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Abstract

Consider Becker’s (1973) classic matching model, with unobserved fixed types
and stochastic publicly observed output. If types are complementary, then
matching is assortative in the known Bayesian posteriors (the ‘reputations’).

We discover a robust failure of Becker’s result in the simplest dynamic two
type version of this world. Assortative matching is generally neither efficient nor
an equilibrium for high discount factors. In a novel labor theoretic rationale,
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number of production outcomes grows, almost all technologies are of either form.
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break up. It also reveals that the induced information rents create discontinuities
in the wage profile. This in turn produces life-cycle effects: young workers are
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1 Introduction

This paper began as a joint project by a tenured faculty member and a graduate

student. It is reasonable to assume that the reputation of the faculty member was

substantially more established than the graduate student’s. The Beatles broke up

after it was clear that their members were highly talented, and each member went

on to match with individuals having unestablished reputations. While in the first

example an individual with an established reputation matched with another whose

reputation was not established, in the second example a partnership of likes dissolved

once reputations were established. In this paper, we argue that beyond the obvious

personal match interplay, there are real economic forces at play in these match break-

ups. These examples motivate two questions: What static matchings can we expect to

see when reputations matter? How will an individual’s partners change over time?

Becker’s (1973) considered a static Walrasian complete information matching model,

where output depended solely on exogenous types. He showed that there is positive

assortative matching (PAM) — here, everyone matches with a same reputation partner

— iff types are productive complements. Extending his work to a static world of uncer-

tainty, complementarity again delivers the same assorting result (our Proposition 0).

What we propose here instead is a twist in the spirit of Becker (1973) — namely,

with fixed types where matching decisions are the only choice variables. But we venture

that matches quite often yield not only current output, but also information about

types. Specifically, this matching concern arises with both incomplete information

about types and time dynamics. Lest the model degenerate, we further assume that

output is random. And finally, we posit that output is publicly observable; this both

agrees with the economics we have in mind, and ensures that the Welfare Theorems

hold, again closely hewing to Becker’s model. Thus, it suffices to explore whether PAM

constitutes an efficient matching allocation. We later illustrate how publicly observed

stochastic output and unobserved skills/talents are quite typically paired features of

the world we live in. Publicly observed output also induces a reputational concern.

For simplicity, we assume just two underlying types, ‘good’ or ‘bad’. Everyone is then

summarized by the public posterior chance that he is ‘good’ — his reputation.

In this setting, we show that PAM fails despite the globally complementary produc-

tion, Becker (1973). While we offer some applications below, we believe that our paper
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in and of itself is an key foundational result for matching papers with incomplete infor-

mation.1 A model with public information is the natural first step, and we argue that

our result is far subtler than one might think at first. Indeed, a naive view of this failure

runs as follows: Informational and productive concerns run at cross purposes, and thus

for sufficiently patient agents, the former effect dominates. This logic fails, and it is

instructive to see why. We show that PAM is informationally superior for some ranges

of reputations. Tradeoffs are the stuff of interesting economics, and informational and

productive efficiency only sometimes oppose each other. For with PAM, output varia-

tion owes equally to the two parties, and so both likewise benefit from Bayes updating;

however, PAM can never be informationally efficient for all reputations. We show that

if individuals are patient enough, there is some range of reputations where information

efficiency dominates productive efficiency, and PAM fails.

Determining why and where PAM fails is critical for our finding, and fleshing out

this subtlety is a key economic and technical contribution of the paper. Indeed, we

show that these failures occur for high or low reputation agents, or both. We then

characterize when either case obtains depending on the stochastic productive interac-

tion. Finally, we flesh out the implications for matching dynamics: Partnerships of

like agents will dissolve as they prove themselves as either highly skilled — or not so.

Matches of unlike agents, like tenured faculty with student coauthors, then form.

While our PAM failure is a robust finding, the tradeoff between information and

productive efficiency becomes knife-edged as the patience rises. For in that case, the

average present value of both current output and newly acquired information falls. The

resulting horse race between information and productive efficiency is almost too close

to call. It requires a very precise characterization of the extremal behavior of the value

function. This paper turns on this new property of optimal learning.

PAM Failure in a Two Period Model. Our analysis of the PAM failure begins

with a two period model. Becker’s result yields PAM in the final period. This, in

turn, yields a fixed convex continuation value function. We then deduce that expected

continuation values are boundedly strictly convex in the reputation of one’s partner.

We show that this induces strict gains from rematching any assortatively mated in-

1Indeed, several recent important papers have ventured into this arena: See, eg., Bar-Isaac (2004).
Niederle and Roth (2004) specifically matches two key features of our model: complementarity, un-
certain types, and publicly revealed signals. Our welfare theorems, in particular, prove that matching
after information revelation is not only more efficient but also obtains in a Walrasian equilibrium.
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terior agents with 0 or 1 (i.e. surely bad or surely good individuals), or both. This

implication of future value convexity works against the force of current production

complementarity. For since the static production losses from non-assortative matching

in the first period are bounded, PAM cannot be optimal with enough weight on the

future (Proposition 1). This either-or argument is also novel to the learning literature,

and might well prove useful for analyzing other problems.

PAM Failure in an Infinite Horizon Model. Economists care about two period

models because they are parables of the richer dynamic world we inhabit — where

the ‘today’ and ‘tomorrow’ more generally mean ‘current’ and ‘future’. Yet this is

not always so: Finitely repeated games, for instance, can have remarkably different

equilibrium sets than the same game repeated infinitely often. In the same vein, is our

two-period analysis representative of the general setting? The simple answer is no. But

while our findings a priori hang in the balance (future values being endogenous), we

do rescue a slightly less dramatic failure of PAM. It too turns on a trade-off between

value convexity due to learning and static input complementarity.

To see where our earlier logic goes wrong, we observe that the two period analysis

critically relies on fixed continuation values. Consequently, with enough patience, the

informational gains to non-assortative matching dominate the (bounded) static losses.

But with an infinite horizon, the continuation value is endogenous to the discount

factor, and in a troubling fashion: As is well-known, it ‘flattens out’ with rising patience.

This captures the fact that no piece of information matters much today since one can

just as well acquire it tomorrow. So as the discount factor rises to 1, current production

and information acquired in a match both become vanishingly important. Thus, the

payoff losses may forever outweigh the informational gains for any level of patience.

The behavior of the value function is more subtle than suggested by the preceding

paragraph. While it is true that the value function becomes less convex for any fixed

reputation, it actually becomes more convex in a neighborhood of the extremes 0 and 1;

thus, we are led once again to check whether PAM fails near these extremes. But now

we must turn to a labor economics story: We call the technology low-skill concealing if

matches with one or two ‘bad’ agents are statistically similar. Consider pairwise music

production. If we assume that a great song requires two good co-creators (like Lennon

and McCartney), then this technology is low-skill concealing. We show in Proposition 2

that PAM fails for high reputations when production is sufficiently low-skill concealing,
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and for low reputations with sufficiently high-skill concealing technologies. In this case,

matching middling types with those near 0 is certainly unrewarding. Less obviously

so, we prove that matching middling types with those near 1 is profitable.

Not all technologies are high- or low-skill concealing. There are examples in which

the information effect reinforces the static output effect near 0 and 1, yielding PAM for

any level of patience. In what sense then is the PAM failure eventually generally true?

We show in Proposition 3 that for randomly chosen production technologies, the chance

of a high- or low-skill concealing converges to one, as the number of production out-

comes grows. We then provide simulation evidence that suggests that these conditions

are extremely likely to obtain in practice, even with few production outcomes.

Wage Profile Effects. In addition to our findings about the structure of matches,

we offer some insights into the distribution of wages. Suppose that a high reputation

individual matches with a lower one. In this case, the information rent he provides

about his partner must more than compensate for the static efficiency loss; in return,

he receives an equilibrium wage premium. This premium strictly exceeds the benefit

conferred by his greater productivity. As a result, the relationship between expected

ability and wages is neither monotonic nor even continuous when PAM fails — even

though expected output is monotonic and continuous in reputation.

Now consider a situation with a dual PAM failure, where high reputations match

down and low reputations match up. Proposition 3 suggests this is generally true. In

this case, both high and low reputation agents are paid more than their current pro-

ductivity, and middling reputation agents less than their static productivity. This has

life-cycle implications for wages: Younger workers, often with unfocused reputations,

will sacrifice wages to pay information rents; conversely, older workers will be paid in

excess of their productivity, given their established high or low reputations.

We acknowledge our informational effect to be secondary to Becker’s productive

force for PAM. But a clear testable implication of our findings is that assortative

matching failures should be observed more often when (i) there is uncertainty about

types, (ii) separate contributions to production are unobservable, and (iii) productive

interactions are frequent (a proxy for patience).
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Match Break-Ups. We conclude the paper by shifting our focus from the failure of

PAM to the behavior of the individual agents in the market. Unlike other matching

models with fixed types, ours affords an economically interesting built-in micro-story

as well. For while the market is in steady-state, individuals proceed through their life-

cycle. Their reputations randomly change over time, converging towards the underlying

true types. So with enough patience, if two genuinely good types are paired, then we

should expect their reputations to rise as time passes. Eventually, these reputations

will enter the region where PAM fails, and the partnership will efficiently dissolve.

Related Work. Kremer and Maskin (1996) is the one twist (of which we are aware)

on Becker’s original static complete information matching model where PAM fails.

However, it starts by assuming a production function without complementarity.

Our paper enters a very small literature of matching in equilibrium models with

incomplete information. Jovanovic (1979) considers a model where the slow revelation

of information about worker types causes turnover. Chade (2004) is clearly the paper

most closely related work to ours. He extends Becker’s work to uncertain types, but

assumes private information, re-inforcing PAM, by way of a new ‘acceptance curse’. A

number of extensions of Becker’s work assume search frictions (see Burdett and Coles

(1997), Smith (1997), and Shimer and Smith (2000)), but the thrust of the results is

to develop additional conditions under which PAM still obtains. Unlike these search

papers, we show that Becker’s finding robustly unravels given an informational friction.

Paper Outline. Section 2 develops Becker’s static model with uncertain types. In

Section 3, we build intuition in a stylized two period setting, in which we deduce our key

insight about convexity versus complementarity. In Section 4, we set up our dynamic

model, define a Pareto optimum and competitive equilibrium, establish the Welfare

Theorems, and deduce existence. Our theory will thereby apply both to the efficient

and equilibrium analyses; however, our serious interest in the planner’s problem is for

the information it provides us about individual agents; for the planner’s multipliers

are precisely the agents’ private present values of wages. We explore the infinite hori-

zon model in Section 5, where we first develop our skill-concealing conditions. We

appendicize all technical proofs, and try to provide in-text intuitive arguments.
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2 Becker’s Static Model, but with Uncertain Types

Uncertain Types and Stochastic Output. We consider the simplest world with

uncertain types, where each agent can either be ‘good’ (G) or ‘bad’ (B). Only nature

knows the types. Agents match in pairs to produce output, and enjoy a symmetric pro-

duction role. Everyone is risk neutral. There are N > 1 possible distinct nonnegative

output levels qi. For each pair of matched types, there is an implied distribution over

output levels. Output qi is realized by pairs {G,G}, {G,B}, and {B,B} with respec-

tive chances hi, mi, and ℓi. Being probabilities, we have
∑

i hi =
∑

imi =
∑

i ℓi = 1.

The respective expected outputs is H =
∑
hiqi,M =

∑
miqi, and L =

∑
ℓiqi, while we

define vectors h = (hi), m = (mi), and ℓ = (ℓi). Stochastic output is essential to our

thrust, as we seek a model in which uncertainty about types realistically persists over

time; we do not want true types revealed after the first period. Figure 1 summarizes:

Chance of Output qi
B G

B ℓi mi

G mi hi

Expected Output
B G

B L M
G M H

Figure 1: Match Output.

Our main assumptions are thus that individual skill levels are not fully known,

and that separate contributions to joint production are not observable. We can think

of many examples for which these assumptions are apropos: academic co-authoring,

movie production, the advertising industry, the legal profession, consulting — and even

pro sports (is the quarterback’s coach, the offensive line coach, or the head coach more

responsible for an American football team’s success?). Indeed, a large fraction of output

(recommendations, reports, sales) within most organizations is produced by teams, and

outside of the pure marriage setting, one’s reputation is often at least as important as

the static output from the current partnership. For example, the graduate student co-

author may rightly care much more about the paper’s effect on the market’s perception

of his ability than about the paper’s actual quality. As Kremer (1993) has underscored,

stochastic joint production is even a major feature of high-tech industrial production.

The motivational O-Ring space example he provides is low-skill concealing. Production

ranging from automobile prototypes to drug development also fits this mold.
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Bayesian Reputations. Each of the continuum of individuals has a publicly ob-

served chance x ∈ [0, 1] that his type is G. Call x his reputation. So a match between

agents with reputations x and y yields output qi ≥ 0 (i = 1, . . . , N) with probability

pi(x, y) = xyhi + [x(1 − y) + y(1 − x)]mi + (1 − x)(1 − y)ℓi.

The expected output of this match is

Q(x, y) = xyH + [x(1 − y) + y(1 − x)]M + (1 − x)(1 − y)L

Since qi > 0 for some i, Q(x, y) > 0 when 0 < x, y < 1, and matching is always optimal.

A twice differentiable function Q is strictly supermodular iff Q12 > 0, or types

are productive complements. We use this common expression for complementarity,

denoting it SPM; the reverse case of substitutes, or submodular production, is denoted

SBM. Clearly, Q12(x, y) is constant for a bilinear function like Q.

Assumption 1 (Supermodularity) π ≡ Q12(x, y) = H + L− 2M > 0.

Thus, π > 0 is the premium to assortatively pairing (G,G) and (B,B) over cross

matching two pairs (B,G). We restrict attention to the case of π > 0, i.e. the most

favourable case for PAM. But we only require that we avoid the knife-edge case π = 0.

First we consider the social planner’s problem. Given a density g and cdf G over

agents’ reputations x ∈ [0, 1], the planner chooses a matching to maximize the expected

value of output. Let F (·|y) be the conditional cdf of match partners for y.2 The planner

cannot match more of a particular type than available. Thus, he solves:

V(g) = max
F

∫

[0,1]2
Q(x, y)dF (x|y)dy (1)

s.t. Feasibility: F (1|y) ≤ g(y) ∀y (2)

We say that x and y are matched if (x, y) lies in the matching set, namely the joint

support of F (x|y). In this setting, positive assortative matching (PAM) obtains iff

2Some looseness will persist until the appendix, as we postpone using measures. Our intention is
to be intuitive. For example, given g(y) = y2 and PAM, F (x|y) = 0 for all x < y, and F (x|y) = y2

for all x ≥ y. Note that there may not exist a density corresponding to the optimal F . For example,
if there is a single optimal partner x∗ for y then F (x|y) jumps up in a single atom at x = x∗.
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like-reputation agents match. So in a graph, the PAM matching set coincides with the

45 degree line. Negative assortative matching (NAM) obtains when every reputation x

matches only with the (opposite) reputation y(x) solving G(y(x)) = 1−G(x). Then:3

Proposition 0 (Becker (1973)) Given SPM, PAM solves the static social planner’s

maximization problem.4 Given SBM, the efficient matching entails NAM.

Assumption 1 shall henceforth remain in force. We thereby maintain the most

favorable SPM case for PAM, as we ultimately show that assortative matching fails.

In a competitive equilibrium, each worker x chooses the partner y that maximizes

his (expected) wage w(x|y), achieving his value v(x). Also, wages of matched workers

exhaust output,5 and market clear. Altogether, a competitive equilibrium (CE) is a

triple (F, v, w) where F obeys the feasibility constraint (2), while v and w satisfy:

• Output Shares: w(x|y) + w(y|x) = Q(x, y) (3)

• Worker Value Maximization: v(x) = max
y
w(x|y)

Becker proved the welfare theorems, which Theorem 2 revisits in a dynamic setting.

Theorem 0 (Becker (1973)) The First and Second Welfare Theorems obtain, and

the decentralizing wage is w(x | y) = Q(x, y) − v(y) for any matched pair.

Observe how PAM implies that v(x) = Q(x, x)/2, which is strictly convex by SPM:

Q(x, x) = x2H + 2x(1 − x)M + (1 − x)2L = πx2 + 2(M − L)x+ L

This convexity is exploited in the last period of the two period model in §3.

3 Matching in a Metaphorical Two Period World

To build essential intuition for our infinite horizon results, we consider a stylized two

period model with payoffs in periods t = 0 and t = 1 weighted by 1 − δ ∈ [0, 1) and δ.

3Our propositions are descriptive matching results, and theorems technical equilibrium results.
4Becker proved this for the discrete case. For our purposes, Lorentz (1953) is more appropriate as

he proved the formal result in the continuum case (albeit unaware of any economic context).
5There is much flexibility in defining wages for matches that are never realized in equilibrium. We

find interpreting offered wages as output shares intuitively appealing. Note that with this specification,
equilibrium pins down wages for both realized and unrealized matches.
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This is in the spirit of standard Bellman equations, such as (8). Obviously, δ < 1/2 in

any two period model with strict time preference. But investigating what happens in

the two period model as δ → 1 is often suggestive of infinite horizon models as δ → 1.

As it turns out, in the two period model we can exploit the fixed strict convexity of the

second period value function, whereas the value function is endogenous to the discount

factor in the infinite horizon model. This dodges a hard (but necessary) complication,

allowing us to prove a strong impossibility result in the two period model.

Our two period results are of independent interest, as they apply, for instance, to

any overlapping generations setting where individuals enjoy finite productive lives —

as long as each agent knows when he will exit the labor pool. If exit rates are stochastic,

then the correct model is one with an infinite horizon.

3.1 Bayesian Updating and Continuation Values

In period one, agents are matched, and then produce publicly observed output after

which their reputations are updated. Assume that a match with y yields output qi.

By Bayes rule, agent x’s posterior reputation equals

zi(x, y) ≡ z(qi, x, y) ≡ pi(1, y)x/pi(x, y) (4)

Also, Assumption 1 precludes h=m=ℓ, and thus the dynamic economy is not a trivial

repetition of the static one. For if h 6= m or ℓ 6= m, then all reputations but 0 and 1

shift with positive chance after each match: zi(x, y) 6=x for some i, if x 6=0, 1.

The expected continuation value of the match (x, y) plays a central role in this paper:

Ψv(x, y) ≡ ψv(x|y) + ψv(y|x), where ψv(x|y) ≡ E[v(z(q̃, x, y))] (5)

That is, ψv(x|y) is the expected continuation value of agent x when matched with y

at the start of the first period. That v(x) is strictly convex not surprisingly yields the

same true of ψv(x|y). But this delivers a critical reciprocal form of convexity. In the

appendix, we show that ψv(x|y) is strictly convex in one’s partner’s reputation y:

ψv
yy(x|y) = π

∑

i

pi(x, y)[ziy(x, y)]
2 > 0 (6)
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3.2 Value Convexity versus Production Supermodularity

We now deduce an unqualified failure of PAM that is unique to this setting, but

which cleanly demonstrates the opposition between the value convexity we have found

and production supermodularity. To better flesh out the contrast, observe that if

individuals only cared about future output, then ψv(x|·) would be type x’s match

payoff function. In that event, PAM would require that Ψv be SPM on the matching

set. We now show that this supermodularity requirement cannot possibly be met.

Proposition 1 Fix x ∈ (0, 1). Given matches (0, 0), (x, x), and (1, 1), the total ex-

pected continuation value is strictly raised by rematching x with either 0 or 1.

Quick Proof: Since ψv(x|y) is strictly convex in y, it is also quasi-convex. Thus,

either ψv(x|0) > ψv(x|x) or ψv(x|1) > ψv(x|x). Since agents 0 and 1 have the same

posterior reputation regardless of partner, this implies that either:

ψv(x|0) + ψv(0|x) > ψv(x|x) + ψv(0|0) or ψv(x|1) + ψv(1|x) > ψv(x|x) + ψv(1|1) �

Assume PAM in period zero, and pick any reputation x ∈ (0, 1). Re-match as many

of the x’s with 0 or 1 as possible (the choice governed by Proposition 1). The period

one informational gains from the above rematching are strictly positive; the period

zero production losses are finite, and so are swamped by the gains for δ high enough.

Corollary 1 In the two period model, PAM is not a CE for large enough δ < 1.

Ours is an either-or PAM failure with enough patience. It is not simply that agents

with extreme reputations 0 and 1 are both informationally valuable, helping those with

interior reputations reveal their types — since all match output variance owes to the

uncertain type of x. We next illustrate how the informational effect may reinforce the

static output effect near one extreme and conflict near the other; thus, PAM fails near

one extreme with enough patience, but obtains for any level of patience near the other.

3.3 Illustrative Example of Assortative Matching Failure

Let (q1, q2) = (0, 2), h = (1/2, 1/2), and m = ℓ = (1, 0). This yields SPM output, since

π = H+L−2M = 1. For our parametrization, a matched pair (x, y) produces output q2
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with chance p2(x, y) = xy/2. Reputation x updates to z1(x, y) = (2 − y)x/(2 − xy)

after the low output, and to z2(x, y) = 1 after the high output.

Given PAM in period two, the value of reputation x at the start of the second

period is: v(x) ≡ Q(x, x)/2 = x2. Now, agent x’s expected continuation value is

ψv(x|y) ≡ p1(x, y)v(z1(x, y)) + p2(x, y)v(z2(x, y)) =
(

1 −
xy

2

)((2 − y)x

2 − xy

)2

+
xy

2

The present value of the match (x, y) is V (x, y) ≡ (1 − δ)xy + δΨv(x, y), where

Ψv(x, y) ≡ ψv(x|y) + ψv(y|x) =
x2(1 − y) + y2(1 − x) + xy

1 − xy/2

To illustrate the either-or nature of our rematching result, Proposition 1, let x = 0.5.

The period one informational gains from rematching 0.5 are:

ψv (0.5|1) − ψv (0.5|0.5) ≈ 0.043 and ψv (0.5|0) − ψv (0.5|0.5) ≈ −0.013 (7)

Thus, reputation 1/2 has a higher continuation value matching with a reputation 1,

but a lower continuation value matching with a reputation 0. However, the average

informational gain from matching half the 0.5s with 0 and half with 1 equals 0.03 > 0.

The period zero static production loss from this rematching equals 1/4. Thus, the

rematching increases the total expected value if (1 − δ)/4 < 0.03δ, or δ > 0.89.

Of course, this does not imply that PAM is efficient for all δ < 0.89, because we

have only considered one alternative rematching. The efficient matching maximizes
∫

[0,1]2
V (x, y)dF (x|y)dy subject to F (1|y) ≤ g(y) ∀ y. If Ψv

12 > 0 then V (x, y) would

be SPM, and the efficient and competitive equilibrium matching would be PAM. Eval-

uating the cross partial Ψv
12 along the diagonal y = x yields:

Ψv
12(x, x) =

4(2 − 8x+ 7x2 − x4)

(2 − x2)3
≷ 0 for x ≶ 0.36

Here, the learning effect reinforces the productive SPM effect for low reputations x, but

opposes it for high reputations, consistent with (7). Figure 2 illustrates the solution for

δ = 0.99, given an initial uniform density over reputations and no entry.

For some insight into this pattern, notice that m = ℓ. Thus, the output distribution
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Figure 2: Two Period Example. On the left, we depict the shaded SBM total
value region (where Vxy < 0), and the resulting discontinuous optimal matching graph
G = {(x, y(x)), 0 ≤ x ≤ 1} (solid line). On the right, we plot the equilibrium wage function
w(x) ≡ w(x|y(x)) (solid line). Given the high discount rate δ = 0.99, the wage w(x|y(x)) is
almost entirely an information rent ψv(y(x)|x)−v(y(x)) — whose discontinuity forces a jump
in the wage profile. We superimpose the surplus in optimal values over assortative matching
values. The diagram is the result of a numerical Walrasian tâtonnement process.

is the same for both good and bad partners of a reputation 0. Thus, we learn nothing

about an interior reputation agent x ∈ (0, 1) when he matches with 0. But if such an

x assortatively matches, this is informationally valuable — it may well be a {G,G}

match. Thus, matching with 0 is informationally inferior to assortative matching.

Here is an intuition for the shape of the matching set G in the left panel. First,

by local optimality considerations, G is decreasing whenever the match value V (x, y)

is SBM (shaded region). Second, it cannot exit the SPM region on a downward slope.

Third, by the uniform density on reputations, G has slope ±1 whenever continuous.6

Observe how agents with high reputations are willing to match ‘down’ (the solid

line in right panel of Figure 2), because they are paid a positive wage for doing so. Note

how the wage profile must jump each time the matching shifts from PAM to NAM. This

occurs mostly for productive reasons, though the information rent in (11) also jumps.

Underscoring its importance, the allocational and wage profile effects of reputational

matching in this example are vast — over 80% of all agents non-assortatively match

yielding an increasing informational rent payment for two thirds of agents. The income

distribution is right-skew if production is supermodular, stochastic, and high skill.7

6See Kremer and Maskin (1996) for formal characterizations of solutions in a one-shot matching
model where match values are not SPM, and their wage profile thus jumps for this static reason.

7That PAM increases the income share of the talented is known (see Kremer and Maskin (1996)).
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4 Dynamic Matching with Reputational Concerns

4.1 Pareto Optimum and Competitive Equilibrium

Extend the two period model to periods t = 0, 1, 2, . . ., and introduce deaths: agents

live to the next period with survival chance σ < 1. We must strike a delicate balance

between identifying agents with reputations and identifying agents as individuals. If

individuals were completely anonymous, then we could not apply our results to real

world partnerships. But if reputation is not a sufficient statistic for past output re-

alizations, then we both violate the general equilibrium spirit of Becker’s work, and

present ourselves with unsurmountable and unnecessary technical obstacles. Instead

of either extreme, we adopt the following compromise:

Assumption: The entire output history of currently matched individuals is observable;

however, once a partnership dissolves, only the reputation of each individual is recorded.

With this assumption, reputation is a sufficient statistic for the information from all

previous matches, and yet we may still speak of partnerships in a meaningful sense.

Let γ be the planner’s discount factor, and δ ≡ σγ the agents’ discount factor.

Given an initial density g over reputations, the planner chooses the matching set in each

period to maximize the (normalized) present value of output, respecting the feasibility

constraint and the law of motion for the reputation density. Thus, the planner solves:8

V(g) = max
F

[

(1 − δ)

∫

[0,1]2
Q(x, y)dF (x|y)dy + γV(ḡ + σB(F ))

]

(8)

subject to feasibility (2). Here ḡ(x) is the inflow density of reputation x agents, and

B(F ) is the Bayes-updated density over reputations given the matching cdf F . (Its

exact formula is in the appendix.) Thus, ḡ+σB(F ) is next period’s reputation density.

In solving this problem, the planner trades off higher expected output today for a

more informative density over reputations tomorrow. This trade-off is at the heart of

our paper. A steady state Pareto optimum (PO) is a triple (F, v, g) such that, given g,

(F, v) solve the planner’s problem, and g = ḡ + σB(F ). Just as in the analysis of the

modified golden rule in growth models, the social planner does not maximize across

steady states. Instead, she chooses an optimal matching in each period and then we

8I.e. a unit payoff per period is worth VT = 1+γVT ; setting V ≡ (1−δ)VT yields V = (1−δ)+γV .
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impose steady state. Our results actually obtain both in and out of steady state;

however, we focus on the steady state for simplicity. In the appendix, we prove:

Theorem 1 A steady state Pareto optimum exists.

The FOC for this problem are:

(x, y) ∈ supp(F ) ⇒ [v(x) + v(y) − (1 − δ)Q(x, y) − δΨv(x, y)] = 0

v(x) + v(y) − (1 − δ)Q(x, y) − δΨv(x, y) ≥ 0
(9)

where v(x) is the multiplier on the constraint (2), the shadow value of an agent x.

The FOCs (9) are economically intuitive. For any matched pair, the sum of the

shadow values of the two agents this period equals the total value to the planner of

matching them. Further, for any pair, the sum of the shadow values today weakly

exceeds the value the planner could achieve by matching them.

Next, there are many ways to conceptualize a competitive equilibrium (CE) in a

matching environment. We assume that agents can either (i) hire a match partner,

offer him a sure wage, and take the output residual as profit; (ii) hire himself out to

another agent; or (iii) stay unemployed, earning nothing. To this end, let w(x|y) be

the wage that agent x earns if matched with y. Anticipating a welfare theorem to come,

we overuse notation, letting v(x) denote the maximum discounted sum of wages that x

can earn. A steady state CE is a 4-tuple (F, v, w, g), where g = g + σB(F ), F obeys

constraint (2), wages are output shares (3), and a dynamic maximization obtains:

• Worker Maximization: v(x) = max
y

[(1 − δ)w(x|y) + δψv(x|y)] (10)

We now turn to the Welfare Theorems. We believe that Mortensen (1982) is the first

paper to show that they are not to be taken for granted in a matching setting. But his

impediment was search frictions, while ours is information. Observe that while agents’

true types are unknown, all information is public; thus, no externality arises, as wages

should fully incorporate all informational rents. Moreover, the production technology

is linear in measures of matched agents, and thus meets the standard convex technology

requirement.9 One nonstandard feature of our welfare theorems is that the allocation

9This is not surprising, given the similarity between ours and a static assignment problem. Gretsky,
Ostroy and Zame (1992) prove that the PO, CE, and the Core coincide in a continuum assignment
problem. The dynamic nature of our problem prevented us from applying their results.
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F is embellished with the values v, as are also claiming coincidence of the planner’s

shadow values and the agents’ ‘private values’. This innovation is an essential ulterior

purpose in our paper of the welfare theorems — we can therefore refer to both shadow

values and private values simply as values, and the map x 7→ v(x) as the value function.

Theorem 2 (Welfare Theorems) If (F, v, w, g) is a steady state CE, then (F, v, g)

is a steady state PO. Conversely, if (F, v, g) is a steady state PO, then (F, v, w, g) is a

steady state CE, where for all matched pairs (x, y), the wage w(x|y) of x satisfies:

w(x|y) =

Static Wage
︷ ︸︸ ︷

Q(x, y) − v(y) +

Information Rent
︷ ︸︸ ︷

δ

1 − δ
[ψv(y|x) − v(y)] (11)

To properly internalize all externalities, the wage that reputation x receives is

the sum of two parts. First is the difference between total match output and the

outside option of his partner y (i.e. Becker’s static wage function). Second, there is

the information rent, or the discounted difference between y’s continuation value and

his outside option. (The information rent that x pays y is embedded in w(y|x).) That

informational benefits are publicly observed sustains the welfare theorems, since agents

may extract the benefit they confer. The informativeness of output for agent y depends

on the reputation of his partner x. Naturally, some partners are more informative for y.

The more informative x is for y, the higher is his equilibrium wage when matched to y.

To gain some insight into why this wage decentralizes the Pareto optimum, consider

a pair (x, y) matched in equilibrium. Worker Maximization (10) requires

v(x) = (1−δ)w(x|y)+δψv(x|y) = (1−δ)

[

Q(x, y) − v(y) +
δ

1 − δ
[ψv(y|x) − v(y)]

]

+δψv(x|y)

using our computed wage (11). With some simplification, we get:

v(x) + v(y) = (1 − δ)Q(x, y) + δ [ψv(x|y) + ψv(y|x)]

which holds if (x, y) are matched in the Pareto optimum by the planner’s FOC (9).

Finally, we consider existence. Theorem 1 proved that a steady state PO exists;

also, any steady state PO can be decentralized as an CE, by Theorem 2. Altogether:

Corollary 2 There exists a steady state competitive equilibrium.
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4.2 Value Functions

To better understand why ψv(y|x) − v(y) is an “information rent”, we must argue

that values are convex in reputations. Thus, agents are willing to pay to have the

output signal revealed. The convexity of the value function in beliefs for a single agent

learning problem is well-known (see Easley and Kiefer (1988)). We are aware of no

other paper which asserts the convexity of the multipliers in a planner’s problem. We

hereby exploit the equivalence between the CE and PO, and use the planner’s problem

to give insights into the agents’ private values v(x).

Lemma 1 The value function x 7→ v(x) is strictly convex.

Although the result is non-standard, it admits the standard intuition that information

is valuable — only here, its value is to the planner. Why? Suppose that a signal

is revealed about the true type of an agent with reputation x. This variance in the

reputation has mean x (i.e. is a ‘fair’ gamble), and cannot harm the planner — for she

could choose to ignore it. By standard decision theory, an agent is risk averse (i.e. hates

all fair income gambles) iff his utility function is concave. Inverting this logic, the value

function must be convex, and strictly so as the information is strictly beneficial; for

the planner is not indifferent across all matches when π = H +L− 2M 6= 0. For then,

there is a productive reason to prefer either assortative or non-assortative matches.

Not only is information about one’s own type valuable, but so too is information

about one’s partner. This reciprocal convexity is a critical ingredient in our paper.

Lemma 2 The expected continuation value ψv(x|y) is strictly convex in x and y.

The intuition is one step upstream from that of value convexity. If we have bet-

ter information about x’s partner, then we have better information about the new

reputation that x will acquire after output from his match is observed.

5 Infinite Horizon Matching Results

5.1 A Delicate Tradeoff

Our two period result obtains because the continuation value function is fixed, given

PAM in the final period (by Becker); further, it is boundedly and strictly convex. Thus,

PAM fails with sufficient patience, given our either-or inequality in Proposition 1.
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But with no last period, the continuation value function depends on the discount

factor — and in precisely a fashion that entirely undermines the two period logic of

Proposition 1: For as the discount factor δ rises, the value function10 vδ flattens out,

losing its convexity in the limit. Not only do the static losses from assortative-matching

vanish, but so too do the informational gains. (In the same vein, the risk premium

vanishes as a risk averter becomes ‘less concave’.) As such, we may have been misled,

and an infinite horizon model is called for to resolve this race to infinite patience.

A matching is productively efficient if no other matching leads to higher output

in the current period. A matching is informationally efficient if no other matching

leads to higher expected discounted continuation output. A necessary condition for

either efficiency notion is that they are satisfied locally, so that a marginal matching

change cannot increase output today or in the future. Now, consider the following

rough intuition for a marginal change in an assortative match. Compare the sum of

match values of (x, x) and (x+∆, x+∆) to the sum of match values of (x, x+∆) and

(x+ ∆, x). By a second order Taylor Series, the static losses from such a change are:

Q(x, x) +Q(x+ ∆, x+ ∆) − 2Q(x, x+ ∆) ≈ Q12(x, x)∆
2

The dynamic change in continuation value from such a rematching is likewise:

Ψδ(x, x) + Ψδ(x+ ∆, x+ ∆) − 2Ψδ(x, x+ ∆) ≈ Ψδ
12(x, x)∆

2

We thus have the following net marginal change from matching assortatively:

Static Production Gains
︷ ︸︸ ︷

(1 − δ)Q12 +

Dynamic Informational Losses
︷︸︸︷

δΨδ
12 (12)

For PAM to be efficient this weighted sum cannot be negative. In the infinite

horizon model, the static losses from not matching assortatively vanish as δ → 1 (as

they did in the finite horizon model). However, we have a knife edged trade-off in the

limit, as the informational gains also vanish. Indeed, for any fixed x the continuation

value vδ is a function of δ, and flattens out as δ → 1. Indeed, reputations converge

10We add a δ subscript to highlight the dependence of vδ on discounting. We also switch to the
more compact notation ψδ and Ψδ rather than ψvδ and Ψvδ .
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Figure 3: Value Function vδ and Derivatives v′δ and v′′δ . This graph depicts the value
function flattening, and the convexity explosion near 0, 1: limx→0 v

′′
δ (x) = limx→1 v

′′
δ (x) = ∞.

to 0 or 1 (see Proposition 4), and the chance that an agent with initial reputation

x converges to 1 is x. Thus, as δ → 1, the sequences of value functions converges

vδ(x) → xvδ(1) + (1 − x)vδ(0), which implies that Ψδ
12 converges to 0 as δ → 1.

Actually the asymptotic behavior of the value function is more complex than the

prior ‘flattening’ logic suggests. While the convexity at any fixed interior x converges to

zero, the integral
∫ 1

0
v′′δ (x)dx is a constant in δ. This apparent contradiction is resolved

by noting that as δ converges to 1, all of the convexity accumulates at the extremes 0

and 1. See the right panel of Figure 3. Since convexity was sufficient to establish the

failure of PAM in the two period model, this suggests that we should try to establish

our failure result near the extremes.

Proposition 1 established that such a tradeoff exists between informational and

production efficiency for some reputations. In §5.2, we establish that such a tradeoff

always exists near x = 0 or x = 1. But we are still not done, for then we must show

that informational efficiency dominates as δ → 1. This need not occur because the

marginal value of information for given probability shifts increases in the convexity of

the value function near the extremes. But by the same token, Bayes’ rule updates very

slowly near the extremes: i.e. the belief variance falls. On balance, the informational

value of marginal changes in matching near extremes can still vanish. Thus, whether

the informational effect dominates the productive effect still hangs in doubt.

It turns out that we need much more than explosive extremal convexity to resolve

these difficulties. We need in fact a very precise asymptotic approximation of the

value function. In general determining an asymptotic functional form for the optimal

value function is an intractable problem, and at any rate has never been done, to our

knowledge. Instead we proceed by contradiction: We study the assortative matching
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policy, and derive its asymptotic behavior. Our analysis relies on a new finding in

Anderson and Smith (2004) that if a fixed policy in learning problems generates a

convex static payoff, then the second derivative of the value function explodes at a

geometric rate near extremes 0 and 1 — conveniently where our noted PAM failures

occur. Again, this precise characterization of the value function is required: Had the

second derivative a slightly different functional form near the extremes, Becker’s static

effect could well dominate for all large discount factors.

Shorn of the details, there are three logically separate steps that we must take to

establish our main result.

# 1 Sign the information effect near the reputational extremes: When there is a

conflict between informational and productive efficiency?

# 2 Characterize when informational efficiency dominates productive efficiency.

# 3 Show that informational efficiency wins this tradeoff for large δ as N → ∞.

5.2 Informational vs. Productive Efficiency

A. The Sign of the Information Effect. Ultimately we will use our asymptotic

approximation for vδ to precisely characterize when there exists a tradeoff between

informational and productive efficiency near the extremes. However, one might wonder

why this is necessary at all. In fact, consider the following seductive loose intuition:

Since type x = 0 (alternatively, x = 1) has a known reputation, production uncertainty

in an (x, 0) match only owes to the stochastic production and to the uncertain type of

the first party; for an (x, x) match, production uncertainty is increased by the uncertain

type of the second party. Thus, the (x, 0) match must provide more information about

the true type of x than the (x, x) match. However, in our two period example of

§3.3, there was a tradeoff for large x, while the information effect actually reinforced

the static output effect for x below a threshold. Since there is not always a conflict

between informational and productive efficiency, this simple intuition is lacking.

To understand why this simple intuition falls short, let us first clarify the meaning

of informational efficiency. Two matches (x, 0) are more informative than the matches

(0, 0) and (x, x) if they yield a weakly higher expected continuation value for x and 0.

By Blackwell’s Theorem, this holds iff the conditional distribution of signals generated
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by an (x, 0) match dominates (is sufficient for) the (x, x) match. Only this can allow

one a priori to declare non-assortative matching informationally inefficient. Indeed,

the intuition in the last paragraph suggests that (x, 0) and (x, 1) might both dominate

(x, x). As it happens, this may be impossible. For some parameters, either (x, 0) does

not dominate (x, x), or (x, 1) does not dominate (x, x), for any x! (See Appendix B.)

Although (x, 0) and (x, 1) do not both dominate (x, x), our proof of Proposition 1

establishes that — for any convex value function v — the expected continuation value

of any 0 < x < 1 was strictly increased by rematching with either 0 or 1. Hence,

either (x, 0) or (x, 1) dominates (x, x). But when the value function v depends on the

discount factor, as in the infinite horizon model, this simple argument fails.

With a continuum of stochastically heterogeneous agents, a precise characterization

of the optimal value function in our model is surely an intractable exercise. Fortunately,

we can thankfully sidestep this with a direct counterfactual approach: We first assume

PAM and derive the resulting value function; we then show that PAM is not globally

optimal for that value function. How? Given PAM, we prove (appendix Claim 7(i))

that v′′δ (x) geometrically explodes near x = 0 and x = 1. Specifically, we show that

v′′δ (x) ∝ x−αδ , where αδ solves 1 ≡ δ
∑

i ℓi(mi/ℓi)
2−αδ (13)

when δ < 1 large enough. Why does this matter? Given this functional form, we show

(in the appendix) that informational and productive efficiency generally conflict near

x = 0 or x = 1. This result requires the full strength of (13) — not only the explosive

geometric form, but also the specific formula for the rate αδ.

We now introduce an asymmetric correlation function for three vectors a, b, c. Let:

S(a, b, c) ≡
∑

i

[

(bi − ai) log

(
bi
ci

)

+
b2i − aici

ci

]

We know of no precedent for this expression. Generally, S(a, b, c) ≥ 0 when the vectors

a, b, c are close. For instance, S(a, b, b) = 0, S(a, a, c) > 0, and S(a, b, a) > 0.11

Lemma 3 There exists δ∗ < 1, such that for all δ > δ∗, PAM is not informationally

efficient near x = 0 if S(h,m, ℓ) > 0 and near x = 1 if S(ℓ,m, h) > 0.

11Indeed, S(a, a, c) ≡
∑

i
(ai−ci)ai/ci >

∑

i
(ai−ci) = 0, while S(a, b, a) ≡

∑

i
[(bi−ai) log (bi/ai)+

(b2i /ai) − ai] =
∑

i
[(bi − ai) log (bi/ai) + (b2i /ai) − bi] =

∑

i
[non-negative terms] + S(b, b, a) > 0.
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With our v′′ approximation (13), the Appendix shows that near x = 0, the cross par-

tial of the expected continuation value function obeys Ψδ
12(x, x) ∝ −C(δ)x1−αδS(h,m, ℓ).

Thus, Ψδ
12(x, x) shares the same sign as −S(h,m, ℓ) near x = 0, and −S(ℓ,m, h) near

x = 1. So a conflict between dynamic informational and static production concerns —

namely, Ψδ
12(x, x)<0<Q12(x, x) — arises near x = 0 or x = 1 iff S(·) > 0.

For more intuition, consider the extreme case m = ℓ (and so m 6= h, by our

Assumption 1). Then the superior (G,G) matches can be statistically distinguished

from the lesser matches (B,G) and (B,B), but the latter two cannot be so nuanced.12

Now consider the signal from an x paired with 0 or 1 in this case. Type 0 provides no

information, as (B,G) and (B,B) yield the same output distribution. Thus, we should

not expect PAM failures near (x, x) = (0, 0). On the other hand, S(m,m, h) > 0, so

that PAM is not informationally efficient near (x, x) = (1, 1).

Case Near x = 0 Near x = 1
m = ℓ PAM NAM
m = h NAM PAM
h = ℓ NAM NAM

Table 1: Informational Efficiency at the Extremes. These are the three knife-edge
technologies and the local matching required for informational efficiency.

Note that in the extreme case, m = ℓ, it takes two ‘good’ agents for stochastically

better production; when at least one agent is low quality, the quality of the other agent

is irrelevant. With this observation, let’s call this a perfectly high skill technology. By

the same token, h = m yields a perfectly low skill technology. (Alternatively, such

technologies may be more accurately called low/high skill concealing, respectively.)

Note that S(h,m, ℓ) > 0 in the perfectly high skill case, while S(ℓ,m, h) > 0 in

the perfectly low skill case. Inspired by these two extreme cases, we call a technology

high skill iff S(h,m, ℓ) > 0, and low skill iff S(ℓ,m, h) > 0. While supermodularity

rules out technologies that are simultaneously perfectly high and perfectly low skill

(i.e. h = m = ℓ), a technology can be both high and low skill. We soon argue in §5.3

that such technologies are ‘common’.

12The story in Kremer (1993) of production success requiring no mistakes by all parties is an
excellent example of such a technology. More positively, one can imagine that creative work really
identifies whether both parties were talented.
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B. The Race to Perfect Patience. We have argued that S(h,m, ℓ) > 0 forces a

tradeoff between informational and productive efficiency near x = 0. We now wish to

show that informational efficiency dominates for high discount factors. Recalling (12),

PAM will not obtain at the discount factor δ < 1 if the following obtains for any x:

(1 − δ)Q12(x, x) + δΨδ
12(x, x) < 0. (14)

The first positive term vanishes as δ → 1, but it could still be that Ψδ
12(x, x) < 0

vanishes more quickly than does (1 − δ). This is all to say that the outcome of our

claimed race to infinite patience is not at all clear a priori. However, it turns out that

having S(·) > 0 is sufficient to predict a clear winner:

Proposition 2 There exists δ∗ < 1 such that ∀ δ > δ∗, in the infinite horizon model,

PAM fails in a neighborhood of (0, 0) or respectively (1, 1) iff:

S(h,m, ℓ) > 0 or respectively S(ℓ,m, h) > 0 (15)

Specifically, PAM fails for low reputation (respectively, high reputation) agents with

high skill technology (respectively, low skill technology) if δ is high enough.

For an idea of how large the deviations from PAM may be, we now extend the

two-period example in §3.3 to an infinite horizon. In the left panel of Figure 4, we

have graphed the value function in the infinite horizon model for three discount factors

δ ∈ {0, 0.9, 0.99} as solid lines. At δ = 0, the value functions of the models coincide.

Observe how the value function flattens out as δ ↑ 1. For comparison purposes, we

depict the final Becker value function v0 for δ = 1 as a dashed line. By contrast, this

pure patience value function is strictly convex.

The right panel of Figure 4 shades in the agents for whom PAM fails. Reflecting

the diminished convexity with longer horizon models, the PAM failure set is strictly

smaller at all discount factors δ in the infinite horizon. Note that PAM obtains in the

infinite horizon model for any δ ≤ 0.9. By contrast, PAM failed for any δ > 0.79 in

the two period model. No x ≥ 0.14 is matched assortatively at δ = 0.99.

The bottom line is that the PAM failure asserted for two period metaphorical

models obtains with no last period provided one of the inequalities in (15) holds. We

now argue in the next section that the key condition (15) holds quite generally.
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Figure 4: Folk Theorem Depiction: Infinite Horizon vs. Two-Period Models.
In the left panel, the value function vδ in the infinite horizon model for δ ∈ {0, 0.9, 0.99} is
depicted as a solid line, while the two period model v0 for δ = 1 is a dashed line. In the right
panel, the dark shaded region is the correspondence between δ and the set of reputations x
(vertical axis) that do not match assortatively in the infinite horizon model. The lightly
shaded region is the same correspondence for the two-period model.

5.3 PAM Fails for ‘Almost All’ Production Technologies

We have given sufficient conditions for non-assortative matching at the extremes, and

yet we claimed an almost general failure of PAM. How can we justify our assertion? For

indeed, with fixed N , the inequalities (15) are not always satisfied, and therefore PAM

may well obtain for both high and low reputations. Here is the simplest parameterized

example of this phenomenon: Let h = (3ε2, 1/2 − 3ε2, 1/2), m = (ε, 1 − 2ε, ε), and

ℓ = (1/2, 1/2 − 3ε2, 3ε2), where q = (q1, q2, q3) = (0, 0.1, 1). For this technology, we

have S(h,m, ℓ) = S(ℓ,m, h) ≈ (constant) + log(ε)/2 < 0 for small ε. Observe that

h = (0, 1/2, 1/2), m = (0, 1, 0), and ℓ = (1/2, 1/2, 0) in the ε → 0 limit, violating our

full support assumption. Thus, PAM reveals the types of those matched, and in fact

both partners quickly update to 0 or 1: If q2 is observed (half chance), then nothing

is learned, and we start anew. Otherwise, if q1 is observed, then both types are surely

good; if q3 is observed, then both types are surely bad. For this example, PAM is

optimal even for high δ in the infinite horizon model.

We now assert that this example, while robust for fixed N = 3, is vanishingly rare

when the number N of production outcomes grows:

Proposition 3 With technologies (h,m, ℓ, q) drawn from an atomless distribution,

PAM fails (i.e. inequalities (15) hold) near 0 and 1 with chance tending to 1 as N→ ∞.
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Despite the nature of this result, simulations suggest that the PAM failures are ex-

tremely likely even for low N . For example, with parameters (h,m, ℓ, q) uniformly

generated on the unit simplex, we found simultaneous violations of (15) only 43, 18, 5,

and 1 out of one billion times for the N = 3, 4, 5, 6 cases respectively.

Yet again, the exact asymptotic form of the value v is critical for Proposition 3. To

see this, suppose instead that v(x) = x log x − x + constant. Then v′(x) = log x and

v′′(x) = x−1. This value function is convex and further v′′ is unbounded near x = 0;

however, v′′ lies just outside the geometric family (13), and in fact, Proposition 3 fails.

5.4 Long Run Match Dynamics

Our focus until now has been on a failure of PAM in the large — that is, on the

distribution of matches in an economy. Despite having a dynamic model, we have been

asking an essentially static question: when does an agent with reputation x self-match?

In fact, our model also admits a rich unfolding micro story: agents are born and

then form and dissolve partnerships as their reputations evolve over time. We finally

focus our lens on this intriguing subplot with turnover, and the breakup of seemingly

successful partnerships. Let’s turn to the limit behavior of an individual’s reputation.

Proposition 4 Fix an agent with reputation xt at time-t = 0, 1, 2, . . . (with x0 given).

(a) If he is not eventually matched forever with the same partner, then xt → 0 or 1

with time-0 chances 1 − x0 and x0, for generic technologies.

(b) If he is eventually matched with the same partner (initially y0), then generically,

xt → 0, 1/2, 1 with ex ante chances (1−x0)(1− y0), (1−x0)y0 +x0(1− y0), and x0y0.

Indeed, reputations are beliefs about underlying types, and thus are martingales:

Namely, one’s current reputation is the expected future reputation. (This is even true

with endogenous matching, by Easley and Kiefer (1988).) It is then well-known that

they converge to stationary reputations. Assume first case (a). Intuitively, as long

as someone does not have the same-reputation partner each period, any reputation

x ∈ (0, 1) is subject to change as information is revealed. (This is generically true, as

the appendix argues.) Thus, his type is eventually revealed: G or B, or x = 0 or x = 1.

In case (b), the market’s ability to learn an agent’s type is frustrated by its lack

of knowledge of his partner’s type. The applicable ‘match state space’ here is really
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Figure 5: The Matching Set and a Possible Time Path for xt and y(xt). In
the left hand panel we display the steady state matching set when the mass of entrants is
uniform, and δ = 0.95, q = (0, 1), h = (1/2, 1/2), and m = ℓ = (0.95, 0.05). In the right hand
panel will graph a sample time path t = {0, 1, . . . , 13} for xt and his partner yt.

{(G,G), (B,B), (G,B), and (B,G)}. Since production is symmetric, state (G,B) is

indistinguishable from (B,G). Thus, if matches are permanent we may end up with

x∞ = y∞ = 1/2 — that is, it may be clear from observing the (infinite) past output

realizations that one person in the match is good and one bad, but given that only

joint output is observable, there is no way to tell who is good.

Now that we know how individual agents reputations behave in the long run we

can discuss the micro structure of match dynamics.

Corollary 3 Assume δ high enough and production sufficiently low-skill (resp. high-

skill) concealing. Then any match of two good (resp. bad) agents eventually breaks up.

Convergence to (1/2, 1/2) obtains for a long-lived match {G,B}. The limit is (1, 1)

for {G,G} and (0, 0) for {B,B}, by Proposition 4. If, in addition, the technology

is both high and low skill, then Proposition 2 implies that as we approach (G,G) or

(B,B), like reputation agents cannot stay matched, and so they must break up. So

genuinely good type matches, such as the Beatles, will form when they enjoy middle

reputations, and sever when their stars rise high enough, with a high skill technology.

In Figure 5 we present a sample path for an individual agent who enters the market

with initial reputation x0 = 1/2. In the left hand panel, we have shaded the matching

set. In the right hand panel, we have plotted a sample time path for an agent’s repu-
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tation (xt) and the reputation of his partner (yt), starting with x0 = 1/2. Assortative

matching obtains below x = 0.68. In the example, the agent enters the non assortative

region fairly early in his career (i.e. it is not the case that agent’s are assortatively

matched ‘most’ of the time) — from period t = 6 onward.

These dynamic results also have implications for the life cycle behavior of wages

vs. productivity. In each period, a new cohort ḡ arrives, whose reputation distribution

evolves, eventually concentrating around 0 and 1. Thus, older cohorts earn larger

informational rents (on average), which tend to increase as that cohort ages.

Empirical evidence supports this life-cycle relationship between wages and produc-

tivity (see Kotlikoff and Gokhale (1992) and Hutchens (1987)), and ours is not the only

model consistent with this evidence — but it is novel in its pure focus on reputation.

Lazear (1981) shows that paying wages below a worker’s marginal product early in his

tenure with the firm, and above his marginal product later, can partially offset moral

hazard problems. Inasmuch as age and tenure with one’s current firm are positively

correlated, our models offer the same predictions for life cycle profiles. Harris and

Holmstrom (1982) develop a model where workers’ gradually abilities are revealed by

observing stochastic output. They also show that equilibrium wage contracts produce

the wage productivity gap increasing with age.

6 Conclusion

Just two changes: Dynamics, and uncertainty. Separately, neither affects the classic

PAM conclusion of Becker (1973). Jointly, they induce a reputational concern that

unravels PAM. We have created literally the simplest possible dynamic model of this

economically important concern with no inessential structure: just two types of agents,

all long-lived and patient, and publicly observed stochastic output.

Despite such parsimony, we discovered that contrary to Becker (1973), production

complementarity no longer implies global PAM. We instead find a conflict between

productive and informational efficiency. With enough patience, PAM cannot arise in a

stylized two period model. One could thus argue that Bayesian experimenters usually

choose a non-myopically optimal strategy. But that critique would be wrong. For we

have shown by a robust example that PAM may well be informationally efficient for high

or low agents. We have argued, however, that it cannot globally be informationally best
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when agents are patient enough: Either high or low reputation agents will match non-

assortatively, but often not both. What matters is a new statistically-based condition

on the production technology alone that is completely unrelated to supermodularity.

Our finding is further subtle because the underlying two-period logic essentially

falls apart with no last period to rely on: In an infinite horizon world, value functions

flatten out with patience, and an unqualified PAM failure no longer holds. Still, we

prove that PAM fails for high reputation agents if production is sufficiently high skill

— as with the Beatles. Our proof relies on what turned out to be a knife-edge trade-off

between informational and productive efficiency, as δ races up to 1. The skill conditions

are so weak that they almost always hold as the number of outputs N grows — and

in simulations, almost always at very low N , such as 3 or 4.

Optimal experimentation models with a continuum of heterogeneous agents are

hard, and so as yet unexplored. In this setting, we proved existence and a welfare

theorem. We then developed a proof by counterfactual that we hope others can use.

Apart from the PAM failure characterization, there are two positive results: wage

profile jumps, and the efficiency of break-ups among matched stars in creative indus-

tries. Matches efficiently dissolve as reputations are established. This is an interesting

potential area for empirical work.

On the wage profile, intuitively, agents who have been around longer should have

more focused reputations then agents at the beginning of their careers. Our paper thus

predicts that older workers will, on average, match with younger workers. We would

expect to see such a pattern in environments where information about agents’ abilities

is incomplete, output contributions are not fully identified, production is stochastic,

and future reputations are important. Our reputation and information rent story

fundamentally differs from explanations owing to job-training, where matching older

workers (the skilled) with younger workers (the unskilled) may be efficient.

In summary, Becker (1973) clearly identified the single most important economic

force in matching, focusing on the static productive concern. We believe that learning

about types is an important secondary consideration in dynamic matching environ-

ments. Inasmuch as PAM is an imperfect metaphor, and regressions have an imperfect

fit, we think that our information rents may be relevant. We believe that this is novel,

and the simplicity of our model attests to how primal is the force. We further think it

sheds new light on the economic forces behind match instability in many industries.
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A Existence, Welfare Theorems, and Values

For our formal proofs, we assume that the social planner chooses the measure over

matches µ, where µ(X, Y ) is the measure of matches of (x, y), where x ∈ X and y ∈ Y ,

for measurable sets X, Y ⊂ [0, 1]. Thus, the conditional cdf is F (x|y) ≡
∫

x′≤x
µ(dx′, y).

A.1 Steady-State Pareto Optima: Proof of Theorem 1

Equip13 Z ≡ L∞([0, 1]) and X ≡ L∞([0, 1]2) with the standard norm topology. The

dual X∗ of X is the space of bounded measures on [0, 1]2. We endow X∗ with the

weak* topology. Let Φ : Z → X∗ be the correspondence that captures constraint (2):

Φ(g) = {µ ∈ X∗ : λg(A) ≥ µ(A× [0, 1]) ≥ 0 ∀A measurable}, g ∈ Z (16)

where λg(A) ≡
∫

A
gdλ, and λ is Lebesgue measure.

Claim 1 The correspondence Φ given by (16) is continuous and compact valued.

Proof: Alaoglu’s Theorem (see Royden (1988), §10.6) states that if Φ(g) ⊂ X∗ is weak*

closed, bounded, and convex then Φ(g) is weak* compact. Convexity and boundedness

are immediate. For weak-* closed, let IY be the characteristic function of the set Y . Let

B
A
[a,b] = {µ : a ≤

∫
IA×[0,1]dµ ≤ b}, and likewise define notation for open intervals and

half-open and half-closed intervals. Note that Φ(g) =
⋂

A B
A
[0,λg(A)] and that IA×[0,1] ∈

X. By definition, B
A
[0,λg(A)] is weak* closed, and therefore Φ(g) is weak* closed.

We now show that this correspondence is upper and lower hemi-continuous (u.h.c.

and l.h.c.). Now Φ is point closed, and we can assume without loss of generality that

it maps into a compact subset of X∗, say with upper bound M < ∞. Thus, u.h.c.

follows if Φ has the closed graph property — i.e. if for any g ∈ Z: µ /∈ Φ(g) implies

that there exists an open set O that contains µ such that O∩Φ(g) = ∅. But µ /∈ Φ(g)

if µ>λg(A) for some A. The result follows from continuity of λg(A)=
∫

IA×[0,1]dµ in µ.

To show l.h.c., WLOG we only consider (basis) open sets of the form O =
⋂m

k=1 B
Ak

(ak ,bk).

Pick µ ∈ O ∩ Φ(g), and let µǫ(A × [0, 1]) ≡ µ(A× [0, 1]) − ǫλ(A) for all A. We claim

that there exists ǫ, η > 0 such that µǫ ∈ O∩Φ(ĝ) for all ĝ ∈ Z with ‖ĝ−g‖∞ < η. Pick

13We are indebted to Ennio Stacchetti for providing the key insights for this proof. Any errors and
preference for hemi- over semi-continuity are, of course, our responsibility.
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any such ĝ. For ǫ small enough, µǫ ∈ O. To show µǫ ∈ Φ(ĝ), i.e. λĝ(A) ≥ µǫ(A× [0, 1])

for all A, first note that |λg(A) − λĝ(A)| < ηλ(A) for all A, as shown below:

|λg(A) − λĝ(A)| = |
∫

A
gdλ−

∫

A
ĝdλ| ≤

∫

A
|g − ĝ|dλ ≤

∫

A
supx∈A |g(x) − ĝ(x)|dλ

= sup
x∈A

|g(x) − ĝ(x)|λ(A) ≤ ‖g − ĝ‖∞λ(A) < ηλ(A)

Thus, λĝ(A) > λg(A)− ηλ(A), so that λg(A)− ηλ(A) ≥ µ(A× [0, 1])− ǫλ(A) suffices.

Since λg(A) ≥ µ(A× [0, 1]), it is enough that ηλ(A) ≤ ǫλ(A), or σ ≤ ǫ. �

Continuing with our development, define the Bayes operator B : X∗ → Z by

B(µ)(z) =
∫
ρ(z, x, y)dµ(x, y), µ ∈ X∗, z ∈ [0, 1] (17)

where ρ(z, x, y) is the easily computed probability that x updates to z when matched

with y plus the probability that y updates to z when matched with x. Let

W = {V : Z → R : V is homogeneous of degree 1, continuous, and ‖V‖ <∞} (18)

where W has norm ‖V‖ = sup‖g‖≤1 |V(g)|. Define the Bellman operator T on W by:

TV(g) = max
µ∈Φ(g)

Γ(V, µ) where g ∈ Z and Γ(V, µ) = (1 − δ)

∫

Qdµ+ γV(g + σB(µ))

Claim 2 T : W →W , where W is given by (18).

Proof: The mapping clearly preserves boundedness and homogeneity. We now show

that T preserves continuity. First, Γ(V, µ) is weak* continuous in (V, µ) ∈ W × X∗.

Indeed, µ 7→
∫
Qdµ is weak* continuous on X∗. Similarly ρ ∈ X yields µ 7→ B(µ)

weak* continuous on X∗. For each V ∈ W , the composition V(B(µ)) is continuous

in µ. Thus, Γ(V, µ) is continuous. Also, the constraint correspondence is continuous

and compact valued by Claim 1. Then TV is continuous by Robinson and Day (1974)

— a generalization of Berge’s Theorem of the Maximum. �

Claim 3 For any density g, a Pareto optimum value V and matching measure µ exists.

Proof: First, the Bellman operator T is a contraction. Indeed, T is monotonic and

T (V + c) = TV + γc, where 0 < γ < 1 and c is real. Thus, T is a contraction by
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g - µ - g
T ∗ (maximization) Θ (Bayes’ Rule)

u.h.c., convex- and closed-valued continuous & linear

Figure 6: Existence. This schematic illustrates the proof of steady state existence.

Blackwell’s Theorem, has a unique fixed point V in W by the Banach Fixed Point

Theorem. So V is continuous, as is the composition V(B(µ)). Thus, the maximizer µ

of the continuous function Γ(V, µ) on the compact constraint set Φ(g) exists. �

Claim 4 There exists a density g and a matching measure µ that is a steady-state PO.

Proof: Define the correspondence T ∗ : Z → X∗ by T ∗(g) = arg maxµ∈Φ(g) Γ(V, µ),

where g ∈ Z. Let Θ : X∗ → Z be the function capturing the transition equation:

Θ(µ) = g + σB(µ), for µ ∈ X∗. If the map T ∗ ◦ Θ : X∗ → X∗ has a fixed point

g∗=T ∗(g∗), then we can assume a constant optimal matching measure µ∗ ∈ Φ(g∗).

By an extension of the Kakutani Fixed Point Theorem in Istratescu (1981), §10,

it suffices that T ∗ ◦ Θ be nonempty, convex-valued, closed-valued, and u.h.c. Claim 3

yields non-emptiness. Now, T ∗ is u.h.c. and closed-valued by Robinson and Day (1974).

It is convex-valued, as Γ is linear in µ and the constraint set Φ(g) is convex. Claim 2

proved Θ continuous. As a composition of a continuous function and a u.h.c. correspon-

dence, T ∗ ◦ Θ is u.h.c. Also, Θ is linear in µ, and preserves closedness and convexity;

thus, T ∗ ◦ Θ is convex-valued and closed-valued. It has a fixed point g∗=T ∗(g∗). �

A.2 Welfare Theorems: Proof of Theorem 2

First Welfare Theorem. Let 〈f, F 〉 ≡ (1 − δ)
∑∞

0 γt
∫

[0,1]2
f(x, y)dF (x|y)dy for

measurable functions f . Assume that (F, v, w) is a CE, but F is not a PO. Thus,

there exists feasible F ′ with 〈Q,F ′〉 > 〈Q,F 〉. Define wy(x, y) = w(y|x). By definition

of a CE and (3), we have 〈w + wy, F 〉 = 〈Q,F 〉 and 〈w + wy, F ′〉 = 〈Q,F ′〉. Hence,

〈w+wy, F ′〉 > 〈w+wy, F 〉. By symmetry, 〈w, F ′〉 = 〈wy, F ′〉, and so 〈w, F ′〉 > 〈w, F 〉.

Let ĝ be the density associated with the matching F̂ , and let ρt(z, x, F ) be the

chance that agent x at time 0 updates to z at time t. By worker maximization (10),

∑

t δ
t
∫ ∫

z∈supp g
w(z|y)ρt(z, x, F )dF (z|y)

g(z)
dy ≥

∑

t δ
t
∫ ∫

z∈supp g
w(z|y)ρt(z, x, F̂ )dF̂ (z|y)

ĝ(z)
dy
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Multiply both sides by g(x), and integrate over x. This yields 〈w, F 〉 ≥ 〈w, F̂ 〉, which

contradicts 〈w, F̂ 〉 > 〈w, F 〉. Thus, F is a PO.

To prove that v is a multiplier in the planner’s problem for the given (efficient) F ,

we show that (F, v) satisfies the planner’s FOC. Take any matched pair (x, y). If we

sum the worker maximization conditions (10) for x and y we obtain:

v(x) + v(y) = (1 − δ)(w(x|y) + w(y|x)) + δΨv(x, y)

Since w(x|y)+w(y|x) = Q(x, y), the planner’s FOC (9) is satisfied for this matched pair.

Now take any (x, y) (not necessarily matched). Worker maximization (10) implies:

v(x) ≥ (1 − δ)w(x|y) + δψv(x|y) and v(y) ≥ (1 − δ)w(y|x) + δψv(y|x)

Summing these two inequalities and applying (3) yields:

v(x) + v(y) ≥ (1− δ)(w(x|y)+w(y|x))+ δΨv(x, y) = (1− δ)Q(x, y) + δΨv(x, y). �

Second Welfare Theorem. Let (F, v) be a PO. Assume that the pairs (x, y) and

(x̂, ŷ) are matched in the PO, but there does not exist a CE in which these pairs are

matched. Let V (x, y) ≡ (1 − δ)Q(x, y) + δΨv(x, y). By definition of PO, we have:

V (x, y) + V (x̂, ŷ) ≥ V (x, ŷ) + V (x̂, y)

As this holds for any matched pairs, output shares w exist so that (F, v, w) is a CE. �

A.3 Strict Convexity of Values: Proof of Lemma 1

Claim 5 The value function v is convex.

Proof: If information is revealed about agents’ true types in an ε-mass ball around x,

then their reputations experience a mean preserving spread, as beliefs are a martingale.

The first order change in the planner’s value equals the sum of the changes in shadow

values, or εE[v(x̃) − v(x)]. Since the planner may ignore this signal, this cannot be

negative; this reverse direction of Jensen’s inequality proves weak convexity. �

Claim 6 The value v is linear on no interval, and so is strictly convex.
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Proof: Fix x > 0. Since Q(x, x) > 0, and the planner can always “self-match” any x

for whom g(x) > 0, it cannot be optimal to leave x unmatched; thus, for all x there

must exist y ∈ supp{F (·|x)}. Along with the FOCs (9) this implies that:

v(x) = maxy[(1 − δ)Q(x, y) + δΨv(x, y) − v(y)] (19)

If v is linear, then Ψv is modular (i.e. Ψv
12 = 0). As Q is strictly SPM, match values

are strictly SPM, so that PAM obtains. But then v(x) = (1− δ)Q(x, x)/2 + δΨv(x, x).

As Q is strictly SPM, Q(x, x) is strictly convex, which contradicts v globally linear.

Next, being convex (Lemma 1), v is continuous. Any maximal interval of linearity in

[0, 1] is closed, say [x, x̄]. We now argue by contradiction that no such interval can exist,

so that v is strictly convex. By continuity of zi(x, y) and Assumption 2, ∃ε ∈ (0, x̄−x),

such that ∀ y ∃ i s.t. zi(x̄ − ε, y) > x̄. The logic of Lemma 2 yields Ψv strictly convex

at x̄− ε for all y. But since v(x̄− ε) = maxy[(1− δ)Q(x̄− ε, y)+ δΨv(x̄− ε, y)− v(y)],

where the maximand is strictly convex at x̄− ε, this contradicts v linear on [x, x̄]. �

A.4 Convexity of Continuations: Proof of Lemma 2

Since v is convex, it is twice differentiable a.e., as is ψv(x|y) = E[v(z(q̃, x, y))] in x

or y. Let u = x or y. Now pi(x, y) and pi(x, y)zi(x, y) are both bilinear in (x, y).

So piuu(x, y) = 0. Also, pi(x, y)zi(x, y) is linear in x or y given (4); thus, its second

derivative vanishes:

piuuzi + 2piuziu + piziuu = 0 (20)

This yields ψv
uu(x, y) =

∑

i pi(x, y)ziu(x, y)
2v′′(zi(x, y)) > 0, whenever v′′ exists. �

A.5 Convexity of Expected Continuations: Derivation of (6)

To derive the expression (6), note that

ψv(x|y) = π
∑

i pi(x, y)zi(x, y)
2/2 + (M − L)x+ L/2

and so, using (20),

ψv
yy(x|y) = π

∑

i

[
piz

2
iy + zi

2
(piyyzi + 2piyziy + piziyy)

]
= π

∑

i piz
2
iy.
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ℓi,mi
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1/ℓ1

m1

Figure 7: Example of Dominance Region. On the left, we illustrate the convex
hull A of the points (0, 0), (1, 1), and (mi, ℓi) across all i. For (x, 0) to dominate (x, x),
x(hi,mi) + (1 − x)(mi, ℓi) ∈ A for all i. The right hand panel illustrates how h1 < m2

1/ℓ1
implies that (x, 0) cannot dominate (x, x).

B PAM is Not A Priori Informationally Inferior

We firstly derive a simple necessary condition for (x, 0) to dominate (x, x), in the sense

of Blackwell (i.e. statistical sufficiency). We then show that this requirement is not

generically satisfied — to wit, PAM is not necessarily informationally inferior. Our

approach is graphical and thus loose, as our intention is to motivate.

Let P(x,y) be the conditional distribution of signals from an (x, y) match, a 2 × N

matrix with columns ((pi(1, y), pi(0, y)). Then (x, 0) dominates (x, x) iff there exists

an N ×N Markov matrix Λ (non-negative with rows sums 1) so that P(x,x) = P(x,0)Λ:

x

(

h

m

)

+ (1 − x)

(

m

ℓ

)

=

(

m

ℓ

)

Λ

Put λj ≡
∑

i λij . Since
∑

i hi =
∑

imi =
∑

i ℓi = 1, this can be simplified to:

x(hj , mj) + (1 − x)(mj , ℓj) = λj

∑

i

λij

λj

(mi, ℓi) ∀ j = 1, . . . , N − 1 (21)

Thus, (x, 0) dominates (x, x) iff (21) holds for some {λij ≥ 0} with
∑

j λij = 1.

Since λij ≤ 1, we have λj ≤ N . Thus, imposing λij ≥ 0 and only the weaker con-

straint that λj ≤ N yields a necessary condition for (x, 0) to dominate (x, x). Let’s illus-

trate the N = 4 example seen in the left panel of Figure 7. Examining (21), we first take

the convex hull of all pairs (mi, ℓi). Then by scaling these pairs by some λi ∈ [0, N ], we

trace out the region A equal to the convex hull of {(0, 0), (m1, ℓ1), . . . , (mN , ℓN), (1, 1)}.
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Thus, our necessary condition is restated as

x(hj , mj) + (1 − x)(mj , ℓj) ∈ A ∀ j = 1, . . . , N − 1

Order the mi and ℓi so that m1/ℓ1 = maximi/ℓi. Then (right panel in Figure 7):

h1 < m2
1/ℓ1 ⇒ x(h1, m1) + (1 − x)(m1, ℓ1) /∈ A for any x ∈ (0, 1).

Thus we see that (x, 0) may dominate (x, x) for low x, but this is not generically true.

C S as a Measure of Statistical Distance

Our triple distance measure admits a statistical interpretation. The Kullback-Leibler

distance between probability density vectors a and b is denoted by:

KL(a, b) =
∑

i ai log(ai/bi).

This is the most commonly used (albeit asymmetric) distance measure between two

conditional signal distributions in the information literature outside of economics. It

obeys KL(a, b) ≥ 0 with KL(a, b) = 0 iff a = b. We can write S(h,m, ℓ) = KL(m, ℓ)+

KL(h,m) −KL(h, ℓ) +
∑

(m2
i − hiℓi)/ℓi. The latter term is positive since,

∑

i(m
2
i − hiℓi)/ℓi =

∑

i(m
2
i −miℓi)/ℓi =

∑

i(mi − ℓi)mi/ℓi (22)

and
∑

i(mi − ℓi) = 0, while mi − ℓi is weighted by mi/ℓi ≷ 1 for mi − ℓi ≷ 0. We see

that S(h,m, ℓ) > 0 surely when KL(m, ℓ) +KL(h,m) > KL(h, ℓ). Now KL does not

obey this triangle inequality as a rule, but it is intuitively true when m is far enough

from ℓ and h compared with how far h is from ℓ. In this sense, S is a distance measure.

D Non-Assortative Matching

D.1 Asymptotic Analysis for Lemma 3 and Proposition 2

We proceed by contradiction, assuming PAM and using the implied value function vδ.

Indeed, given v′δ(0) = M−L and v′δ(1) = H−M fixed,
∫ 1

0
v′′δ (x)dx is constant in δ. Since
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the value function flattens (limδ→1 v
′′
δ (x) = 0) for any interior x ∈ (0, 1), convexity must

accumulate at 0 and 1, as in Figure 3. Curiously, we now show that δ
∑

im
2
i /ℓi > 1 suf-

fices near x = 0, so that the convexity explosion may obtain far from δ = 1: for instance,

if ℓ=(0.01, 0.99) and m=h=(0.99, 0.01), then δ>(
∑

im
2
i /hi)

−1 ≈ 1/98 works.

Claim 7 Assume PAM and δ
∑

im
2
i /ℓi > 1. Define αδ ∈ (0, 1) by (13). Then:

(i) Asymptotically, v′′δ (x)∼cδx
−αδ as x→ 0 where cδ>0 (i.e. limx→0 x

αδv′′δ (x)/cδ = 1).

(ii) limδ↑1 cδ/(1 − αδ) = c where c > 0.

Likewise, for δ < 1 big enough that δ
∑

im
2
i /hi > 1, we have v′′δ (1 − x) ∼ ĉδx

−βδ near

x = 0 for βδ ∈ (0, 1) given by (13); further, ĉδ/(1 − βδ) → ĉ as β ↑ 1, for some ĉ > 0.

Part (i) provides a functional form for the second derivative near x = 0 at fixed δ.

Essentially, v′′ geometrically blows up as fast as it can and still leave v′ integrable.

Proof: By Anderson and Smith (2004) [AS02],14 for any twice continuously differ-

entiable policy function a(x), the second derivative v′′(x) obeys part (i) as long as v(x)

is convex, the static output function Q(x, a(x)) is strictly convex, and δ
∑

im
2
i /ℓi > 1

holds. These assumptions obtain, as a(x) = x, and Q(x, x) is strictly convex by SPM.

Part (ii) also follows from AS02. Beyond the assumptions necessary for part (i),

we need the derivative of the policy function finite at x = 0, and |piy(x, y)| <∞. Since

a(x) = x and pi(x, y) is linear, these assumptions are easily satisfied. �

Define R(α) ≡
∑

i(hi −mi)(mi/ℓi)
1−α + (1 − α)

∑

i[(hiℓi −m2
i )/ℓi](mi/ℓi)

1−α.

Claim 8 Ψδ
12(x, x) ∼ cδR(αδ)x

1−αδ/(1 − αδ) near x = 0

Proof: Computing Ψδ
12(x, x) we have:

κδ(x) ≡ Ψδ
12(x, x) =

∑

i(πivδ(zi) + ai(x)v
′
δ(zi) + bi(x)v

′′
δ (zi)), (23)

where πi = hi−2mi +ℓi, ai(x) = hi−mi +O(x), bi(x) = [(hiℓi−m
2
i )mi/ℓ

2
i ]x+O(x2).15

14AS02 studies a generic Bayesian experimentation problem, with two possible states of the world
and a distribution over signals for each action a. We can translate to the AS02 framework by letting
the action a(x) be the reputation of the agent to match with x, and hiy+mi(1−y) andmiy+ℓi(1−y) be
the probabilities of realizing signal qi given action y in the high and low state of the world, respectively.

15φ(x) = o(g(x)) iff limx→0 φ(x)/g(x) = 0 while φ(x) = O(g(x)) if lim supx→0
|φ(x)/g(x)| <∞.
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We can use our asymptotic approximation v′′δ (x) = cδx
−αδ(1 + o(1)) from Claim 7

to approximate (23), and integrate to yield approximations for vδ and v′δ. Making this

substitution and using zi(x) = (mi/ℓi)x+O(x2), we find that the terms in κδ(x) are:

∑

i

πivδ(zi) =
∑

i

πi

[
cδ

(1 − αδ)(2 − αδ)
z2−αδ

i + v′δ(0)zi + vδ(0) + o(x2−αδ)

]

= (
∑

i πi(mi/ℓi)) v
′
δ(0)x(1 + o(1))

∑

i

ai(x)v
′
δ(zi) =

∑

i

(hi −mi +O(x))

[

v′δ(0) +
cδ

1 − αδ
z1−αδ

i (1 + o(1))

]

=
cδ

1 − αδ

∑

i

(hi −mi)

(
mi

ℓi

)1−αδ

x1−αδ(1 + o(1))

∑

i

bi(x)v
′′
δ (zi) = cδ

∑

i

[
(hiℓi −m2

i )mi

ℓ2i
x+O(x2)

](
mi

ℓi
x

)−αδ

(1 + o(1))

= cδ
∑

i

hiℓi −m2
i

ℓi

(
mi

ℓi

)1−αδ

x1−αδ (1 + o(1))

Thus,

κδ(x) =
cδ

1 − αδ

R(αδ)x
1−αδ(1 + o(1)).

We need to know that this term is negative and bounded away from zero as δ → 1.

We have already shown that cδ > 0 for δ < 1 (Claim 7 part (i)). Thus, we need only

show now that R(α) < 0 for large enough α < 1, since α1 = 1 and αδ is increasing in δ

near 1. Since R(1) = 0, we are done if R′(1) > 0. For then κδ(x) < 0 for δ near 1 for

x small enough. Differentiation then reveals that R′(1)=S(h,m, ℓ). �

D.2 PAM Almost Always Fails: Proof of Proposition 3

We need the measure of parameters (h,m, ℓ) for which S(h,m, ℓ) > 0 fails (the op-

posite weak inequality holds) to vanish as n increases. That is, if we define s1
n =

(1/n)
∑

i log(mn
i /ℓ

n
i )(mn

i − hn
i ) and s2

n = (1/n)
∑

i(m
n
i )2/ℓni , then Pr[s1

n + s2
n > 1] → 1.

For s1
n, assume h,m, ℓ are each independently generated by a uniform measure on

the simplex, denoted ∆N . The map (m, h) 7→ (m − h) log(m/ℓ) is strictly convex

in (m, h). By Jensen’s inequality and Emi = Ehi, if ui ≡ log(mi/ℓi)(mi − hi) then

E(ui) > log[(Emi)/ℓj ](Emi−Ehi) = 0, for all fixed ℓj. We are tempted to apply a Law

of Large Numbers, but the summands are dependent (eg.
∑

i hi = 1), and the domain
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(∆N)3 changes in N . (In fact, this expectation vanishes in the limit, by Claim 9.)

Instead, with an atomless assumption, we assume WLOG that hn = (hn
1 , h

n
2 , . . . , h

n
n)

is uniformly distributed on ∆n. The joint density (n−1)! has marginals (λ is Lebesgue

measure) dλi(h
n
i ) = (n−1)(1−hn

i )n−2 and dλij(h
n
i , h

n
j ) = (n−1)(n−2)(1−hn

i −h
n
j )n−3.

Claim 9 The sum s1
n vanishes in probability: s1

n ⇒ 0.

Proof: First Es1
n → 0. Indeed, straightforward calculation using the densities given

above yields that Es1
n = ((n− 1)/n2)(ς + Γ′(n)/Γ(n)). Here ς is Euler’s constant and

Γ(n) ≡
∫∞

0
sn−1e−sds is the Gamma function, i.e. Γ′(n) =

∫∞

0
log(s)sn−1e−sds. It is

known that (the ‘ψ function’) Γ′(n)/Γ(n) ∼ logn as n→ ∞. So Es1
n > 0 but Es1

n → 0.

Then by routine calculations, var(s1
n) → 0. Thus, Pr[|s1

n − Es1
n| ≥ ε] → 0 ∀ε.

Finally, Chebyshev’s inequality states that Pr[|s1
n −Es1

n| ≥ ε] ≤ var(s1
n)/ε2 ∀ε. �

The second sum is positive, as we have shown in (22). More strongly, we have:

Claim 10 The sum s2
n converges in probability to some constant ≥ 2.

Proof: Define ℓ̃ni = ℓni if ℓni ≥ 1/n2 and 1/n2 otherwise. Let s̃2
n = s2

n with ℓni replaced

with ℓ̃ni , and note that s2
n ≥ s̃2

n. It suffices to prove s̃2
n ⇒ 2.

We first claim that Es̃2
n → 2. Indeed, if ρn = 1 − (1 − 1/n2)n−1 is the chance that

ℓi ≤ 1/n2, then E(1/ℓ̃ni ) = n2ρn +
∫ 1

1/n2(n − 1)(1 − s)n−2/sds ≤ n2. Letting ρn → 1

yields E(1/ℓ̃ni ) = n2 + o(n2). Finally, E(mn
i )2 = 2/n(n+ 1), so that Es̃2

n → 2.

It thus suffices that Pr[|s̃2
n − Es̃2

n| ≥ ε] → 0 ∀ε. By similar reasoning as above,

E(1/(ℓ̃ni )
2) = n4 + o(n4), and E((1/ℓ̃ni )(1/ℓ̃nj )) = n4 + o(n4). Also, E((mn

i )4) =

24/(n(n+ 1)(n+ 2)(n+ 3)), and E((mn
i )2(mn

j )2) = 4/(n(n+ 1)(n+ 2)(n+ 3)). Then

var(s̃2
n) =

1

n
E

(mn
i )4

(ℓ̃ni )2
+
n− 1

n
E

(mn
i m

n
j )2

ℓ̃ni ℓ̃
n
j

−

(

E
(mn

i )2

ℓ̃ni

)2

=
4n2(n− 1)

(n+ 1)2(n + 2)(n+ 3)
+o(n)

using the independence of mn from ℓ̃n — i.e., var(s̃2
n) → 0. Apply Chebyshev. �

D.3 Long Run Match Dynamics: Proof of Proposition 4

We shall assume that no agent ever gets stuck at any reputation.

Assumption 2 It is not true that
ℓi −mi

hi + ℓi − 2mi
= c ∀i for some constant c ∈ [0, 1].
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This housekeeping condition follows from setting zi(x, y) ≡ x, and is generically

valid. Also, its failure yields L−M = y(H − 2M + L) > 0, or non-monotonic output.

Case (a). By Easley and Kiefer (1988), the reputation may only converge to a

potentially confounding point, where it is unchanged. If x 6= 0, then zi(x, y) = x

iff pi(1, y) = pi(x, y). Since ∂pi(x, y)/∂x is constant in x, this requires ∂pi(x, y)/∂x =

(hi+ℓi−2mi)y+mi−ℓi = 0, or y = (mi−ℓi)/(hi+ℓi−2mi) ∀ i, contrary to Assumption 2.

As there are no interior potentially confounding beliefs, the long run density g∞ has

support {0, 1}. Reputation being a martingale, the weights are (1 − x0, x0). �

Case (b). Let PGG, PGB, PBG, PBB be the current beliefs over the possible state

space {(G,G), (G,B), (B,G), (B,B)}. Let P̂GG ≡ hiPGG/(hi+mi(PGB+PBG)+ℓiPBB)

be the updated chance that the state is (G,G), and define similar updated beliefs

P̂GB, P̂BG, P̂BB. Note that P̂ii = Pii iff Pii = 1, while P̂ij = Pij iff Pij = 1 or Pij =

Pji = 1/2. Thus, these are the only potentially confounding beliefs. �
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