci] \�i, (11)

for all i. Then for all i and all j 6= i, let �j = 1
2

�
�j + �j

�
and let �0j = �j � "ci if 
ij � 0

and �0j = �j + "ci if 
ij < 0. By (11), we have �0j 2 �j (�j) for each j 6= i. Also observe that


ij
�
�j � �0j

�
= "

��
ij�� cj . ThusX
j 6=i


ij
�
�j � �0j

�
= "

X
j 6=i

��
ij�� cj � "ci.

Now if �0i = �i + "ci, �i � �0i is strictly negative but

�i � �0i +
X
j 6=i


ij
�
�j � �0j

�
;

is non-negative. A symmetric argument works if �i > �0i. So the contraction property, which says

that for all � 6= ��, there exists i and �0i 2 �i (�i) with �0i 6= �i, such that

sign
�
�i � �0i

�
= sign

�
hi (�i; ��i)� hi

�
�0i; �

0
�i
��
= sign

0@�i � �0i +X
j 6=i


ij
�
�j � �0j

�1A ; (12)

for all ��i and �0�i 2 ��i (��i) fails. This proves the necessity of condition (10) of Lemma 1.
(() To show su¢ ciency, suppose that condition (10) of the lemma holds. Fix any report �.

For all j, let:

cj = max
�0j2�j(�j)

���0j � �j�� .
By hypothesis, there exists i such that ci >

X
j 6=i

��
ij�� cj . Let
���i � �0i�� = ci;

and suppose without loss of generality that �i > �0i. Observe that for all ��i and �
0
�i 2 ��i (��i),


ij
�
�j � �0j

�
�
��
ij�� cj and thus X

j 6=i

ij
�
�j � �0j

�
�
X
j 6=i

��
ij�� cj ;
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so �
�i � �0i

�
�
X
j 6=i


ij
�
�j � �0j

�
= ci �

X
j 6=i


ij
�
�j � �0j

�
� ci �

X
j 6=i

��
ij�� cj > 0,
and hence the contraction property, or (12), is satis�ed.

The absolute values of the matrix � are required to guarantee that the linear inequality (10)

implies the contraction property. We observe that the condition (10) is only required to hold for a

single agent i. In fact, for c � 0, the condition (10) could hold for all i only in the case of pure

private values, or � = 0.

The proof of the contraction property is constructive. We identify for each player i an initial

report of the form �i (�i) = [�i � ci"; �i + ci"] for some " > 0; common across all agents. The size of
ci is therefore proportional to the size of the set of candidate reports by agent i. It can be thought

of as the set of rationalizable strategies at an arbitrary stage k. The inequality of the contraction

property then says that for any arbitrary set of reports, characterized by the vector c, there is

always an agent i whose set of reports is too large (in the sense of being rationalizable) relative to

the set of reports by the remaining agents. It then follows that the set of reports for this agent

can be chosen smaller than ci, allowing us to reduce the set of possible reports for a given agent i

with a given type �i. The inequality (10) asserts that for any given set of reports, there is always

at least one agent i whose report �i represents a set too large to be rationalizable. Moreover, if the

set of reports by i is too large, then there is an �overhang�which can be �nipped and tucked�. In

the appendix, we present a dual interpretation of the condition (10) which leads us from the idea

of the overhang directly to the contraction property. We use this dual interpretation to derive the

following simple test of the contraction property:

Proposition 1 (Contraction Property via Eigenvalue)

The matrix � has the contraction property if and only if its largest eigenvalue � < 1.

Proof. See appendix.

The matrix algebra underlying this characterization of the contraction property arises in many

economic problems depending on the stability and uniqueness of solutions to a system of linear

equations, e.g., the uniqueness of equilibrium and rationalizable outcomes in complete information

games with linear best responses (see Luenberger (1978), Gabay and Moulin (1980) and Weinstein

and Yildiz (2007)).
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5.2 Examples

By linking the contraction property to the eigenvalue of the matrix �, we can immediately ob-

tain necessary and su¢ cient condition for robust implementation for di¤erent classes of preference

environments.

Symmetric Preferences In the symmetric model, the parameters for interdependent values are

given by


ij =

8<: 1; if j = i;


; if j 6= i:

The eigenvalue � of the resulting matrix satis�es:

1 + � = 1 + 
 (I � 1) ;

and hence from Theorem 1, we immediately obtain the necessary and su¢ cient condition:


 <
1

I � 1 .

Cyclic Preferences A weaker form of symmetry is incorporated in the following model of cyclic

preferences. Here, the interdependence matrix is determined by the distance between i and j

(modulo I), or


ij = 
(i�j)mod I .

In this case, the positive eigenvalue is given by:

1 + � = 1 +
X
j 6=i


(i�j),

and consequently a necessary and su¢ cient condition for robust implementation is given by:X
j 6=i


(i�j) < 1.

Two Agents With two agents, the matrix of interdependence, �, is given by

� =

24 1 
12


21 1

35 :
The eigenvalue of the matrix � can again be immediately computed by requiring that

1 + � = 1 +
p

12
21,
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or


12
21 < 1.

Central Agent Finally, we may consider a model in which each agent only cares about his own

type and the type of agent 1, the central or informed agent. The matrix of interdependence is then

given by


ij =

8>><>>:
1 if j = i;


 if i 6= 1 and j = 1;
0 if otherwise.

In this case, the eigenvalue is given by:

1 + � = 1 + 0,

and hence the contraction property holds vacuously for all 
, independent of I. The intuition in

this case is that agent 1 has a private value utility model. In conjunction with the strict ex post

incentive constraints, this essentially means that agent 1 will always have a strict incentive to tell

the truth. But as the utility of all the other agents depends only on their own utility and the

utility of agent 1, and agent 1 is known to tell the truth, all other agents will also want to report

truthfully.

The linear model has the obvious advantage that the local conditions for contraction agree

with the global conditions for contraction as the derivatives of the mapping hi (�) are constant and

independent of �. In the appendix, we extend the idea behind the linear aggregator function to a

general nonlinear and di¤erentiable aggregator function hi (�), but with a gap between necessary

and su¢ cient conditions.

6 Necessity of Contraction Property

The contraction property appears to be a natural condition in the context of robust implementation.

In fact, we now show that the contraction property is necessary for robust implementation. In

particular, the necessity of the contraction property allows us to give a sharp impossibility result in

the context of the linear model just discussed. The idea behind the necessity argument is to show

that the hypothesis of robust implementation leads inevitably to a con�ict with a report pro�le

� which fails to satisfy the contraction property. We impose the following mild restriction on the

social choice function for the necessity argument.
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De�nition 6 (Responsive Social Choice Function)

Social choice function f is responsive if for all �i 6= �0i, there exists ��i such that

f (�i; ��i) 6= f
�
�0i; ��i

�
.

Responsiveness requires that a change in agent i�s report changes the social allocation for some

report of the other agents.

Theorem 2 (Necessity)

If f is robustly implementable and responsive, then f satis�es strict EPIC and the contraction

property.

Proof. Suppose that f is responsive and robustly implemented by mechanism M. The

restriction to compact mechanisms ensures that SM is non-empty. Let m�
i (�i) be any element of

SMi (�i). Because mechanismM robustly implements f ,

g (m� (�)) = f (�) ,

for all � 2 �.
We �rst establish strict EPIC. Suppose strict EPIC fails. Then there exists i, �0i 6= �i such that

ui
�
f
�
�0i; ��i

�
; �
�
� ui (f (�) ; �) .

Now m� (�) =
�
m�
i (�i) ;m

�
�i (��i)

�
2 SM (�) implies that

max
m0
i

�
ui
�
g
�
m0
i;m

�
�i (��i)

�
; (�i; ��i)

�	
= ui

�
g
�
m�
i (�i) ;m

�
�i (��i)

�
; (�i; ��i)

�
= ui (f (�) ; �) :

But

ui
�
g
�
m�
i

�
�0i
�
;m�

�i (��i)
�
; (�i; ��i)

�
= ui

�
f
�
�0i; ��i

�
; �
�
� ui (f (�) ; �) .

So

m�
i

�
�0i
�
2 argmax

m0
i

�
ui
�
g
�
m0
i;m

�
�i (��i)

�
; (�i; ��i)

�	
which implies that m�

i

�
�0i
�
2 SMi (�i). This in turn implies that

f
�
�0i; ��i

�
= g

�
m�
i

�
�0i
�
;m�

�i (��i)
�
= f (�i; ��i)

for all ��i, contradicting responsiveness.
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Now we establish the contraction property. First, suppose that mi 2 Mi, �0i 2 �i, �0�i 2 ��i,bm�i 2 SM�i
�
�0�i
�
and

ui
�
g (mi; bm�i) ;

�
�0i; �

0
�i
��
> ui

�
f
�
�0i; �

0
�i
�
;
�
�0i; �

0
�i
��
. (13)

Then, for any �i, we have

m�
i (�i) =2 argmax

mi

�
ui
�
g (mi; bm�i) ;

�
�0i; �

0
�i
��	

,

since

ui
�
g (m�

i (�i) ; bm�i) ;
�
�0i; �

0
�i
��
= ui

�
f
�
�0i; �

0
�i
�
;
�
�0i; �

0
�i
��
< ui

�
g (mi; bm�i) ;

�
�0i; �

0
�i
��
.

Thus mi 2Mi, �0i 2 �i, �0�i 2 ��i and bm�i 2 SM�i
�
�0�i
�
imply

ui
�
g (mi; bm�i) ;

�
�0i; �

0
�i
��
� ui

�
f
�
�0i; �

0
�i
�
;
�
�0i; �

0
�i
��
. (14)

Now consider an arbitrary report pro�le � 6= ��. Let bk be the largest k such that for every i,
�i and �0i 2 �i (�i):

SMi
�
�0i
�
� Ski (�i) .

We know that such a bk exists because S0i (�i) =Mi, and, sinceM robustly implements f , respon-

siveness implies SMi (�i) \ SMi
�
�0i
�
= ?.

Now we know that there exists i and �0i 2 �i (�i) such that

SMi
�
�0i
�
 S

bk+1
i (�i) .

Thus there exists bmi 2Mi such that

bmi 2 S
bk
i (�i) \ SMi

�
�0i
�
,

and bmi =2 S
bk+1
i (�i) \ SMi

�
�0i
�
.

Since message bmi gets deleted for �i at round bk + 1, we know that for every �i 2 �(M�i ���i)
such that

�i (m�i; ��i) > 0) mj 2 S
bk
j (�j) for all j 6= i,

there exists m�
i such that X

m�i;��i

�i (m�i; ��i)ui (g (m
�
i ;m�i) ; (�i; ��i))

>
X

m�i;��i

�i (m�i; ��i)ui (g (bmi;m�i) ; (�i; ��i)) .
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Fix any �0�i 2 ��i and any bmj 2 SMj
�
�0j
�
;

for each j 6= i. Now the above claim remains true if we restrict attention to distributions �i putting

probability 1 on bm�i. Thus for every  i 2 �(��i) such that

 i (��i) > 0) bmj 2 S
bk
j (�j) for all j 6= i,

there exists m�
i such thatX

��i

 i (��i)ui (g (m
�
i ; bm�i) ; (�i; ��i)) >

X
��i

 i (��i)ui (g (bmi; bm�i) ; (�i; ��i)) .

Since bmi is never a best response, there must exist a mixed strategy �i 2 �(Mi) such thatX
mi

�i (mi)ui (g (mi; bm�i) ; (�i; ��i)) > ui (g (bmi; bm�i) ; (�i; ��i))

for all ��i such that m�i 2 Sbk�i (��i) (by the equivalence of �strictly dominated�and �never a best
response�(see Lemma 3 in Pearce (1984)).

But bm 2 SM
�
�0
�
, so (sinceM robustly implements f), g (bmi; bm�i) = f

�
�0
�
. Also observe that

if �0�i 2 ��i (��i), then bm�i 2 Sbk�i (��i). ThusX
mi

�i (mi)ui (g (mi; bm�i) ; (�i; ��i)) > ui
�
f
�
�0
�
; (�i; ��i)

�
(15)

for all ��i such that �0�i 2 ��i (��i). Now let y be the lottery outcome generated by selecting

outcome g (mi; bm�i) with distribution �i on mi. Now we have established that for any � 6= ��,

there exist i; �i and �0i 2 �i (�i) with �0i 6= �i such that, for any ��i and �0�i 2 ��i (��i),

ui
�
y;
�
�0i; �

0
�i
��
� ui

�
f
�
�0i; �

0
�i
�
;
�
�0i; �

0
�i
��
;

which follows from (14);

ui (y; (�i; ��i)) > ui
�
f
�
�0
�
; (�i; ��i)

�
,

which follows from by (15); and

ui
�
y;
�
�i; �

0
�i
��
> ui

�
f
�
�0
�
;
�
�i; �

0
�i
��
; (16)

which also follows from (15), since �0�i 2 ��i
�
�0�i
�
).

Thus in terms of the aggregator representation vi (y; hi (�)), we have

vi
�
y; hi

�
�0i; �

0
�i
��
� vi

�
f
�
�0i; �

0
�i
�
; hi
�
�0i; �

0
�i
��
, (17)
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vi (y; hi (�i; ��i)) > vi
�
f
�
�0
�
; hi (�i; ��i)

�
(18)

and

vi
�
y; hi

�
�i; �

0
�i
��
> vi

�
f
�
�0
�
; hi
�
�i; �

0
�i
��
: (19)

Now we can infer from the above preference rankings that

sign
�
�i � �0i

�
= sign

�
hi
�
�i; �

0
�i
�
� hi

�
�0i; �

0
�i
��
,

which follows from the strict monotonicity of hi with respect to �i; as well as

sign
�
�i � �0i

�
= sign

�
hi (�i; ��i)� hi

�
�0i; �

0
�i
��
,

which follows from (17) - (19) and the single crossing property. But now we have just stated the

contraction property.

Restricting attention to responsive social choice functions simpli�es the statement of the neces-

sity result. But the result could be re-stated to allow for non-responsive social choice functions,

with appropriate weakenings of the strict EPIC and contraction property conditions. The weak-

ened strict EPIC condition would require only that f (�i; ��i) 6= f
�
�0i; ��i

�
for some ��i implies

ui (f (�i; ��i) ; (�i; ��i)) > ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
for all ��i. The weakened contraction property

would require only undesirable report pro�les � to satisfy the properties required for all � 6= �� in

de�nition 5, where � is undesirable only if there exists �0i 2 �i (�i) with f (�i; ��i) 6= f
�
�0i; ��i

�
for

some ��i. Note that the weakened strict EPIC and contraction properties are equivalent to the

original strict EPIC and contraction properties if f is responsive, and are automatically satis�ed

if f is constant. Finally, note that the weakened contraction property is a joint property of the

environment and the social choice function.

We brie�y sketch the idea of the necessity part of the proof. We establish the contraction

property directly from the robust implementation of the social choice function. We �x an arbitrary

report pro�le � 6= �� and consider the iterative process of deleting strictly dominated messages.

We identify a step k̂ in the process as follows: let k̂ be the earliest step at which for some agent i

a rationalizable action m̂i for some type �0i fails to be rationalizable at step k̂ + 1 for some other

type �i of agent i given that �0i 2 �i (�i) As message m̂i is deleted for type �i, it is never a best

response for any message and type pro�le by the remaining agents. It follows that the message m̂i

is strictly dominated for type �i of agent i by a possibly mixed strategy �i (mi) of agent i. For

every given message pro�le m̂�i of the other agents, the mixed strategy �i (mi) generates a lottery
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y over deterministic outcomes. We can now establish the preference ranking of agent i with respect

to the allocations y and f
�
�0i; �

0
�i
�
for any �̂�i such that m̂�i is a rationalizable action for types �0�i

of the remaining agents. In turn, the contraction property follows immediately from these rankings

and the single crossing property.

For the linear model discussed in the previous section, with

hi (�) =
X
j


ij�j ;

we have an impossibility result as an immediate consequence of Theorem 2.

Corollary 1 (Impossibility of Robust Implementation)

If the contraction property fails, i.e. there exists c 2 R+n f0g such that for all i:

ci <
X
j 6=i

��
ij�� cj,
then robust implementation fails.

7 Single Unit Auction

We conclude our analysis with a second example, namely a single unit auction with symmetric

bidders. The model has I agents and agent i�s payo¤ type is �i 2 [0; 1]. If the type pro�le is �,
agent i�s valuation of the object is

�i + 

X
j 6=i

�j ,

where 0 � 
 � 1.
An allocation rule in this context is a function y : � ! [0; 1]I , where yi (�) is the probability

that agent i gets the object and so
P
i
yi (�) � 1. The symmetric e¢ cient allocation rule is given

by:

y�i (�) =

8<: 1
#fj:�j��k for all kg , if �i � �k for all k;

0; if otherwise.

Maskin (1992) and Cremer and McLean (1985) have shown that the e¢ cient allocation can be

truthfully implemented in a generalized Vickrey-Clark-Groves mechanism, according to which the

monetary transfer of the winning agent i is given by

xi (�) = max
j 6=i

�j + 

X
j 6=i

�j .



Robust Implementation: The Case of Direct Mechanisms May 25, 2007 27

We observe that the winning probability yi (�) and the monetary transfer are piecewise constant.

The generalized VCG mechanism therefore does not satisfy the strict EPIC conditions which we as-

sumed as part of our analysis. We therefore modify the generalized VCG mechanism to a symmetric

"-e¢ cient allocation rule given by:

y��i (�) = "
�i
I
+ (1� ") y�i (�) :

Under this allocation rule, the object is not allocated with probability "
2 .
10 We then argue that the

symmetric "�e¢ cient allocation rule can be robustly implemented if 
 < 1
I�1 . Alternatively, we

can say that the generalized VCG mechanism itself is virtually robustly implementable if 
 < 1
I�1 .

It is easy to verify that the resulting generalized VCG transfers satisfy strict EPIC and show

that this "-e¢ cient allocation is robustly implementable. The unique (up to a constant) ex post

transfer rule is:

xi (�) =
"

2I
(�i)

2 +
"


I

0@X
j 6=i

�j

1A �i + (1� ")

0@max
j 6=i

8<:�j + 
X
j 6=i

�j

9=;
1A y�i (�) :

The �rst two components of the transfers guarantee incentive compatibility with the respect to the

linear probability assignment and the third component with respect to the e¢ cient allocation rule.

The best response of agent i for misreport �0�i of the remaining agents at a true type pro�le � is

given as the public good example by:

�0i = �i + 

X
j 6=i

�
�j � �0j

�
.

We can therefore exactly repeat our earlier argument in the context of the public good and get

robust implementation in the direct mechanism if 
 < 1
I�1 .

8 Discussion

8.1 Relation to Partial and Ex Post Implementation

The results in this paper concern full implementation. An earlier paper of ours, Bergemann and

Morris (2005b), addresses the analogous questions of robustness to rich type spaces, but looking at

the question of truthtelling in the direct mechanism. In the literature, this is frequently referred to as

10At the cost of some additional algebra, we could modify the allocation rule so that it allocates the object with

probability 1 by de�ning y��i (�) = "�i=
P
j

�j + (1� ") y�i (�).
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partial implementation. The notion of partial implementation asks whether there exist a mechanism

such that some equilibrium under that mechanism implements the social choice function. By

the revelation principle, it is then su¢ cient to look at truthtelling in the direct mechanism. In

Bergemann and Morris (2005b), we showed that a social choice function robustly satis�es the

interim incentive constraints, i.e. satis�es the interim incentive constraints for any type space, if

and only if the ex post incentive constraints are satis�ed.

It is important to note, however, that robust implementation is not equivalent to full ex post

implementation, i.e., the requirement that every ex post equilibrium delivers the right outcome.

Often ex post implementation will be possible - because there are no undesirable ex post equilibria

- even though there exist type spaces and interim equilibria that deliver undesirable outcomes. In

Bergemann and Morris (2007a), we identify the ex post monotonicity condition that is necessary

and su¢ cient for full ex post implementation. It is much weaker than the robust monotonicity

condition and the contraction property reported here.

8.2 Robust and Virtual Implementation in General Environments

The existing Bayesian implementation literature - Postlewaite and Schmeidler (1986), Palfrey and

Srivastava (1989) and Jackson (1991) - has shown that on a �xed type space with a common

knowledge common prior, Bayesian incentive compatibility and a Bayesian monotonicity condition

are necessary and almost su¢ cient for full implementation. The proof of the su¢ ciency part of the

result relies on complex augmented mechanisms.

In Bergemann and Morris (2005a), we developed the results in this paper in the context of a

general approach to robust implementation which allows for complex augmented mechanism. The

results reported in this subsection appear in that working paper.

Our robust implementation notion is equivalent to requiring Bayesian implementation on all

type spaces. Ex post incentive compatibility is equivalent to Bayesian incentive compatibility on all

type spaces. It is possible to de�ne a notion of robust monotonicity which is equivalent to Bayesian

monotonicity on all type spaces. Ex post incentive compatibility and robust monotonicity are thus

necessary and almost su¢ cient for full implementation. However, this result relies on allowing

complex augmented mechanisms including integer games. If we restrict attention to well-behaved

mechanisms - with the compact message space assumption of this paper - then strict EPIC is also

necessary.

The contraction property is an implication of robust monotonicity in the environment studied
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in this paper. The robust monotonicity condition requires the existence of allocations that can be

used to reward individuals for reporting deviations from desirable equilibria. In the environment

of this paper, we are able to show that we can always use rewards from misreports in the direct

mechanism.

In the single good auction example, we used an "�e¢ cient allocation rule to obtain strict EPIC.
An alternative interpretation of the "�e¢ cient allocation rule is that it virtually implements the
e¢ cient social choice function.11 This then leads to the question of how much could be achieved in

general with robust virtual implementation. Bergemann and Morris (2007b) provide a characteri-

zation of virtual robust implementation in general environments. In the single crossing monotonic

aggregator environments studied in this paper, if there exists any strict ex post incentive compat-

ible social choice function, one can show that ex post incentive compatibility and the contraction

property are necessary for virtual robust implementation and su¢ cient for virtual robust imple-

mentation in the direct mechanism. Thus, in this environment, the only implication of going from

full to virtual implementation is a relaxation from strict EPIC to EPIC.

8.3 Interdependent Valuations

In this paper we considered implementation in an environment with interdependent valuations. We

provided conditions for full implementation which did not depend on the prior or posterior belief

of the agents. More precisely, we provided conditions under which the social choice function can

be implemented in the direct mechanism by iteratively eliminating strictly dominated reports.

In contrast to much of the recent literature on implementation which relies heavily on com-

plicated augmented mechanisms to achieve full implementation, here we pursued implementation

in the direct mechanism without relying on augmented mechanisms. The resulting su¢ cient and

almost necessary condition for robust implementation, the contraction property, was shown to es-

sentially require that there is not too much interdependence in the valuation of each agent across

signals received by the agents. In the important case of the linear model in signals, the contraction

property was shown to reduce to a single condition on the eigenvalue of the interdependence matrix.

The nature of the contraction property also highlighted that robust implementation is considerably

more demanding than ex post truthful implementation.

11Abreu and Matsushima (1992a) and (1992b) obtain very permissive results about virtual implementation in

complete and incomplete environments, respectively.
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8.4 Contraction Property

The robust implementation argument rested essentially on the single crossing property and the

contraction property. The single crossing is essentially symmetric in allocation and type. It there-

fore would have been possible to impose the contraction property on the outcome function rather

than on the preference aggregator. In fact, given that the misreports can only alter the outcome

function, but certainly not the preferences, one might have thought it would be more natural to

impose the contraction property on the outcome function rather than on the preference aggregator.

The advantage of using the contraction property on the aggregator function arises from the single

crossing condition. The true type � and the misreported types �0 can potentially be very far from

each other. Consequently, the preferences at the type pro�les � and �0 over a pair allocations, in

particular f
�
�0i; �

0
�i
�
and f

�
�0i + "; ��i

�
, can be very di¤erent. With the contraction property on

the preference aggregator, it su¢ ces to compare the allocations, f
�
�0i; �

0
�i
�
and f

�
�0i + "; ��i

�
for a

type pro�le near �0 =
�
�0i; �

0
�i
�
and then extend the ranking to be valid for � through the existence

of an aggregator hi and the single crossing property. Without the aggregator hi; but a contraction

property on the social choice function, we would be forced to rank the allocations f
�
�0i; �

0
�i
�
and

f
�
�0i + "; ��i

�
for some preferences near the true type pro�le � = (�i; ��i). In particular, in order

to be able to use the single crossing condition fruitfully, it would have to be the case that the allo-

cations f
�
�0i; �

0
�i
�
and f

�
�0i + "; ��i

�
would also arise as the equilibrium allocation for some reports

��i ; �
��
i of agent i given the truthful report ��i of the remaining agents. But such a �full support�

requirement is rather strong. In particular, it will rarely be satis�ed in models with quasilinear

utilities, where each agent has preferences over a two-dimensional object, the allocation and the

monetary transfer.

8.5 The Common Prior Assumption and Strategic Substitutes/Complements

The de�nition of robust implementation in this paper is equivalent to requiring that every equilib-

rium on every type space delivers outcomes consistent with the social choice function. By �every

type space�, we are allowing for multiple copies of the same payo¤ type with di¤erent beliefs over

the types of others. And we are allowing for non common prior type spaces. An interesting ques-

tion is what happens when we look at an intermediate notion of robustness: allowing all possible

common prior type spaces. This interesting question goes beyond the scope of this paper but we

can use our leading example to illustrate why it is interesting.

Consider the public good example in the case where there is negative interdependence in valua-
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tions, i.e., 
 < 0. Recall the ex post best response function in that example: if type �i is sure that

his opponents have type pro�le ��i and is sure that they will report themselves to be type pro�le

�0�i, then his best response is to report himself to be type

�0i = �i + 

X
j 6=i

�
�j � �0j

�
.

We see that there are strategic complements in misreporting strategies (if others misreport upwards,

i has an incentive to misreport upwards). This means that when we carry out the iterated deletion

procedure, the pro�le of largest and smallest misreports that survive must constitute an ex post

equilibrium of the game (Milgrom and Roberts (1990)). Thus a failure of robust implementation

also implies that there exists a bad equilibrium on any common prior type space.

On the other hand, in the standard case with positive interdependence, i.e., 
 > 0, there is

strategic substitutability in misreports and this argument does not go through. In fact, one can

show in the example that even when the contraction property fails (i.e., 
 > 1
I�1), every equilibrium

on any common prior type space delivers the right outcome.

8.6 Informational Foundation of Interdependence

In the discussion of the single crossing condition in section 4 we presented a statistical model of

noisy signals which naturally lead to the aggregation property of private signals by means of Bayes

law. There is a possible criticism of using an informational justi�cation for interdependent prefer-

ences like this one at the same time as insisting on a stringent robust implementation criterion.12

This informational microfoundation for the environment depends on the common knowledge of the

distribution of signals about the environment - among the agents and the planner. Thus there is

common knowledge of a true distribution over the vectors of signals �. However, we can show that if

we allowed that each agent i might receive additional, conditionally independent information - not

necessarily consistent with a common prior - about others�signals ��i, so that the information did

not change his expectation of !0+!i, conditional on the vector �, then our robust implementation

results would remain unchanged. Thus there is an admittedly stark story that reconciles the robust

implementation environment with an informational justi�cation of the reduced form representation

of interdependent preferences.

12We thank Ilya Segal for prompting us to think about this in the context of robust implementation.
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9 Appendix

The appendix contains the arguments and proofs missing in the main text.

Informational Foundation for Interdependence The vector of the random variables0BB@
!0 + !1

�1

�2

1CCA
is normally distributed with mean zero and variance matrix0BB@

�20 + �
2
1 �20 + �

2
1 �20

�20 + �
2
1 �20 + �

2
1 + �

2
1 �20

�20 �20 �2 + �22 + �
2
2

1CCA
By a standard property of the multivariate normal distribution, see DeGroot (1970), this implies

that the expectation of !0 + !1 conditional on �1 and �2 is given by:

�
�20 + �

2
1 �20

�0@ �20 + �
2
1 + �

2
1 �20

�20 �20 + �
2
2 + �

2
2

1A�10@ �1

�2

1A ;

which equals �
�20�

2
2 + �

2
0�
2
1 + �

2
0�
2
2 + �

2
2�
2
1 + �

2
1�
2
2

�
�1 + �

2�21�2

�20�
2
1 + �

2
0�
2
2 + �

2
0�
2
1 + �

2
0�
2
2 + �

2
1�
2
2 + �

2
1�
2
2 + �

2
2�
2
1 + �

2
1�
2
2

.

If we multiply the above expression by the constant

�20�
2
1 + �

2
0�
2
2 + �

2
0�
2
1 + �

2
0�
2
2 + �

2
1�
2
2 + �

2
1�
2
2 + �

2
2�
2
1 + �

2
1�
2
2

�20�
2
2 + �

2
0�
2
1 + �

2
0�
2
2 + �

2
2�
2
1 + �

2
1�
2
2

,

we obtain:

�1 +
�2�21

�20�
2
2 + �

2
0�
2
1 + �

2
0�
2
2 + �

2
2�
2
1 + �

2
1�
2
2

�2;

as reported in (2).

Dual Characterization of the Contraction Property The following lemma gives a dual

representation of the contraction property for the linear case. In turn, it allows us to characterize

the contraction property in terms of the eigenvalue of the interdependence matrix �.
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Lemma 2 (Duality)

The following two properties of � are equivalent:

1. for all c 2 RI+ with c 6= 0, there exists i such that:

ci >
X
j 6=i

��
ij�� cj; (20)

2. there exists d 2 RI+ such that:
di >

X
j 6=i

��
ji�� dj ; (21)

for all i.

Proof. Consider the following contrapositive restatement of condition (20): there does not

exist c 2 RI+ such that
IX
i=1

ci > 0; (a)

and X
j 6=i

��
ij�� cj � ci � 0 for each i: (b)

Writing � for the multiplier of constraint (a) and di for the i multiplier of constraint (b), Farkas�

lemma states that such a c does not exist if and only if there exist d 2 RI+ and � 2 R+ such that

�� di +
X
j 6=i

��
ji�� dj = 0 for all i; (a�)

and

� > 0: (b�)

But this is true if and only if condition (21) of the lemma holds.

Proof of Proposition 1. If we try to �nd a solution for the strict inequalities (21):

di >
X
j 6=i

��
ji�� dj ; for all i
with the assistance of a contraction constant � < 1, or

di� =
X
j 6=i

��
ji�� dj ;
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then by the Froebenius-Perron Theorem for nonnegative matrices (see Minc (1988), Theorem 1.4.2),

there exists a positive right and a left eigenvector, both with the same positive eigenvalue �. The

associated eigenvector is positive as well. We can use the above dual property to establish that

clearly a (�; d) solution exists for:

�di =
X
j 6=i

��
ji�� dj ,
but from the duality relationship (21), we know that for every d > 0,

di >
X
j 6=i

��
ji�� dj ,
so it follows that � < 1. �

Nonlinear Conditions The linear model has the obvious advantage that the local conditions for

contraction agree with the global conditions for contraction as the derivatives of the mapping hi (�)

are constant and independent of �. Conversely, with a nonlinear model, we can present weak local

conditions for every � and stronger global conditions. With this we can extend the idea behind

the linear aggregator function to a general nonlinear and di¤erentiable aggregator function hi (�)

as follows.

De�nition 7 (Local and Global Contraction Property)

1. The aggregator function hi satis�es the local contraction property if for all c 2 RI+ and � 2
int (�), there exists i such that

ci
@hi (�)

@�i
>
X
j 6=i

cj

����@hi (�)@�j

���� .
2. The aggregator function hi satis�es the global contraction property if for all c 2 RI+, there
exists i such that,

ci
@hi (�)

@�i
>
X
j 6=i

cj

����@hi (�)@�j

����
for all �.
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Proposition 2 (Local and Global Contraction Property)

1. If hi satis�es the contraction property, then it satis�es the local contraction property.

2. If hi satis�es the global contraction property, then it satis�es the contraction property.

Proof. (1.) The proof is by contradiction. The contraction property requires that if, for all

� 6= ��, there exists i and �0i 2 �i (�i) with �0i 6= �i, such that

sign
�
�i � �0i

�
= sign

�
hi (�i; ��i)� hi

�
�0i; �

0
�i
��
;

for all ��i and �0�i 2 ��i (��i). Fix any c 2 RI+ and choose small " > 0. Now consider reports of

the form

�i (�i) = [�i � "ci; �i + "ci] \�i.

If for some � 2 int (�),
ci
@hi (�)

@�i
�
X
j 6=i

cj
@hi (�)

@�j
.

for all i, then if �0i 2 �i (�i) and (wlog) �0i > �i, then �i � �0i is negative. Now choose �
0
�i such that

�0j = �j � "cj . Now

hi (�i; ��i)� hi
�
�0i; �

0
�i
�

"
! �ci

@hi (�)

@�i
+
X
j 6=i

cj
@hi (�)

@�j
� 0;

as "! 0. This contradicts the contraction property.

(2.) Fix any report. Let

cj = max
�0j2�j(�j)

���0j � �j�� .
There exists i

ci
@hi (�)

@�i
>
X
j 6=i

cj

����@hi (�)@�j

���� ;
for all �. Let ���i � �0i�� = ci
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and suppose wlog that �i > �0i. Now �x any �0�i 2 ��i (��i), we can then write the di¤erence

hi (�i; ��i)� hi
�
�0i; �

0
�i
�
as:

1Z
t=0

IX
j=1

@hi
�
t� + (1� t) �0

�
@�j

�
�j � �0j

�
dt

=

1Z
t=0

@hi
�
t� + (1� t) �0

�
@�i

�
�i � �0i

�
dt+

1Z
t=0

X
j 6=i

@hi
�
t� + (1� t) �0

�
@�j

�
�j � �0j

�
dt

�
1Z
t=0

@hi
�
t� + (1� t) �0

�
@�i

cidt�
1Z
t=0

X
j 6=i

�����@hi
�
t� + (1� t) �0

�
@�j

����� cjdt
> 0;

where the last inequality comes from the hypothesis of the global contraction property. This

establishes the claim.
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