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Abstract. Consider X = Z;io ci€k—j, k > 1, where ¢; are constants and &; are iid
random variables belonging to the domain attraction of a strictly stable law with index 0 <
a <2 Let S, = Zle Xj. Under certain conditions on ¢;, it is known that for a suitable
slowly varying function x; (n) and for a suitable constant 0 < H < 1, (nH K1 (n))_1 Sint) =
to a fractional stable motion (indexed by H). In addition, it is known that if f(y) is
such that [ (f ()] + |f (y)|) dy < oo, then n=(~Mxy (n) Sp_, f(Se) = L [, f (y) dy,
where Lf is the local time of the fractional stable motion at = upto time ¢.

In this paper we obtain three further results, motivated by asymptotic inference for cer-
tain nonlinear time series models. First, we show that if in addition ffooo f (y)dy =0, then
when 1/3 < H < 1 (which probably cannot be relaxed), /n=0-Hr; (n) Y7, f(Sk) =
W\/m, where W is standard normal, independent of LY, and b is a constant having an
explicit expression in terms of the distributions of Sg, £ > 1. (A continuous time version
of this result holds also.)

Now let, for v > 1, wy, = Zf:k_yﬂ d—;n; where (§;,1;),—00 < j < 00, are iid with ¢;
as before and E [n;] = 0, E'[n?] < oo and F[|n&]] < co. Then if 1/3 < H < 1 as above
but possibly [*° f(y)dy # 0, we show that\/n=0=Hk; (n) 327, f(Sp)wr => W+/b*L0.
The constant b* in the limit will be similar to that of b in the first result.

It is further shown that n=0 " ky () Y01 F(Sk, Skt1s oo Skr) = LY [7_ f (@) d for
all0 < H < 1 and for all suitable f(zo, ..., z,), 7 > 1, where f. (z) = E[f(x,x + S1,...,x + S,)].

These convergencies are also shown to hold jointly with certain other random quantities.
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1 INTRODUCTION

Consider a sequence &, —00 < j < 00, of iid random variables belonging to the domain
of attraction of a strictly stable law with index 0 < o < 2. We recall that this is equivalent
to the statement that for a suitable slowly varying function x (n),

[n1]

t»—> n'/%k _IZ@ 19 7 , >0, (1)

where {Z,(t),t > 0} is an a-stable Levy motion, that is, has stationary independent

increments such that, for each 0 < ¢t < oo,

—tlu|*(1—if sign(u) tan( 7)) if a#1
Ul ¢ o
E[e Z (t)] = —t|ul i
e u lf o = 1

with |3] < 1. (Here and in the rest of the paper, the notation 4 signifies the convergence
in distribution of random processes in the sense of convergence in distribution of all finite
dimensional distributions.) For the details of the above statement, see for instance Ibrag-
imov and Linnik (1965, Chapter 2, Section 6) or Bingham et al (1987, page 344.). Note
that this definition of strict a-stability for the case @ = 1 differs from the usual one in
that we take the skewness parameter  to be 0. When o = 2, Z5(t) becomes the Brownian
Motion with variance 2.

In addition, in Theorems 1 and 2 below we shall also assume that
When o =2, E[§]=0and E [£]] < cc. (2)

Now consider the linear process
Xp=> ¢y, k>1, (3)
5=0

where §;, —o0 < j < 00, are as earlier with index 0 < o < 2, and ¢;, j > 0, are constants.
Let

k
Sk=>_X;.
j=1

Under suitable conditions (specified in Section 2 below) on the constants ¢; it is known

that for a suitable H, 0 < H < 1, and for a slowly varying ; (n) the process

(k1 (1)) " Sty 225 e (1),



where the limit {A, g (t),t > 0} is a Linear Fractional Stable Motion (LESM). It is defined
by

Aan(t) =a / i {(t _ ) (—u)H—W} Zo(du) + a /O t (t — )"V 7, (du)

—00

it H+# 1/a, and
Aon(t)=2,t) itH=1/a

where a is a non-zero constant and {Z,(t),t € R} is an a-stable Levy motion, taken to be
Z(t) as defined earlier for 0 < ¢t < oo, and for —oo < t < 0, it is taken to be Z,(t) = ZX(—t)
with {Z*(u),0 < u < 0o} an independent copy of {Z,(u),0 < u < co}. See Samorodnitsky
and Taqqu (1994) for the details of LFSM.

Note that when H = 1/a, the restriction 0 < H < 1 reduces to 1 < o < 2. When
a = 2, the LFSM reduces to the Fractional Brownian Motion.

Now let f (y) be a function such that [ (|f (y)| + | f (y)]Z) dy < oo. Then, under certain
further restriction on the distribution of &;, it follows from Jeganathan (2004a, Theorems
2 and 3) that

e ()Y (50 = 28 [ @,
k=1 -

where L7 is the local time of the LFSM A, y(t) at x upto the time ¢. See Jeganathan
(2004a) for the existence and other details of the local time of the LFSM.

In this paper the first main result (Theorem 1 in Section 2) includes the result that if
the restrictions

/If(y)|idy<oo,i=1,2,3,4, / lyf ()] dy < oo, (4)

/wf@ﬁw—O, (5)

and .
- <H<1
g <M<
hold, then
n=0=Mky (n) Y f(Sk) = Wy /bLY (6)
k=1

where W has the standard normal (0,1) distribution independent of L, and b is a non-

negative constant having an explicit expression in terms of the distributions of Sy, k > 1.
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We remark that the restriction % < H < 1 probably cannot be relared because it cannot
be relaxed in the continuous time version of (6). (We shall briefly indicate this continuous
time version in Remark 3 below in Section 2.)

This result is known for the random walk case Si, = Zle &, (that is, the case ¢; = 0 for
all j > 1, ¢g = 1), see Borodin and Ibragimov (1995, Theorem 3.3 of Chapter IV). For the
symmetric Bernoulli random walk case, it was originally discovered by Dobrushin (1955).
But note however that many of the structural simplifications available in the random walk
case (for example the fact that S;,x — Sk is independent of Sy and has the same distribution
as that of S;) are not available for the present case.

Next let, for some integer v > 1,

k
Wy = Z dp—inj = e + ding—1 + ... + dy_1Mp—p41, (7)
j=k—v+1

where (£;,7;), —00 < j < 00, are iid (¢; are as before) with
Elm]=0, E[nf] <oco and E[mé&]|] < occ. ®)

Then the second main result (Theorem 2, Section 2) will include the convergence

\/n~ =Mk (n) i f(Sk)wr, = W /b*L? 9)
k=1

where f(y) satisfies all the conditions in (4) but now (5) need not hold, that is, possibly

/_:f(y)dy#o-

The constant b* in the limit will have the form similar to that of b in (6).

As far as we can determine, Theorem 2 has not been known previously, even for the
random walk situation Sy = Z?Zl & with wy = 7.

Note that the requirement E [|7:&1]] < oo in (8) implicitly requires certain moment
condition on &;. It is satisfied when a = 2 because then E [¢}] < oo (see (2); E [n}] < oo

already by assumption). It is also satisfied, using Cauchy-Schwarz inequality, when
E[|n1|ﬁ} < oo for some 1 <y < a when 1 < a<2.

The convergence (9), which is needed in obtaining the asymptotic behavior of least
squares or similar estimators in certain nonlinear time series models (Jeganathan and

Phillips (2006¢)), is one of the primary motivations of the present investigation. We identify
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the close relationship between the convergence results (6) and (9). Though unfortunately
(9) is not directly deducible from (6), we shall see that, once the relationship has been
identified, its proof will use similar ideas involved in (6), and in fact some of the steps can
be transported or deducible from those of (6).

As the third main result (which in some form will also be required in obtaining (6) and
(9)) we show, when 0 < H < 1, that n='y, >, f(S1, Sty ooy Sigr) = LY [7 fi () dx
where f, (z) = E [f(x,x + S1,...,x + S;)]. We note that the conditions imposed on f(xo, ..., x,)
exclude the limits of the functionals such as the number of level crossings of Z?Zl X; for
the treatment of such functionals see Jeganathan (2004b).

The plan of the paper is as follows. The required assumptions as well as the statements of
the main results will be stated in Section 2, where it is also noted that the convergencies (6)
and (9) can be related to a form of a martingale CLT. (Such a relationship to a martingale
CLT is implicit in Borodin and Ibragimov (1995) though the methods employed there are
tied in many ways to the iid structure of the random walk case S = Z§:1 &; treated there.)
The proof of the Theorems 1 and 2 will then consists of the verification of the conditions
of this martingale CLT, which verification will be done in Sections 3 - 5.

Notations. In addition to the 22 introduced earlier, the convergence in distribution
of a sequence of random variables or random vectors will be signified as usual by =>.

As above, L? will stand for the local time of the LFSM A, x(t) at = upto the time ¢.
Throughout below we let

(N =FE [6“51] .

For any Borel measurable function f(y) with [ |f(y)|dy < oo, f()\) stands for its Fourier

transform, that is,

Fo) = / N (y)dy.

, T, ifj>0
9(j) = - L
0 if 7 <0,

We let

where the constants ¢; are as in (3) with ¢y = 1.

For any real valued function h (y) on R¥ we define Mj, ,(y) = sup{h(u) : |u —y| < n}
and mp,(y) = inf{h(u) : [u —y| < n}.

E stands for the conditional expectation given the o-field o (§;; 7 <1).

The normalizing constant b, = n'/*k (n) (where x (n) is as in (1)) will be used exclu-

sively in the sense of (49) below. Similarly 7, will be used in the sense of (14) or (50)



below. Throughout the paper the notation C' stands for a generic constant that may take

different values at different places of even the same expression in the same proof.

2 THE MAIN RESULTS AND THE RELATION TO A MAR-
TINGALE CLT

One of the following mutually exclusive conditions will be imposed on the coefficients

c; of the process X, where recall that ¢y = 1.

(A1) (The case H # 1/a, 0 < H < 1). ¢; = jH17Veuy(j), with H # 1/a, 0 < H < 1,

where u(j) is slowly varying at infinity, satisfying
chzo when H —1/a < 0. (10)
j=0
In addition, there is an integer [y > 0 and constants ¢; and ¢y such that
u(l+ 1)
u(l — j2)
(A2) (The case H =1/a, 0 < H <1). > 72 [c;| < ooand Y 77 c; # 0. In addition

0< < < ¢y forall 0 <j,jo <[I/2] and [ > . (11)

sup |j¢;j| < oo. (12)
jz1
We note that the restriction (11) is automatically satisfied if u(j) is monotone in j, be-
cause of the assumption of u(j) being slowly varying. For instance if u(j) is nondecreasing,
u(l+j u(2l) u(2l
then 1 < ungﬁ; < ((1/2) when 0 < ji,jo < [1/2], where (1/2)) — 4 as | — oco. (We do not
know if the monotonicity of u(j) can be assumed without loss of generality, in which case

the restriction (11) then holds automatically.)

Note that if (10) is violated, then the case ¢; = j#~1=Yy(j) with H — 1/a < 0 comes
under (A2). Also it is implicit that u(j) # 0 for all sufficiently large j.

Remark 1. A motivation of the condition (A1) is what has been called a Fractional
ARIMA model with stable innovations, a detailed discussion of which can be found for
instance in Samorodnitsky and Taqqu (1994, Section 7.13, page 380). In a simplest case of
this model, (3) takes the form

Xp=(1- = Z d) B¢, = ch (—d) &k—; (13)

where B is the back-shift operator B& = ;1. Here we have used the formal expansion
(1-— B)fd = Z;io ¢j (—d) B?, so that using Stirling’s approximation,

I'(j+d) Loy :
~ Fd+£0 —1
T(ArG+1) T ®/7 ! 70,—1,

cj(—d) =
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where I' (.) stands for the gamma function, and ¢; (—d) =0 for j > dif d =0,—1, ....
Hence if we take H = d + X, the condition (A1) is satisfied, including (10) because
H — 1 <0 is the same as d < 0 and hence

> gi(-d)y=(1-2)¢ =0 (d<0).
=0 =1
In addition, when 0 < H < 1, the series (13) converges with probability one (see Samorod-
nitsky and Taqqu (1994, Theorem 7.13.1, page 381)). H
Now let

nfu(n)k (n) if (A1) is satisfied

14
(Z;io cj> nt/k (n) if (A2) is satisfied, 14

Yn =

where £ (n) is asin (1) and u(n) as in (A1). Then it is known that when (A1) is satisfied, the

process ¥, * S Eiid Aon(t), H # 1/a, and similarly when 1 < o < 2 and (A2) is satisfied,

Yo St Eid Za(t). (See for instance Kasahara and Maejima (1988, Theorems 5.1, 5.2 and

5.3)), Astrauskas (1983) and Avram and Taqqu (1986).) In view of our convention that
Zo(t) = Mg 1/a(t) when 1 < o < 2, the preceding statements will be combined in the form

_ fdd
Tn ls[nt} — Aa,H(t)7

with the understanding that when (A2) is satisfied the limit is Z,(t) with 1 < a < 2.
The statement (I) of Theorems 1 and 2 below will assume (recall ¢ (A\) = F [¢1] )

what is called the Cramér’s condition

lim sup |[¢ (V)] <1, (15)

|A|—o0

in addition to further restrictions on on f(z). To introduce them, for any real valued

function A (y) we define

Myy(y) = sup{h(u) : [u—yl <n},  may(y) =inf{h(w) : [u—yl <n}.
Then we shall require that there is a 79 > 0 such that for all 0 < n < nj

/(Mfm(x) —my(x))de < Cln|*  for some 0 < d <1, (16)

I/Mﬁm@Mm<m,i:LZ&& (17)



and

/(Mf,n(a;) — mf,n(:zc))2 dr —0 asn— 0. (18)

(We note that it can be seen that if f(x) is compactly supported Riemann integrable
then both (17) and (18) are the consequences of the condition [ Mg, (z)dz < o0.) In
the statement (II) of Theorems 1 and 2 these restrictions are removed, but only under

restrictions stronger than the Cramér’s condition (15). They are

/w (AP dX < o0 (19)
and

/|/\|3 |1 (M| dX\ < oo for some p > 0. (20)

Note that because |¢ (A)] < 1, (20) entails

/|¢ (AP dX < 0. (21)

(This is also implied by (19) for p > 2.) Also note that (21) entails the Cramér’s condition
(15).

Remark 2, on the restrictions (19) and (20). Though these restrictions are not
involved in the statement (I) of Theorems 1 and 2 below, we now indicate that from the
point of view of statistical applications indicated earlier, they are not very restrictive. The
restriction (19) entails that the Lebesgue density of the distribution of & exists (Kawata
(1972, Theorem 11.6.1)). If we denote this density by ¢ (z), then ¢ (A\) = @ () and, by
Plancherel’s theorem, [ |4/ (A)[>d\ = 27 [ | (x)]* d.

Now suppose that the preceding density ¢ (x) has a distributional derivative ¢’ (x) such
that ¢’ (z) induces a finite signed measure (which will in particular entail [ |¢' (z)|dz < 0o
). Then it can be shown that @ (\) = i’ (\) A=} where ¢ () is the Fourier transform of
(the signed measure induced by) ¢’ (z). (This follows from standard facts about Fourier
transforms and distributional derivatives, see for instance Rudin (1991).) In this case, in
addition to (19), (20) holds for p = 5 and hence for all p > 5. This is the case for instance
when ¢ () is suitably piecewise differentiable. As a simple example suppose that ¢ (z) =
%]I{mg 13, the density function of the random variable uniformly distributed over the interval
[—1,1]. Then the corresponding distributional derivative ¢’ (z) = —3 (01 (z) — d_1 (2)),

where 0, is the Dirac delta function. W



We are now in a position to state the results. Throughout below, and without further
mentioning, the requirements (A1) and (A2) are assumed to hold, and in addition the
requirement (2) is assumed to hold in Theorems 1 and 2 below but not in Theorem 3.

Theorem 1. Assume that 1/3 < H < 1. Let f(x) be Borel measurable such that (4)
and (5) hold. Then the following two statements hold.

(I) Assume that Cramér’s condition (15) hold and that (16) - (18) hold for f(x).
Further, let h(y) be Borel measurable such that [ <M|h|,n0(x) +M‘h‘2m(x)> dy < oo for
some no > 0 and [ (Mp,(z) — mp,(z))de — 0 as n — 0. Then

<$S[nt17%zh(5k),\/%2f(5k)> — (Aa,H(t),L?/h(y) dy, W bL?),
" k=1 k=1

where LY is the local time at 0 of Ny () as before, W is standard normal independent of

the process Ao m(t) and

0<b= %/)f(,u)‘z <1+2§;E [e_i“sq> dp < oo.

(I1) Assume that (19) and (20) hold. Further, let h(y) be Borel measurable such that
[ (|h(z)] + |h(x)|2) dy < oo. Then also the convergence in Statement (1) holds. N

We note that the requirements on the functions f (x) and h (z) in the statement (I) are
stronger than those in the statement (II) but the statement (I) assumes only the Cramér’s
condition (15). Also note that the marginal convergencies of 2% | h (Sy) in the preceding
statements are particular cases of those in Jeganathan (2004a, Theorem 2 and Statement
(ii) of Theorem 3), from where it also follows that they hold for all 0 < H < 1, that is, the
restriction 1/3 < H < 1is not required. Further, in view of the next remark, the restriction
1/3 < H <1 in Theorem 1 cannot probably be relaxed.

Remark 3 We note that the continuous time analogues of Theorem 1, in the forms of
generalizations of the appropriate results in for instance Papanicolaou, Strook and Varad-
han (1977), Yor (1983) and Rosen (1991), do not follow directly from Theorem 1. The
reason is that in the method employed in the present paper the central limit phenomenon
is involved at two different levels. One at the familiar level of the partial sum S}, itself, but
another at the level of the partial sum of f(S;) themselves. Despite this one would tend
to believe that suitable versions of continuous time analogues will hold. For instance, the
following continuous time analogue of Theorem 1 can be proved by adopting essentially the

same arguments of the present paper. If % < H <1 and if f (x) satisfies the requirements



(4) and (5), then
n—l_zH/ f(Aam(t))dt = W,/bLY
0

where W is standard normal independent of the process Ao g(t) and
1 00 oo 2 )
b= / / T B e8] dudt.
T Jo —00
This constant has an alternative form
b=2 [ [ EBIF @S @t Aun(t) ot
0 —o0

Now suppose that the distribution of A, g(t) is symmetric around 0 (which is not assumed
in the preceding statement), and let ¢ (|y|) be the probability density function of A, g(1).

Then it can be seen that the constant b has also the form

- —2c/2/°;f<x>|x—y|é—1f<y>dydas,

[ (oo ()

Note that ¢ is finite only when % < H <1

where

We shall present elsewhere the further details of the preceding statement, as well as the
asymptotic behavior of Ls* — LY as ¢ — 0, generalizing the results in Yor (1983) and Rosen
(1991).

Regarding these results, it may be noted that the restriction 1/3 < H < 1 cannot be
relaxed, as can be seen from the known regularity properties of L{ with respect to the
space variable x when L7 is the local time of the fractional Brownian motion (see Geman
and Horowitz (1980, Table 2)).

As noted earlier, Theorem 2 below has not been known previously, even for the situation
Sk = 2?21 & with wy = 7. Its possible continuous time versions in some specific forms

have also been unknown. WM
To state the next statement (recall g(j) = 3°7_, ¢;), define (the integer v is as in (7))
E |we tXi% 90| g wye—mZ;;(}(g(jw)—g(j))&u_]} ifr>v

P —
r (:u) E wywy+re—iu(zyig_1g(u+r—j)5u+r—j—zy;& g(j)ﬁu—j)] if1<r<uv,

and, letting g(j) = 0 for j <0,

o0

U, (1) = 11 U (= (9() —9(G =) ).

JELRV AT j ATV
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Theorem 2. Suppose that all the assumptions in either one of the statements (I) or
(II) of Theorem 1 hold, except that now possibly

/f(y)dy%O-

Let the sequence wy be as in (7) with ny, satisfying (8).

Then
1 n - n -

(7—5[@,7 S h(Sh), lZf(Sk)wk> — (AQH(t) L?/h( ) dy, W b*L0>
n k=1 k=1

where, with ®, (1) and Y, (1) as defined above,

OSb*:%/‘f(,u)‘z(E +ZZ(I> )d,u<oo

Note that in the case v = 1 (and hence wy = 1), we have for r > 1,
O, (0) U, (1) = E [me "] E [ o) =90)] H (= (9() =gl =) p) .
Jj=Lj#r
Also if we take 7, = 1, this reduces to @, (u) ¥, (1) = E [e7#5], as is to be expected.

Theorem 3. (I). Assume that (19) holds. Let f(xo,...,z,), r > 1, be such that

3
/|f L0y ey T | ) dzg...dx, < 0o, i=1,2, /(/|f L0y ey T | me) drg...dr,_1 < 0.

(22)

Then, for all0 < H < 1,

%Zf(shsl—&-ly---,sl-i-r) ﬁL?/ fv (x) dx
=1 —oo

where

fo(z) =E[f(x,x+ S1,....,c+ 5,)].
(II). The preceding convergence holds also when (19) is relaxed to (15), provided (22) is

assumed to hold when Mg (o, ..., z,) is involved, for some n > 0, in place of f(xo, ..., x,),

and
/(Mf}n(x(h vy @p) — Mg (X0, ...y ) dxg...dz, — 0 asn — 0.

11



As noted earlier, the restriction (22) excludes the situation such as the number of level
crossings of Z?Zl X, see Jeganathan (2006b) for the treatment of such functionals.

Note that the restrictions (20) and H > 1/3 are not involved in Theorem 3. Also
note that the limit in Theorem 3 involves f (z) only in terms of ffooo f« () dz. Further
note that in the case f(xg,...,x.) = fo(xo)...f- (x,), the conditions in (22) hold when
[1fi(@)]de <o0,i=1,2,1=0,...,r

RELATION TO A MARTINGALE CLT. We next relate Theorems 1 and 2 to a
martingale CLT. For this purpose, fix an integer [ > 2 and corresponding to Theorem 1

define, for each positive integer m,

gnmk - \/7 Z f (Sl) k > 17 (23)

Similarly, corresponding to Theorem 2 define (With w; as in (7))
nmk \/ In Z f(Sl)wla k 2 1’ (25)
k ! +l0

ni +l0 1

In these definitions we follow the usual convention that a sum is to be interpreted as 0 if it

is with respect to an empty index set. Note that

k=1

\/7;" 7S = 3 G+ R 29

k=1

We shall show that below (Lemma 9), for each I,

lim lim sup P Zank + S e] =0 foralle>D0, (29)

12



and therefore, the respective limiting behaviors of (27) and (28) will be the same as those
of Y00 CGame and >0 ¢k (For this same reason, and for notational convenience, the
dependence on [y is not explicitly indicated. )

In Sections 3 - 5 below we establish that there is an integer [; > 1 such that the following
facts hold (recall that E; stands for the conditional expectation given o (§;; j <1) ).

(R1) There is a nonrandom A (n,m) such that

Z ‘E[nu] [Cnmk]‘ < A(n,m)—0 asn — oo, for each m.
=1
(R2)

> Ep) [Gok] = 013

m
=
as n — oo first and then m — oo, where the constant b is as specified in Theorem 1.

Recall that the convergence in distribution of a sequence of distribution functions is

metrizable, for example by the Lévy distance (see for instance Loeve (1963, page 215)).

2

Then the preceding convergence means that the distribution of > 7" | E[n =y [Co ok

| con-

verges in such a metric to that of bL{ as n — oo first and then m — oc.

(R3)

lim lim sup ZE [Cﬁmk} =0.

m—0o0o n—oo

k=1
The next condition (R4) pertains only to the case a = 2. To state it define

7]

(R4) When a = 2 (in which case we have E [§] = 0 and E [£}] < oo, see (2))

m

Z ‘E[n%] [Cnkanmk” > 5] = 0 for each m and & > 0.

k=1

lim sup P

n—oo

e (R*1) - (R*2): In the case of Theorem 2, we shall verify the preceding conditions

with ¢*. . in place of Cumi, tn which case the corresponding conditions will be referred
to as (R*1), (R*2), (R*3) and (R*4).

13



Note that the preceding conditions involve iterated limits in the sense that the limits
are taken as n — oo first and then m — oo. To proceed further it is convenient to note
that they can be restated in an alternative form involving only the index n that goes to
oo. For this purpose recall that if i (n,m) is a nonrandom function of n and m such that

lim lim sup |k (n,m)| =0

m—0o0o n—o0

then one can find a sequence m,, T oo such that
h(n,my) — 0.

If G (n,m) is random, then note that G (n,m) % 0 as n — oo first and then m — oo, that
is,

lim lim sup P[|G (n,m)| >n] =0 for all n >0,

is equivalent to lim,, ., limsup,, ., £ [min (|G (n,m)|,1)] = 0, and therefore, taking h (n, m) =
E [min (|G (n,m)|,1)], there is a sequence m,, T co such that F [min (|G (n,m,)|,1)] — 0,
which is equivalent to

G (n,m,) 2 0.

Thus (noting that the convergence in (R2) can be restated in terms of a suitable metric),

(R1) - (R4) entail that there is a sequence m,, T co such that

=1 k=1
S Bt Gl | 20 (for a = 2) (32)
k=1
and
> B [Ginak] = 0L (33)
k=1

In the same way, the conditions (R*1) - (R*4) imply that (31) - (33) hold with (,,,,x replaced

We are now in a position to present the proof of Theorem 1, when (R1) - (R4) hold.

First, for convenience, we let
Cmnk = Cnmnkn Xmnk = Xnmnks k= 17 ceey My
Next, for the purpose of the proof, we

14



o cxtend the array (o k, 1 < k < my, to allk > 1, by taking {(m ks k = m, + 1, ...} to be

an array of iid Gaussian (0, W%ﬂ) random variables, independent of {£;; —0o < j < oo}.

Further, we use the notation E,, ; for the conditional expectation given the o-field

a(fj,jg[nanD ifi1<i<m,

F ot =
D o (g i< k] and Guama+ 1<K <) i > m,

Explicitly,
Emn’l[i|:E|: . ‘anli|

With this extension, (31) and (32) take the strengthened forms, for any 0 < v < 1,

(i)
> Bkt [Grokl| = 0, (34)
k=1

[mn*]
E [¢nok] =0, (35)
k=1

and

[mn]
Z |Emnyk_1 [Cmnkxmnk” & 0 (for o = 2) (36)
k=1

Now, define the martingale differences
¢ w = Gk — Bt (G, B =1,2, ...
with respect to the o-fields f,, 1, k = 1,2, ....It is easily seen, in view of (34), that
(35) and (36) hold with (i replaced by ¢, . (37)

In addition, if we define
q q
Tmn (Q> - Z Emn,k—l [|C;nnk‘2} - Z {Emn,k—l [Cfnnk] - (Emn,k—l [Cmnk])g} )
k=1 k=1

then, in view of (33) and (34) and because (, x, k = m, + 1, ... are iid Gaussian (O, n%ﬂ),
for any s > 1,

T, (sm) => bL) +5—1, s> 1. (38)

n
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Now for each fixed t > 0, define
T, (t) =inf{q > 1: Ty, (q) > t}.
Note that
T, (t) =m, it =T, (m,). (39)

We have
{Tm, ) <1} ={T, (1) >t} € Fmpia1, 1=1,2,..,

so that for each n and ¢t > 0,
Tm, (t) is a stopping time with respect to the o-fields F ,,, -1,/ = 1,2, ....

Note that for any positive integer .J, P [””#?) > J} < PI[T,,, (Jmy,) <t] and hence, in
view of (38),

my

—0 ifJ>t—1. (40)

We thus have shown, in view of (34) - (36), (40) and because m,, T oo,

Tm n

Z By k-1 [Gnnk) = 0, (41)
Ty (£)
Z Ernp k-1 [‘Cmnk’ } (42)

and

Ty, (£)

Z Ep, -1 |C;nnkank

] 50 (for a=2) (43)

Further, because of (35), (37) and (40),

2
B i (1)1 [\g;nn,fm”(t)\ } 0. (44)

Hence, because

Tmn (Tmn (t)) Z t Z Tmn (Tmn (t) — 1) = Tmn (Tmn (t)) - Emnﬂ'mn (t)—l |:|<;nn,7-m” (t) ‘2:| )

T, (T, (1)) 2 . (45)

16



Now let
Tmn (t)

= Z C?lnnk'

By making the convention that the sum ) ;™ m”( is empty when ¢ < 0, we may assume
for convenience that W, (t) is defined for all —oo < ¢t < oo. Similarly, let W (¢) be the
Brownian motion for 0 < ¢ < oo and W (t) = 0 for ¢t < 0. We then have

Lemma 4. Let W (t) be as above, and as before let Z,, (t) be the a-stable motion. Then,
for 0 < a <2 and for every M > 0 and every integer [ > 0,

[nt]

t— nl/% Z &, W, — (Zo (t) — Zo (=1) ,W (t)) in Dge [~1, M],
]——nl

where (k(n) as in (1) and) the processes W (t) and Z,, (t) are independent. Here “ = in

Dg2 [—1, M| " signifies the convergence in distribution in the Skorokhod space Dgz [—1, M].
Proof. The proof consists of reducing the situation to that of Jeganathan (2006a,

Theorem 1 and Remarks 5 and 8). First suppose that 0 < o < 2. Note that, with

ok = S G ((n) asin (1))

1/a
nifer (n) I=[nt=t]41
(] [nlzad] . . .
we have D ;7" Xmak = m > ="~ &;. Hence, using (1) and noting that [ is an
integer,
[mnt] [nt]
Y i 360
k=—mnl+1 jf—nl
Therefore, by (1),
[mnt]
dd
D ok 5 Za (1) ~ Zo (=)
k=—mnl+1
In addition, because = — 0,
sup P |Xm,k| > €] — 0.

—mpl+1<k<[my, M]

The preceding two facts will imply that the conditions (C1) - (C4) of Jeganathan (2006a,
Section 2.1) (with the stopping time k, (t) there taken to be [m,t] ) hold for the array
{Xmnk: k = —my (I4+1),...} (of independent random variables), with the limit B; = 0 in
Condition (C2), see Loeve(1963, Section 22.4, Central Convergence Criterion, page 311).

Here B; = 0 explicitly means Zk"i”_%nlﬂ 02 (1) 5 0forall L >0 whereo?  (7)is the
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truncated variance as defined in Jeganathan (2006a) or as in Loeve(1963, Condition (ii) of
the Central Convergence Criterion, page 311). It is clear that this implies, in view of (40),

[mnM]VTmn(M) 2 ( )&0

k=—mpl+1 X \T :

It is also clear from (41), (42) and (45) that the conditions (D1) - (D5) of that pa-
per (with the stopping time k, () there taken to be 7, (t) ) hold for the the array
{gnnk,k = 1,...}, with the limiting triplets (Aj, By, L}) such that A = 0 = L and

T () 0% (r) % Bi =t. Inaddition, using (33) - (35) and the fact S g [\g;nnkﬂ -
o B k-1 Ugmk‘z} + % (recall that {Cn,r;k=m,+1,..} are iid Gaussian
(0 i) ), it can be seen that 31" 52 () is bounded in probability.

T;IHS all the requirements specified incgggkanathan (2006a, Remarks 5 and 8) are satisfied.
This proves the lemma when 0 < o < 2.

In the case a = 2, (36) entails that the condition (E2) in Jeganathan (2006a, as modified
in Remarks 5) holds. Hence, similar to the case 0 < av < 2 above, the proof for this case
also follows. This completes the proof of the Lemma. W

We now come back to the proof of Theorem 1. Because Lemma 4 is true for every
[ > 0, it entails (keeping in mind the conditions (A1) and (A2), see Kasahara and Maejima
(1988))

(9 St Wa (8)) £25 (Aas (8), W (1))

where the processes W () and A, y(t) are independent. Further, in Section 5 (see the

Remark 4) below it is shown (or see Jeganathan (2004a, Proposition 6 and Lemmas 7 and

8)) that
mn , 2
Tn - ZEmn,k—l |:‘Cmnk :|
k=1

is approximated by a functional of the process ,, 'Sy, such that T), converges in distribution
if ' S Eiid Ao m(t). We then have

(Vo Sty W (£), To) L2 (Aoia (1), W (1) , L) . (46)
(Here note that in general one does not have the convergence of ~;, 'S, in the Skorokhod
space.)

The next step is to obtain the convergence of (v, Sjug, W, (17,)), for which we shall
need to use, in addition to (46), the fact that the convergence of W, (t) takes place in
Skorokhod space (see the Lemma 4). To present the details, let, with ¢ a positive integer
and J > 0,

0= Teo < Tq1 < o Tgq-1 < Tyq = J

18



be such that

sup |7 — Tgi-1] — 0 as ¢ — oo.

1<i<q
Define
Tqi if Tqi <T,< Tq,i+1> 1=0,1,...q — 1,
n,q,J — .
J iftT, > J
Letting

T =bLY,
define T}, ; analogously. Now, taking 7, ,+1 = 00,
Wi (Tgs) < v} = Ul {Wa (14) < 0,7 < Ty < Tgi41}

where {W,, (7i) < v,74 <T,, < 7441} are disjoint, and hence, for 0 < uy < ... <y < 00

and for any reals d;,j =1,..., k,

P (WTL (Tn,q,J) S Uayr:ls[nuj} S d]aj - 17 7k)
= P( q -0 {W Tqi) S U, Tyi S Tn < qui+1,"}/nilS[nuj] S dj,j = 1, ,k})

= ZP o0 (T41) < 0,75 < T < Taits Vo Sy} S djyj = 1,00 k)

One can assume without loss of generality that 7,1, ...7,, are continuity points of 7. Then

(46) together with the preceding identity entail that
P (Wn (anJ) < Uerq;lS[nuJ-] < dj?j =1,.., k)

q
- ZP qu <U Tq1§T<qu+1,Aa’H<U,j) de,jzl,,k)
1=0

0

W(T,;) <v,Aou(u;) <dj,j=1,....k).

In other words, we have
-1 fdd
(Wn (Tn,q,J) » In S[nt}) - (W<Tq,J)> Aa,H(t)) .

(Note that Ty s is a function of L?, which, being a functional of A, g(t), is independent of
W (t) by Lemma 4.) In addition, because W, (t) = W (t) in the Skorkhod space D [0, M|
with W (t) € C'[0, M] for every M > 0, we have

lim lim sup P sup Wy (t) =W, (s)] >¢e| =0
h—0 n—00 [t—s|<h,t,s€[0,M]
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for all e > 0 and all M > 0. Hence

lim lim lim sup P[|W,, (Th4.0) — Wy (T),)| > €] = 0.

J—00 g—00 Nn—00

Similarly
lim lim P[|W (T,,) — W (T)| > ¢] = 0.

J—00 g—o0

It follows that
(Wn (Tn) ;77;1S[nt}) - (W(T>7 Aa,H(t)) :

Noting that 7,,, (T,,) = m, (see (39)) so that W, (T,)) = > ;") Gmnk, and in view of the
independence of the processes W (t) and A, g (t) so that the distribution of (W (T'), Aq.u(t))
is the same as that of (W\/bL(l), A, H(t)) where W is standard normal independent of the

process A, g (t) (recall T =LY ), the preceding convergence takes the form

(Z Cmnkv %ZIS[nt]> — (W bL?a Aa,H<t>> (47)
k=1

(Recall that > 7" Gnok = /2 > h_; f (Sk).) Now in Section 5 (see the Remark 4) below (or
in Jeganathan (2004a, Proposition 6 and Lemmas 7 and 8)) it is shown that 2= 7" | (S})
occurring the statement of Theorem 1 is approximated by a functional of the process 7, *Sp.
such that the former converges in distribution to LY [ h (y) dy if 7, ' Spuy B Ay m(t). Thus
the convergence (47) holds jointly with n='~, >} h(Sy). This being the conclusion of
Theorem 1, the proof is completed. M

3 SOME PRELIMINARIES

In this section we first present some preliminaries for the purpose of verification of the
requirements (R1) - (R4) and (R*1) - (R*4). In this section itself we shall illustrate the
intent of these preliminaries by verifying the conditions (R1) and (R*1).

To begin with recall the fact that & belongs to the domain of attraction of a strictly
stable law with index 0 < a < 2, in the sense of Section 1 above, means in particular (see
Ibragimov and Linnik (1965, Theorem 2.6.5, page 85)) that, for all u in some neighborhood

of 0,
e‘MGG(\uD(l—i,@sign(u)tan(%)) if &#1

Y (u) =E [e"] = { o—ulG(lu) if a=1

with |3] < 1, where G(u) is slowly varying as u — 0. In particular there are constants

n > 0 and d > 0 such that

[ (u)| < e” "Gl for all u| < 7. (48)
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In addition, if one lets
b, =inf {u>0:u"G(u) =n""},
then b « nG(b,') as n — oo, and in (1) one can take k(n) « Gé(bgl), so that we

henceforth assume for convenience that x (n) in (1) and the above b, are such that
2 (bY) = nak (n). (49)

See for instance Bingham et al (1987, page 344) for the details of these facts. Then note
that, (14) takes the form

nf=1/ey(n)b, if the condition (A1) is satisfied

(3°720¢j)bn  if the condition (A2) is satisfied.
The following result is essentially well-known, and we supply its proof for completeness.

Lemma 5. Let 1 be as in (48) and b, be as in (49). Let k; be integers such that for

some integer jo > 0 and a constant C' > 0,
k; > Cj  for all j > jo. (51)
Then for every 0 < ¢ < « there is a constant a > 0 such that
[ (A0; )™ < Cem™° for all |A] < by, j > 1. (52)

Further, if the Cramér’s condition limsup)y—eo [¢) (A)| < 1 holds, then for every 6 > 0
there is a 0 < p < 1 such that
sup [ (Ab; )| = sup |v ()| < Cp? forall j > 1. (53)
IA>6b; Il >3
Proof. According to (48), |¢ (Ab;")[™ < e G(A) for al) IA| < nb;. There-
fore we first recall a bound for b;*G (|A] bj_l) for all sufficiently large j.

According to Potter’s inequality (see Bingham et al (1987, Theorem 1.5.6, Statement

(i), page 25), for every d > 0 there is a B > 0 such that |(G;Ez; | < Bmax{(z/y)’, (x/y)~°} for
G%(fz?) < Bmax{|A|’,|A|”’}. Because max{|A|",|A| "’} =

IA]” if [A] > 1, it then follows from (49) that there is a j; such that

all z > 0,y > 0. In particular

b°G (IA|b;Y) > B A7 forall j > j; and A > L.
Therefore, by (48), for every 0 < ¢ < « there is a a > 0 such that
|0 (Ab; )| < et GINT) < omaNE for all 1< A < by, § >
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where j, = max (jo, j1) (jo as in (51)). On the other hand, if j < js,

Kz (/\bjl)}ﬁj < 1 = elnbilgmalnbil® < (rgaxe“'”bﬂc) e for all |\ < nbj, j < jo.
i<
Further,
|w ()\bj_l)lﬁj <l=eet <ee P if [N <1,5>1.

Hence the proof of the first part follows from the preceding three inequalities.
Regarding the second part note that the Cramér’s condition involved is equivalent to

the statement that for every 6 > 0, there is a 0 < 7 = 7(0) < 1 such that

sup [ (N)] <7 < 1.
[A[=6

Hence the second statement follows, completing the proof of the lemma. N

The following consequences of Lemma 5 will be used below. First, for any x > 0,

/A
/ A (b—)
{IAI<nb} l

using the Statement (i) of Lemma 5.

/2]
d\ < c/ IA"eMdN < O, (54)

Next let [y be such that for some 0 < v < 1, [[/2] —p > [lv] for all [ > [y, where p is
as in (20). Then, for any 6 > 0 and 0 < k < 3, using the Statement (ii) of Lemma 5 and

using (20),
A
o(0)

/ AP
{IA[>6b}
A
w(a)

< o / A"
{IA|>db;}

for some constant 0 < p, < 1.

(/2]
dA

P
aX = Cplbie / AT PN < Cols 1> 1, (55)

We shall also need to use the next inequality, which is a direct consequence of Holder’s
inequality, see for instance Hewitt and Stromberg (1965, page 200, Exercise (13.26)). For
convenience of reference we state it as a lemma.

Lemma 6. For any functions ¢; (u) : R¥ — R,i=1,...,q,

/ﬁl%(u)!dug ]i </|goi(u)|qdu);,q2 1.

By replacing |¢; (w)| by € (w)|*?|p; (w)] in this inequality, we also have
q q 1/q
Jrew e wlia<TT( [lewlawra) " az1 6o
i=1 i=1
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We now state one consequence of this, which will be used later. For this purpose note
that, when (A1) holds,

J
= ch ~ CjYey (5),  § — oo.

(Note that in the case H — 1/a < 0, the requirement » 22 jc; = 0 (see (10)) is invoked
here.) Therefore the requirement (11) on w (j) holds for g( ) also, that is, there is an
integer Iy > 0 and constants ¢; and ¢, such that ¢ (1) # 0 and

l
0<c < % <y forall 0<jy,7 <[l/2]
for all [ > Iy. This also entails that, recalling that v, = (¥=/*u(l)b; so that 5 |g( =
ZHE(/—:)'“(Z) ~ )%), there is an [y such that for all [ > [,
M
0<D <Dy for [[/2] <qg<. 57

Also note that, for p as in (20), there is an [y such that for some 0 < vy < 1,
—[l/2] —p>|[ly] foralll>l.

Then, for § > 0 such that D;'§ = with 7 as in the Statement (i) of Lemma 5, we have

for [ > Iy and k > 0,
(7)o

A
/{)\|S5bz}| | H
: ()
" (A%) ‘ d,  using |1 (V)| <1
l

)\I{
/{)\|S5bz}| | ; H
N =2 =0
" (A@) dA) by (56)
I

j=ll/2]+1
1+k A 1-1/2] ﬁ
J) e ()] o
(mofeny | \b

J=[/2]+1 9(i)b;
NEEL
< D;“[[AKD%} A" [ (b_z) dN<C, 1>, by (54) and (57). (58)
> 1

In the same way, for every § > 0,0 < x <3 and [ > I,
A
“(3)

IN

l

II(/ A"
{IAI<dbi}

j=[l/2+1

- ﬁ (‘g(;l)bz

IN

-1

. LA .
/ wIIw@m—ﬂwsc/ A
{IA[>0b:} =0 m {|)\\>D;1(Sbl}

1-[1/2]
d\ < Cp', 1>y,

(59)
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using (55), where 0 < p < 1. In addition, noting that ¢ (0) = 1 and |¢ (A)| < 1, for any

constants u;, vy, by such that ming<;<, |w;| > 0 and ming<;<;, |v;] > 0, we have for 0 <1 <y

w (ulﬁ) ' ‘f(m _ hl)) ) 2

< max /‘1/} wA vl/\ hl)‘d)\‘ < max

I<lp I<lo ]ulvl|

max
I<lp

o fwora [ |Fof o< aso

where we have used (19) and the fact [ ’f( ‘ d\ =27 [|f (2))* dz < oo,

In the context of the statements (I) of Theorems 1 and 2, as well as for the statement
(IT) of Theorem 3, under the Cramér’s condition (15), we shall use a certain smoothing
device. To state it, let u be a finite measure on R¥. Let 7 be a positive number and K, be

a probability measure on the real line R satisfying

Ky({o: ol <np) = 1.

Let Ry, ..., by be real valued functions on R such that the product M|, (21)...Mjn,| . (1)
is integrable with respect to p. (Here M}, ,(x), as well as my, () used below are as defined

earlier in Section 2.) Then clearly

> [ mpy gy (21) e, (T)d (% Ky %ok K ) (21, .0y Tp)

/h(wl)...h(:ck)du (1, ..y k) < [ Mpy g (@1) oo My () d (5 Ky (21, ... 681

where x stands for the convolution. The probability measure K, here will be chosen such

that its characteristic function l?n (M) satisfies

1Ky ()| < Cexp{—(n|A)"?} (62)

for all real A, where C is a constant (independent of 7). This is possible in view of Bhat-
tacharya and Ranga Rao (1976, Corollary 10.4, page 88), where K, is used extensively as
a smoothing device.

Now, similar to (59), we have for every x > 0 and for [ > I,

1) (03| (3)]

l
A"
/{A|>abz} H
ﬁ 1+k
Gowl) = (3) - @
n

7=0
24
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where we have used (62), together with ﬁ’ > Dy > 0, see (57). Note that (63) is true
for all [ > 1 because the left hand side is bounded by

R )\ ~ 1+k ~ 1+~
/ e <—) ‘ < C (—l> < Cploy! (J> for 1 <1<l
{IA> 00} n n

"
Similarly, because in addition ‘IA(” ()\)) < C and in view of (58), we also have, for every

k>0,

-1
/ AT v (g () i)‘ 'f{n (3> ' dA<C  I>1L (64)
{IA|<ob} =0 N N
It is important to note that (63) and (64) do not invoke the restrictions (19 and (20).
As a further preliminary, we next introduce a decomposition for S, which will be re-
peatedly used throughout below. In this section itself we shall illustrate the intent of this
decomposition, as well as the Lemmas 5 and 6, by verifying the conditions (R1) and (R*1).

Recall that .

Sk=> (9k=1)—g(=D)a+ Y gk =D&,

l=—o0
where recall that g (j) = 3.7_, ¢;. The indicated decomposition is
Sk =05k + Sk 1<j<k—1, (65)
where

0

Sea= 3 (gb—1) = g(—0)a+ 3 gk — e (66)

l=—00
and
k j—1
Sii= >, 9k=D&=Y g(a) &
I=k—j+1 q=0

Here it is important to note that
Sk and Sy ; are independent.

In addition note that the marginal distribution of Sj ; is the same as that of ST g(@) &
Next, in order to deal with (¥, . (see (25), we have (recall that E; stands for the
conditional expectation given {{x, k < j} )

By [f (Sk) wi] = fi (Sko) (67)
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where Sy, is as in (65), wy = Zf:kfyﬂ di—;m; is as in (7) and

B k k
fele) = E f<93+ > g(k—j)ﬁg) >, dkﬂh’]
L j=k—v+1 j=k—v+1

= E|f <x+zg(v—j)£j> Zdymj] :

In the verifications of the conditions (R*1) - (R*4) for the variables (., the function

nmk>

f« (x) will essentially take the role of f (x) of Theorem 1, and therefore we need to check
that f. (x) satisfies the conditions (4) and (5) with f, (z) involved in place of f(z). We
state this fact separately.

Lemma 7. Let f(x) be such that the restriction in (4) hold (but (5) need not hold).
Then both the requirements (4) and (5) hold for f. (x), that is, they hold with f. (x) involved
in place of f (x).

In addition, when the extra restrictions (16) - (18) in the statement (I) of Theorems 1
and 2 hold for f (x), the same hold for f. (z) also.

Proof. First note that
[1n@lar < [
Eﬁwm/fG%Zﬁ@ﬂﬁ>M]
i=1 j=1
Z dy—jn);
j=1

- (Jir@ia) e |

Next, by Cauchy-Schwarz inequality and using F UZ;’:I dy—;n;

dx

IA

f (af - Z g(v — j)ﬁj) Z dy—jn;

| IS

= F

] <0, by (8). (68)

97

< O (see (8)),

2 2
f2(x)<E E < CE

f(x+§me—ﬁ@>

Z du—jnj
j=1

f(x+§fmu—ﬁ@>

(SIS

This also implies, noting | f. (z)|> = |f2 (x)]?,

Njw

2 3

<CFE

L@l <c|E P(z+§jdv—ﬂ&)

f (flf + ZQ(V - j)@-)
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The same holds for |f, (x)\4. Hence, for i = 2, 3, 4,

/|f*(l’)|id93 < C/E f<$+ig(v—j)§j>

- CEi/%(x+§jﬂvﬁ@)
— CE :-/|f(x)|"dx} :C’/|f(x)|idx<oo.

The arguments in (68) also entails that, noting that F [Zj . d,,,jnj] =0,

/f*(x)dx: (/f(x)dm)E
/<m+ 3

Zg(v—j)

Z du—jm] =0
j=1

3 ) If(fﬂ‘)ldx] <00
by (4) and (8).

The second statement of lemma can be easily verified, by noting for instance that

an(erZg v—j) )Zdu mj]-

7j=1

Next,

[t @ldr<

Z dy—jn;
j=1

Mf*m( ) E

This completes the proof. W
Note that for the above My, ,(y), we also have

/ My, 5(y)dy = 0. (69)
For the next result we note that, using the condition ffooo lyf (y)| dy < oo, we have

Vﬂn—ﬂ&ﬂémh—&h

-~

Now (4) entails that f(0) = [ f(y = 0. Thus ’f()\)’ < C|Al. We also have
’f()\ ‘ < C using [|f (y \dy < 0. Thus, when (4) and (5) hold,

‘f()\)‘ < Cmin (][, 1). (70)
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Further, corresponding to My, (), though [*° Mj,(y)dy # 0, we have

o~

327,00 = F | < [ (o) f()) do < Clal

using the restriction (16), and hence

-~ -~

M| < [T O]+ [Mra) = F )] < Cmin (10, 1) + Clanl” (71)

By Lemma 7, this holds for My, ,(y) also (but note however we also have (69)).

Lemma 8. There is a 0 < p < 1 and a positive integer ly such that

C
sup | E; [f (Sj)]| £ = for all 1 > 1o,
3>0 Rl

where recall that E; stands for the conditional expectation given {&, k < j}.

Under the conclusion of Lemma 7, the same bound holds for sup;~q |E; [f (Sj11) wjtil]
if lo > v, where wjy; and v are as in (7).

Proof. First consider the situation of the statement (II) of Theorems 1 and 2, where
(58) and (59) hold. We have f (y fe_”\yf ) dA. Hence, using (65),

1

£ (Sin) = 5 / eSS F () dx

Therefore, because Sj;;; and S7,;; are independent,
C —i2 g ~( A
Bl < = [|feiin] ”f (;)‘dx
!

- S|

where we have used ‘E [ iy J*”} ‘ ‘Hi o1 ( >)
Now let Iy be such that (58) and (59) hold. Then using (70), if [ > I,

fl7G)

using 0 < p < 1. This gives the inequality in the statement of the lemma.

-1

ITlv

q=0

(ﬂﬂgkus9+odsg,lzm
8 Vi i

Now consider the situation of the statement (I) of Theorems 1 and 2. According to
(61),
1E; [f (Sj)ll < max (|E; [Myy (Sj+ Vi)l [ Ej [ (S + Vi)l
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where V), has the distribution K, and is independent of S;; (and E; stands for the condi-

tional expectation given {{;, k < j} and Vj, ). The same arguments above give

()l ()l

for all sufficiently small > 0. Using (71), together with (63) and (64), we then obtain

-1

[I

q=0

C — A
By My Syl < [ |35, (2)
m m

¢ C gl e |77|d
Ej[My, (Sju+V, §—+—pl(—) + 0.
’ J[ fn( J+l n)” %2 " 1 -

=

The same inequality holds for |E; [my,, (Sj+ + V;)]|. Choosing n = v, ?, and noting 0 <
p < 1, we obtain the required inequality of the lemma. Hence the first part of the lemma
follows.

Regarding the second part, it is implied by the first part of the lemma and by the
conclusions of Lemma 7, because we have E; [f (Sjt1)wjsi] = Ej [Ejri— [f (Sj+1) wjsi]]s
where E;_, [f (Sjt1) wit] = f« (Sjt1) with fi (z) as in Lemma 7. (Note that S;;; and
Sj11,, have the same structure and hence the conclusion of the first part of the lemma for
S;4 holds for S;4;, also.) This completes the proof. W

We next verify (29).

Lemma 9. (29) holds for each positive integer ly (recall that R, depends on ly).

_ In
e (o + 1Rl = 0 (/2.

where recall that 77" — 0.

Proof. First suppose that k£ > 2. We have (using the notation |f| (z) = |f (x)])

More specifically,

-‘rl() 1

E | Rumi] < \f ST BIAs).

Now, according to the arguments of Lemma 8 with j = 0 and with |f|(5;) in place of
f(S)) (note that ‘|/f\| ()\)‘ < ['1f](y)dy < o), there is an ny and a constant C' > 0 (both
independent of k > 2 ) such that

max Ellfl(S)] <C  for all n > ny.
R .

Thus E[|Rymi|] < Cy/2 for all n > ng and k> 2.
In the case k = 1, note that (\/”’7") Rom1 = 3020 £(S)), which is a fixed random

variable and hence is of order O, (1).
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In view of Lemma 7 and similar to Lemma 8, the preceding arguments for R,,,x apply
for Ry . also. Hence the lemma follows. W

We next verify (R1) and (R*1) as a consequence of Lemma 8.

Verification of (R1) and (R*1): First consider (R1) corresponding to (nmk, where
Cumk 1s as defined in (23). We have, by the first part of Lemma 8, there is an [y (independent
of k > 1) such that

By G| <372 32 |Buacay |7 (Spuscap \“\ﬁ >

I=lo =1 'l

Here recall that v, = n=u(n), where u(n) is slowly varying.
Hence if 1/2 < H < 1, it is clear that /2= 7" 7—112 — 0.
In the case 0 < H < 1/2, we have > )", # ~ 'z, so that

VY~ ovint - on iy .

Because 1/3 < H < 1, this converges to 0, and hence (R1) is verified. In the same way

(R*1) is verified using the second part of Lemma 8. H

4 VERIFICATION OF (R2), (R*2) AND (R4)

We first consider (R2) and then we shall indicate the modifications required for (R*2).
We have

] [Gome] = %ZE[n% |7 (Spusy)|

where and throughout below

] -

Nk = |NM— | — [N .

m m

Clearly, (R2) is a consequence of the next Lemmas 10 and 11 and Propositions 12 and 13.
Lemma 10. For each 1 < k <m,

Nmk Mmk

23 [ B 7 (Spuszgin) £ (s )| =0

I=lg r=q

as n — oo first and then ¢ — oo.
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Lemma 11. .
> [ sl du < .
=1

where g, (1) is the characteristic function of S;. In particular the quantity b defined in
Theorem 1 is finite.
Noting that (R2) involves Y -, E[n k1) [¢2 ], the preceding two lemmas allow us to

concentrate, for each ¢ > 1, on the limit of

23582 B [ (S
+2—;§;;E k1 [ ( k;1]+l>f<s[n%]+l+r>:|

as n — oo first and then m — oo. This purpose is served by the next two results.
Proposition 12. (I). Suppose that (19) holds and that [ |f(z)]>dy < co. Then

m Nmk

w222 By 1 (Spgp) | = PO

k=1 I=lg

as n — oo first and then m — oo.

(1I). Suppose that (15) holds and assume that [ M2, (z)dy < oo for some no > 0 and
[ (My2,(x) — my2,(z)) de — 0 as n — 0. Then the convergence in the statement (I) above
holds.

Here, regarding the limit f2 (0) LY note that

— [P@do=5- [|Fw]

where the last equality is obtained by Plancherel’s theorem.

In the situation of Theorem 1 discussed above, the next result for the case w (u,v) =
f (u) f (v) will be required; the general case will be used to obtain Theorem 3 (for r = 1),
as well as to verify (R*2).

Proposition 13. (I). Assume that (19) holds. Let w (u,v) be such that

//]w(x,y)\ida:dy<oo, 1=1,2, /(/]w(x,y)\zdy> dr < oo.

Then for each r > 1,

%ini [ (S[”%]H’S[n%]ﬂw <2ﬂ/¢sr —f, 1) du> LY

k=1 l=1
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as n — oo first and then m — oo.
(II). The preceding convergence holds also when (19) is relaxed to (15), provided the
restrictions on w (u,v) in the statement (I) are assumed to hold when My, (x,y), for

some n > 0, is involved in place of w (x,y), together with the restriction

/(Mwm(x, Y) — My p(z,y))dedy — 0 asn— 0.

Here it can be easily seen that

—/¢S — i, ) dp = /E[w(m,x+5r)] de.

In the case w(u,v) = f(u) f(v), the restrictions in the above statement (I) reduce to
[(f(@)]+|f(z)] ) dr < oo and a similar reduction for the statement (II).

Regarding the proofs we start with

Proof of Lemma 11. In view of (65), |¢s, (11)] < \n;.;g ¥ (9 () M)‘. Also [ \f(u)f dp <

oo. Hence it is enough to show that

Z/Hw il 0| o =

l=lg

o
(72)

is finite, for a suitable [y. Because ‘f(%)‘ <C ‘%‘ (see (70)), we have using (58) and (59)

2
(with k = 0 and with the role of (21) is now being played by [ ’f (,u)‘ dp < 00 ),

dM<£+CP<Ca ZZZOa
ol o

22l )

for a suitable /o and for some 0 < p < 1. Hence, (72) is bounded by C' %, 3, where note
that »_,° o 3 < oo when the assumed restriction 3/ > 1 holds. Hence the proof |

For the proofs of the remaining statements, we need to introduce some preliminaries.
First recall from (65) that

Sttt = Sfutst]ag T D 9 (0= ) iz
j=1

(5 -0

Here note that the right hand side involves the array {é’j oo < g < [n%}} which does

where recall

seora 5 (45 1) 0o

j=—o00

not depend on [. We observe that
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e The vectors {S[ Eo1] 4y 1<i1< nmk} and {Zézlg(l —7) 5[ ko1] s 1<i< nmk} are
independent. Further the distribution of {Z;Zlg (I — ])f[ bot) 1<l < nmk} is
the same as that of {7};1 <1 < n,,,} where

l
=Y gl-i)¢.
j=1

+ I

Hence we can write

Busca] [0 (St Spuscarer)
= Elw(yi + 711,92+ Ti4r)] .
(yl’y2)<s[ k— 1]+u S[nk,ml:|+l+r,l+r>

Letting, for any 0 < v, <[ (v, will also be allowed to tend to oo appropriately),

(73)

l—vn l—vnp
Ty=> g(l- 5§, Th, =Y gl +r =5,

j=1 j=1

we have
l+r
- nl+ Z 5]’ T‘lJrT_ nlr+ Z l+r—]€]
j=l—vn+1 j=l—vn+1

(Note that T}y, and T}y, . depend on v,,.) Hence, letting @ (A, i1) for the corresponding Fourier

transform of w (x1, x2), we have for any 0 < v, <,
(27)° E [w (1 + Th, y> + Tipor)]
= /B—Myl—iuyzE [e_i)\Tl_iﬂTH-r] o ()\’ M) d)\d,u

_ /ei)\yli,uygE [e—i(k—‘ru)T;l—iu(T;“—T;l)} E [e—iA(Tl—T;l)—iu(Tl_,_T—T;l’T) @ (\, 1) dAdp

LT
_ _/ fz—yl ip(y2— yl)E |:6Z)\’Y:;,l

@ <— — u) dAdp. (74)

n

(13- >] B [e (-t 10473

Now (recall g(j) =01if j <0)

E '671%(TlfT;l)ﬂ‘u(THT*T;LFTWT;l)}
_ 'e—zﬁ(TZ—T;:l)—wz;:;,,,nﬂ(g(Hr—j)—g(l—j))@]
: r—1
— E|e o (B-Ty)—in Zézl—unﬂ(Cl+1fj+"'+cl+7'*ﬂ')§7} H V(=9 () n,
I o
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where and throughout below we let

c; =0 for j <O0.

Similarly

E[e‘”ﬁl_z“ L™ } Hw(

|
]H y ()\i(J)

With these preliminaries, we now consider the proof of Proposition 13 through a series

(CJ+1 + ..t CJ+T)) .

Hence

(13- >} B [ (i)~ <>”

TT 1 (o () o). (75)

Jj1=0

(Cj+1 + ...+ Cj—i—r))

of steps. (The proof of Lemma 10 will be given in the next section because it involves
computations similar to those in the verification of (R3). ) In order to state and prove the

first step, we need the following result.

Lemma 14. Let f(xo,...,x,), r > 1, be such that [ ([ |f(zo, ... x,)|* dz,)? dzo...dz,—1 <

o0. Then
%
/(/’f Loy -y T ‘ dl’r) dl'o...dZETfl.

In particular for w (z,y) as in the statement (I) of Proposition 13,

Sup/lw A+ cp, )] du</(/lw(w,y)|2dy) dr < C.

Proof. We have by definition

Sup /)f )\07" r— 27)\

A0y Arp—1,C

F 05 A2y Aot =+ ¢ty j1)

ATt A iAr—2@r—aHi(Ar—1tep) T, — 1+wacrf(l.0
-

, T, )dxg...dx,

/ i {/ Dozote A —1Tr—1 f (g, — ca:r_l)dzvg...dmr_l} dx,.
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Then by Plancherel’s theorem, for each \g,...\,_1, ¢,
~ 2
/ f()\07"‘>\1"—27)\7’—1 +CM,IM)‘ dﬂ'

2
= / /eZ/\OxO+"'+”\T1IT1f(xO, iy 1, Tp — CTp_1)dxg...dT,—1| d,

1/2
dlL‘()...dIT_l

< / |f([[‘0, vy L1, Ty — C:L‘r—l)|2 dl‘r

1/2
= / < |f($07"‘ax7‘—17$'r)|2 dx’r) d:ro...dxr_l,

where in obtaining the inequality we have used the generalized Minskowski inequality (see
for instance Folland (1984, page 186)). This proves the result. W

In the statements in the next result we collect some of the approximations we need; in

the statement (II) we use the quantities

My, (Y1, y2) = sup{w (y1,u) : |u—yo| <}, my,, (y1,y2) = inf {w (y1,u) : [u— 32| < n},

and as before K, is the probability measure concentrated on {u:|u| <n}. Note that

My (Y1,92) < My (y1,y2) and ms, (1, y2) = My (Y1, Y2)-
Lemma 15. Let w (z,y) be as in Proposition 13, and let T, = and T},

nl’

defined previously,
correspond to 2v, < [nd], 0 < & < 1. Then the following two statements hold (recall
Ti=%590-0&)

(I): Suppose that (19) holds. Let R, (y1,ya2,a,d) be the difference between

n

(2m)* il Z Elw (y1 + 11,92 + Ti4r)] (76)
I=[nd]+1

and

RN AT (e e

" Z / Un ()\7 s Y1, y2> E le_lA WLZ _ZH(Tnl’T_Tnl>1

nzz[ms}_H {lul<a,[X|<a}

2 [e*i%<Tz*Tiz%w(%*Téle*Tm] @ (i — u) dAdy (77)

Tn
where
Un ()\7 M, Y1, y2) = eii)\’yglylii“(wiyl).

Then

lim lim sup (sup IR, (y1, Y2, a, 5)|> =0 for each § > 0.

a—oo n—00 \Y1,y2
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(II): Suppose that (15) holds (instead of (19)). Let V, be a r.v. with distribution K,,
independent of (T, T,.,). Consider (76) with E [M:;,n (y1 + Ty, 90 + Tiar + Vn)} in place of
Elw(yr + T, y2 + Ti4r)] and (77) with ]\7157 (% - ,u,,u> lA(n () in place of W (% — by ,u).
Let R, (y1, 2, a,0,n) be the difference between these two. Then

lim lim sup (sup |R,, (y1, Y2, a, 9, 77)|) =0 for each d,n > 0.

a—00 n—00 \Y1,Y2

The same holds when my, , is involved in place of My, .

Proof. First consider the statement (I), under (19). Note that (76) involves the left
hand side of the identity (74). Further when in (77) the [, ., is replaced by [p., it re-
duces to that involving the right hand side of (74). Therefore the difference R,, (y1,y2,a,0)
in the statement (I) of the lemma is simply the same as (77) but with the integral
Jiini<aini<ay TePlaced by the [\ o, where {|u| < a,[A] < a}* stands for the com-
plement of {|u| < a,|A| < a}. For notational simplification, we treat the case r = 1. Then,
using (75) and noting that [ (A\)| < 1, U, (A, i, 91, 92)] < C, and {|p] < a, |\ <a}’ C

{lul > a, 1Al < oc} U{Ju] < a, ]A| > a}, we have

A
/ qE
{lul>a,|A[<oo}Uf|ul<a,|A[>a} Tn

F(%—u,u) —w(—u)’@(%—u,u)-

Y <Ai—fj) — [LC]‘.H)‘ < Hé;l[l/z] )w (Aiij) — ,Uij_l,_]_)‘ because v, < [nd] /2 <

|Rn (y17 Yo, a, 5)’
1 n
S —
n
I=[nd]+1

n

y (Ag U _ ucj+1> ‘ dAdj

where we have let

Note that Hé:m

1/2].
Now using (56),

)\ -1 )\ .
/ F <— —u,u) 11 ¢( 90) —ucjﬂ) dAdp
{u>alri<co} | \Tn T

i=[t/2]

-1

< (Gl (22

i=lt/2]

1=[1/2]

=7
d)\du> (78)
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Here note that (making the change of variable Ag—(]) — piCjy1 — )

bina)
1-[1/2]
o oo o (52
{|u|>a,|\|<oco} Tn Yn
1-11/2]
= 0 S P G i) o ()
= . — —putp—=pu )| - d\dp
19() 01 J 1> an/<o0} 9(j)bi 9(J) by
y W [l y
Sy w(—) IN < OQu (a) 12
i b; Vi

where

Q(a) = max SUp/ F(U—MvLMJ—H’M)'dN
[nd]<j<n {lp|>a} g(j)

1-[1/2]
and we have used the facts maxqy<;<i b < € (see (57)) and [ ‘w (%)‘ d\ < C

(see (54) and (55)). Note that
2
2
du [ du
{lu[>a}

/{MM} F(V—u+ug](—;7u)'du < \//‘@ (V—u+u;j(;,u)
< o /{M |¢(u)l2du)m (79)

where in the last step we have used Lemma 14. Thus

o o) T (2
{lu[>a,|A|<oo} j=[1/2]
y 1/2
< ([ wgra)
n {lul>a}
We also have Hé;ly P (’\g( 9) ucj+1>‘ < Hgnd[[na]/z] ’¢ ( ,ucj+1>‘ because v, <

[nd] /2 < 1/2. Hence in the same way as above

[nd]

A Ag
/ F <— - u;u) H (0 ( U _ MCJ+1> dAdp
{Inl<a,|x[>a} Tn Tn

J=([nd]/2]
\ [né]—[[nd]/2]
< Q) | v (—) A
{|A|>dna—en} b[n(ﬂ
where
Tn
e, = aby, max c and d, min _
8] gy B 41  [nal/2i<5<0m) [9(7)] bpas)
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and

F<U—u+,ucj—+.1,,u)’du
9(7)

1/2
< C (/ o (1)) d,u) <C, similar to (79).
{lul<a}

Qn(a) =

max sup /
[(n8)/2<5<8) v J{j1<a)

Note that d,, > d > 0 for some d > 0 (see (57)). In addition e,, — 0. To see this, assume
for simplicity that b,, ~ ni, and ¢; ~ j ~1-% in the case of assumption (A1l). Noting that
H—1-1 <0, we then have e, ~ Cn*~!. In the case of Assumption (A2), we have
len| < Cna~! where i —1 < 0 because 1 < o < 2.

Hence there is an ng such that {|A| > d,a —e,} C {|A\| > £a} for all n > ng. Hence

using (54) and (55)
A
* ()

/{|)\|>dna—en}

where 0 < p < 1. Thus |R, (y1,¥2,a,6)| is bounded by

1/2 n 1
<C (/ ¥ ()] du) (ﬁ > —> + C/ e~ dx + ¢ pnd)
{lul>a} no=m (> 4a}

for all n > ng. In view of (19) and the fact 2= 3", % < C, this completes the proof of the
first statement.
The proof of the statement (II) is the same as that of the first, except that the role

[n6]—[[nd]/2]

d\< C / e\ + Cpdl
{\)\|>%a}

of ¢ (p) (for instance in (79)) is now played by [A(n (). This completes the proof of the
lemma. W
Lemma 16. Let K,, (y1,¥y2,a,d), § > 0, be the difference between

(2m)* L7 Blw (g + Thy g + T ) (80)
I=lo
and
1 n

. Z / U (A 1, 91,92) E [e_i’\””flﬂ Vs, (—p) W (—p, 1) dAdp (81)
T Alnl<a A<

where Uy (A, 1, y1, y2) = e~ v1=@2=v1) g in the statement (I) Lemma 15 (and ¥g, (1) =
E [¢"57] as before). Then

lim lim lim sup (sup | Ky (Y1, Y2, @, 5)|) = 0.

6—0 a—o00 n—oo \W1,y2
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Similarly (277)2 In Z?:lo E [M;;m (1 + Ty 92 + Tiar + Vn)]: corresponding to the state-
ment (II) of Lemma 15, has the approximation given by (81) but with ]\/457 (—p, 1) IA(,? ()
involved in place of @ (—p, j1). The same holds for (2m)° Ly B m, i+ Ty + Tir + V).
Proof. It is enough to prove the approximation in the first statement. According to
(74) and (75), we have

B [w (yl + 17,92 + Tl+r)]|

< / I 0 (222 it e cpnn) ) | Wl [ (2 - ) | ara

=[1/2]

According to the arguments contained in the in the first part of the preceding proof of
Lemma 15, this is bounded by % Thus

[nd] [né]
n 1
sup E Elf (yi+ 1) f (y2 + Tovr)] <07 > —
Y1,y2 =1 fyl
Clearly this converges to 0 as n — oo first and then § — 0.
Hence, in view of Lemma 15, letting R} (y1, y2, a, ) for the difference between (80) and
(77),

lim lim lim sup (sup |R;: (y1, Yo, @, 5)‘) =

6—0a—o0 n—oo \W1,y2
Therefore, letting R (y1,y2,a,0) for the difference between (77) and (81), it is enough to
show that

lim sup (sup |R* (y1, Y, a, 5)|> = 0 for each a, 0. (82)

n—00 \¥1,y2

Note that without loss of generality, we can assume that v, upon which 7}, = and T7

of Lemma 15 depend, is such that v, — oo and *» — 0. Then, because T; — T, and

SV g (s) € have the same distribution,
> 6) — 0,
vn—1

where we have used the fact that v, ' >~ g (s) & converges in distribution and ~,,'~,, —

vn—1

Yty g(s)&s
s=0

sup P (v, |Ti =Tyl > e) =P<

nd]<I<n

0. Hence

sup
A<a,|p|<a,[nd]<I<n

E [e—zﬁ(Tz—T;l)—m(Tm—T;l,T—TwT;l)} B [e—w(Tm—Tzl,T—TﬁTzz)” 0.
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Further, noting that

vp+r—1

E [e—z‘u(Tz+r—T;z,r—Tz+Tﬁz)] = H U (= (¢j+ o + i) 1)
=0
and
H (0 (— (Cj + .+ Cj—(rfl)) M) = s, (—) (83)
=0

we have (with r being fixed), because v,, — oo,

sup |E |:e_iﬂ<ﬂ+r_T;l,r_Tl+T;l):| — g, (_lu)‘ — 0.

|pl<a

* * -
NOW‘Tnl,T - Tnl = ‘Zj:in (CjJFl T+t CjJrT)gj
such that » 7% |c;|” — 0. Then

. Let 0 < 7 < « be suitably close to «

-1
sup P (|Th,—Th|>¢) = sup P( D (et o+ )| > 5)
[nd]<i<oo [nd]<i<oo j=vn
< Cr Z le;|” — 0, (84)

j:Vn
where the inequality is obtained using for instance Avram and Taqqu (1986, Lemma 1,
Section 3, page 408)). Hence

*
Tnl

) . " " Ty
E |:e—z/\ - _Z/’L(Tnl,r_Tnl):| . |:e_l)\'7n:|

sup —0asn— o

IAI<b, | <a,nd)<i<n

Hence (82) follows. This completes the proof of the Lemma. B

The preceding Lemma 16 leads to the next statement where we define

() = e[ (Gt

k=1 H-1/a
S k-1
it Z.(d
e /0 (m - u> (du) (85)
and
t
T (t) = / (t =) 7, (du). (86)
0
Note that



Lemma 17. For each integer m > 1,

converges in distribution to

< /wsr —f, 1 du) = HZ%/ / —AmIS(EE ) B [0 did

where S (22, L) and T (t) are as defined above in (85) and (86).
The same holds for =37 S~ E[n@] [M{Zn <S[n@}+l, S[nﬂ]uw - V;zﬂ but in
the limit 5= [ s, (1) My, (=, 1) Ky (1) dp involved in place of & [ s, (1) @ (—p, ) dps.

The same holds for my, , also. (See Lemma 15 for My, (z,y) and my,, (v,y). )

w,n
Proof. We consider only the first statement because the proofs for the remaining

statements are the same. Because 2zt ~ m!=H it is enough to show that, for each m

Nmk Tn
and k,

Nmk

Z:_g 121 E[nﬂ] [w (S[n’%]ﬂﬂ S[n%]-‘rl—i—r)] (87)

converges in distribution to

oo 1
(3 o o Cmman) oo [ [ersn®pmrolam.

Let (y1,y2) be as in (73), that is

(y1,52) = (S[n%]ﬂ,l’S[n%]+l+r,l+r> : (89)

With this (y1,¥2), let R, (a,d) be the difference between (87) and

1 Nmk

/ Un (Aa Hy Y1, yQ) E [e—iAﬁﬁéle] ¢Sr (—,LL) {D (_pﬁ :U“) dAdﬂ,
{IAI<a,lul<a}

N2
i (27)° 2505 (90)

where now
U, ()\’M’ybm) —idyn by —ip(y2— y1)

It follows from Lemma 16 that, for each € > 0,

lim lim lim sup P (|R, (a,0)| > ¢€) = 0.

6—0a—o0 Nn—00
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Therefore it is enough to show that (90) converges in distribution to (88) by taking the
limit as n — oo first, then a — oo and then § — 0.

To obtain the limit as n — oo, note that U, (A, i, y1,y2) above involves

-1 -1
Pynmk:yl = fYnmk S[n%]-‘rl,l and y2 - yl = S[n%]-‘rl—i—r,l-ﬁ-r - S[n%}—i—l,l
We have
i)
S[n%}ﬂw,lw - S[n%]ﬂ,l = Z (CH»[n%]Jrlfj +.F Cl+[n%]+rfj)§j’
j=—00

and hence, similar to (84),

= sup P
T <l<oo

Further, with S,.;, (£) and 7' (¢) as defined in (85) and (86),

1 1 tid (g (k-1 t
(rynmks[n%]+[nmkt]v[nmkt]7rynka[nmkt]) - < S< m m) 7T(t)) :

It then follows (though the preceding convergence is only J4 ), in the same way as in

o

Z(Ciﬂ + .+ i)

1=l

>5> — 0 for any 7, T co.

Jeganathan (2004a, Lemma 8), that (90) with (y1,y2) as in (89) converges in distribution

to

1 1 e,iAmHS(%,%)E ATt } B Py
(277)2 /{|)\|<a,|u|<a} {/5 [ ] Vs, ( ) ( H, ,u) v

for each a and § > 0. (Note that in obtaining this convergence only Let K (a) be the

difference between this and

1 _ L[ Y aHg(k=1 b »
<%/¢ST (u)w(—u,u)du) %/_ /5 e PSSR B [ O] dtdA,

(Here m, k and ¢ are fixed.)
Then noting that ‘e‘i)‘mHS’"’“(%)‘ <1 and |[¢s, ()] < |2 (1)], we have

ern@ < ([Toenmvia) [ jplenlo
+</{|u|>a}| LA |dﬂ)// [t
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Now note that

/ ‘E |:6fi)\T(t):| ‘ d\ S C/ e—c|/\tH|ad)\
{IAI>a} {|A|>a}

= o+ / PR
{IA[>atH}

< Cé—H/ e~ I\ = R(a), say, if § <t < 1.
{IA[>asH}
Hence

(2n)2 K () < R (a) /

—0o0

o0

@ (o )] [ ()| dpe + R (0) / 1@ (— o )] 10 (42| dp,

{lu[>a}

where note that R (a) — 0 as a — oo and R (0) < oo. In addition

w (— , d < o (— 7 2d 2d
/{wd}l (=, )] 1% ()] dpa \//I (=g, p)| M/{|u|>a}|¢(m| 1
< C 24 ,
< \/ /{W}wn u

where we have used [ |@ (—pu, p)|*dp < C, see Lemma 14. Thus K (a) — 0 as a — oo.
Next note that

/ / —iAm ™ S () E [e7T¢ ]dtdA‘ < C < /O 6t‘Hdt) ( / : e—ckl”‘dA)

0517H
<
- 1-H

—0asd — 0.

This completes the proof of the lemma. W
To complete the proof of Proposition 13, we thus require

Lemma 18.

1 - ! 1 * —iamHg(E=1 —\
mlHZ/ {%/_we <m’m)E[ et ]d)\}dt:Lo as m — oQ.

Proof. We first show that

0 m ()
1 1 —iamHg(E=1 L — AT (¢
lim lim sup /0 mliHE E ﬂ/ e (%= m)E[ ]d)\

6—0 m— o0

] o
(1)

To see this note that, in view of (85), S (%, %) is a-stable with scale parameter oy, such
that

E—1]"
UtmeC‘E m
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(See Samorodnitsky and Taqqu (1994, page 345)). Hence

1 =1 [ omig(k=t t 1 is(k=1 t
o ‘ml—HZ%/ooe " ’")dA] = EZ/\E[G U] ay
k=2 k=2
1 — 1
_Z— —c[A
< - o e d\
k=2
C <& m \? «
> _m. —c|A
< mg:Q l{:—l) /e d\ < C

H

because &>, (25)" < C. Here note that in the sum ;" , the leading term corre-

sponding to k = 1 is left out, but for this we have, in the same way as above, noting

Om1 > C ’%|H,
0 —-H
B H 1 / eumHS(o,,;)dAH <C tl :

mli-H mli-H

Hence,

follows.

) t_H 51—H
o[ (e e (2 )
)

Hence, noting that |E [e=?T®W]| <1, (91

Now consider

= f i (s (5)) "

where h; (y) > 0 is the density function of 7' (t), i.e.,

1 m 00
1 1 —ixmH §(kE=1 —iNT(#)
/ HZLW/ ¢ (55w B [0 dA | dt
0 =1 —o0o
1 m
o H
H
k=1

1 o0 . ~ ~ .

he (y) = > / e™hy (\)d\ where hy (\) = E [e7 0]
™ —00

Note that for each fixed t, {S (%, %) L0<k< m} has the same structure as that of

{Aa, " (%) LO0<Ek< m}. Hence Jeganathan (2004a, Proposition 6) contains the fact that

the difference between the integrand —ty "7 by (—mS (21, L)) in (92) and

’'m

1 & 1 k—1 t 2
ml-H Z \/Q_/ht (—mH (S (T, E) + €Z)> e ” /2d2 (93)
=1 V4T
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converges to 0 in mean-square, as m — oo first and then ¢ — 0. In addition it is easy to
see that the arguments in Jeganathan (2004a) also give that this mean-square convergence
is uniform over § < ¢t < 1. (Note that this is a very specific case so that the steps in
Jeganathan (2004a) will take a rather simple and direct form.)

Now, note that —t7 >°7" 1 [ he (—m (y + €2)) e~2*/2dz is sufficiently smooth in y (see
Jeganathan (2004a, Lemma 7)). Hence, for each ¢ > 0, it can be seen that (93) can be

approximated, as m — oo, by

1 1 —1 2
o Z \/ﬂ/ht (—mH (S (%,0) +5z>) e 2dz
k=1

uniformly over § < t < 1, which in turn is approximated by ﬁ Yoy \/%—ﬂht (—mH S (%, 0))

as before as m — oo first and then ¢ — 0.
Noting that S (%, ()) =Aonm (%), we thus have approximated (92) by

11 & - k—1
/6 mlfH ;ht (—m Aoz,H (T)) dt,

which in turn is approximated as before, as m — oo first and then § — 0, by

1 & k—1
[srn (o (52

k=1
S k—1
= H Zg (_mHAa,H <T)) = (/g(y) dy) L(l) = L(1)
k=1
where g (y fo hy (y) dt. Note that [ g (y)dy = fo [ hi (y) dydt = 1 because [ hy (y) dy =

1 for each t. In obtalnlng this convergence we have used Jeganathan (2004a, Theorem 4).
Note that [ g2 (y)dy < fo [ hZ(y)dydt < C f t~Hdt < C. This completes the proof of
the lemma. I

Proof of Proposition 13. When (19) holds, the proof the statement (I) follows directly
from the preceding lemma and the first statement of the lemmas 15 -17. Regarding the
proof the statement (II) under (15), we have (with My (z,y), m, , (z,y) and V; as in
Lemma 15)

i) (Mo (Soitfors Sposssiae + Y5)
Rk S[n%]ﬂw + V’")

Therefore, in view of the second statements of Lemmas 15 - 17, it only remains to show
that [ s, (1) Mo (—p 1) By (1) ds — [ 05, (1) @ (—ps, ) dpt 2s 7 — 0 and the same for

Ed
s
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my, . But, noting [ s, (1) @ (—p, p) dp = 27 [ E [w(x, z + S,)] dx, this is easily verified
using the restrictions in the statement (II), completing the proof. N
Proof of Proposition 12. Under (19), it is implicit in the proofs of Lemmas 15 and

16 that the difference between = %" | 57 E[ =y [f2 <S[nﬂ]+z>] and

Nmk

M’Ynmks[ 1]+” i HT,
E E e ’E[el"mkl}d)\
m1 H nmk27r = }/{|,\|§a}

converges to 0 in probability as n — oo first, then a — oo and then § — 0, which in turn
converges in distribution to ]?2( 0) —tm Dorey o= J oo fl —ixmfS(S ) B [e=ATWM] dtd), see
Lemma 17. Hence the proof under (19) follows by Lemma 18. Similarly to the preceding
proof of Proposition 13, the proof under (15) also follows. MW

Having verified (R2), we now show that the same holds for (R*2) also except for some
modifications.

Verification of (R*2). To indicate the required modifications, note that

i) (|Gl

where recall that w, = Zgzqﬂjﬂ dg—jn; = Ng+ding—1+...4+dy_11¢—p41. Also recall from (65)
Otz

that S[n%]ﬂ

k1], V—i—SE‘n%]H’V where the distribution of (Sik 1], ,w[nkml]ﬂ) is

independent of S[n@] and has the same as that of (S}, w,) with S}, = ij;é ()&

+l,v
Hence we have

where
§r) = B (o 57) 2],
2
Thus, noting that [ g (z)de = FE w2 [|f (z)]>dz = E [w?] = [ ’f (,u)‘ dp, together with
the fact that S[ E=1]40,

becomes essentlally applicable, we have

25 B [7 (S hod = (£021 55 [ |70 ) 1

I=lo

has the same structure as that of S [n4=1] 42 SO that Proposition 12
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(Here and below, we have taken into account the second statement of Lemma 7, without
further mentioning.)

To deal with the remaining sums, suppose that » > v. Let (recall Sy, , = Syir—Sgir0-)
Sﬁ-hll - SQJF’“ o (S:Ik—&-nr—&-u o S;—i-r,r) B S;-i-r,l/‘
Note that <Sq,l,, Sjir,l,) is independent of (S;V, (S;+r,r+u — S;H’T) + S;H’V). Then
Eq—u [f (Sq) wqf (Sq+7‘) wq—l—r]

= By |f (Suw+ 530) €af (Sfons + (Stinrss = Sins) + Siirs) wase]
= Eq—l/ [wr (Sq,ua Sjir,y)]

where
Wy (I, y) =E |:f (l‘ + S;,V) wl’f (y + (S:+r,r+1/ - S:Jrr,r) + S:Jrr,y) wl/-‘ﬂ"} .

Thus, when r > v and [ > v,

Bpyia] [ (Spssaan) wnssapiad (Sputcafiaes) “putafiaes

m m

= Pl {wf (S[nmw SF*])} - (94)

In the case r < v, the right hand side here takes the form

Blaier] [0 (St 10 Sttt (95)

with
wy (z,y) =E [f (‘T + S:,u) wy f (?J + S:—H‘,T’—H/) wuﬂ“] .

Now, in the case r > v, (S;ZV, (Sjwﬂ,w — Sjer)) is independent of S%

v+r,y)

and hence

we have
@ (1) = F ) F 1) B [wyem 5 orrsSian) | B [, e 055000]

Here, noting that S}, = Z;:é 9(5)&—j,

v
B [wy+Te_i“S:+"v”} - E [wye—msz,y] — Z d, ;F [me—ms;y}

=1

= Zdy—iE [ﬂie_wg(l’_i)gi] 1:[ Y (—g(j)m) .

i=1 §=0,j#v—i
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Noting S5,y = Siirr = Sorme 9 Er—i — 2i—0 9()var—g = 21mg 9(J + 1)u—j, We
similarly have

E [wye_iAS;,u_Z‘M(S:+7'7’r'+u_s:+r',r')]
v v—1
- ZdV—iE [nie(—z)\g(u—l)—ZMQ(V—z-‘r’/‘))fi] H W (—g()HA—g(G +7r)p).
i=1 j=0,j#v—i
In the case v = 1, note that the preceding two quantities give (recall dy =1 and ¢g(0) =1 )
W () = FO)F () B [me ] B [mel=2ata],
In the case 0 < r < v, we have

{UE <)\’ N) = ()‘) -}/C\(M) E [wuwu-i—r@_w\s’t”’_iMS$+T,V+r}
f

() F (1) B [ttty S5 ote-min S tosrs]

) )

We now consider the analogues of Proposition 13 for the sums of (94) and (95) (note
that Proposition 13 involves the sum of E[n@] [w <S[n@]+za S[nk;l]HJrr)] ). Note that
il

has the same structure as that of S [ and similarly both S Eik_l and

T]—&—H—'r,l/
It can be seen from the proof

n%]—&—l,u n%]—i-l’

S[n%hl”’wr have the same structure as that of S[n%]—i—l—&-r‘
of Proposition 13 that in both cases (94) and (95) the role of ¥g, (—u) (see (83)) is now
played by ¥, (1) defined in Theorem 2. In addition note that both @, (A, 1) and w? (X, p)
contain the factor f()\) f(,u) , which will serve the purpose of @ (A, i) ¢ (1) in the proof of
Proposition 13. We thus see that for each r > 1,

m Nmk

% Z Z E[n%] [f (S[n%]Jrl) w[n%]ﬂf (S[n%]ﬂw) w[n%hlw]

k=1 I=1
— (5 [|Fw
2m a
as n — oo first and then m — oo. Here ¥, (u) is as defined earlier in Theorem 2, and

2 2 e
)f (,u)‘ ®,. (1) = w, (—p, 1) in the case r > v and )f (,u)‘ ®, (1) = wr (—p, p) in the case
r < v. Specifically

", (1) @, (1) du) Ly

E wyeiﬂ‘s;,u_ill‘(‘sz-&-rm-ﬁ-u_S:-!—'r‘,'r) E [wye_zusz,u] lf r 2 v

(I)r - . v . . vir .
@ E wywy+rez“zf:19(”_3)53'_“‘2;1 9(””_3)@] fl1<r<uv.

(This @, (1) coincides with that involved in Theorem 2.)
Regarding Lemma 10 we shall see in the next section that its proof, under the conditions
of Theorem 1, depends crucially on the fact that ‘f()\) ]?(u)) < C'|u||A], which holds under
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the conditions of Theorem 1, see (70). In the present case the role of f()x) f(,u) is played

by w, (A, i) (it is enough to restrict to the case r > v), for which we now obtain the bound
[r (A )] < C (Il [A]+ |ul”) - (96)

To see this, assume for convenience that v = 1. Then (see above)

@Ol = |FO) T () B [mem] B el

< CIE [me ™) E [gel-A-mea] |

where, using E [m] =0,

|E [me™ & ]| = |E [m (e = 1)]| < |ul Ellmé&l] < Clu|

and similarly |E [gel=?=rG]| < O (|A + |pu]).
We shall see later that (96) will give the analogue of Lemma 10, see the arguments at
the end of the proof of Lemma 10 in Section 5 below. W
We next verify (R4) (where o = 2 and hence F [¢;] = 0 and E [£?] < oo, see (2)).
Verification of (R4): For notational convenience, we take v, = r and g(r) ~

il
Crf1=1/2_ Then (recall from (30) that Y,ume = \/Lﬁ Zl[f:z]’“;l]ﬂ &)

Cnkanmk: = TL_%_% (Il,nmk + IQ,nmk + I3,nmk> (97)
where
(] [l
L= Y, > [(S)&,
I=[nE=L]+1 =41
[nx]  [n]
I2,nmk = Z Z glf (ST)
and
]
o= S (506
l:[nk;Ll]—&-l
Now

Iy Lf(S) &l = =y [f1(Si1)]  with  fi(y) = E[&f (v + &),

where S;; is as in (66). Note that f; (y) is similar to f, (y) in (67), and hence by Lemma
7 [ f1 (y) dy = 0 and similarly other restrictions in Theorem 1 stated for f (y) are satisfied
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for fi (y). It follows from the next section (specifically, using the left hand side of (117)
with ¢ = 1, together with the first bound in (114)) that

2

]
E[nu] ne Z J1(Si1) <C
I=[nt=t]+1
Hence
’E[ o] [n*%*%lg nmk” < COn (98)
Clearly
E[nk—l] 1 nme] =0 (99)

To deal with I, we have (see (65))

S = Sfust] ¥ 5

r— nﬂ]fl

where recall that S* =) & " g (q) &, and is independent of S x—17. We also
[ ] q=0 q r,[n = ]
have f (S,) = 5= [ e‘”‘s " f(\) d\. Hence

-/
<
- 27

%AZ [ ky;l] 19(Q)£ - ]
é q=0 r—q

‘E[n%] (&0 (Sy)] E

Foo]ax,

and hence

i <%g (q)>' ‘f (%) ‘ . (100)

Now, because F [{;] = 0 and E [¢2] < oo ((R4) pertains only to the case a = 2),

B [gemr0a]| = B 6 (e5o0 1)) < c'%' lg(r =1

Further | f (7 >‘ < CP\I see (70). Also qu 0.gr— l‘w ( )‘d)\ < C by (58) and (59).
Thus, noting that 7, = rf and Yoo |g (r — )| ~ CrH+1=1/2 because g (s) ~ C'sH=1/2,

Nmk Nmk
355 ‘E[nu] [fz,nmkz]) = 3N Bl [S“[”b]f <Sr+[nk_1])]‘
m =1 r=I[+1 " " "
Nk 7—1
1 1-H
< ot 3 e
r=1 [=1
< On b = O




Because 3H — 1 > 0, this together with (98) and (99) complete the verification of (R4) in
the situation of the statement (II) of Theorem 1.

In the case of the situation of the statement (I) of Theorem 1 also the bound (100)
holds except that the factor f(%)‘ in the right hand side needs to be replaced by
0 (3 [mo ([ (2)
8, it is seen that (R4) holds also in the present situation. This completes the verification
of (R4). N

We next show that the verification of (R4) entails that of (R*4).

Verification of (R*4). We have

I

e (%) D Hence, using (71) as in the proof of Lemma

7]

1=[n%=L]+o

E[kl][

Note that (f (S))w; — Ei—1 [f (S1)wi], &), I > 1, form martingale differences and hence

E[nﬂ] Z (f(S)wi—E—1 [f (S)wil) | Xnmk

4]
= By | X Bad(S)m—Ealf (S)w) &)
S
X [ 4]
= %E[n%] Z El—l [f(Sl)wlgl]

where in the last step we have used E;_; [§] = 0, so that E;_1 [E;_1 [f (S) wi]&] = 0.

Consider
(] [na]
Blcayp | 3 Balf (S)n&)| = By 9 (1)
1=[nE=2]+1o 1=[nk=2] 41

where we have used E;_1 [f (S)) m&] = ¢ (Si1) for asuitable g (z) (with [ (|g (z)| + ¢* (z)) dx <

oo in the case of the statement (II) of Theorem 2 and a similar restriction in the case of

the statement (I)). Therefore I E[n Iy {Zl[zf;]kml]ﬂo g (Sl,l)} is bounded in absolute value
by a constant (see (114) below), so that
L g < S <01\/7”7" T
ViV Pt l:{n;]%“ W <emn () =m e

o1



Thus it remains to show that (R*4) holds for (! . = > Ei_1 [f (51) wi]. We shall reduce
this situation to that of (R4). Recall that w;, = E;:z_y +1 di—jn;, which sum consists of v

terms. We use induction on v. Suppose that v = 1, that is, w; = 7;. Then

By [f(S)w] = E1[f (S)m] = fu(Si1)-

Here f, (z) = Ej—1 [f (z + &) m], which satisfies all the conditions of Theorem 1 (see Lemma
7), and hence (R*4) holds for ¢*, . = > E;_1 [f (S;) m] when v = 1.

Now suppose that (R*4) holds for (¥, ., = > E;_1[f (S;) wi] when v = i—1. Then, when
v =1, we have F;_1 [f (S)wi] = Ei_1 [f (S)) (wr — m)] + Ei—1 [f (Si) mi], where note that

By [f (S) (W =)l = B [f (S)wi] = wi B [f ()] = g (S11) Wy

Here wf = w, — 1 = Z;;%_Hl d;—;n;, and hence g (5;1) w; has the same structure as that
of f(S;)w; but with v =i — 1 (for which we have assumed that (R*4) holds). Hence one
can assume that (R*4) holds for (¥, , = > ¢ (S.1)w; also. We have already verified (R*4)
for ¢, . = > Ei—1[f (S)m]. Thus (R*4) holds for ¥, ., = > Ei_1[f (S;) w)] when v = 4.
This completes the proof of the verification of (R*4) by induction. N

5 PROOF OF LEMMA 10 AND THE VERIFICATION OF (R3)
AND (R*3)
In the rest of the paper we let

9(g,r) =g +71)—9() = cjg1+ ... + Cjp

We first isolate some bounds on ¢(j,7) in the next Lemma 19.

Lemma 19. Let ¥ > 0 be such that

in(1— H,H,|2—H|, 1) itHAL
o<y (- HH |- H|,5) HHZ#, (101)
min (1 — 1, 1) if H=1.
Then
sip L) o a1 <i < (102)
[1/2]<j<l,g>1,r>1 Tr

Proof. First consider the case H # %, in which the requirement (A1) of Section 2
holds. Let § = % so that (101) becomes

1 1
0<35<mm(1—H,H,'——H’,—). (103)
(0 «
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Recall the Potter’s inequality, mentioned in Lemma 5 of Section 3 above, that if G(z) is
slowly varying at oo, then there is a B > 0 such that | 22| < Bmax{(z/y)’, (x/y)°} for

G(y)
all x > 0,y > 0. Therefore one can assume that
, ; H
G Nops, | 99D\ cpp bope T,
13 =2 re Vr
We in particular have
b
2L < Qrathp s, (104)
Vr

Further, noting H — 1 — £ +§ < 0 (see (103)), we have when j > [1/2],

9+ a7 = [cirgr1 + -+ Cygrrl

ClGi+q+1)"x yrriat

A

IN

Cr(j+ q)H_l_éJ”S < Cr (min (l,q))H_l_éM, Jj>1[1/2]. (105)

IN

Here, in obtaining the second inequality we have used j > [I/2] and H — 1 — é +6 <0.
Further, when H — 1 < 0 (in which case H — £ +§ < 0, see (103)), we have

g +ar) < l9G+a)|+19(i+q+7)]
< CG+" " <C(min(l,q) =", j>[/2],  (106)

and similarly when H — é > 0,

o

. . _1
g +q,r) < C@G+grr) ="

ClT=at0 if j <1, r<lI )

1 H_;>0;QSZ
Cri=—a+d ifj <l r>1

{ Cqf=at0 if j<l,r<gq

CrH=-a+3 if j<Il,r>q

(107)

First consider the situation
q<lI.

Using (104) and (105) and noting 1 — H — 26 > 0 (see (103)),
; . . 1-H-26
)blg(j + Q7r> < ClaJrJTfHJrerlelfaJrJ _ (;) 7435 < Cl367 if r < l, ] > [1/2] )
Yr
In addition, using (106) and (107) and noting H — ¢ > 0 and £ — 2§ > 0 (see (103)), we

have

g(j+q,r)
Yy

b

_ Olatop—H+6H-2+6 _ (0 —H+5]H-5]35 < 1%, H— é <0,r>1j<I
T QL HAp S — O WP < O H—-L>0,r>1,5<1.
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Now consider

q>I.

From (105) we have,

g(j+aq,r)
Yr

1-H+S$ 125
1 1 [\ =
b < Olatop=HHopHo1=540 — (i) (—) <O ifr<q,j>1/2].
q

q

When H — é < 0, r > ¢, we obtain from (106) that

g(G+q,r)
Y

When H — i > 0, r > ¢, we have from (107) that

1 95
b < Qi (D) <£> T <o,

r q

1.5 _ 1 l
S CZD‘JHST’ H+5TH a+5 _ (_
r

g(j+q,r)
Yy

125
bl > l35 < Cl35

because = —26 > 0 (see (103)) and | < ¢ < r. This completes the proof of the lemma when
H+#L

Now consider the case H = L. In this case, by (12), we have sup;s, |i¢;] < C. In
addition sup,s, |g ()] < C by (A2). Therefore, the inequalities (104) - (107) hold when
H = é, and hence the remaining arguments also hold with H = é This completes the
proof of the lemma. W

Below we assume 9 of Lemma 19 satisfies (in addition to (101))
3H — 69 > 1. (108)

This is possible in view of the restriction 3H > 1.
We are now in a position to proceed with the proof of Lemma 10 and the verification

of (R3). For this purpose, using (73) and using the idea in (74) we have
—iNT =i Ty
Bt [1 (S Sptsaaar) ] < [ |E 0]

m

W (A, p) dAdp

(Recall Tj = >""_, g (I — j)&;.) We have

! l+r
M+ pTie =Y (AgU—=§)+ug(+r =&+ > pgl+r—5)§,
J=1 J=l+1

where the first sum on the r.h.s. is independent of the second sum. Therefore

B [emMiminTier] = (H@D(—Ag(j) — 1g (Tﬂ'))) (H V(=g (h)#)) :

j1=0

o4



Substituting this above, and making the transformation (A + p, p) — (A, 1), we obtain
(vecall g (j,7) = g(j +r) = 9(j) )

By [ (Spsgagoe Spsggoons)

-1
< / ( [ (=Ag(j) — g (i, ) (H ¥ (— ) D (A — 1, 1) dAdps
j=0 7J1=0
1 -1 )\ .
< / (8 (—M—ﬂg(jﬂ“))‘
YiYr JR2 i=[1/2] i Yr
o u A opop
g & T (AR | OV
X jIH/Q] 10( 9(]1)%)‘ w(% %,%)' "
L () (1)
B YiYVr /Rz jl[_l%] v ( " AIIEI/Q] v 9 (i) Vr
X w(i—g(j”f)ﬂ—ﬂ —)‘d/\d (109)
Vi ’77“9(.7) Yr Vr

Here note that the right hand side is nonrandom. The same bound but with @ (A, u)
replaced by

Ry )] Ry (o] mase (| Wy O 0| s )] ) (10)

holds also.

From these bounds we now obtain

’E [’LU (517 Sl+7“)]| <

forall I,r > 1 (111)
NVr
if either |w (A, p)] < C and (19) hold or max (‘]\/4;7()\,;4)) , ‘m(A,u)D < C and (15)
hold.
In the case |w (A, p)| < C and ( 9) hold, this follows using (58) and (59), together with
(60). For the other case, When W (A, ) in the right most side of (109) is replaced by (110)
with max (‘ w (A, !) < (), the resulting bound is bounded by

w(%f)\ i (02)
s e
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where, following (63) and (64), we have when | > [y for a suitable [,

15 G g 2) T (2]

7 ) i
< C+Cpf H (/

A : =7
n( +g(]’f)ﬂ—ﬁ>'dA) <o+copl <o,
i=l/2+1 g ” K

K .
Do g(j)
because (using (57))

/[?”<g(;)bz+ifg(; __)‘d/\ /‘K< )‘dASC%'

It was also noted that (63) and (64) hold for 1 < <, also, and the same hold for first of
the preceding two bounds also. Thus, )E[nﬂ] [w <S[ Bl S[ ke 1]+l+r)] ‘, the left most
side of (109), is bounded by

C R [ r—1
Ny / o (V_> ‘ H
TR " j1=[r/2]
using arguments similar to the above. Thus (110) holds under (15) also.
Similarly, if either [3()\)| < C and (19) hold or (J\/f ] (/\)’ < C and (15) hold, then

oo

¥ (—g (jr) ,yﬁ)' dp <

Yy

|E v (9)]] < % for all [ > 1.

Before giving the proof of Lemma 10, we note the following useful fact that follows from
the preceding bound and the bound (111) (recall ny,x = [n£] — [n22] ):

m

m  Mmk

n 2
(3 h) -2 38 s ()] | -0
j=1 k=1 =1
as n — oo first and then m — oo, for any h (x) for which both h (z) and h? (z) are Lebesgue
integrable.

Remark 4. This fact together with the approximation contained in the proof of Propo-
sition 12 has been used in the proof of Theorem 1 given in Section 2. In addition, essentially
the same arguments will be used to deduce Theorem 3 from Proposition 13. W

To see that (113) holds note that Y™ h (S[n%]H) — > E[n%] [h (S[n%;l]+l>:|,

1 < k < m, form an array of martingale differences, and hence the expected value in (113)

o6



is bounded by

S| ()

k=1 =1
9 n n  Nmkg
() { E 1 (5] +2> " 1Bk slm]l}
=1 =1 r=1
where
n n  MNmk n  Nmkg
Z E [h*(S))] gczl S S IE[R(S) b (Sier) |<(JZZ
=1 - N =1 =1 =1 =1

(114)

where we have used the bounds |E [h? (S))]| < % and |E [h(S)) h (Sir)]] < % obtained
above; for instance the later one is obtained from (111) by taking w (z,y) = h (x) h (y).

We have Zln:l =~ C and, using n,, ~ - and vy, ~ Y™ H maxg cpem Yonm A/i ~
oz (L Thus it follows that (113) holds. M

Proof of Lemma 10. We first consider the proof under (19), in which case we shall
apply the bound (109) with @ (A, p) = f()\) f(u) The fact that ‘f()\)) < C'|A| will now
be crucially used (whereas (114) uses only ‘ﬁ (/\)’ + ‘hAz ()\)‘ < C'). Here note that, for any
¥ satisfying (101),

blg (]7 T)
T

<O, 1)21<j<l r>1 (115)

g Gir) || ‘
Yr9(J) big(j)

by (57) and Lemma 19. Therefore
f(3+ g(jﬂj)ﬂ_ ﬁ) J?(ﬂ)
S/ (¥ ) M Vr
Hence (109) is bounded by (when @ (A, 1) = f (A) f (1) )

1 AL el M)ﬂ - (Ag(ﬁ)' T
YiVr /R2<7l * Vi +7r r jzl_[ w Vi H

(/2] J1=[r/2]

1 I 1 1
< C (— + —> — (116)
MY \N Yr /) Vr

A v
co (Bl bt )

o Vi Vi Vr Vr

-1
1z

w( g (j1) %)‘cﬂdu

when [, > Iy, where in obtaining the inequality we have used (58) and (59). Further using
(60), the same bound (116) holds for (109) when [ < [y and/or r < Iy also. Thus we need
to show that

SEEL()

lqu%%

57



as n — oo first and then ¢ — oo. To see that this is true, take for convenience that

Yo =n foralln > 1.

First note that, using the restriction 1 < 3H,

n 1\ &1
S (rha) e wies

5 <
=1 r=q r
where we have used 2= 37" | % <Cand} % =y = < Cq Next
Z": z”: L Clogn if2H —9>1
oy P T opl R ol 9 < .
Also, 2= = pf'~1. Hence
2
Y i I - Cn=1 (logn) if 2H —9 > 1
o ’Yr —f ) T | CnflTIR A Ooplm3HE20 o g < (1118)

=1 r=q

where note that 1 —3H + 2¢ < 0 in view of (108) Thus (117) holds and hence the proof

of Lemma 10 is complete under the restriction (19)
Under the restriction (15), we use the same bound (109) but with @ (A, ) replaced by

N7 O 77 ()] )

Ry O] [Ba ()| max (| M7, )| [ M7 (1)

In this case, using the arguments that follows (112), together with (71), we have
T (A 907 u)
Mgy, | — + M

m (w wg(i) w

S (X g u) - <Ag(j)>‘
K,, + - — dA
/R "( 11 Jv Y
1 zﬁ
N N % 77

T A
3=[l/2]
Thus the left most side of (109) has the bound

o1 .
C( + — + |m|* +pﬂ) — |t (7) :
Yoo n Yr 72

r

[

By choosing 7, = v, ¢

_1 2
and 75 = 7 ¢, and noting (recall 0 < p < 1) that p" (5)
and similarly p!2% < C’yl’l, we see that the preceding bound reduces to

+3 < C -1
p Yr P)/T’
that in (116). This completes the proof of Lemma 10 (for the situation of Theorem 1)

o8



Now, regarding the Lemma 10 for the situation of Theorem 2, it was indicated earlier
(see the end of the Verification of (R*2), Section 4) that the only essential difference is
that in place of @ (A, ) = f (A) f (1) in the above arguments, W, (A, 1) as defined in the
Verification of (R*2) will be involved, for which we have the inequality (96). Thus, in place
of (117), we need to verify that 2= 37" | 3¢ A/ll% {(% + vi) % + %} — 0 as n — oo first
and then ¢ — oo, but this has been done above. W

We next verify (R3) and (R*3).

VERIFICATION OF (R3). We show that (recall n,x = [nX] — [nE1])

m

c Yo 1) (X1
E\Cmil <—=+C|— E — _E — |, for some § > 0.
[C k} nd n 1. (n 1 %’)
=[] & (119)

1-H
where 22377, - < C and max;<p<m 2 3000 L~ (E) as n — 00.

n J=1 ~; 1—
We shall show in detail that

Nmk Mmk

(%)2 Z Z Z ‘E Sl-‘rT) f2 (Sl-‘rr—i-q)} { (120)

1= [km1]+1r 1 g=1
and

] Nmk Mmk Mmk

(%)2 Z Z Z Z [ELSf I (Stir) £ (Sirig) £ (Siriqrs)] (121)

l[k1]+1r1qlsl

is bounded by r.h.s. of (119). The same can be similarly shown to be true for the remaining

analogues in the expansion of E[(} ] = (7—”)2E [(Z[ "L]k 41 f (Sl)) ] We shall use

n l:[n%
Lemma 19 in a manner similar to the proof of Lemmas 10 above. In addition, we shall
give the details of the verification only for the situation of the statement (II) of Theorems
1 and 2. The corresponding situation of the statement (I) can be similarly verified using
the ideas in the earlier proof of Lemma 10.

We first deal with (120). Using exactly the same ideas as in (109), we have (noting

29



@) |E[f (1) £ (Ster) £2 (Stvesa)]|
T | (Algol) L 2oglur) | dsg(+, q))‘

C / H
YiYrYq j1=[1/2] Vi Yr Vq
. . -1 .
5 (Azg () Agg(h,q))’ qH y <A39 (J3)>‘
Yr Yq 1 Vg
J3=l[q/2]
! (ﬁ - ﬁ) ‘ dhid)adAs, (122)

Tro g

r—1

< 11

j2=[r/2]
~( A A
i Yr

where recall that g(j,7) = g(j +7) — g(j). We make the transformations

A3 (J3) _, Asg (js)

bl

Vq Vq
ool N . iU, N
29 (J2) | Asg(2.0) _ g (j2) (A2 1 92 q)> Mg ()
Vr Yq Yr Yq9 (J2) Yr
N roal Ny . . .
19(j1) n 29(j1,7) n 39(J1 +7,9) _ 9(Jj1) ()\1+)\2%9(Jl_ﬂ”) +)\3%9(Jl+_73 Q))
gl Vr Yq Y Yr9(j1) Y49(j1)
A1g(j1)
— .

N
Here note that, in the same way as in (115) using (59) and Lemma 19, we have

9(j1,7)

<ol
Yrg(j1)

190 f'ﬂ Q)‘ <o
Ye9(J1)

1r9(J2: 0) ' <O
Va9 (J2)

ng(1+r,q)
’qu(jl)

uniformly in the variables involved. (For instance, using (59) and Lemma 19,

n

)blg’)gjl) blg(j;jr’q) <O’ /2] < j1 <1, r,q > 1.) Therefore, in the same way (109) i

bounded by (116), the right hand side in (122) is bounded by

C

1 1
/<—(1A1|+szlﬁ+|Ag|lﬂrﬁ+|A3|l‘9)+—(|A2|+|A3|r”))
ViYrVq N Vr

-1
1 A
X (7— ([A2] + 3] ) +M> H

" <)\19(j1))
r @/ \ =0/ "

< T ¢<M>‘ qﬁ w(Ag’g—Ui”)N dAidad)s

Ja=lr/2] i Ja=la/2] T

C 4190 Y rY 1
+ — — 4+ — .
YiVrVq i Vr Vr Vq
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Thus we need to consider

ﬁ
<ryn>2 zm: Nmk Nmk 1 (l'ﬁ + l197,,19 N Tﬁ) (Tﬁ N 1 ) (123)
n . [ 1 +1r 1 g=1 NYrVq M Yr Yr Ya

We have, similar to (118),

(%) Z nffnff I {O”Hl(k’g”)Z if 2H — 9 > 1

A s Wy Cnl=30+29 if 2H — 9 < 1.

Essentially the same holds for all other terms in (123) except for

k.
”)/n 2 n'm]
()

Nmk Nmk
mk omk 20

2.0

[
(@
3
Iy W SR AL n

1 Tk 7.219
Zm]Jrqul Y <; g ) ,

=]

which is of the form of the bound in (119) because "y T23 < 00 in view of 3H —

20 >1
(see (108)). Thus the bound in (119) holds for (120).
We next consider (121). The ideas involved are the same as those used for (120). First

(27r>4 IE[f (S > f (Sir) f (Sitrsq) f (Stersqrs)]]

VYV Vq Vs / H

()\19 J1) )\29(j177’) n Asg(j1 +1,9) n Mg + 7+ ¢, 5))'
oy Yr Vq Vs
r—1 . . .
Y A , A +q,
y w( 29(12)+ 39 (J2 Q)+ 49 (Jo +q S))’
jo=lr/2 n Yo s
< TT L (Agg Us) |, Mg <j3,s>> 10 v (w <j4))‘
Js=la/2) Ta gk Ja=ls/2] e
PUVS VIR VO NSV VO Ve NSNS VR \ A
x |f —1——2>f<—2——3)f(—3——4>f< 4)‘@ dadAsd\s. (124)
" Vr r Yq Yq Vs s

This is obtained using the same arguments used in obtaining the bound (122). In exactly

the same way as in (122), we first make suitable transformations and then see that, using

)f (A)‘ < C'|A], (124) is bounded by

C 1941909 4 19900 ¥ pPgY r? 4?7 v v 1\ 1
( q + q q + 4 4 + — .
NVrYq Vs M Vs

’yr ’77“ '7q Vq 78
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In the same way as in (123) it is easy to show, using (108), that the sum

[nii} Tk Mk Mk 9,.9 9,0 9 9 9 0
+ 1"r" +1"r"q r¥ +1rYq
EDPRRIEEERC R

1= [n 1]r 1 g=1 s= 17177’,%’78

v 4r v 1\ 1
y <_q+q_) (q_+_)_
Tr “q Yo Vs/) Vs

is bounded by the right hand side of (119). This completes the verification of (R3). W
Verification of (R*3). We start with the remark that when we verified (R3) for
f(S)), it was clear that the same verification will hold for f(S;,) also for any v > 1,

where 5}, is as in (65) because S; and S;, have the same structural form. Recall that

Gk = /22 Z k o f(S)) wi, where w; is a sum of v terms (see (7)), v > 1. It is

convenient to prove the claim by induction on v. Therefore we shall use the notation

l
Z di—jn;-

Jj=l—v+1

For v =1, we have w;; = 7, and

STFE)m =Y (F(S)m— fu (S) + > f(Sn), (125)

where
fo (Si1) = By [f (S) i)

is as in (67), corresponding to v = 1. (Here and in the rest of the proof the sum ) stands
for Z[ i }k S .) According to Lemma 7, f, () satisfies the conditions of f (z) of Theorem
1. Therefore, in view of the remark made above, we are implicitly assuming that (R3) is
verified for f, (S1).

For the remaining term in (125) note that f (S;) 7, — f. (S;.1) form martingale differences,
and hence (see Hall and Heyde (1980, Theorem 2.11))

E {(Z (f (S)m — f. (su)))“]
We have E;_; [(f (S) 77l)2} = f,EQ) (S11) where f*(2) (x) = E[f? (z + &) n?]. That is,

(o) e (St m))] = () 2 |[(S e @)
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2
In addition [ ( F@ @ ) dx < 0o, which will imply (see (114) or the Remark
at the end of Jeganathan (2004a)) that

2

9 ["%] 9 [n%] Nk
(%) E DA e (%) % (1 + Z )
J+1 (127)

l:[n%]—s—l l:[nk_l

and hence, because maxy<p<p, 2= > " 7—1T ~C (%) and =37, vl <C,
2
T\ 2 m [”%]
<_n> > E Yo S| | =0
n
k=1 =[nit] 41

as n — oo first and then m — oo.
Similarly 2 S B [(f (S) m)*] < C, that is, (2)* 0 E[(f(S)m)'] < C2 — 0.
Thus (R*3) holds for the case v = 1. We remark that the same arguments show that
(R*3) holds also for f (S;1)m-1 = f (Si1)wi—11-
Now suppose that v =i, ¢ > 2, and that (R*3) holds for » = i — 1. Taking into account

the preceding remark, this means we can assume that (R*3) holds for f (S;1)wj;_;, where
-1
Wi = Wi — M = Z di—j1;.-
j=l—it1

We have

Z f(S)w, = Z (f(S)wii — B [f (S))wi]) + Z Ei_1[f (S) wiil,
where
ZEZA[ I (Sy) wi) ZEZ L[ (S) (wii —m) +ZE1 L[f (St mi]

Here Ei—1 [f (S)m] = f«(Si1) is as before, for which as noted earlier the verification of
(R3) will be the same as that for S;. Also,

E 1 [ (S) (Wi —m)] = By [f () wfia] = Wi BEra [f (S)] = g (Sin) wiy1,s

where g (z) = E[f (v +&)]. This form is the same as that of f (S;1)wj,; ;, for which we
have assumed the induction hypothesis that (R*3) holds.
Regarding the remaining term > (f (S;) wi; — Ei—1 [f (S1) wii]), which is a sum of mar-

tingale differences, we have the bound analogous to (126), in which the second term is
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treated in the same way as the second term in (126). The first term is £ [(Z E_q [(f(S) wlﬂ.)?} ) 2] )

where (recall wy; = wf; | +m )

B [(f (Sl)wl,iﬂ <2 WZZ'_1|2El—1 [f2(S)] +2E1 [f* (S)n7] -

Letting g (S;1) = Ei_1 [f%(S))], it is implicit in the arguments of the verification of (R*2)
that the bound in (127) holds for

[n] i

KPS

l:[n%]-ﬁ-l

. 12
Wl,1;71| 9(5l,1>

also. Also the term F;_; [f2 (S)) n?] = 7o (S11) has already been treated. It thus follows
that (R*3) holds for Y f (S;) w; when v = i. This completes the verification of (R*3). W

Proof of Theorem 3. (This proof can be read immediately after (109) and (124).) We
consider the situation of the statement (I) of the theorem. First consider the case r = 1.

Then, in view of Proposition 13, it is enough to show that

n m 2
Tn Tn

g (? D7 (5 Spa) = 3 303 By 1 (s S[nle)D o

=t ¥ (128)
The proof of this is the same as that of (113) but now the inequalities (109) and (124) will be
used. To see this note that the inequality (124) holds with f (S}, Sitr) f (Sitr+qs Sitr+q+s)
in place of f (S1) f (Si+r) f (Sitr+q) f (Sitr4q+s), and hence in particular (taking r =1,¢ =
i—1,s=1)

C

|E[f (S1, Si51) f (Sigis Sigirn)]] < .
MYi

Similarly (109) gives |E [f2 (S, Six1)]| < % Hence the proof of (128) is the same as that of
(113). This is also the case for the situation of the statement (II). The proof of the general

case r > 2 is similar; using the statement of Lemma 14 for the general case r > 2. We omit
the details. N
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