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Abstract

There are two varieties of timing games in economics: In a war of attrition, more
predecessors helps; in a pre-emption game, more predecessors hurts. In this paper,
we introduce and explore a spanning class with rank-order payoffs that subsumes
both as special cases. In this environment with unobserved actions and complete
information, there are endogenously-timed phase transition moments. We identify
equilibria with a rich enough structure to capture a wide array of economic and
social timing phenomena — shifting between phases of smooth and explosive entry.

We introduce a tractable general theory of this class of timing games based on
potential functions. This not only yields existence by construction, but also affords
rapid characterization results. We then flesh out the simple economics of phase
transitions: Anticipation of later timing games influences current play — swelling
pre-emptive atoms and truncating wars of attrition. We also bound the number of
phase transitions as well as the number of symmetric Nash equilibria. Finally, we
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1 Introduction

Suppose that a radio call-in show awards Stones tickets to the seventy-seventh caller. If

the number of other potential callers is known, and if waiting to call inflicts opportunity

costs on listeners, when should they call? Intuitively, players initially strategically benefit

from the delay, but eventually succumb to a fear of missing out. How long will the game

last? What economic lessons can be gleaned from players’ equilibrium timing behaviour?

Timing models in economics fall into one of two opposing camps. In a war of attrition,

delay is exogenously costly, and each player prefers that others act before him. The

situation is reversed in a pre-emption game, where the passage of time is exogenously

beneficial, and players wish to pre-empt others. There are, however, many important

strategic situations where players prefer to be neither first nor last. This new class offers

many intriguing implications — like periods of slow entry interspersed with sudden rushes.

The motivational radio show example aside, they also are widely applicable. For instance,

entry into a growing potential new market is often most profitable for early firms after

the leader — who struggle with neither market creation nor brand identification. In

stock market run-ups, like the 1990s hi-tech sector, early and late sellers fare most poorly.

The social phenomenon of fashionable lateness bespeaks a preference for a middling arrival

rank. On the other hand, one seeks to be early or late in rush hour, but not in the middle.

We develop a comprehensive theory for complete information timing games where

rewards depend on the players’ ordinal stopping ranks. For instance, in a many-player

war of attrition, the first stopper earns less than the second, who gets less than the third,

etc. The reverse holds in a pre-emption game. In either case, rewards are monotonic in

the ordinal stopping ranks. Our timing games subsume non-monotonic rank-rewards.

Returning to the motivational radio show example, one might well imagine that players

wait to call, and suddenly enter en masse, jamming the phone lines. What in fact happens

is more subtle. Since delaying is explicitly costly, agents are initially locked in a war of

attrition. Everyone adopts a mixed strategy, and the chance of winning is ever increasing.

Ideally each wants to enter when the probability that seventy-six have called is maximal.

At that moment, everyone else would do likewise, triggering explosive entry. But the story

does not end there. Only one stopper can win, which diminishes the value of the expected

prize. The pre-emption moment advances backward in time until everyone is indifferent

between pre-empting the entry atom and playing with the mass. Thus, the pre-emption

atom ‘prematurely’ truncates the war of attrition phase. Relative to the direct sum of

equilibria from two timing games, agents pre-empt earlier and do so with an excessively

large mass. In our paper, both time and size of explosive entry moments are endogenous.
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Towards a tractable theory, we assume unobservable actions, no time-exogenous payoff

growth, and exogenous delay costs — specifically, discounting and direct opportunity

costs. Thus, pure strategies are the stopping times, and the solution concept is Nash

equilibrium. Players cannot foresee their stopping rank, and thus can only know their

expected flow payoff if they stop. As is common in the timing game literature, we focus on

symmetric equilibria in mixed strategies, which captures an anonymity of play natural in

many contexts. We also exclude strategies explicitly depending on focal calendar times or

random coordination devices like sunspots. With this proviso, we solve for the symmetric

stationary Nash equilibria.

We show that each such equilibrium tractably admits a unique potential function that

summarizes play. This function yields the equilibrium expected payoffs by differentiation.

One example of a potential function is the greatest convex function below the integrated

expected flow payoff, the convex hull. It always exists, and thus we have existence by

construction (Theorem 1). In mechanism design, the convex hull is often used to “iron”

non-monotonic payoffs; our potential function can be understood as a generalized ironing

technique. Our approach to equilibria thus reduces to characterizing functions.

Turning to the equilibrium analysis, a war of attrition phase is intuitively possible only

for rising expected payoffs — when strategic and exogenous delay costs conflict. Likewise,

pre-emptive behaviour is mandated when expected flow payoffs fall since no conflict is

possible. Hence, the slope sign changes of expected payoffs are critical. Theorem 2

bounds this number above by the underlying deterministic rank reward using the classical

Descartes Rule of Signs; this provides a simple upper bound on the number of phase

transitions that binds for some equilibria.

A phase transition from a war of attrition to a pre-emption game (or back) can only

occur if expected flow payoffs before (or after) atomic entry coincide with the atomic

payoff. As seen in our radio call-in show example, the slope of expected flow payoffs does

not easily determine equilibrium play. Rather, the relation between expected flow and

atomic rewards matters — and these jointly relate exactly as do marginals and averages

(Lemma 1). Our first major qualitative finding about timing games builds on this insight

to deduce that wars of attrition are “prematurely” truncated in equilibrium and pre-

emption game atoms are likewise inflated: The war ends before expected flow payoffs

peak and starts after they trough (Theorem 3).

With multiple phases possible, there are potentially multiple equilibria. Since wars of

attrition and pre-emption games must alternate, the question is whether any consecutive

pair of them is played. With J such matched pairs, this choice must be made for all of

them. Theorem 4 therefore shows that the number of potential Nash equilibria equals 2J .
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In the benchmark war of attrition, all rents — namely, the greatest minus the least

expected flow payoff — are dissipated. Here, this is not true because rank order payoffs

are non-monotonic. For fewer rents are lost because the pre-emption games start before

the peak flow expected payoff, when expected flow and average atomic payoffs coincide.

Theorem 5 instead shows that the maximal payoff burn in the game is captured not by a

difference of expected flow payoffs, but by a difference of the greatest backward average

payoff and the least forward average payoff. Further, the game’s expected payoff is at

least the minimum of the forward average payoffs from the game’s outset. This contrasts

with the war of attrition, where the value is always the least expected flow payoff.

Our model discovers a dichotomy between rank payoffs and the time costs: Since costs

play an important role in determining equilibrium strategies, one might think that not

much can be said about the equilibrium without specifying them. However, the potential

function is derived from the rank payoffs alone, which determines an equilibrium for any

time costs. Further, the patterns of wars of attrition and explosive phases are identical

functions of the stopping probability. For example, if the game starts with an explosive

phase, the size of the first atom is independent of costs.

Many details can influence play in a timing game. While stylized, our formalization is

the first that generally captures the important class of non-monotonic rank-payoffs, and

it does so in a tractable manner. As usual, clarity of purpose most readily emerges in

a simple environment, and our greatest simplification is assuming unobservable actions.

This affords the general and yet tractable formulation. We conclude by briefly considering

observable actions. This results in multiple information sets and greatly enriches the set

of supportable equilibria (now subgame perfect). Still, we briefly argue that our main

qualitative insight from Theorem 3 remains applicable with a simple refinement.

Our paper provides a useful set of tools for analyzing a richer class of timing games.

We strongly believe that this class is economically important. To see this, consider the ex-

ample of high-tech market entry with a middle mover advantage. A first mover advantage

is often presumed in markets for new technologies. If this were always true, one ought not

observe entry rushes for ranks three or four. Late rushes, however, are not uncommon. As

an example take hybrid-powered vehicles: Honda was first (with its Insight in 1999); only

much later Lexus, GM and Ford entered the market almost simultaneously (in 2005). Our

model provides one explanation for this entry pattern — even though several companies

may already own the technology, they let Honda create the market!

As another example, consider a car sales analyst who must predict customer demand

and suppose that customers have middle-mover preferences.1 It is important the he/she

1Mercedes’ market research found that European customers decide almost a year ahead of time on
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understands equilibrium behaviour. If the analyst ignores the middle-mover advantage

and makes predictions based on past sales alone, then the atomic entry would take him/her

by complete surprise. Knowing about the middle mover-advantage but ignoring that wars

of attrition are truncated, he/she would expect the atom to be later, and, again, would

be surprised by the early atom and by its large size.

Timing games are a largely settled corner of game theory. Maynard Smith (1974)

first formalized the war of attrition for theoretical biology: Two animals are fighting for a

fallen prey, the first to give up loses, and fighting is costly for both. With multiple players,

payoffs are increasing in the stopping rank. Recently, Hendricks, Weiss, and Wilson (1988)

have characterized continuous time complete information war of attrition-equilibria, while

Bulow and Klemperer (1999) analyzed a generalized N -player war of attrition.

The pre-emption game has also been studied widely. An often ignored literature is the

early work on tactical duels2 — most simply, a two player zero-sum timing game, played

on a compact (time)-interval. Two duelists shoot at each other with accuracy increasing

in proximity, and they may or may not observe the other’s shot. The flavour of the

modern economics examples is best captured by ‘Grab-the-Dollar’: A player can either

grab the money on the table or wait for one more period; meanwhile, the pot increases by

one unit. Players want to be the first to take the money, but would rather grab a larger

pot. Recent examples Abreu and Brunnermeier (2003), who model financial bubbles, and

Levin and Peck (2003), who look at market entry.

In independent work, Sahuguet (2004) has explored the equilibria in a three player

timing game with both pre-emption and attrition structures. His payoffs are not rank-

dependent. Amidst this large literature on timing games, we believe that our respective

works are the first that are neither just a pre-emption game nor just a war of attrition.

We hope that it suggests a wider and richer application of timing games in economics.3 It

offers insight into periodic unexpected rushes of uncertain size, followed by relative quiet.

Overview. In Sections 2 and 3, we outline the unobservable actions model, and

derive the key ideas for the equilibrium analysis. In Section 4, we bound the numbers of

equilibria and phase transitions, and show how wars of attrition are truncated and pre-

emptive atoms inflated in equilibrium. Section 5 bounds the payoffs and game durations

of our equilibria. Section 6 lays out the equilibrium analysis for observable actions.

new car purchases. So customers take their decision with unobservable actions.
2In 1949, the RAND Corporation kick-started the study of duels by organizing a conference with

leading economists, statisticians, and economists — for an extensive survey see Karlin (1959).
3Shinkai (2000) developed a three-player Stackelberg-type game that fits our rank-payoff formulation:

In his framework, quantity pre-emption and learning from predecessors’ choices interact to effectively
form U-shaped rank rewards. Shinkai, however, does not model the timing decision explicitly.
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Figure 1: Plots of rewards structures. Left Panel: A stylized War of Attrition reward structure
(gray, higher ranks yield higher rewards), and a stylized pre-emption game reward structure (black, low
ranks are better). Middle Panel: Hill-shaped reward structure (gray, the some middle rank is best), and
an ‘avoid-the-crowd’ U-shaped reward structure (black, either a very low or very high rank is best). Right

Panel: Two general reward structures with multiple hills: there are multiple ‘locally’ optimal ranks.

2 A New Class of Timing Games

Players and Actions. Since we analyze settings where players desire to be neither

first nor last, we assume N + 1 ≥ 3 players. Play transpires in continuous time, starting

at time t = 0. Players are identical and have only two decisions: ‘to stop’ or ‘not to stop’;

they may stop only once; a stopping decision is irrevocable. Actions are unobservable.

Strategies. With unobservable actions, there is only one information set. (Such were

called silent games of timing in Karlin (1959).) A player’s strategy specifies the point in

time when he will stop. A mixed strategy is, then, a non-decreasing and right-continuous

function (cdf) G : [0,∞) → [0, 1], where a player stops with chance G(t) by time t.

Rank rewards. Upon stopping, a player receives a one-time lump-sum payment that

depends on his ordinal stopping rank. This payment is captured in the reward-function

v : {1, . . . , N+1} → R+. For instance, in a two-player war of attrition, v(1) = 0 and the

prize is v(2) > 0. In the Caller Number Five game, v(k) = 0 for all k 6= 5, and the prize

is v(5) > 0. In general, more predecessors helps in a war of attrition— or v(k) < v(k+ 1)

for all k. In a pre-emption game, the situation is reversed, as more predecessors hurts, or

v(k) ≥ v(k + 1) for all k. See Figure 1 for various rank-reward structures.

Payoffs for Simultaneous Stopping. Agents who stop at the same time equally

share the available rank rewards. This is tractable and retains a single information set. It

also realistically reflects the anonymity of random stopping. Players don’t control their

rank order among simultaneous stoppers, and therefore all rank order are equally likely.

Assume then that k ∈ {0, . . . , N} players have stopped, and j+1 ∈ {1, . . . , N−k+1}
players stop together. Then the atomic rewards are the average rank reward A(k, j) :=

(v(k+1)+ · · ·+v(k+j+1))/(j+1). For instance, in a war of attrition, if both agents stop

immediately, then their order is randomly determined, and they share the prize equally.
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Time costs. We consider two types of explicit costs: Continuous time discounting at

the interest rate r ≥ 0, and exogenous participation costs c(t), with c(0) = 0, ċ > 0, and

limt→∞ c(t) = ∞.

Equilibrium. As is well-known, timing games may have asymmetric equilibria. While

possibly yielding reasonable predictions in some situations, the literature has not focused

on them, for instance, because they cannot capture games with anonymous roles. We

follow in this tradition and explore symmetric strategy Nash equilibria. To avoid a contin-

uum of arbitrary outcomes, we also confine attention to equilibria whose cdf G has convex

support starting at 0. (The support of G is the set of all t with G(t+ ε)−G(t− ε) > 0 for

all ε > 0.) This restriction embodies a strong stationarity assumption: Strategies with no

gaps cannot explicitly depend on calendar time — i.e. apart from how time influences the

current cdf G(t) or delay costs c(t). It also rules out any dependence on random events,

like sunspots (also incompatible with a unique information set).

3 Equilibrium Analysis

In this section, we outline several tools used in equilibrium analysis: necessary conditions

for mixed strategies, atomic entry, potential functions, and general existence.

3.1 First Order Conditions for Smooth Entry

Consider a symmetric strategy G(t). If G(t) = g, then k of N players independently have

chosen to stop with chance
(

N

k

)

gk(1 − g)N−k. Hence, if no one else enters at time t, then

one necessarily secures rank payoff v(k + 1). Altogether,

expected “flow” rewards φ(g) :=
N

∑

k=0

(

N

k

)

gk(1 − g)N−kv(k + 1).

In any mixed strategy equilibrium, an agent must be indifferent about stopping at any

point in time, so that expected flow payoffs are constant on the support.

Payoffs are discounted rewards less costs, or e−rt[φ(G(t)) − c(t)]. Assume Ġ exists.

Then in equilibrium, this is constant, and therefore

0 = −ċ− r (φ(G) − c) + Ġφ′(G) (1)

Here ċ+ r(φ(G)− c) and φ′(G) are marginal exogenous costs and marginal strategic gains

from delay. We can only solve for Ġ ≥ 0 in any equilibrium if ċ+ r(φ(G) − c) and φ′(G)

share the same sign — namely, if φ′(G) > 0. For there must be a strategic incentive to

delay, since one advances in the ranks to greater payoffs. This is true in a war of attrition.
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3.2 Analogy for Atomic Rewards: Average vs. Marginal Revenue

Suppose that the N other players, acting independently, have stopped with chance G(t) =

g by time t, at which time each plays with chance h−g > 0. Then the chance that players

of ranks k + 1, . . . , k + j stop at time t equals a trinomial coefficient N !/k!j!(N − k − j)!

times gk(h− g)j(1 − h)N−k−j. The expected payoff in this atom, should one also join, is

then

Λ(g, h) :=
N

∑

k=0

N−k
∑

j=0

N !

k!j!(N − k − j)!
gk(h− g)j(1 − h)N−k−j

A(k, j) (2)

Thus, Λ(0, h) is the payoff of an initial atom of size h, and Λ(g, 1) the payoff of a terminal

atom of size 1−g. When 0 < g < h < 1, Λ(g, h) is the average payoff in the on-path atom

from g to h, and Φ(g) =
∫ g

0
φ(x)dx the anti-derivative of φ(g). This motivates:

Lemma 1 Φ(h) − Φ(g) = (h− g)Λ(g, h).

While it is possible to prove this algebraically, it is messy (and omitted). Yet it is intuitive:

Independently place each of the N other players into the stopped, atom, and remaining

categories, with respective weights (g, h− g, 1−h). Thus, Λ(g, h) is the expected average

rank payoff in the atom category, when one is also included. Next independently assign

each of the N other players the status ‘stopped’ (chance w) and ‘not stopped’. Then

Φ(x)/x is the expected average rank payoff in the stopped status with any weight w ≤ x,

when one has also stopped. That Λ(g, h) = (Φ(h) − Φ(g))/(h− g) follows analogously.

This has a nice illustrative analogue in standard producer theory: When AR and

MR denote average and marginal revenue, and q is quantity, then MR − AR = qAR′(q).

Differentiating Lemma 1 w.r.t. h directly yields φ(h) − Λ(g, h) = (h− g) ∂
∂h

Λ(g, h). This

admits an analogous interpretation: h − g is the mass of the atom, and corresponds to

the quantity. The expectation Λ(g, h) aggregates and averages rewards, and φ(h) is the

derivative of aggregated (non-averaged) rewards. Lemma 1 thus implies that φ(·) crosses

Λ(g, ·) from above at the local interior maxima of Λ, and from below at the minima.

3.3 Potential Functions, Equilibrium, and Existence

A cdf G : [0,∞) → [0, 1] is a (symmetric stationary Nash) equilibrium if

E1: The support of G is a connected interval [0, T ] or [0,∞);

E2: e−rt[φ(G(t))−c(t)] is the same constant for all times in the support ofG withG(t) < 1;

E3: If G(t∗)>G(t∗−), then φ(G(t∗−))=Λ(G(t∗−), G(t∗))≥φ(G(t∗)) (equality if G(t∗)<1)

Conditions (E2) and (E3) assert that net payoffs are constant along the support of

play, and that there is no strict incentive to out-wait all other players.
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In a symmetric mixed strategy equilibrium, [0, 1] partitions into subintervals having

endpoints 0 = ξ0 < ξ1 < · · · < ξk = 1, with atomic entry (G jumps) or smooth entry

(G′ exists) on alternating intervals [ξi, ξi+1]. To find an equilibrium cdf G(t), we thus

solve (1) subject to the right boundary conditions, determine atomic jumps so that (E3)

is not violated, and ensure that the boundary conditions reflect the atomic jumps.

Since G is non-decreasing, costs are ever increasing. In equilibrium expected rank

payoffs must compensate for these costs and so must also increase. We are now introducing

a formulation that is able capture this idea in a very simple manner.

A C2 function Γ : [0, 1] → R+ induces a strategy G for Φ if Ġ = (ċ+r[Γ′(G)−c])/Γ′′(G)

whenever Γ(G(t)) = Φ(G(t)), while if Γ 6= Φ on a maximal interval (g, h), then G(·) jumps

from g to h. The function Γ : [0, 1] → R+ is a potential function4 w.r.t. Φ if

P1: Γ(0) = 0, Γ(1) = Φ(1), and Γ′(1) ≥ Φ′(1);

P2: Γ is monotonically increasing, convex, and continuously differentiable;

P3: at each ξ ∈ (0, 1), either Γ(ξ) = Φ(ξ), or Γ is linear in an interval around ξ.

Note that (P1) asserts that Γ(1) is the average rank payoff,5 while Γ′(1) ≥ φ(1) = v(N+1).

Lemma 2 (Equivalence Result) Fix Φ. Any potential function Γ induces a unique

equilibrium cdf G, and any equilibrium cdf G is induced by a unique potential function Γ.

Proof: Fix a potential function Γ. By (P3), [0, 1] partitions into subintervals with

endpoints 0 = ξ0 < ξ1 < · · · < ξk = 1, where6 Γ = Φ or Γ is linear on alternating [ξi, ξi+1].

First, Γ(ξi) = Φ(ξi) for all i, by (P1) or (P3). Assume Γ is linear on [ξi, ξi+1]. Then

Λ(ξi, ξi+1) ≡
Φ(ξi+1) − Φ(ξi)

ξi+1 − ξi
=

Γ(ξi+1) − Γ(ξi)

ξi+1 − ξi
=

{

Γ′(ξi+1) = Φ′(ξi+1) if ξi+1 < 1

Γ′(ξi) = Φ′(ξi) if ξi > 0

by smoothness (P2) and Lemma 1. So (E2) obtains: Stoppers earn identical payoffs just

before atomic entry if ξi > 0, for then Λ(ξi, ξi+1) equals Φ′(ξi) = φ(ξi), and after atomic

entry if ξi+1 < 1, since Φ′(ξi+1) = φ(ξi+1). Also, (E1) holds, as flow payoffs are positive,

by Γ(ξi+1)>Γ(ξi). If ξi+1 =1, then φ(1)=Φ′(1)≤Γ′(1)=Λ(ξi, 1) by (P1); so (E3) holds.

Assume Γ = Φ on [ξi, ξi+1], so that φ = Φ′ = Γ′ (which exists by (P2)). We then

needn’t worry about (E3). Since Γ is convex by (P2) and Φ smooth, φ′ = Γ′′ ≥ 0.

4Our phrase “potential function” is in the spirit of the harmonic function for a conservative vector
field, which remains constant, and whose derivatives describe the gradient on the vector field. Hart and
Mas-Colell (1989) may be the first to use the phrase “potential functions” in game theory; theirs was
a function in a transferable utility game, whose differences yielded marginal payoff contributions. In
Myerson (1981), what we call a potential function is related to the convex hull of integrated ‘virtual
valuations’ in an auction design problem; the derivatives fix the priority level for allocating the good.

5Φ(1) =
∫

1

0

∑

N

k=0

(

N

k

)

xk(1 − x)N−kv(k + 1)dx =
∑

N

k=0
v(k + 1)/(N + 1), using the Beta distribution.

6By (P3) alone, the number k of such intervals may be infinite; Theorem 2 will rule out k = ∞.
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Also, φ is strictly increasing inside the interval, being a nonconstant polynomial; thus,

(E1) holds, as φ can only initially vanish. Assume that G(t) = ξi, for some t ≥ 0.

Thus, the ODE Ġ = (ċ+ r[φ(G)− c])/φ′(G) in (1) admits the “constant payoff” solution

e−rt[φ(G(t)) − c(t)] = φ(0) = Γ′(0), the initial payoff. (Recall that the support of G

includes 0.) Hence, (E2) obtains. Let C(t) := c(t)+ertΓ′(0). Since φ is strictly increasing

on (ξi, ξi+1), G(t) = φ−1(C(t)) obtains on the domain (t, t̄), where t̄ = C−1(ξi+1).

Next, fix an equilibrium G(t). For (P3) to hold, the potential function inducing this

equilibrium is found via: Γ(g) = Φ(g) whenever G(t) is continuous at G−1(g); at any

jump from g to h, Γ is the linear function through (g,Φ(g)) and (h,Φ(h)), with slope

Γ(h) − Γ(g)

h− g
=

Φ(h) − Φ(g)

h− g
≡ Λ(g, h)

{

≥ φ(h) with equality if h < 1

= φ(g) = Γ′(g) if g > 0
(3)

by constant payoffs (E2), (E3). This gives (P2): Γ is differentiable, increasing (by (3) or

by Γ′ = φ > 0), and convex: either Γ is linear, or has slope φ, increasing by (E2).

Finally, we show (P1). If Γ = Φ near 1, then Γ(1) = Φ(1) and Γ′(1) = Φ′(1). If Γ = Φ

near 0, then Γ(0) = Φ(0). If G(t) starts with a jump from 0 to h, then Γ has a linear

segment with slope Φ(h)/h through (h,Φ(h)). This forces Γ(0) = 0. If G ends with a

jump to 1, then Γ′(1) is the final linear slope, i.e. Γ′(1) ≥ φ(1) = Φ′(1) by (3). �

Example 1: Caller Number Two of Three. AssumeN+1 = 3 and v = (0, 1, 0).

Then φ(g) = 2g(1−g) and Φ(g) = g2(1−2g/3). There are exactly two potential functions:

First, Γ may initially equal Φ, so that Γ1(g) = Φ(g) for g ≤ 1/4 and Γ1(g) = 3g/8− 1/24

for g > 1/4. Second, Γ may be initially linear, whereupon it remains linear on [0, 1],

by convexity, differentiability and (P3): Γ2(g) = g/3. These obey the key properties of

smoothness, convexity and boundary values: e.g. Γ′
2(1) = 1/3 > Φ′(1) = 0.

Assume delay costs c(t) = t and no discounting. The first equilibrium involves smooth

play described by the ODE 0 = −1 + Ġ(t)(1 − 2G(t)) from (1), with solution G(t) =

1/2 − 1/2
√

1 − 2t until G(t) = 1/4. At that point t = 1/4, a jump to G = 1 occurs. The

second equilibrium entails simply a time-0 jump to G = 1.

Example 2: U-Shape. Assume N+1 = 3 and v = (1, 0, 1). Then φ(g) = (1−g)2+g2

and Φ(g) = 1/3g3 − 1/3(1 − g)3. Here there is a unique potential function Γ3(g) = 5g/8

for g ≤ 3/4 and Γ3(g) = Φ(g) for g > 3/4. Solving (1) yields 0 = −1 + 2Ġ(t)(2G(t) − 1),

with solution 2G(t) = 1 +
√

1/4 + 2t. Continuous play begins at t = 0, with G(0) = 3/4.

Figure 2 illustrates both examples.

In mechanism design problems, non-monotonic payoff functions are often “ironed” to

produce a monotonic function (e.g. Baron and Myerson (1982)). Namely, let vex(Φ) be

9 Caller Number Five



φ(g)

Λ(g, 1)

10 1
4 10

Φ

vex(Φ)

10 1
4

3
4

φ(g)

Λ(0, g)

10

Φ

vex(Φ)

10 3
4

Figure 2: Examples 1 and 2 from Section 3: Caller 2 of 3 and U-Shape. The top left panel
illustrates the flow payoff φ(g) and the average payoff Λ(g, 1) for the Caller 2 of 3 game; the equilibrium
is as described in the introduction. The top right panel plots the running integral of payoffs Φ and the
potential function vex(Φ) identified in the existence Theorem 1. The bottom left figure plots φ and Λ(0, g)
for the U-shaped example, the bottom right figure plots Φ and the unique potential function vex(Φ) for
this example. The plots also illustrate the theorems that will be introduced in the next sections: Both
examples attain the upper bound number of phases (Theorem 2), with two phases. Consistent with
Theorem 3, the war of attrition is truncated in each case. Just as in Theorem 4, there are two equilibria
in the top game (the potential function for the unit jump is not drawn), and one in the bottom.

the convex hull of Φ, i.e. the largest convex function with vex(Φ)(g) ≤ Φ(g) for every g.

The “ironed” function then is the derivative vex(Φ)′(g) (see Figure 3). Our potential

functions follow a similar idea. Since costs are ever-increasing, so must be the expected

rank-payoffs. Rank-payoffs however, may decline, and these non-monotonicities must be

ironed away. Our potential function describes exactly how this works: its derivative is

the rank payoff, its convexity ensures that equilibrium payoffs increase. If the potential

function contains a linear segment, then rank payoffs are constant, and since delay is

costly, atomic entry must occur.

Theorem 1 A symmetric mixed strategy equilibrium exists and ends in finite time.

Proof: Observe that vex(Φ) is a potential function and thus induces an equilibrium.

10 Caller Number Five



φ

vex(Φ)

Φ

Figure 3: Ironing φ. The left panel illustrates the ironing procedure on φ, the right panel depicts
both Φ and the convex hull of Φ, called vex(Φ).

In any equilibrium, payoffs are constant on the support at φ(0). So there exists t̃ <∞
with maxg e

−rt[φ(g) − c(t)] < φ(0) after t̃. Delaying beyond t̃ is a dominated strategy, as

rewards are discounted or consumed by exogenous delay costs (limt→∞ c(t) = ∞). �

In the Caller Number Two of Three example, vex(Φ)(g) = Γ1(g). In the U-shape

example, Γ3(g) is the unique potential function, and therefore coincides with vex(Φ)(g).

4 Behavioural Properties of Equilibria

4.1 Phases and Phases Transitions

We first bound the number of slope-sign changes of the expected flow rewards.

Lemma 3 (Variation Diminishing Property of Expected Rank Rewards)

Let the slope of rank rewards v(k) change sign m times. Then the slope of expected rewards

φ(g) changes sign at most m times, the number of sign-variations in φ is smaller by a

multiple of two (including 0), and the signs of the first and last slopes of v and φ coincide.

Proof: The derivative of φ(g) in g can be rearranged as follows:

φ′(g) =
N

∑

k=1

(

N

k

)

kgk−1(1 − g)N−k(v(k + 1) − v(k)).

The first differences v(k+ 1)− v(k) swap their sign m times. Scale φ′ by g/(1− g)N , and

let ak := k
(

N

k

)

(v(k + 1) − v(k)) and z := g/(1 − g). Then

g

(1 − g)N
φ′(g) =

N
∑

k=1

k

(

N

k

)

(v(k + 1) − v(k))

(

g

1 − g

)k

=
N

∑

k=1

akz
k =: P (z).
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Obviously, P (z(g)) and φ′(g) enjoy the same number of sign variations, i.e. positive real

roots of P . By Descartes’ Rule of Sign, this number is at most the number of sign changes

of its coefficients a0, a1, . . . , aN . Also, if smaller, it is smaller by a multiple of 2.

Finally, φ′(0) = v(2) − v(1) and φ′(1) = v(N + 1) − v(N), proving the last clause. �

As noted earlier, this paper subsumes the two classes of timing games. In a war of

attrition, an exogenous delay cost opposes a strategic incentive to outwait others. The

reverse holds in a pre-emption game, where delay is exogenously beneficial, and players

wish to pre-empt others. We now categorize them by their strategic incentives:

Definition 1 (Phases)

• If Ġ(t+) > 0 exists and φ′(G(t+)) > 0 on some (t, t̄), then there is a war of attrition.

• If Ġ(t+) > 0 exists and φ′(G(t+)) < 0 on (t, t̄), then there is a slow pre-emption game.

• If G jumps at t, as G(t) > G(t−), then a pre-emptive atom phase obtains.

A phase transition occurs at some time t if two distinct timing games obtain in every

neighborhood of t. If three games obtain, then there are two phase transitions at t.

Theorem 2 (Phase Transitions)

(a) Equilibrium play consists solely of an alternating sequence of wars of attrition and

pre-emptive atom phases. There are no slow pre-emption games, and pre-emptive atoms

subsume entire intervals when φ is decreasing.

(b) There are at most as many phase transitions as sign changes of v(k) − v(k − 1).

(c) If φ has m alternating slope signs, then the maximal number of phase transitions is

m−1. This bound is attained in equilibrium iff vex(Φ) touches every convex portion of Φ.

Proof of (a): Expected payoffs are constant along the support of play. Delay is

always exogenously costly, and thus in equilibrium, a player’s expected payoff from rank

rewards rises over time. So whenever φ′ < 0, any player must stop at once because delay

is costly both strategically and exogenously. So play involves smooth wars of attrition and

pre-emptive atoms. Consecutive wars of attrition or pre-emptive atoms can be merged.

Proof of (b): This follows because φ cannot have more interior extrema than v, by

Lemma 3 — which also showed that the first and last slope signs of v and φ match.

Proof of (c): A phase transition occurs iff Γ switches between locally linear and

strictly convex (Γ′′ > 0). The smooth Γ only changes slope when Γ = Φ. As a non-

linear polynomial, Φ is strictly convex at most as many times as Γ, with equality iff (⋆): Γ

touches each convex portion of Φ. As vex(Φ) is a potential function, this proves sufficiency.

Next, assume (⋆). The smooth Γ includes the unique supporting tangent line between all

consecutive convex portions. The unique such potential function is vex(Φ). �
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b

b

b

b

G = 0 G = 1
k = 1 k = 4

φ(G)
v(k)

φ(G)

Λ(0, G)

Λ(G, 1)

10 10

Φ(G)

vex(Φ)(G)

Figure 4: The Zick-Zack Game: In this merger of examples 2 and 3, rank payoffs now twice change
slope, as v = (0, ψ, 0, 1). If v(2) = ψ (off the graph) is large enough, then the expected flow reward φ
likewise has both a hill and a valley. Otherwise, φ is monotonically increasing. The middle panel plots the
expected reward function φ and reward functions for initial atoms, Λ(0, g) and terminal atoms Λ(g, 1).
The right panel plots Φ(g) and vex(Φ)(g).

One can show that the maximum number of phase transitions is attained only if both

the sequence of minima of Λ(0, g) and the sequence of maxima of Λ(g, 1) are increasing.

Example 3: Zick-Zack. The left panel of Figure 4 depicts the four player game

Zick-Zack, with rank rewards v = (0, ψ, 0, 1), with ψ > 0. Then

φ(g) = 3g(1 − g)2 · ψ + g3 · 1 and φ′(g) = 3ψ(2g − 1)2 + 3(1 − ψ)g2,

Φ(g) =
(

1/4 (1 − (1 − g)4) − g(1 − g)3
)

· ψ + g4/4.

Analyzing φ(g), one can see that φ(g) is monotonic for ψ ≤ 1 =: ψ, even though the

underlying rank reward structure v has two slope-sign changes. This illustrates the strict

inequality in Lemma 3, by a multiple of two. Then Φ is convex, and thus the unique

potential function is Φ = vex(Φ) itself; there are no phase transitions (Theorem 2 (b)).

If ψ > ψ, then φ has two slope-sign-changes, like v. The quartic polynomial Φ thus

has two points of inflection, and vex(Φ) must contain at least one linear portion. Hence,

there can be at most two phase transitions (Theorem 2 (c)).

Next, vex(Φ) touches both the first and second convex portions of Φ for ψ ≤ ψ ≤ ψ̄ :=

(5 +
√

33)/4. By Theorem 2 (c), the associated equilibrium has the maximum number of

phase transitions (two): war of attrition, pre-emptive atom, and then war of attrition.

We have shown that having unobserved actions smoothes out rank payoffs in φ, and

thereby reduces the number of phase transitions. But our equilibria are not merely the

“direct sum” of the constituent timing games, as computed from the derivative φ′ of the

smoothed payoff function: It is not true that a war of attrition obtains iff φ′ > 0 and a

pre-emption game obtains iff φ′ < 0. First of all, φ may be non-monotonic and yet there
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may be a unique pre-emptive atom — for instance, with v = (2, 0, 1). More subtly, the

slope φ′ does not by itself determine the current timing game, because the relation of

marginal and average rewards, φ and Λ, is critical. Pre-emptive atoms subsume intervals

when φ is decreasing, by Theorem 2-(a). The reverse is not true, as we now flesh out.

Theorem 3 (Truncation and Atom-Inflation) Pre-emptive atoms are inflated and

wars of attrition truncated: Any pre-emptive atom subsumes at least some portion of

the adjacent intervals where φ is increasing, and where a war of attrition is played.

Proof: A linear portion of a potential function Γ must be a common tangent to distinct

convex portions of Φ, and corresponds to a pre-emptive atom phase. If this tangent joins

non-adjacent convex portions, then the atom is perforce inflated, as it subsumes at least

one entire war of attrition phase. It therefore suffices to consider a common tangent τ of

adjacent convex portions. Without inflation, such τ must touch at consecutive points of

inflection of Φ, i.e. where φ′(g) = 0. This is impossible, as it would slice through Φ. �

For instance, in the Caller Number Two of Three example, at most one phase transition

occurs, since φ′ changes its sign just once, from positive to negative when g = 1/2. Observe

that the ODE defining the war of attrition is defined until time t = 1/2. While this may

be its natural termination point, terminal atomic rewards are too small at that moment.

Indeed, the atom would have size G(1/2) = 1/2, and Λ(1/2, 1) = 1/3 < φ(1/2) = 1/2.

Hence, the atom advances until φ(g) and Λ(g, 1) cross. This occurs when Λ(g, 1) has a

maximum at g = 1/4, i.e. G(3/8) = 1/4. This is before time t = 1/2, hence truncation.

4.2 The Number of Equilibria

Let Em denote the set of symmetric stationary Nash equilibria. Given the expected flow

rewards φ, we can tie down the maximal cardinality of Em as follows.

Theorem 4 (How many equilibria?) Assume φ has exactly m alternating slope-signs.

If φ slopes up at g=0, then |E2k|, |E2k+1|≤2k; if it slopes down, |E2k−1|, |E2k|≤2k−1.

Proof: The number of equilibria is 2|Jm|, where Jm is the set of up-slopes of φ

followed by down-slopes. Why? An equilibrium implies a unique set of up-slopes played

(the common tangent on pairs of strictly convex portions of Φ is unique). Indeed, an

initial down-slope prior to Jm does not affect the number of equilibria, as the down-slope

is skipped in a jump. A terminal up-slope likewise does not affect the number of equilibria,

as it will either be skipped by a pre-emptive atom or played with a war of attrition, but

not both. So there is a 1-1 map from equilibria Em to sets Jm — hence, the power set

enumeration for the upper bound of |Em|. �
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For instance, the standard war of attrition has one slope-sign, and thus has |E2·0+1| =

20 = 1 equilibrium. The U-shaped game has two slopes, and slopes down first, so that

it has maximally |E2·1| = 21−1 = 1 equilibrium. Caller Number Two of Three has m = 2

slopes, but slopes up first, so that there are maximally |E2·1| = 21 equilibria.

For Zick-Zack, the theorem asserts that the terminal up-slope should not affect the

maximum number of equilibria, i.e. still |E2·1+1| ≤ 21. Why? Clearly, if ψ ≤ 1, then the

unique equilibrium is a war of attrition. If ψ > 1, then Φ has two points of inflection,

and there are three possible potential functions: The first begins with a linear segment

τ0 that touches the second convex portion of Φ and is then strictly convex. The second

is strictly convex, ending with a linear portion through (1,Φ(1)). This linear segment

τ1 is tangent to the first convex portion of Φ and must have slope Γ′(1) ≥ Φ′(1). The

last potential function has a linear segment τ in the interior of [0, 1] which is the unique

common tangent to the first and second convex portions of Φ.

By construction, each of these potential functions is unique — if it exists. Observe

that the tangent τ necessarily first touches Φ at some g ∈ (0, 1), because Φ′(0) = φ(0) =

0 < φ(g) = Φ′(g) for g > 0. However, its second touch point occurs at some interior h < 1

only in some conditions, namely iff ψ ∈ [ψ , ψ̄). Moreover, as is geometrically clear, the

tangents τ and τ1 coincide at the very moment that ψ = ψ̄. The tangent τ1 in fact exists

for ψ ≥ ψ
1

:= (11 + 3
√

17)/16. But its slope only weakly exceeds Φ′(1) for ψ ≥ ψ̄, where

ψ̄ > ψ
1
. Altogether, τ1 is part of a potential function iff ψ ≥ ψ̄.

This illustrates why the terminal up-slope in Zick-Zack does not increase the number

of equilibria relative to the Caller Number Two of Three game: tangent τ1 represents a

terminal atom skipping the last up-slope, while τ corresponds to an interior atom after

which the terminal up-slope is played. Precisely one of the two obtains.

One can finally show that the initial tangent τ0 exists for 9/5 := ψ
0
≤ ψ ≤ 3 := ψ̄0.

For ψ > ψ̄0, τ0 is no longer tangent to the second convex portion of Φ. For when ψ = ψ̄0,

τ0 becomes a straight line from the origin to (1,Φ(1)) corresponding to a time zero unit

atom. In summary, the maximum number of equilibria (two) is attained iff ψ ≥ ψ
0
.7

When is the maximum number of equilibria attained?8 One may be tempted to think

it sufficient that vex(Φ) touches all convex portions of Φ, as in Theorem 2-(c). But the

above analysis of Zick-Zack shows that this is not enough: For ψ ∈ [ψ, ψ
0
), vex(Φ) touches

7The ψ
0
, ψ

1
thresholds are most easily obtained via Λ(0, g) and Λ(g, 1): First, Λ(0, g) has an interior

maximum and minimum for all ψ ≥ ψ
0
, and is monotonic for smaller ψ. If a potential function starts

with a linear portion, then τ0 is tangent to Φ(g) exactly when φ(g) and Λ(0, g) intersect at an interior
minimum of Λ(0, g). The middle panel of Figure 4 illustrates this point. The threshold ψ̄0 for ψ allows
φ(g) and Λ(0, g) to cross at g = 1. The computations for ψ

1
follow similar lines of reasoning using

Λ(g, 1). Finally, the payoff from the interior maximum of Λ(g, 1) coincides with φ(1) at ψ̄.
8Detailed sufficient conditions for this are available from the authors upon request.
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both convex portions of Φ, and yet the induced equilibrium is unique.

Even when the maximal number of equilibria is attained, no equilibrium need attain

the maximal number of phase transitions. In Zick-Zack, both equilibria have only one

phase transition for ψ > ψ̄, while the most phase transitions is two, by Theorem 2-(c).

5 Equilibrium Payoffs

In a timing game, two questions arise: Which is each player’s expected payoff, and how

much “rent” is lost by hold-up? In the pure unobserved actions war of attrition, the

expected payoff is φ(0) = v(1), and all rents are dissipated, namely the difference φ(1) −
φ(0) = v(N + 1)− v(1) between highest and lowest rank payoffs — or, the total variation

in rank payoffs. Not so here. To simplify matters, we assume no discounting and constant

marginal participation costs, c(t) = t; rent dissipation thus equals the length of play.

Theorem 5 (Payoffs)

(a) Fix an equilibrium corresponding to a given potential function Γ. Then the expected

payoff is Γ′(0), and the game must end after an elapse time of Γ′(1) − Γ′(0).

(b) The equilibrium with the least expected payoff and maximal length corresponds to

vex(Φ). Thus, the least value is vex(Φ)′(0), and the greatest length is vex(Φ)′(1)−vex(Φ)′(0).

For a given potential function, the equilibrium expected payoff of the game is thus a local

minimum of the forward looking average rewards; the game lasts until a local maximum

of backward average rewards obtains. Moreover, the least expected payoff of the game is

the global minimum of the forward average payoffs, and the maximal time elapse likewise

occurs when the global maximum backward average rewards are reached.

Proof of (a): Fix a potential function Γ. Since the mixed strategy ensures a constant

payoff along the support of play, the expected payoff of the game is the time zero payoff

Γ′(0). With unobservable actions, the game ends in finite time by Theorem 1. The length

of play depends on the payoffs dissipated — the higher the payoff they can obtain, the

longer people are willing to delay. Since expected rank-payoffs must increase along the

support of play, the largest rank-payoff Γ′(1) obtains when the game ends.

Proof of (b): Suppose, counterfactually, that Γ̄′(0) < vex(Φ)′(0) for some potential

function Γ̄. Since vex(Φ) ≤ Φ everywhere, we have vex(Φ)′(0) ≤ Φ′(0), and thus Γ̄′(0) <

Φ′(0). Then Γ̄ is initially linear by (P3). But differentiability and (P3) jointly imply that

Γ̄ can only change slopes while tangent to Φ ≥ vex(Φ). If this happens at g ∈ (0, 1), then

vex(Φ)(g) ≤ Φ(g) = Γ̄(g) = Γ̄′(0)g < vex(Φ)′(0)g. This violates convexity of vex(Φ).

Similarly, at g = 1 we have Γ̄′(1) ≤ vex(Φ)′(1) for any potential function Γ̄. �
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This result subsumes the standard war of attrition with monotonic rank rewards:

When φ is monotonic, Φ is globally convex, and the only potential function is Φ itself.

The expected payoff is Φ′(0) = φ(0) = v(1), and the maximal length is Φ′(1) − Φ′(0) =

φ(1) − φ(0) = v(N + 1) − v(1). In fact, by (P3) and Theorem 5-(b), this is the length of

any unobserved actions game where vex(Φ) begins and ends on a strictly convex portion.

Since rank payoffs are smoothed in φ with unobserved actions, the total variation in

φ = Φ′ is a tighter upper bound on payoff dissipation (eg. Figure 4, left). But war of

attrition-phases are truncated, and even this measure is not tight enough. The length

and expected payoff depend on the slopes of the initial and terminal tangents τ0 and τ1.

In Caller Number Two of Three, vex(Φ) is strictly convex for g ≤ 1/4 and linear with

slope 3/8 for g > 1/4. The expected payoff is φ(0) = 0 and the maximum length of the

game is 3/8. In the U-shaped example, vex(Φ) is linear with slope 5/8 for g < 3/4 and

strictly convex for g ≥ 3/4. The expected payoff in the game is the first flow payoff in the

war of attrition, φ(3/4) = 5/8, and the maximum elapse time equals φ(1)−φ(3/4) = 3/8.

In Zick-Zack, with rank rewards (0, ψ, 0, 1), vex(Φ) is the potential function that starts

with a strictly convex portion. Thus, the minimum expected flow payoff is φ(0) = 0. For

ψ ≤ ψ, Φ is strictly convex, and the unobserved actions game is then equivalent to

a war of attrition. If ψ ∈ (ψ, ψ̄), vex(Φ) touches both convex portions of Φ and hence

vex(Φ)′(0) = φ(0) and vex(Φ)′(1) = φ(1). Thus, the maximum duration is φ(1)−φ(0) = 1,

which is below the total variation ψ in rank payoffs. Finally, for ψ > ψ̄, vex(Φ) ends with

a linear portion, and the terminal payoff is governed by the slope of the tangent τ1. The

maximum duration exceeds φ(1) − φ(0), but is still less than the total variation of φ.

What about the most efficient equilibrium? If Φ(1) ≥ Φ′(1), then Γ∗(p) = pΦ(1) is

a potential function, and clearly corresponds to a time-0 complete atom. But if Φ(1) <

Φ′(1), then a time-0 jump is no longer an equilibrium. In some of these cases, we can

identify the most efficient equilibrium, but we have found no clear theorem. For there are

examples where the equilibrium with the greatest expected payoff is not the quickest.

Assuming that Φ′′(1−) = φ′(1−) > 0, for instance, if we can construct a tangent τ ∗

from the origin to the last convex portion of Φ, tangent at some p̄ ∈ (0, 1], then it is

the most efficient equilibrium by both measures: shortest and greatest expected payoff.

The shortest equilibrium in Zick-Zack is induced by the potential function Γ with a linear

segment at the origin; such a potential function exists when ψ ≥ ψ
0
. Since Γ 6= vex(Φ), its

expected payoff is higher. Also, for ψ < ψ̄0, its terminal slope is Γ′(1) = Φ′(1) = φ(1) = 1,

which is weakly smaller than vex(Φ)′(1). Thus, it is the shortest equilibrium. For ψ ≥ ψ̄0,

the atom is complete; this equilibrium is the shortest with the maximal expected payoff.
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6 Conclusion, and Lessons for Observable Actions

Summary. It is surprising that the timing game literature has so long cleanly par-

titioned into wars of attrition and pre-emption games. The incentive structure for both

varieties of timing games finds a common home in this paper. The resulting equilibria

are remarkably rich, with on-path atomic explosions that may be preceded or followed

by slow wars of attrition. Further, the two flavours of timing games interact with each

other, with anticipation of later phases influencing current play. Thus, the moments for

the explosions are chronologically advanced relative to a näıve “direct sum”. To facilitate

understanding, we have also managed to characterize equilibria via potential functions.

This has afforded a strikingly quick existence proof, and easier analyses of these equilibria.

Our theory assumes unobserved actions because the resulting analysis is tractable —

but we do believe that it captures many economic situations. Below, we argue that it also

provides a benchmark for understanding behaviour with observable actions. Exogenous

payoff growth over time, a feature often associated with pure pre-emption games, is an

obvious extension that we pursue in future work.

Observed Actions. Once actions are observed, the model grows substantially more

complex. Subgame-perfect equilibrium (SPE) is the mandated solution concept. Since

players can see the game unfolding, there are now multiple information sets, one for each

number of remaining players. There are therefore far more equilibria, since the number of

remaining players itself can serve as a coordination device. We shall thus confine attention

to symmetric SPE for which players engage in a war of attrition whenever possible, and a

pre-emption game only when necessary. This substitutes for the stationarity condition for

Nash equilibrium. For intuitively, a pre-emptive atom requires a high degree of coordina-

tion, and a war of attrition needs no coordination at all. Despite this refinement which

seeks to minimize the role of pre-emption games, we now argue that our main qualitative

finding still obtains: wars of attrition are truncated, and pre-emption atoms inflated.

Let w(k + 1) be the expected SPE payoff from the subgame after k have stopped.

Lemma 4 A war of attrition obtains if v(k+ 1) < w(k+ 2) while a pre-emptive atom of

some size p ∈ (0, 1] occurs if v(k + 1) ≥ w(k + 2).

Proof: Any p < 1 must equate the expected flow payoffs from the continuation game and

the (shared) atomic payoffs:

N−k
∑

i=0

(

N − k

i

)

pi(1 − p)N−k−iw(k + 1 + i) =
N−k
∑

i=0

(

N − k

i

)

pi(1 − p)N−k−i
A(k, i). (4)
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Now, the LHS of (4) is flatter than the RHS of (4) at p = 0. For comparing slopes yields:

(N−k)(v(k+2)−v(k+1))/2+(N−k)(w(k+2)−v(k+1)) < (N−k)(v(k+2)−v(k+1))/2

since w(k+2)−v(k+1) < 0. Both sides are continuous in p and coincide for p = 0. Thus,

they either intersect again for some p ≤ 1, or, if not, the RHS atomic payoff dominates

the LHS continuation payoff for all p, and a complete atom must obtain. �

Assuming again a constant cost of delay c(t) = t, the expected length of the war is

w(k + 2) − v(k + 1), while its expected payoff is v(k + 1) =: w(k + 1). Assume that rank

payoffs rise from j to k. We say that a war of attrition is truncated in time if its expected

duration is less than v(k) − v(j). Call a war of attrition weakly truncated (i.e. in ranks)

if it nowhere obtains in {j, . . . , k}, or if it obtains from j′ to k′ for some j ≤ j′ < k′ ≤ k.

Likewise, if rank payoffs fall from j to k, the pre-emption game is weakly inflated (in

ranks) if it obtains from j′ to k′ for some j′ ≤ j and k′ ≥ k. Once an atom occurs, there

is further atomic entry until a war of attrition-subgame is reached.

(♦) All rank payoffs on down-slopes are more valuable than the overall average remaining

payoff, or v(k + 1) > A(k,N − k) whenever v(k + 1) < v(k), for any k.

Theorem 6 Assume (♦). Wars of attrition are truncated in time, weakly truncated in

ranks and pre-emptive atoms are weakly inflated.

Proof: As players are symmetric, they cannot expect to gain more than the average

remaining rank payoff, w(k + 1) ≤ A(k,N − k). So (♦) implies v(k + 1) > w(k + 1).

A war of attrition along an up-slope from a minimum rank k to k̄ lasts at most time

w(k̄)− v(k); it is thus truncated in the time dimension from the näıve length v(k̄)− v(k).

Atomic entry obtains whenever v(k) > w(k + 1). Assume that there are subsequent

up-slopes of rank-rewards. If the atom is complete, then it is clearly inflated. If the atom

is incomplete, then with positive probability play continues on the same down-slope. But

then v(k) > v(k + 1) > w(k + 1), and another atom follows immediately. So once atomic

entry starts, it stops only when play begins weakly on an up-slope. �

Corollary Assume (♦). There are at most as many phases as slope signs of v(k).
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