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Abstract
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1 Introduction

We introduce and solve a new class of “downward recursive” portfolio choice problems.

For instance, a decision maker (DM) simultaneously chooses among ranked stochastic

options, each choice is costly, and only the best realized alternative is exercised.

Our paper generalizes Stigler (1961), who analyzes optimal static wage search. Unlike

Stigler, we do not assume a priori identical prizes, and characterize both the optimal

sample size and choice composition. Weitzman (1979) also explores a problem with a

priori distinct prizes — but in the sequential world. His is a nice application of Gittins’

solution of the bandit problem. Each option can be assigned an index in isolation of all

others; sequentially, one simply chooses the unexplored option with the highest index.

In our problem, no such simple index rule presents itself. Instead, we find ourselves

faced with the maximization of a submodular function of sets of alternatives — to

be sure, a complex combinatorial optimization problem. Nevertheless, we show that an

economically natural algorithm produces the optimal set in a quadratic number of steps.

We then explore properties of the optimal set. We ask, for instance, how much risk

should one take. We show that the optimal portfolio is ‘more aggressive’ than the set of

best options taken individually, but ‘less aggressive’ than Weitzman’s sequential choices.

We also ask how varied should the choices be. We argue in favor of an upwardly

diverse portfolio: For a rich enough array of possible options and low enough costs, a

connected ‘interval’ of similarly-risky prospects is not optimal. We next provide a key

comparative static, showing how the choice set improves when acceptance chances rise,

and the acceptance chances of better alternatives rise proportionately more.

We believe that our problem is not without substantive practical value.

Example 1. A student must make a costly and simultaneously application to several

colleges, and is accepted with smaller chances by the better schools.

Example 2. A large firm wishes to choose a technology; several are available, and

all are costly to explore; some will work out, and others will not. Finally, it is in a hurry

(e.g., it is in a race with other firms), and must simultaneously choose which to explore.

Example 3. An economics department must fly out new PhD job candidates; the

fly-outs are costly. Each school ranks the candidates, and better ones are harder to hire.

Our paper may also be more topically viewed as a foundation for the recent literature
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on directed search (eg., allowing employees to choose which jobs to apply to). We solve

this decision problem for multiple applications and heterogeneous jobs.1

We first describe the problem. We introduce the algorithm and prove its optimality.

We then explore the properties of the optimal set: Does the DM insure herself or gamble?

Are the optimal choices similar, or disparate? What if success rates increase? The

appendix contains one more algebraic proof. We also refer the reader to the working

paper version Chade and Smith (2005) for additional results, examples, and discussion.

2 The Portfolio Problem

A decision maker (DM) can consume prizes from a finite set N = {1, 2, . . . , N}. Here, N

is a natural number, but abusing notation, we denote this set by N too, and its subsets

by 2N (with the subset inclusion order). Let f : 2N 7→ R+ be a strictly increasing

function, with f(∅) = 0. Interpret f(S) as the expected value of subset S, and put

zi ≡ f(i) > 0.2 Prizes are random, and the prize set S has failure chance ρ(S) ∈ [0, 1)

for all S 6= ∅ (and ρ(∅) = 1). Since αi ≡ 1 − ρ(i) is the success chance of prize i, the

ex post payoff is ui ≡ f(i)/αi. We assume that prize 1 is ex post the best, 2 the next,

etc. so that u1 > u2 > · · · > uN .

Say that U is above L, written U w L, if the worst prize in U beats the best in L.

We assume that the portfolio S is worth less than the sum of its parts. Specifically, this

payoff function is downward recursive (DR), so that for all sets U w L in N :

f(U + L) = f(U) + ρ(U)f(L) (1)

We observe that ρ is multiplicative in a DR payoff structure, since for all U w M w L:

f(U + M + L) = f(U + M) + ρ(U + M)f(L) = [f(U) + ρ(U)f(M)] + ρ(U)ρ(M)f(L)

so that ρ(U+M) = ρ(U)ρ(M). Since ρ < 1, and is multiplicative, ρ is strictly decreasing.

The cost of a portfolio S is given by a function c(|S|), where S has cardinality |S|,
1See Burdett, Shi, and Wright (2001) and Albrecht, Gautier, and Vroman (2002). Perhaps the first

equilibrium paper with multiple simultaneous searches is Burdett and Judd (1983).
2We avoid set notation, writing i={i}, A+B = A∪B, A−B = A\B, (i, j) = {k ∈ N |i<k<j}, etc.
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c(0) = 0, and c is increasing and convex on R+. We assume zi > c(1) for all i, thereby

pruning weakly dominated prizes. This paper studies a one-shot maximization of v(S) =

f(S) − c(|S|). Of course, v(∅) = 0. Our analysis will frequently require consideration

of finite sub-domains D ⊆ N . For such D ⊆ N , let Σ∗(D) solve:

max
S⊆D

v(S) (2)

and denote Σ∗ ≡ Σ∗(N).

We also explore two prominent special cases of (2). By a fixed cost per application,

we mean that c(|S|) = c̄ |S|, for some c̄ > 0. In the fixed sample size n case, c(|S|) = 0

if |S| ≤ n, and c(|S|) = ∞ if |S| > n. Problem (2) becomes maxS⊆D&|S|=n f(S) with

solution Σn(D). We then define Σn ≡ Σn(N). Notice that Σ∗ = Σn for some n.

3 Applications

A. The College Problem. A student must choose once and for all a portfolio S ⊆ N

of colleges to apply for admission, at cost c(|S|). The best is 1, the second best 2, and so

on. The student’s cardinal utility (ex post payoff ) from attending college i is ui, where

u1 > u2 > · · · > uN . Her admission chance at college i is αi ∈ (0, 1]. Intuitively one

might imagine the inverse ordering α1 < α2 < · · · < αN , but this is inessential, as we

shall see. The acceptance decisions by any set of colleges are independent. For instance,

this arises when colleges perceive noisy conditionally iid signals of a student’s type, and

she fully knows her true type. The expected payoff of college i alone is zi = αiui.

Working recursively, one either gets into the best college in S, or one does not; if

rejected, one either gets into the next best, or not, etc. Since ρ(S) ≡ Πi∈S(1−αi) is the

chance of rejection by all colleges in the set S, the gross payoff may be decomposed as:

f(S) =
∑|S|

i=1 z(i)

∏i−1
`=1(1− α(`)) =

∑|S|
i=1 z(i)ρ(i−1)(S) (3)

where (i) is the i-th best-ranked college in the set S, so that z(i) ≡ α(i)u(i), ρ(i−1)(S) =
∏i−1

`=0(1− α(`)) is the chance of being rejected by the top-ranked i− 1 schools in set S.

This college structure contains the generality of the DR payoff structure of §2, and

we sometimes cast our results in the language of this application, for definiteness.
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B. Other Singleton Prize Models. The technology choice clearly has this structure.

Hiring at the economics department assumes this form after some reworking. Indeed,

assume that (i) fly-outs do not inform the hiring decision; (ii) each department needs at

most one job candidate; (iii) after the fly-out stage, the market clears top to bottom, so

that the better recruits are available with smaller chance to any school below the top.

C. Correlated Rejection Chances. Modify the college problem so that rejection

from school i scales down the acceptance chance at colleges j > i by a factor βi ∈ [0, 1].

Portfolio S then has value f(S) =
∑|S|

i=1 z(i)

∏i−1
l=1(1 − α(l))β(l). This derives from a

consistent probability distribution over N for large enough βi (all i), and reduces to (2)

when βi ≡ 1. Because of the DR structure, an equivalent college problem exists with

independent admission events: Assume acceptance rates ᾱi = 1− (1− αi)βi and college

payoffs ūi = αiui/ᾱi. The ex post payoffs ūi fall in i also when the βi’s are large enough.

D. One Shot Multi-Decisions for Dynamic Choice with Payoff Discounting.

The DM enjoys payoffs from all successful options, but can only consume one per period.

He thus eats the best first, etc. Future payoffs are discounted by the factor δ ∈ [0, 1). One

can show that the expected payoff of portfolio S is f(S) =
∑|S|

i=1 z(i)

∏i−1
l=1(1−α(l)+α(l)δ).

Here, an equivalent college problem requires ᾱi = (1− δ)αi and ūi = ui/(1− δ).

4 The Solution

4.1 Consistency Checks on the Optimal Set

Computing the optimal set is a complex task, but we are able now to provide two useful

tests that it must obey. The DR equality (1) implies a key ordinal property, downward

maximization — optimizations on sets imply optimizations on lower ends of those sets:

Lemma 1 Let Σn = U + L, where U w L and L has k elements. Then Σk(D) = L

where D are those options in N not better ranked than the best in L.

If ex ante and ex post ranks of options agree, their marginal values are likewise ranked.

Lemma 2 Assume zi > zj and i < j. Then the marginal benefits of i, j are ordered

MBi(S) ≡ f(S + i)− f(S) > f(S + j)− f(S) = MBj(S) for any set S ⊂ N \ {i, j}.
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Proof As i < j, we may write S = U +M +L, for sets (upper) U = [1, i)∩S, (middle)

M = (i, j) ∩ S, and (lower) L = (j, N ] ∩ S. So U w M w L. Consider the suboptimal

implementation policy for S + i: Accept the best available option, unless it is i, in which

case accept the best option in M (if available) over i. So by (1),

f(S + i) ≥ f(U) + ρ(U) (f(M) + ρ(M)[zi + (1− αi)f(L)])

> f(U) + ρ(U) (f(M) + ρ(M)[zj + (1− αj)f(L)]) = f(S + j)

since zi − αif(L) > zj − αjf(L), given zi = αiui > αjuj = zj and ui > uj > f(L). ¤

If j ∈ Σn(N), then setting S = Σn(N)−j yields at once a simple insight into Σ∗. For

any chosen option, any better-ranked one with greater expected payoff is also chosen:

Lemma 3 Assume zi > zj and i < j. If j ∈ Σn(N), then i ∈ Σn(N).

4.2 An Optimal Marginal Improvement Algorithm

A “greedy algorithm” at each step makes the locally optimal choice, with the hope of

finding the global optimum. The next greedy algorithm, which we call the Marginal

Improvement Algorithm (MIA), identifies Σ∗ via an inductive procedure. Let Υ0 =∅.

Step 1 Choose any in ∈ arg maxi∈N\Υn−1 f(Υn−1 + i).

Step 2 If f(Υn−1 + in)− f(Υn−1) < c(n)− c(n− 1), then stop

Step 3 Set Υn = Υn−1 + in and go to Step 1.

So one first identifies the option i1 whose expected payoff zi is largest.3 At any stage n,

one finds the option in affording the largest marginal benefit over the college set con-

structed so far. The algorithm stops if the net marginal benefit turns negative.

Theorem 1 The MIA identifies the optimal set Σ∗ for problem (2) with D = N .

3The proof actually ignores the non-generic possibility of tied values of multiple argmax. With tied
values, there exists a vanishing sequence of ε payoff-perturbations that renders Σn uniquely optimal
along the ε-sequence. By the Theorem of the Maximum, this constant solution correspondence of the
ε-perturbed problems gives the solution of the unperturbed limit problem. So the choice Σn is optimal.
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Standard combinatorial optimization proofs proceed by policy improvement. Our

proof by induction below is mostly different, exploiting two properties of DR functions.

We have the ordinal property of Σn(D) in Lemma 1, and the following cardinal property.

Let Υn(D) be the n options chosen by the MIA from domain D ⊂ N . In set D, let

us call the best option “0”. Let options i, j∈N −D be lower ranked than 0. Then:

f(D + i)−f(D + j) = ρ(0)[f(D − 0 + i)−f(D − 0 + j)] (4)

Thus, if the marginal benefit of i exceeds j given D−0, then it does so given D. So:

Lemma 4 We have |Υn(D− 0)∩Υn(D)| ≥ n− 1 and |Υn−1(D− 0)∩Υn(D)| = n− 1.

Proof: To see both claims, observe that if 0 /∈ Υn(D), then Υn(D) = Υn(D − 0) ⊃
Υn−1(D − 0). But if 0 ∈ Υn(D), then Υn(D) = 0 + Υn−1(D − 0) by equation (4). ¤

To show Σn(D) = Υn(D), we find (a) downward maximization (Lemma 1) links

Σn(D) and Σn−1(D), and Σn(D) and Σn(D − 0); (b) the marginal benefit property

(Lemma 4) and the MIA links Υn(D) and Υn−1(D), and Υn(D) and Υn(D− 0); and (c)

Σn−1(D)=Υn−1(D) and Σn(D − 0)=Υn(D − 0), by induction assumption.

Proof of Theorem 1: We first show that Υn(D) = Σn(D) if D ⊆ N and n ≤ |D|. Trivial

for |D|=1. Assume it for D̂ ≤ D, n̂ ≤ n, not both with equality. If i /∈ Υn(D)∪Σn(D),

then Σn(D)=Σn(D− i)=Υn(D− i)=Υn(D), by induction. So let Υn(D)∪Σn(D)=D.

Case 1: 0 ∈ Σn(D). By Lemma 1, Σn(D) = 0+Σn−1(D−0). So 0 yields the greatest

marginal improvement to Σn−1(D− 0) = Υn−1(D− 0), by the induction assumption. If

0 /∈ Υn−1(D), then Υn−1(D− 0) = Υn−1(D), and so Υn(D) = 0 + Υn−1(D) = Σn(D). If

0 ∈ Υn−1(D) ⊂ Υn(D), then Lemma 4 yields Υn(D) = 0 + Υn−1(D − 0) = Σn(D).

Case 2: 0 /∈ Σn(D). By induction and the premise, Υn(D − 0) = Σn(D − 0) =

Σn(D). Also, Υn(D) and Υn(D − 0) overlap on n− 1 or n schools by Lemma 4. Since

Υn(D) ∪ Σn(D)=D, we have Σn(D)=D − 0 and Υn(D)=D − k, for some k. Assume

k 6= 0, or we are done. Thus, Σn−1(D) = Υn−1(D) = D − j − k for some j 6= k, by the

induction assumption and the MIA. If j =0, then the best addition to Υn−1(D)=D−0−k

is 0, and so Σn(D) = D − k. Contradiction. Assume j 6= 0, and wlog let j < k. Write

D = U + L, where U = D ∩ [1, k] and L = U−D. So U w L. If α0 > αj then easily
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z0 >zj, and so f(D − j)>f(D − 0) by Lemma 2. Hence, Σn(D)=D − 0 is suboptimal,

a contradiction. And when α0 < αj:

f(D − j) = f(U − j − k) + ρ(U − j − k)[f(k) + ρ(k)f(L)]

= f(D − j − k) + ρ(U − j − k)[f(k)− (1− ρ(k))f(L)] (5)

exceeds f(D−0−k)+ρ(U−0−k)[f(k)−(1−ρ(k))f(L)] = f(D−0), given (a) f(D−j−k) >

f(D−0−k), and (b) ρ(U−j−k) > ρ(U−0−k), and (c) f(k)/(1− ρ(k)) = uk > f(L).

As the cost of a portfolio depends only on its size, Σ∗(N) = Σn(N) for some n. The

stopping rule is optimal since the cost c(n) is convex in n and because f has diminishing

returns — f(S + k)− f(S) is decreasing in S for any k /∈S⊆ N — as we see below. ¤
To see diminishing returns, let us introduce the marginal benefit of adding college k

to a set S. Partition S = Uk + Lk, where Uk = [1, k)∩ S and Lk = (k, N ]∩ S. Then (5)

yields:

MBk(S) = f(S + k)− f(S) = ρ(Uk)[zk − αkf(Lk)] (6)

Because uk > f(Lk), and ρ is decreasing and f increasing, we have:

Lemma 5 Any DR function f : 2N 7→ R has diminishing returns.

Intuitively, additions to the current portfolio grow less valuable as more options are added.

Note that v(S + i)− v(S) < v(i)− v(∅) = zi − c(1), whenever S 6= ∅, by Lemma 5. So

choosing all options with zi > c(1) yields a suboptimally large portfolio.

4.3 Submodular Optimization

As noted, the value of a portfolio is less than the sum of its parts, since each option exerts

a negative externality on the others. To cleanly capture this notion, call a function f on

2N submodular if f(S ∩T )+ f(S ∪T ) ≤ f(S)+ f(T ) for any two subsets S and T of N .

Lemma 6 Any DR function f is submodular, and thus so is v : 2N 7→ R in (2).

Proof First, f is submodular as it has diminishing returns.4 Next, −c(|S|) is a concave

function, and so a submodular function (Proposition 5.1 in Lovász (1982) p.251).5 ¤
4See Proposition 1.1 in Lovász (1982). Gul and Stacchetti (1999) recently used this property in the

economics literature. See related work by Kelso and Crawford (1982) on the gross substitutes condition.
5Observe that a sum of submodular functions, like f + (−c), is submodular.
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It is well-known that the maximization of a general submodular set function is NP-

hard and thus computationally intractable. Indeed, no polynomial algorithm exists for

it (this is independent of the P 6= NP problem; see Lovász (1982), p. 252). By exploiting

the special functional form of our objective function v, the MIA quickly finds the optimal

set Σ∗ for all DR submodular functions. One must in principle calculate the values of all

2N college application patterns. Yet our algorithm succeeds in polynomial time: Initially,

one examines N options and finds the best one. One then examines the next N − 1 and

finds the second best, etc. This amounts to
∑N−1

i=0 (N− i) = N(N +1)/2 = O(N2) steps.

Let us step back and ask whether the MIA’s success pre-destined, in light of the

recent theory of combinatorial optimization. One can show that f(S) is (what is known

as) semi-strictly quasi-concave.6 As with standard quasiconcavity, local then implies

global optimization. It does not, however, imply that a ‘steepest ascent’ algorithm like

the MIA will succeed, as we prove it does for the class of DR payoff functions.7

5 Properties of the Optimal Set

5.1 Aggressiveness of the Optimal Choices

How “risk-taking” should the portfolio be? To flesh this out, we employ vector first order

stochastic dominance (FSD). The set S ⊆ N is more aggressive than the same-size set

S ′ ⊆ N in the sense of FSD when si ≤ s′i for all i, where si is the ith best school in S

and s′i in S ′. Write this as S º S ′, and as S Â S ′ if also S 6= S ′. Thus, {1, 2} Â {2, 3}.
We now compare the best set Σ∗ against two easily computed benchmarks.

A. Portfolio Choices are more Aggressive than Top Singletons. Consider the

set Z|Σ∗| ⊆ N of options with the |Σ∗| highest expected payoffs zi = αiui. Unlike the

portfolio Σ∗, this set ignores the web of cross college external effects, as captured by (3).

Theorem 2 The best portfolio Σ∗ is more aggressive than the best singletons Z|Σ∗|.

6See Murota and Shioura (2003). More precisely, f(S) only satisfies a weak notion of semi-strictly
quasi M \-concavity, given by property (SSQMw) on p. 472. See Chade and Smith (2005).

7In Chade and Smith (2005), we show that the MIA works for some non-DR functions too.
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Proof It suffices to show that if i < j and zi > zj, then MIA picks i before j. By

Lemma 2, for any portfolio S excluding i, j, we have MBi(S) > MBj(S). ¤

For an intuition, consider expression (3) for expected payoffs, i.e.
∑

i z(i)ρi−1(S). If

options in Σ∗ do not have the highest zi’s, then they must compensate with a higher

ρi−1(S). So acceptance chances are lower, and these options must be better ranked.

To see that the order can be strict, assume three colleges, with α1 = 0.1, α2 = 0.9,

α3 = 1, u1 = 1, u2 = 0.5, u3 = 0.48. Notice that z3 = 0.48 > z2 = 0.45 > z1 = 0.1. One

can show that Σ2(3) = {1, 3} which is strictly more aggressive than Z2 = {2, 3}.
Static portfolio maximization thus precludes ‘safety schools.’ One never applies to a

school for its high admissions rate, when not otherwise justified by its expected payoff.

But one might apply to a high-ranked ‘stretch school,’ despite the low expected payoff.

The ‘no safety school’ substance of Theorem 2 is undermined with arbitrary correla-

tion (not of the form in §3-C). For an extreme example with perfect correlation, assume

three colleges, with payoffs u1 = 1, u2 = u < 1, α1 = α2 = α, u3 = v < u, α3 = α′ > α,

and αu > α′v. Suppose the student is either accepted in both 1 and 2 (chance α), or

rejected in both. Exhaustive checking reveals that Σ2(2) = {1, 3}, while Z2 = {1, 2}.

B. Portfolio Choices are Less Aggressive than Sequential Choices. Consider

the case where a student can apply to the colleges sequentially, observing whether one

accepts her before she applies to the next. For a fair comparison, let us restrict to

constant marginal costs c(|S|) = c̄|S|, c̄ > 0. The optimal policy in Weitzman (1979) is

derived as follows. To each college i, associate an intrinsic index or reservation value

Ii; this leaves the student indifferent between a final payoff Ii, and first applying to

college i and then earning payoff Ii if rejected. Then Ii = zi − c̄ + (1 − αi)Ii, and thus

Ii = (zi − c̄)/αi = ui − c̄/αi. The optimal policy orders the colleges by their indices Ii;

the student proceeds down the list, stopping when one accepts him (since ui > Ii).

The solution of our static problem substantially differs from the sequential approach.

For instance, we have shown that one must apply to the college with the largest expected

payoff zi. Easily, this needn’t coincide with the one having the highest Gittins index Ii.

In general, the sequential decision-maker employs a more aggressive strategy than

does our portfolio one. Let W be the list of colleges for which it is sequentially optimal

to search, given continued failure, and W|Σ∗| the set with the |Σ∗| highest indices Ii.
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Theorem 3 The best portfolio Σ∗ is not larger than W , and less aggressive than W|Σ∗|.

Proof For the size comparison, consider that the sequential rule continues as long as

Ii ≥ 0, or zi ≥ c̄. The static decision-maker, by contrast, stops when the marginal value

of the last college i — which is at most zi− c̄, due to the externalities — turns negative.

We now show that W|Σ∗| º Σ∗. It suffices to show that if i < j, and S is any portfolio

for which MIA picks i over j, then the Gittins indices are likewise ranked Ii > Ij. This

is obvious if αi > αj, for then Ii = ui − c̄/αi > uj − c̄/αj = Ij. Otherwise, using the

marginal benefit expression MBk(S) = ρ(Uk)[zk − αkf(Lk)] > 0 from (6), we find that:

Ii − Ij =
zi − c̄

αi

− zj − c̄

αj

=
1

αi

(
MBi(S)

ρ(Ui)
− c̄

)
− 1

αj

(
MBj(S)

ρ(Uj)
− c̄

)
+ [f(Li)− f(Lj)]

If MBi(S)≥MBj(S), then Ii >Ij as: ρ(Ui)<ρ(Uj), αi <αj, and f(Li) > f(Lj). ¤

To see that the order can be strict, assume three colleges, again with α1 = 0.1,

α2 = 0.9, α3 = 1, u1 = 1, u2 = 0.5, u3 = 0.48, but now c̄ = 0.05. One can show that

W|Σ∗| = {1, 2}, which is strictly more aggressive than Σ∗ = {1, 3}.

5.2 Portfolio Choice Sets are Upwardly Diverse

We turn to another key characteristic of the statically optimal set. How similar should

be the chosen options? Is the optimal set an “interval”, say [i, j]?

Assume first z1 > z2 > · · · > zn. It follows from Theorem 2 that they should just

apply to an interval of top schools. Indeed, Σ∗ºZ|Σ∗|=[1, |Σ∗| ] implies Σ∗ = [1, |Σ∗| ].
Apart from this case, a force to gamble upwards emerges and the optimal portfolio is

not in general an interval. To see this, consider a stylized world with constant marginal

cost c̄ > 0, one college i, and N − 1 copies of college j > i, with zj > zi. The algorithm

starts with j. We claim that for N large enough and c̄ small enough, the algorithm

chooses college i before exhausting college j copies. Indeed, suppose the algorithm has

chosen n− 1 copies of college j, but not yet college i. The marginal benefit of choosing

another college j copy is (1−αj)
n−1αjuj− c̄. While this vanishes geometrically fast in n,

the marginal benefit of choosing college i, namely αiui−αiuj(1− (1−αj)
n−1)− c̄, tends

to αi(ui− uj)− c̄. For small c̄, this is positive. Thus, for large n, it is optimal to choose

i over another copy of j. By continuity, this result obviously holds even when all copies
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of j are not literally identical and there is a sufficiently dense and diverse collection of

colleges. So for low enough application costs, one always has an incentive to gamble

upward, and apply to a discretely higher college than the rest.

5.3 Comparative Statics

We finally consider some natural comparative statics. Obviously, with greater costs c(·),
the size of Σ∗ decreases, for the algorithm stops sooner.

More interestingly, how will choices change when acceptance chances (α1, . . . , αN)

change? The answer is far from obvious, for the submodular character of f precludes

any direct application of the monotone comparative statics results (see Topkis (1998)).

Theorem 4 Assume β = (β1, ..., βN) is higher than α and proportionately favors better

options more than α. Namely, βi ≥ αi for all i and βi/αi > βi+1/αi+1, for all i < N .

(a) The best n-portfolio Σβ
n is more aggressive than Σα

n, or Σβ
n º Σα

n.

(b) Let zα
i = αiui and zβ

i = βiui, for all i, and let zα
1 > · · · > zα

N and zβ
1 > · · · > zβ

N . The

optimal sets are thus [1, nα] and [1, nβ]. If also (1− α1)α2 > (1− β1)β2, then nβ ≤ nα.

Proof of (a): The proof is another double induction on n and N . Let Σα
n(N) be the

optimal n-choice set from N for acceptance chances α. The result holds for n = 1 and

all N , by the MIA. Otherwise, if j = arg maxi βiui > arg maxi αiui = k, then βjuj≥βkuk

and αkuk≥αjuj imply βj/βk≥uk/uj≥αj/αk, contrary to our premise.

Assume the result holds for all n̂ ≤ n and N̂ ≤ N , with one inequality strict. If some

j /∈ Σα
n(N) ∪ Σβ

n(N), then the result holds by induction on the domain N − j. Assume

there are no omitted options j. Thus, 1 ∈ Σα
n(N)∪Σβ

n(N). If 1 ∈ Σα
n(N)∩Σβ

n(N), then

Σβ
n(N) = 1 + Σβ

n(N − 1) º 1 + Σα
n(N − 1) = Σα

n(N)

by Lemma 1. If 1 /∈ Σα
n(N), pick the least k /∈ Σβ

n(N). Putting M = [2, k − 1], we have

Σβ
n(N) = 1 + M + Lβ º M + k + Lα = Σα

n(N)

where Lα = Σα
n(N) ∩ [k,N ] and Lβ ≡ Σβ

n(N) ∩ [k, N ], by Lemma 1. Since |Lα| = |Lβ|,
we have Lβ º Lα by the induction assumption. If 1 /∈ Σβ

n(N), then we can likewise
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decompose

Σα
n(N) = 1 + M + Lα and Σβ

n(N) = M + k + Lβ

where Lβ º Lα. The appendix proves fβ(1+M +Lβ)>fβ(Σβ
n(N)), contradicting Σβ(N)

optimal. This case cannot therefore arise. ¤

6 Conclusion

Static optimization is rapidly becoming yesterday’s struggle in economics. In this paper,

we have identified a common and yet unsolved class of downward recursive static portfolio

choice problems, such as where one earns only the best prize from a portfolio. Such

portfolio choices are intriguing, insofar as the value of a portfolio is subtly less than the

sum of its parts. Such problems are also practically important, being faced by millions

of college applicants, thousands of employers competing to hire in student-driven job

markets, as well as firms choosing among uncertain technologies to explore.

We have shown that a greedy algorithm finds the optimal portfolio, and have iden-

tified the key properties that account for its success. This defines a useful class of

submodular functions that can be efficiently maximized. We have also provided some

interesting properties that the optimal set possesses.

Chade and Smith (2005) proves that the MIA also works with non-DR functions

on a richer set of prizes that satisfy a ‘second order stochastic dominance’ condition.

Examples of the failure of the MIA are given, such as with different option costs, or

general binary prizes. It is an exciting open problem to find an algorithm that works

efficiently in these cases: future research beckons.

12



A Appendix: Proof of Theorem 4 Finished

Part (a). We need fβ(1+M +Lβ) > fβ(Σβ
n(N)). If α1 > αk then z1 > zk, and the claim

follows from Lemma 2. Assume hereafter α1 < αk. Then fα(Σα
n(N)) ≥ fα(M +k +Lα),

since Σα
n(N) is optimal for fα. Hence,

α1u1 + (1− α1)[f
α(M) + ρα(M)fα(Lα)] ≥ fα(M) + ρα(M)[αkuk + (1− αk)f

α(Lα)].

This holds if and only if

α1

αk

(
u1 − fα(M)

ρα(M)

)
+

(
1− α1

αk

)
fα(Lα) ≥ uk. (7)

We now argue that replacing α by β yields a strict inequality in (7), which is likewise

equivalent to fβ(1 + M + Lβ) > fβ(Σβ
n(N)). We now justify this assertion:

• Since 1 dominates every option in M + Lα and M + Lβ, we have u1 > fα(M + Lα)

and u1 > fβ(M + Lβ). Using (1), these are equivalent to

u1 − fα(M)

ρα(M)
> fα(Lα) and

u1 − fβ(M)

ρβ(M)
> fβ(Lβ)

• Since β1/βk > α1/αk, the weight on the first term of (7) strictly increases.

• fβ(Lβ) ≥ fβ(Lα) > fα(Lα), respectively by Lemma 1, and because βi ≥ αi, for

all i, and βi > αi for some i (since the ratio ordering βi/αi > βi+1/αi+1 is strict)

• Finally, the first term in (7) increases as well, since

∂

∂α`

(
u1 − fα(M)

ρα(M)

)
> 0 ∀` ∈ M ⇒ u1 − fβ(M)

ρβ(M)
>

u1 − fα(M)

ρα(M)
(8)

To see this, write fα(M) = fα(U) + ρα(U)[α`u` + (1 − α`)f
α(L)] using (1), where

L = (`,N ] ∩M and U = [1, `) ∩M . Thus,

u1 − fα(M) = u1 − (fα(U) + ρα(U)[α`u` + (1− α`)f
α(L)])

= [u1 − fα(U)− ρα(U)fα(L)]− ρα(U)[u` − fα(L)]α`

= A−Bα`
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hereby implicitly defining A and B. The derivative on the LHS of (8) has the sign of

∂

∂α`

A−Bα`

ρα(M − `)(1− α`)
=

A−B

ρα(M − `)(1− α`)2

since ρα(M) = ρα(M − `)(1− α`). But this is positive given

A−B = [u1 − fα(U)− ρα(U)fα(L)]− ρα(U)[u` − fα(L)] = u1 − fα(U)− ρα(U)u` > 0

because option 1 dominates options in [1, `] ∩M , so that u1 > f(U + `).

Part (b). Parameterize θ = α, β, where α = θL, β = θH . When zθ
1 > zθ

2 > · · · > zθ
N , the

restriction to C = {S ⊆ N |S = [1, n], n ≤ N} is wlog. So consider maxS⊆C v(S, θ).

Since C is a chain (i.e. a totally-ordered set), v(S, θ) is quasi-supermodular in S.

Thus, to show that the maximizer is increasing in θ, we need to show that the single

crossing property holds (Milgrom and Shannon (1994)), namely

v(SH , θL)− v(SL, θL)

{
≥ 0

> 0
⇒ v(SH , θH)− v(SL, θH)

{
≥ 0

> 0

where SH = [1, nH ], SL = [1, nL], and nL > nH . Rewrite the above as

ρθL([1, nH ])f θL((nH , nL])

{
≤
<

c(nL − nH) ⇒ ρθH ([1, nH ])f θH ((nH , nL])

{
≤
<

c(nL − nH)

for which a sufficient condition is

ρθH ([1, nH ])f θH ((nH , nL]) < ρθL([1, nH ])f θL((nH , nL]).

Algebra reveals that this holds if β2(1− β1) ≤ α2(1− α1) and βi/αi > βi+1/αi+1. ¤
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