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Abstract: A two-house legislature can often be modelled as a proper simple game whose
outcome depends on whether a coalition wins, blocks or loses in two smaller proper simple

games. It is shown that there are exactly �ve ways to combine the smaller games into a

larger one. This paper focuses on one of the rules, lexicographic composition, where a

coalition wins in G1 ) G2 when it either wins in G1, or blocks in G1 and wins in G2. It is

the most decisive of the �ve. A lexicographically decomposable game is one that can be

represented in this way using components whose player sets partition the whole set. Games

with veto players are not decomposable, and anonymous games are decomposable if and

only if they are decisive and have two or more players. If a player�s bene�t is assessed by

any semi-value, then for two isomorphic games a player is better o¤ from having a role in

the �rst game than having the same role in the second. Lexicographic decomposability is

sometimes compatible with equality of roles. A relaxation of it is suggested for its practical

bene�ts.
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Section 1. Introduction

Group decision rules have been modeled by simple games, de�ned as those in which a

coalition either wins or not, with no outcomes in between (von Neumann and Morgenstern

1944, Shapley and Shubik 1954, Peleg 1984, Taylor and Zwicker 1999, Peleg and Sudholter

2003). One stream of research developed an algebra in which a coalition wins in the product

(sum) of two smaller games whenever it wins in both (either) of them (Shapley 1964, Owen

1964, Billera 1980, and others). Shapley (1967) de�ned the more general idea of a

committee, a group of players who can be treated as a decision unit within the larger game.

This paper considers a class of composition rules, then focuses on one of them. It

shows that there are �ve ways to combine two proper games into a third one, where success

in the combined game depends only on whether a coalition wins, blocks or loses without

blocking in the components. Among the �ve is "lexicographic composition," where a �rst

group of players has the right to decide, but if there is a deadlock the power passes to a

separate group. The name �lexicographic�is suggested by the ordering of words in the

dictionary, which puts �azure�before �babble��that is, considers the word�s �rst letter,

then its second, etc. The analogy for games is that a coalition�s power in the second game,

however great, is irrelevant if its rivals win the �rst game. The lexicographic rule is

especially interesting because it has been overlooked theoretically, has practical advantages

and is occasionally used. One attractive feature is associativity, which allows simple games

to be strung together without consideration to their grouping, and another is that among

the �ve rules it is least prone to stalemate.

Section 2 gives de�nitions and example and Section 3 gives some basic properties of

the lexicographic rule, showing that there are only �ve ways of combining two proper

games to make a proper game. The lexicographic rule is the most decisive of them. Section

4 relates power and the order of play: if the two components are identical a player would

prefer to be in the �rst game, when interests are measured by any semi-value. The next

two sections treat decomposability. Even if a game is not played as a physical sequence it

may be representable in this way since the criterion is the game�s winning coalitions, not

its realization in the world. We ask when a certain game, even though played as a unit, is

equivalent to a decomposed game, and investigate the case where the component games
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partition the player set of the larger one. Section 5 lists the smallest decomposable games,

and Section 6 gives some conditions guaranteeing or precluding decomposability. Section 7

considers whether lexicographic composition is compatible with equality, interpreted here

as anonymity, i.e., all players having the same abstract role. The section presents some

ways to generate LD games that are anonymous, and are both anonymous overall with

anonymous components. Section 8 discusses a weakening of the lexicographic rule that is in

actual use.

Section 2. De�nitions and examples

Let P be an in�nite set called the players, whose subsets are called coalitions. A
simple game G is a set of coalitions such that:

(1) S 2 G and S � S 0 imply S 0 2 G (monotonicity);

(2) the set of minimal coalitions of G is non-empty and �nite;

(3) every minimal coalition is non-empty and �nite.

A simple game will be called just a game and its minimal coalitions are its minimal winning

coalitions, M(G). Thanks to monotonicity the latter de�ne the game. Thus f12; 13; 23g+

speci�es a game in which the minimal winning coalitions are 12, 13 and 23, where �12�is

an abbreviation for the coalition f1; 2g, etc., and where f12; 13; 23g+ is the set comprising
the listed coalitions plus all their supersets with respect to P. Four examples of non-games
are: the empty set of no coalitions, which is excluded by condition (2); the set of all

coalitions, which is excluded by condition (3) since its minimal coalition is the empty

coalition; the set f12; 13; 14; :::g+; which is excluded by condition (2); and the set fS : S is
�niteg (where S designates PnS.) Although winning coalitions of in�nite size are quite
valid, the last example has no minimal winning coalitions and so violates condition (2).

The coalitions in the set B(G) = fS : S; S =2 Gg are called the blocking coalitions of
G. Thus a coalition is blocking when neither it nor its complement win. A coalition loses if

it does not win or block. Those players who appear in some minimal winning coalition are

designated P (G) and called the players of G: For an arbitrary game P (Gi) will be

designated Pi; and #Pi will be ni. It is useful to have notation for sets of coalitions that

contain only players of G, so we let bG = fS : S � P (G) & S 2 Gg and
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bB(G) = fS : S � P (G) & S 2 B(G)g. In contrast to G and B(G), these are �nite. For an

arbitrary game Gi, the sets B(Gi) and bB(Gi) will be abbreviated Bi and bBi.
A veto player is one who is in all of G�s coalitions. A game is proper if S; S 0 2 G

implies S \ S 0 6= �, that is, if two disjoint coalitions cannot both win. The set of proper

simple games is denoted GPr. (Although improper games are useful, the games discussed
here will all be proper.) A decisive game is a proper game with B(G) = �: The product of

two games is the game G1 \G2 and the sum is G1 [G2.
An automorphism of a game G is a permutation of P (G) that leaves G invariant. A

game G is anonymous if for every i; j 2 P (G) it has an automorphism mapping i into j.

Anonymity is weaker than player symmetry, which requires that every permutation of

P (G) be an automorphism. For example, the game whose players are the vertices of a

pentagon and whose minimal winning coalitions are three players in a sequence is

anonymous but not symmetrical since only some player triples can win. Games G1 and G2
are isomorphic if there is a bijection f : P1 ! P2 such that bG2 = f( bG1); and such a
bijection is called an isomorphism of the games.

Given proper games G1 and G2; their lexicographic composition G1 ) G2 (read �G1
then G2�) is de�ned as G1 [ (B1 \G2), so that a coalition wins in it if it either wins in G1,
or blocks in G1 and wins in G2. (The next section will show that G1 ) G2 is itself a proper

game.) A game G is said to be lexicographically decomposable (LD) if there exist games

G1; G2 with P1 [ P2 = P and P1 \ P2 = � such that G = (G1 ) G2).

Any decisive game G can be written G) G2, but that does not constitute

decomposability because the player sets do not partition P . A valid example is a two-party

negotiation where a disagreement sends the issue to an arbitrator. The �rst game is f12g+,
two negotiators following the unanimity rule, and the second is the single-player unanimity

game f3g+. Their composition is the 2-of-3 majority game, and thus
f12; 13; 23g+ = (f12g+ ) f3g+). A more complex example is the American presidential
electoral system where a deadlock in the Electoral College sends the choice to the House of

Representatives with one vote per state. If the House also deadlocks, what happens next in

choosing a president is murky but some experts have construed the rules as implying a

longer lexicographic string.
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A non-decisive symmetrical majority game, e.g., one requiring 5 votes out of 7, is not

LD. This can be seen by supposing the game has such a representation and choosing S as a

minimal winning coalition in G1. Construct S 0 by replacing one member of S by a player

from G2: Since S wins in G, S and S 0 are of equal size and the game is symmetrical, then

S 0 wins in G. However, since S 0 does not win in G1 it must block in G1; and its new player

must win alone in G2. However this implies that G is decisive, contrary to the premise.

Non-decomposability holds not just for non-decisive symmetrical games but for all

non-decisive anonymous games, as shown in Theorem 6.

Another non-LD rule is the United Nations Security Council whose minimal winning

coalitions have all 5 permanent members along with exactly 4 out of the 10 non-permanent

ones. According to Theorem 4, the existence of a veto player precludes a decomposition.

The reason, roughly put, is that if the second game becomes relevant, the overall outcome

will depend on whether the �rst game was blocked by a veto player or by a group of

non-veto players, but in lexicographic compositions the details of how the �rst game was

blocked are irrelevant when the decision passes to the second.

Section 3. Basic properties and the �ve rules of composition

Proposition 1 (Closure). For G1; G2 2 GPr, (G1 ) G2) 2 GPr.

Proof. If G1 is decisive then G = G1 [ (B1 \G2) is identical to G1 and the claim follows.

If G1 is non-decisive, then G satis�es the non-emptiness condition for a simple game since

it is a superset of G1. The monotonicity condition, that for S 2 G and S � S 0; S 0 2 G,

holds since every superset of a blocking set in G1 is either blocking or winning in G1, and

every superset of a winning set in G2 is winning in G2. Properness requires that every pair

S; S 0 2 G intersect. If both coalitions are in G1 or both in G2 this is true since these games
are proper, and if S 2 G1 and S 0 2 G2, then since S 0 wins in G it blocks in G1 and

intersects all of that game�s winning coalitions. �

Proposition 2. For G1, G2 2 GPr, B(G1 ) G2) = B(G1) \B(G2):

This follows directly from the de�nition of composition. Note that the blocking

coalitions are the same as for the sum game G1 [G2:
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Theorem 1. The following two propositions are equivalent
(1) The binary operator �, from GPr � GPr to GPr, is such that whether S wins in G1 �G2
depends only on whether S wins, blocks, or loses in G1 and G2.

(2) G1 �G2 is one of the following:
(i) the lexicographic rule G1 ) G2; (or its reversal G2 ) G1);

(ii) the degenerate rule G1; (or its reversal G2);

(iii) the tally rule (G1 \G2) [ (G1 \B2) [ (B1 \G2) in which a coalition wins by
winning in more component games than its complement;

(iv) the veto rule G1 \ (G2 [B2) in which a coalition wins by winning in the �rst
component game and not losing in the second, (or its reversal G2 \ (G1 [B1));

(v) the product rule G1 \G2.

Proof: To show that (2) is su¢ cient for (1) note that the rules listed depend are functions
of membership in Bi and Gi and so depend only on whether a coalition wins, blocks or

loses in each component. Proposition 1 stated that the lexicographic rule yields a proper

game and the same can be shown in a analogous way for the other rules.

To show that (1) implies (2) note that any such operator can be depicted as in Figure

1, left, whose cells show the outcomes for G1 �G2 for all possible outcomes in the
components. The possible outcomes, a coalition winning, blocking or losing are

designatedW; B; and L (which here stand for events rather than sets of coalitions.) The

diagonal cells must have the values shown: the W �W cell must be W by the �rst and

second conditions of the de�nition of a simple game; the L� L cell must be L because of

the �rst and third conditions of the de�nition; and the B �B cell must be B since

otherwise the substitution of S for S would show that the composition game is improper.

The o¤-diagonal cells are subject to the following restrictions, which are generated by

switching S and S: if a (respectively b; c) is W then f (respectively e; d) is L; if a (b; c) is

B then f (e; d) is B; if a (b; c) is L then f (e; d) is W .

These considerations imply that an operator is fully speci�ed by the values of a; b, and

c. The next step is to show that the monotonicity of the game G1 �G2 implies that those
values are ordered as in Figure 1 (left), where an arrow a! b indicates that a is equal to

or higher than b and where it is taken that a W is higher than a B is higher than an L.
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Figure 1: The ordering conditions for an operator, and an example that violates them.

The arrow indicating that �B�be equal to or higher than �c�will be derived as an

example. An example of an operator that violates it has c = W and therefore d = L as in

Figure 1 (right). Choose G1 and G2 as non-decisive games with disjoint player sets and

choose S as a coalition that blocks in both. By the table S blocks in G1 �G2. The coalition
S [ P (G2) blocks in G1 and wins in G2. It must block or win in G1 �G2 since it is a
superset of S and G1 �G2; as a game, is monotonic, but the table assigns L to the B �W

cell. The con�guration of Figure 1 (right) is thus impossible. Similar arguments can be

made for the other three arrows.

There are exactly eight orders consistent with the partial order in Figure 1. This can

be established by constructing a tree where the possiblilities for a branch to the

possibilities for b, etc. The result is the �ve rules and their three reversals. �

Their tables are shown below, where the tables of the reversals of the lexicographic,

degenerate and veto rules are understood as the transposes.

6



W B L

W W W W W W W W W B W W B W B B

B W B L B B B W B L B B B B B B

L L L L L L L B L L B L L B B L

Lexicographic Degenerate Tally Veto Product

Tables 1-5.

One composition rule is said to be more decisive than another if the set of coalitions

that win under the former are a superset of those that win under the latter. For example,

the lexicographic rule is more decisive than the veto rule, since winning in G1 is su¢ cient

in the former but is only one of two requirements in the latter.

Proposition 3. The following partial order gives the relative decisiveness of the eight
rules:

Proof: Relative decisiveness is determined by the inclusion relations among the sets of W
cells of the above tables. �
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Shapley (1967) de�ned a committee of a game G as a simple game G0 with

P (G0) � P (G) such that for any S � P (G); if SnP (G0) =2 G and S [ P (G0) 2 G; then
S 2 G if and only if S \ P (G0) 2 G0: That is, whenever players of G0 are crucial to a
coalition�s success in G, it is because they win in G0. In the lexicographic case, for example,

G1 is not a committee because some of its members can produce a win in G by blocking in

G1 even though they do not win in G1.

Proposition 4. In the degenerate and product rules both games are committees, in the
veto rule only the �rst game is a committee, in the lexicographic rule only the second game

is a committee, and in the tally rule neither game is a committee.

Proof: The lexicographic case will be su¢ cient to show the form of the argument. To show

that G1 is not a committee: since G is LD, G1 possesses a blocking coalition, say K.

Letting S = K [ P2, we have SnP1 =2 G, S [ P1 2 G; and S 2 G; but S \ P1 =2 G1: Next, to
show that G2 is a committee: if SnP2 =2 G and S [ P2 2 G; then S \ P1 blocks in G1, so
that S wins in G if and only if S \ P2 wins in G2. �

Proposition 5. The lexicographic and product rules are associative, but the degenerate,
tally and veto rules are not.

Proof: In the lexicographic case it is required to prove that for G1; G2; G3 2 GPr;
[(G1 ) G2)) G3] = [G1 ) (G2 ) G3)]. The left side is

G1 [ (B1 \G2) [ [B(G1 ) G2) \G3] and the right side is
G1 [ [B1 \ (G2 [ (B2 \G3))]: Applying Proposition 2 to the former and expanding the right
side of the latter as a union shows that both are identical to

G1 [ (B1 \G2) [ (B1 \B2 \G3). The associativity of the the product follows directly from
its de�nition. The tally rule (W;B;L) is not associative since (W �W ) � L = W � L = B

(using the obvious notation), whereas W � (W � L) =W �B = W . The veto rule (W;B;B)

is not associative because (W �W ) � L = W � L = B whereas W � (W � L) =W �B = W ,

and similarly for the reversals. �

Proposition 6. The tally and product rules are commutative, but the lexicographic,
degenerate and veto rules are not.
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Proof: Commutativity of an operator is equivalent to symmetry of its table under an
exchange of rows and columns. �

Proposition 6 states that G1 ) G2 and G2 ) G1 can be di¤erent, but Proposition 5

implies that G1 ) G2 ) :::) Gn is well-de�ned. The latter is an attractive property since

it implies that committee decisions can be sequenced without the complexity of subgroups.

The product rule, which is prevalent in actual use, is even simpler because it is both

associative and commutative, but it is at the bottom on decisiveness while the

lexicographic rule is at the top. These are practical reasons for considering the latter in the

appropriate situations.

Section 4. The advantage of being in the �rst component

One criterion for choosing a procedure is how it allocates power. A certain group of

players may deserve more power either due to their expertise or their ethical right to make

the decision. Other things equal, does the lexicographic procedure grant more power to

those in the �rst game or in the second? Having the last word sounds attractive, but the

next theorem states that when the two component games are isomorphic and when a

player�s bene�t is evaluated by any of a broad class of measures, the advantage goes to the

�rst group.

The class is the semi-values and de�ning it requires the concept of a game in

coalitional function form, in which a function v assigns a real number to each subset of

players. (The relation of such games to simple games is straightforward: a simple game�s

coalitional function assigns 1 to a coalition if it is in G and 0 otherwise; the resulting

coalitional function game v corresponds to the simple game G.) A semi-value  associates

with each v an additive game  v (one satisfying v(S [ S 0) = v(S) + v(S 0) for S \ S 0 = �:)

This is equivalent to assigning to each player i the real number  v(fig), which can be
interpreted as i�s bene�t from playing v. A semi-value is a  with these four properties:

Linearity: If v = u+ w, then  v =  u+  w:
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Symmetry: For any game v and permutation � of players,  (�v) = �( v). (The game �v is

de�ned as the one assigning to coalition S the value v(��1S):)

Monotonicity: If v is monotonic; then  v is monotonic:(Monotonicity here requires that for

all S � S 0; v(S) � v(S 0):)

Dummy: If v(S [ fig) = v(S) + v(fig) for i =2 S, then  v(fig) = v(fig):

Theorem 2: Let G1 and G2 be isomorphic games with P1 \ P2 = �; let f be a bijection

from P1 to P2 such that bG2 = f( bG1); and let v be the coalitional function game
corresponding to G = (G1 ) G2): For any semi-value  and i 2 P1,  v(fig) �  v(ff(i)g):

Proof: Construct the bijection g : P (G)! P (G) such that g(i) = f(i) for i 2 P1, and
g(j) = f�1(j) for j 2 P2: Then for j 2 P2,
 v(fjg) =

P
S�P (G)nfjg p(#S) [v(S + fjg)� v(S)]; where p(#S) is a probability vector

(Dubey, Neyman and Weber 1981). Let i = g(j). Then

 v(fig) =
P

S�P (G)nfjg p(#S) [v(g(S) + fig)� v(g(S))]. The claim is that for

S � P (G)nfjg; v(S + fjg)� v(S) = 1 implies v(g(S) + fig)� v(g(S)) = 1. The �rst

equality implies S + fjg 2 B1 \G2 whereas S =2 G2. Therefore g(S) + fig 2 G1 \B2
whereas g(S) =2 G1. The de�nition of G1 ) G2 completes the proof. �

The Banzhaf score of player i in a game G is de�ned as

Bsc(i; G) = #fS : S 2 bG & Sni =2 bGg; that is, the number of coalitions of players of G
that contain i and need i to order to win. The Banzhaf measure is i�s Banzhaf score

normalized by the number of coalitions containing i, Banz(i; G) = Bsc(i; G)=2n�1:: It is

meant to assess the player�s power and its calculation for decomposable games shows why

being in the second group makes one weaker.

Theorem 3: Banz(i; G1 ) G2) = Banz(i; G1) for i 2 P1;
= Banz(i; G2) # bB(G1)=2n1 for i 2 P2:

Proof: For a game H and i 2 P (H); de�ne W (i;H) = fS : i 2 S 2 bHg and
B(i;H) = fS : i 2 S 2 bB(H)g: Then Bsc(i;H) = 2 #W (i;H)�# bH (see Dubey and
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Shapley, 1979). For G = (G1 ) G2) and i 2 P1,
Bsc(i; G) = 2 [2n2 #W (i; G1) + #B(i; G1) # bG2]� 2n2 # bG1 �# bB(G1) # bG2: Since
# bB(G1) = 2 #B(i; G1), then Bsc(i; G) = 2n2 [2 #W (i; G1)�# bG1]. Dividing both sides by
2n1+n2�1 yields Banz(i; G) = Banz(i; G1), the �rst formula of the theorem. For i 2 P2,
Bsc(i; G) = 2 [# bB(G1) #W (i; G2) + 2n2�1 # bG1]� 2n2 # bG1 �# bB(G1) # bG2. Hence
Bsc(i; G) = # bB(G1) [2 #W (i; G2)�# bG2]. Dividing by 2n1+n2�1 yields the second formula.
�

The value # bB(G1) can be interpreted as G1�s lack of decisiveness since it is twice the
minimum number of changes required in the game�s coalitional function to make it

decisive. Then # bB(G1)=2n1 can be understood as indecisivness normalized according to
the size of the game. It is the probability that a blocking coalition forms, if each player is

in or out of the coalition independently with probability 1=2. The theorem thus indicates

that the Banzhaf measure discounts a player�s power for going second and this discounting

is greater the more decisive that G1 is.

Section 5. The smallest LD games

Simple games of a �xed player set are �nite in number, so they can be listed (e.g., von

Neumann and Morgenstern 1944, Shapley 1962), and this section gives some of this

�descriptive�theory. The counts of small LD games are in Table 6, whose entries refer to

isomorphism classes, i.e., games unique up to permutations of the players. In line with the

present de�nition of the player set, games with �dummies�are not included. The �rst

column was generated by a computer program available from the �rst-listed author, which

produced all possible games with players distinguished and then eliminated isomorphic

duplicates in a fairly e¢ cient way. The second column is calculated from Table IV of Loeb

and Conway (2000). The LD games were generated by combining all pairs of smaller

component games and eliminating duplicates. For completeness the Table should have a

�nal column for games that are LD and anonymous, but in view of Theorem 6 below, it

would have the same entries as the decisive and anonymous counts, for n > 1.
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n all anonymous decisive dec & anon LD

1 1 1 1 1 0

2 1 1 0 0 0

3 3 2 1 1 1

4 9 2 1 0 2

5 69 4 4 1 8

6 3441 13 23 1 42

Table 6. Numbers of isomorphism classes of games.

The forms of decomposable games for n up to 6 are listed in Table 7, which shows a

weighted quota representation if the game has one, or otherwise gives its minimal winning

coalitions, and then gives some selected decompositions. To save space, it lists only those

six-player decisive games whose second game involves two or more players. There are 20

further games that have only representations G1 ) U1; and these can be generated from a

consulting a listing of the six-player games (e.g., Muroga et al., 1962) and separating out

an arbitrary player, as in Theorem 4 below.

The table uses these further de�nitions:

Mn;k : the k-of-n majority game:

Un : the unanimity game of n players, Mn;n.

Cn : the chief player game of n players (von Neumann and Morgenstern, 1944), in which a

distinguished player plus one other wins (non-decisive.)

An : the apex game of n players, in which a distinguished �apex�player plus one other

wins, and the coalition of all non-apex players wins (decisive.)

kjw or kjw1w2:::wn : the weighted majority game of n players with quota k and weight
vector w in which a coalition wins if its total weight is at least the quota.
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3-player, decisive (1)

3j111 (M3;2) : U2 ) U1

4-player, non-decisive (1) 4-player, decisive (1)

4j2211 : U2 ) U2 3j2111 (A4) : U3 ) U1; C3 ) U1

5-player, non-decisive (4)

6j33111 : U2 ) U3 6j33211 : U2 ) C3

f123; 145; 245; 345g+ : U3 ) U2 6j42211 : C3 ) U2

5-player, decisive (4)

3j11111 (M5;3) :M4;3 ) U1 4j22111 : 4j2111) U1; U2 ) U2 ) U1

4j31111 (C5) : U4 ) U1; C4 ) U1 5j32211 : 5j2211) U1; 5j3211) U1; 5j3221) U1

6-player, non-decisive (19)

f1234; 156; 256; 356; 456g+ : U4 ) U2 9j633111 : C3 ) U3

6j222211 :M4;3 ) U2 f123; 1456; 2456; 3456g+ : U3 ) U3

8j622211 : C4 ) U2 8j441111 : U2 ) U4

8j442211 : U2 ) U2 ) U2; U2 ) 4j2211 6j331111 : U2 )M4;3

f12; 134; 156; 23456g+ : 5j3211) U2 8j443111 : U2 ) C4

f123; 124; 156; 256; 3456g+ : 5j2211) U2 10j553211 : U2 ) 5j3211
10j644211 : 5j3221) U2 10j552211 : U2 ) 5j2211
8j422211 : 4j2111) U2 10j553221 : U2 ) 5j3221
9j633211 : C3 ) C3 8j442111 : U2 ) 4j2111
f123; 145; 146; 245; 246; 345; 346g+ : U3 ) C3

6-player, decisive, with #P2 � 2 (3)

6j332111 : U2 ) U3 ) U1 6j422111 : C3 )M3;2

f123; 145; 245; 345; 146; 156; 246; 256; 346; 356g : U3 ) U2 ) U1

Table 7. LD games for small n.
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Some games have several decompositions. In some cases one can split a component

further, as in 8j442211, and in others one can divide a non-homogeneous player set in
di¤erent ways, as in 3j2111. The latter case shows that, unlike game sums and products,
there is no unique lexicographic factorization into �prime�games.

Section 6. Conditions for decomposability

Theorem 4. A proper game with a veto player is not LD.

Proof: Assume that G has a veto player v and a decomposition G1 ) G2. Then v 2 P1;
otherwise the coalition P1 could win in G without v. The coalition P1 � fvg blocks in G1,
since otherwise v would be a dictator, violating the non-triviality requirement P = P1 [ P2.
Since (P1 � fvg) [ P2 blocks in G1 and wins in G2, it wins in G, contradicting the premise
that v has a veto. �

The next theorem shows that any decisive game of more than one player is LD and

that weighted majority games have an especially easy representation.

Theorem 5. Let G be a decisive game with n � 2, let i 2 P (G); and let G�i be the
(n� 1)-person game whose minimal winning coalitions are those of G omitting any

containing player i. Then G = (G�i ) fig+). Let G = kjw be a decisive weighted majority
game and let w�i be the weight vector w with wi omitted. Then G = (kjw�i ) fig+):

Proof. Since G�i and kjw�i are non-empty, monotonic and proper, the compositions are
well-de�ned. Regarding the �rst claim, G being decisive and a coalition blocking in G�i
imply that it is the player left out of G�i who renders the coalition non-blocking in G.

Similarly in the second claim, failing to attain the quota k in kjw�i means that the
dropped player holds the weight that would put the coalition over the quota. �

Theorem 6: Given that a proper simple game G is anonymous, it is LD if and only if it is
decisive and n � 2.

Proof: Given anonymity, it is clear that decisiveness and two or more players imply LD,
since G can be expressed G1 ) U1; with G1 constructed as in Theorem 5. To show the
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other direction of implication, assume that G = (G1 ) G2) is anonymous with n � 2 but
not decisive, to generate a contradiction. This implies that G2 is also non-decisive. For

i = 1; 2 de�ne wi = minf#S : S 2 Gig and bi = minf#S : S 2 Big. We proceed in several
steps.

1) Let T1 2 bB1 and � be an automorphism of G. If �(T1) � P1 then �(T1) 2 bB1:
Indeed, choose T2 2 bB2 such that #T2 = b2. Then T1 [ T2 2 bB. Hence �(T1) [ �(T2) 2 bB:
As �(T1) � P1 and #(�(T2) \ P2) � b2; we may conclude that �(T2) � P2. Hence

�(T1) 2 bB1:
2) We now show that w1 � b1 + w2. Let S1 2 bG1 such that #S1 = w1, let i 2 S1 and

j 2 P2:There exists an automorphism � of G such that �(i) = j. Since �(S1) 2 bG; it follows
that w1 � b1 + w2:

3) We now claim that for every k 2 P2 there exists S2 2 bG2 such that k 2 S2 and
#S2 = w2: Let eS2 2 bG2 with #eS2 = w2; ek 2 eS2 and T1 2 bB1 such that #T1 = b1;

T1 [ eS2 2 bG: Let � be an automorphism of G such that �(ek) = k: By 2),

S2 = �(T1 [ eS2) \ P2 has all the desired properties.
4) Let, again, S1 2 bG1 such that #S1 = w1, let i 2 S1 and j 2 P2: There exists an

automorphism � of G such that �(i) = j, �(S1) \ P1 2 bB1: Let T1 = ��1(�(S1) \ P1): By
1), T1 2 bB1: We distinguish now the following cases:

4a) For some k 2 P2; �(k) 2 P2: By 3) we may choose S2 2 bG2 satisfying #S2 = w2

and k 2 S2: T1 [ S2 2 bG; hence �(S2) 2 bG2. But this implies that �(S1) and �(S2) are
disjoint winning coalitions of G2, a contradiction.

4b) �(P2) � P1. Choose T2 2 bB2. Then T1 [ T2 2 bB; but �(T1) [ �(T2) � P1; which is

impossible. �

Section 7. Decomposability and equality

A central issue of democratic theory is how citizens can participate in their governance

in a way that is both equitable and e¢ cient. On considerations of pure democracy every

issue should be debated by everyone, but limitations of time mean that most decisions are

assigned to elected leaders or bureaucrats. Lexicographic systems can save time since they

often bypass some of the players, and this section discusses whether they can be designed
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to be equitable as well. The mathematical interpretation of equitability will be anonymity,

that all players have the same role in the game. This is very strict criterion and weaker

ones like assigning equal power according to some measure would be easier to satisfy. Note

that "equitable" is generally di¤erent than "fair", since certain parties sometimes have a

right to a special role, so this analysis would be relevant only when parties were considered

a priori equal.

The problem is to �nd games that are both LD and anonymous. One method starts

with two anonymous games, one of them decisive and the other LD, and forms a single LD

anonymous game. Composition by the quotient method is de�ned as follows. Let G be a

game with P (G) = f1; :::ng and let Hi; i = 1; :::n; be games with disjoint player sets. The

composition game using quotient G and components Hi is G[H1; :::Hn] where

S 2 G[H1; :::Hn] i¤ there exists T 2 bG such that S 2 \i2T Hi (Shapley, 1967). A coalition

wins in the large game if it wins in a winning set of component games, as if the latter were

individual players.

Proposition 7: Let G be LD and representable as (G1 ) G2); with P (G) = f1; :::ng,
P (G1) = f1; :::kg and P (G2) = fk + 1; :::ng: If Hi; i 2 P (G); are decisive games with
disjoint player sets then G[H1; ::: Hn] = (G1[H1; :::Hk]) G2[Hk+1; :::Hn]): If Hi are

isomorphic to each other and G and H1 are anonymous then G[H1; :::Hn] is anonymous.

Proof: To prove the �rst claim let S 2 G[H1; :::Hn]: Then there exists T 2 bG such that

S 2 \i2T Hi. If T 2 bG1; then S 2 G1[H1; :::Hk]: Otherwise T = B1 [ T2, where
B1 2 bB(G1) and T2 2 bG2: As S 2 \i2B1Hi; it is blocking in G1[H1; :::Hk]: As S 2 \i2T2Hi;

it is winning in G2[Hk+1; :::Hn]: Hence S is winning in G1[H1; :::Hk]) G2[Hk+1; :::Hn]:

Conversely, let S 2 G1[H1; :::Hk]) G2[Hk+1; :::Hn]: If S 2 G1[H1; :::Hk] then

S 2 G[H1; :::Hn]: If S = eB1 [ S2 where eB1 is blocking in G1[H1; :::Hk] and

S2 2 G2[Hk+1; :::Hn]; then there exist B1 2 bB(G1) and T2 2 bG2 such that
S 2 (\i2B1Hi) \ (\i2T2Hi). (Here we use the assumption that H1; :::Hn are decisive.) As

B1 [ T2 2 bG , then S 2 G[H1; ::: Hn]:

For the second claim, which was noted by Loeb and Conway (2000, 401), let fij be an

isomorphism between Hi and Hj. For every �1; �2, automorphisms of G and H1
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respectively, we de�ne � = �(�1; �2) : [ni=1P (Hi)! [ni=1P (Hi) by the following rule: let

j 2 P (Hi); then �(j) = f1;�1(i) � �2 � f�11i (j): As � is an automorphism of G[H1; :::Hn] that

game is transitive. �

A simple application of this proposition takes the quotient as M3;2, which has the

decomposition M3;2 = (U2 ) U1), and also uses M3;2 as component games. This produces

the identity M3;2[M3;2; M3;2; M3;2] = (U2[M3;2; M3;2] )M3;2); which can be seen either as

three subcommittees voting simultaneously or as two voting and the third committee

resolving ties. By construction not only is the composition game anonymous but so are the

two lexicographic components.

Another way to �nd decompositions of anonymous games is to start with any decisive

anonymous game and decompose it. (Theorem 6 states that decisiveness is necessary and

su¢ cient in this context.) There are many such starting games and for the special interest

of their simplicity we look at only those that are not only anonymous themselves but yield

anonymous components. The simplest examples are decisive majority games, so that

M7;4 = (M6;4 ) U1) for example. Another instance involves the 7-player Fano game of

Figure 2 (von Neumann and Morgenstern, 1944). Deleting the point in the center of the

triangle produces a structure equivalent to the six-person Octahedral Game Oct6; de�ned

as the game with players at the vertices and with minimal winning coalitions as the four

faces shaded in the �gure. The latter game is proper since every pair of shaded faces

intersect, and it is clearly anonymous. Thus Fano7 = (Oct6 ) U1): The operation can also

be understood from the opposite direction, as a composition starting with Oct6 and adding

a seventh player in the middle of the octahedron, who wins by combining with any two

diagonally opposite players. Since the diagonally opposite pairs are the only minimal

blocking coalitions of Oct6 the new game is decisive, and itcan be veri�ed to be the Fano

game.

A third such example starts with the game whose players lie at the vertices of a

pentagon and whose minimal winning coalitions are any three in a row. It can be called

Pent5. It is not decisive, since two non-adjacent players can block. Adding a sixth player

who wins in combination with any of the blocking pairs generates

f123; 234; 345; 145; 125; 136; 146; 246; 256; 356g+. This is an interesting game �rst
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Figure 2: Fano7 decomposes to the Octahedral game then the one-player game.

identi�ed by Gurk and Isbell (1959) as the unique smallest game that is anonymous and

decisive with an even number of players. A representation that brings out its anonymous

character was o¤ered by Zvonkin (reported by Loeb and Conway, 2000) who put the 6

players at the 12 vertices of a icosahedron with diagonally opposite vertices assigned to the

same player and de�ned the minimal winning coalitions as any three players on the same

(triangular) face. Accordingly it can be called the six-player icosahedral game Icos6, and

we have Icos6 = (Pent5 ) U1):

A larger example involves the game based on the 11-point Steiner system St(4; 5; 11),

which is unique for its parameters. It has 11 players, 66 minimal winning coalitions of 5

players each with the property that any 4-tuple or players appears exactly once. It

decomposes as St(4; 5; 11) = (G1 ) U1) where G1 has minimal winning coalitions based on

a 10-player design: 36 sets of 5 players each in which each triple of players appears exactly

three times.

Anonymous decisive games like these, that decompose as G1 ) U1 with G1
anonymous, are relatively few because their automorphism group must satisfy a restrictive

property. A game is said to be k -transitive if for any two ordered k-tuples of players there

exists an automorphism carrying the �rst k-tuple into the second. Clearly, for k � 2
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k-transitivity implies (k� 1)-transitivity, and 1-transitivity is just anonymity. According to
the proposition below the operation described here requires at least 2-transitivity, since

separating a player from a game that is not 2-transitive, like Pent5, distinguishes some of

the players left behind and the �rst component will not be anonymous.

Proposition 8. Let G be an anonymous proper game that is LD as G1 ) U1. Then G1 is

anonymous if and only if G is 2-transitive.

Proof : Let G�s automorphism group be (�; f1; :::ng), where � are permutations that act
on the player set f1; :::ng: This has a subgroup (f� 2 � : �(n) = ng; f1; :::ng), and the
group (�1; f1; :::n� 1g); de�ned as the latter�s restriction to f1; :::n� 1g will be G1�s
automorphism group. The theorem is true if the following holds (where transitivity has the

obvious meaning applied to groups rather than games): if � is 1�transitive then �1 is

1-transitive if and only if � is also 2-transitive. The forward direction of the implication

was shown by Ledermann (1973). To show the backward direction note that the

2-transitivity of G implies that any pair (i; n) and (j; n) both lie in some orbit, which

implies G01s anonymity. �

An enumeration of small anonymous decisive games (Loeb and Conway, 2000) shows

how constraining 2-transitivity is. For n = 1 to 12 there are 57,317 types of such games up

to isomorphism but only 11 of them are 2-transitive. They are the six simple majority

games with odd numbers of players, as well as the three games just discussed - the

Icosahedral, Fano and Steiner quadruple system games - and �nally two 10-player games,

each of which has two non-isomorphic kinds of winning coalitions and so is more

complicated than the previous ones. Thus the search yields a few interesting types but

stipulating that the components be anonymouse is quite restrictive.

Section 8. Lexicographic composition with deference.
A lexicographic system can give more relative power to some parties, which is

justi�able when they are experts or they have a normative claim to be making the decision.

For example, expertise and legitimacy are both signi�cant in the design of arbitration
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procedures, since the principal parties should know better what is good for them and they

have a special right to make a decision about their lives. In the US presidential case ties in

the Electoral College are broken by the House of Representatives. While the power indices

for the combination of the two bodies do not seem to have appeared in the literature, it

seems likely in light of Section 4 that the former body has far more power from possessing

the �rst move and having a decisive rule. The arrangement plausibly re�ects a greater

right of the Electoral College to choose a president because it was selected by the citizenry

just for that purpose.

The way to confer more power is to put a group in the �rst position and make that

game relatively decisive. There is an irony in this, however: suppose the �rst game requires

a 2/3 majority, and that a coalition achieves only 60% of the �rst group and blocks in the

second. Even though the �rst group has expressed a preference this fact is discarded and

the result is left undecided. If the �rst group has a special claim to decide, then the rules

should give them some degree of deference after a block in the second group. A system

that includes such deference was used at the 1984 Pan-American Games (Shapley, n.d.).

The New York Times reported that an American boxer was �grim and ba ed�about why

he had lost the match (Litsky 1984). The rules used were: a main panel of �ve expert

judges sat at ringside and voted for one �ghter or the other. A 5-0 or 4-1 vote settled it but

a 3-2 split sent the matter to another �ve-person panel where a majority of 5-0 or 4-1

settled it. However a 3-2 split in either direction in the back up panel gave the match to

whichever �ghter had won 3-2 in the �rst panel.

This kind of rule can be de�ned using the lexicographic operator. A game of

lexicographic composition with deference is de�ned as a proper simple game expressible as

G1 ) G2 ) G01 where G1; G2; G
0
1; 2 GPr, P (G1) \ P (G2) = ? and G1 � G01. The boxing

rules are then M1
5;4 )M2

5;4 )M1
5;3 where the superscripts specify the player sets,

P1 = f1; 2; 3; 4; 5g being the �rst set of judges and P2 = f6; 7; 8; 9; 10g the backup.
The following proposition indicates another way of expressing such games. Its proof is

straightforward.

Proposition 9: If G is a game of lexicographic composition with deference, representable

as G1 ) G2 ) G01; then G = G1 [ (G2 ) G01).
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The deference construction was meant to generate anonymity. In the boxing rules the

�rst group has 68% of the power, according to the Shapley-Shubik index. The method was

designed for contexts where fairness requires inequality, but we can still ask whether such

rules can be anonymous. Indeed one example are:U13 ) U22 )M1
3;2; which is equivalent to

M5;3; and M1
5;4 ) U22 )M1

5;3; which is M7;4. (The player sets are f1; 2; 3g and f4; 5g in the
former, and f1; 2; 3; 4; 5g and f6; 7g in the latter.) These two representations are instances
of a general rule stated in the next proposition. A decisive majority game Mn is de�ned as

one with an odd number n of players and winning coalitions of size (n+ 1)=2. Such a game

can be decomposed as lexicographic sequences with deference, but the particular way noted

involves separating only two players.

Proposition 10. For n � 5 and odd, Mn = (M
1
n�2;(n+1)=2 ) U22 )M1

n�2); where

P1 = f1; 2; ::: n� 2g and P2 = fn� 1; ng:

Proof. The right hand side has three types of minimal winning coalitions: n�2C(n+1)=2
coalitions of (n+ 1)=2 players of P1, who win in the �rst component; n�2C(n�1)=2 coalitions

of (n� 1)=2 players of P1 who block in the �rst component and 2 players from P2 who win

in the second; 2 nC(n�1)=2 coalitions of (n� 1)=2 players of P1 who block in the �rst
component and win in the third, and 1 player in P2 who blocks in the second. The three

groups are disjoint and their numbers sum to nC(n+1)=2, which is the number of distinct

coalitions of size (n+ 1)=2;which de�ne the simple majority game. �

Many real decision systems are vaguely like this in that they are �almost�

lexicographic. Even when the �rst group is blocked its views are not completely discarded.

Under �nal o¤er arbitration a negotiation failure sends the decision to an arbitrator who

must choose between only two outcomes, those nominated by each negotiator. In the US

presidential system, the House of Representatives must choose from the three candidates

who received the highest votes in the Electoral College. Often higher courts have to take

the factual judgements of lower courts as given and can reverse them only for legal error.

These systems favor the �rst group by letting it limit the range of choice, but since this

goes beyond the dichotomy of outcomes of simple games, they are more readily modeled in

the extensive form (e.g., Moulin 1983).
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