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Abstract

This paper demonstrates how parsimonious models of sinusoidal functions can be used to fit
spatially variant time series in which there is considerable variation of a periodic type. A typ-
ical shortcoming of such tools relates to the difficulty in capturing idiosyncratic variation in
periodic models. The strategy developed here addresses this deficiency. While previous work
has sought to overcome the shortcoming by augmenting sinusoids with other techniques, the
present approach employs station-specific sinusoids to supplement a common regional compo-
nent, which succeeds in capturing local idiosyncratic behavior in a parsimonious manner. The
experiments conducted herein reveal that a semi-parametric approach enables such models
to fit spatially varying time series with periodic behavior in a remarkably tight fashion. The
methods are applied to a panel data set consisting of hourly air pollution measurements. The
augmented sinusoidal models produce an excellent fit to these data at three different levels of
spatial detail.

JEL Classification: C22 & C23

Key words and phrases: Air Pollution, Idiosyncratic component, Regional variation, Semi-
parametric model, Sinusoidal function, Spatial-temporal data, Tropospheric Ozone.



1 Introduction

Models based on sinusoidal functions can adequately fit time series that exhibit strong periodic

behavior (Bloomfield, 2000). However, such models usually encounter difficulties emulating

time series with cyclical behavior that deviates from a fixed periodic structure (Lewis and Ray,

1997). In such cases, some alternative approaches have been proposed to augment sinusoidal

models to improve sample period fit and prediction. For instance, Campbell andWalker (1977)

employ a model that includes both a deterministic sinusoid and a second-order autoregressive

component to describe annual lynx trappings. Dixon and Tawn (1998) construct a model

of sea-level estimation that consists of a sinusoidal component governing tidal oscillations, a

linear model capturing long-term trends, and weather-dependent model to estimate surge.

The present article develops a new set of statistical tools that are designed to model spa-

tially varying time series which display some systematic periodic behavior and also manifest

characteristics that are station-specific to individual locations. The methodological innova-

tion is to use sinusoidal functions to represent spatiotemporal variation in a semiparametric

manner. The technique involves first fitting a finite linear combination of sinusoidal functions

to capture the spatially common periodic features of a certain series. This common periodic

element may be regarded as parametric and will usually be quite parsimonious. Once this

parametric model of common features is determined, it is augmented with a nonparametric

component to model idiosyncratic local spatial features, again using sinusoidal functions in

the form of a sieve approximation (e.g. Grenander, 1981). This nonparametric model is fitted

using local residuals from the common model. Combining the nonparametric and parametric

components into a single semiparametric framework provides a mechanism for capturing ele-

ments of common variation in spatiotemporal behavior while having the flexibility to emulate

a substantial degree of local variation. The advantages of this approach are two-fold. First,

the initial sinusoidal specification extracts the common near-periodic element in a complex

spatiotemporal process using just a few parameters. Second, the nonparametric component

tailors the more rigid common periodic structure to local patterns of variation. This approach

resolves a principal drawback of sinusoidal modeling that is cited in the literature (lack of flexi-
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bility) and enables the investigator to find common elements of spatiotemporal variation in the

data in a parametric manner that increases statistical efficiency. The new approach appears

to have broad applicability to spatiotemporal data that manifest some common periodicity

but substantial local variations about the common cycle.

We apply this machinery to a panel data set consisting of air pollution measurements in the

contiguous United States. Specifically, the data involve measurements of tropospheric ozone

(O3) from the U.S. Environmental Protection Agency’s (USEPA) air pollution monitoring

network (USEPA 1). This common pollutant exhibits a characteristic unimodal diurnal shape

when plotted against the hours in a day (see Figure 1). To this daily structure we fit the

models outlined above. The modeling approach adopted is well suited to this statistical

problem and its various policy applications. First, hourly measurements of O3 do exhibit a

fairly regular periodic structure, which suggests a parametric sinusoidal fit will be generally

well suited to the data. Additionally, the specific shape of the time series variation itself varies

widely across space. These data therefore provide a suitable context for the application of

our semiparametric approach. Second, the O3 data set is a rich collection of nearly 4 million

observations collected in 1996, providing an interesting spatiotemporal setting to test the

performance of these new tools.

Finally, this application is in an area of immediate policy relevance. Since tropospheric

O3 produces a variety of deleterious effects on human health (Bell et al., 2004) and welfare,

the USEPA has designated O3 as a criteria air pollutant. This classification stipulates that

O3 is subject to hourly measurement in order to assess regulatory compliance across both

time and space. The network of monitors calibrated to measure O3 consists of scattered

observations (see Figure 2). The incomplete spatial coverage of this network has motivated

prior efforts to interpolate O3 readings (BenMAP, 2004; Hopkins, Ensor, Rifai, 1999). These

efforts have focused on daily or seasonal average and maximum O3 concentrations. However,

the entire cycle matters because air quality standards have shifted from a 1-hour daily max-

imum structure, adequately described by the previous interpolation methods, to focusing on

the maximum 8-hour average. The 8-hour standard is a moving average. Assessing compli-
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ance therefore requires knowledge of the 24-hour range of O3 levels. In response to this shift

in policy structure, we work towards a method of spatial interpolation that enables one to

predict the entire daily O3 cycle at points between pollution monitors. This facility would

clearly improve the USEPA’s ability to make inferences about compliance with the current

O3 standards in locations without measurements.

The results reported herein reveal that, using a sample of locations, the semiparametric

modeling methodology fits the observed data in a remarkably tight fashion. In a sample of

ten states, the parametric model deviates from the state average daily O3 cycle by 1 − 3%.

Using a sample of ten counties the semiparametric model generates mean proportional errors

of less than 1%. The model also generates an equally close fit to observations of the O3 cycle

at a sample of individual monitors. Further, a series of formal tests provides statistically

significant evidence of spatially-variant idiosyncratic processes contributing to the daily O3

cycle.

2 Methods

2.1 The Model

The parametric model (1) comprises a linear combination of sinusoidal functions and is in-

tended to provide a general representation of the spatiotemporal data over the diurnal cycle:

Os
t,d = βs0 +

r∗X
r=1

(βsr cos(2πtΦr)δtr + βsr sin(2πtΦr)δtr) + εt,d (1)

where Os
t,d = Ozone concentration in state (s), for day (d), and hour (t)
r = hourly range
δ = Kronecker delta = 1 (for t r)

βsr = amplitude parameter, state (s), hourly range (r)
Φr = phase parameter, hourly range (r)
εt,d = stochastic disturbance term

While (1) is used to model the basic diurnal cycle in series with a strong periodic signature,

the general model also allows for some local regional/monitor heterogeneity by means of a
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nonparametric component which captures variation around the diurnal pattern embodied by

(1). In particular, the idiosyncratic process at location (c) is modeled in (2) as a linear

combination of sinusoidal functions fitted to the hourly residuals (ε̂ct,d = Ôs
t,d − Oc

t,d), where

Ôs
t,d = the hourly predictions from (1), and Oc

t,d = hourly observations at location (c) across

days (d). The model (2) is intended as a trigonometric sieve approximation that approximates

the specific (or idiosyncratic) characteristics at location c:

ε̂ct,d = γc0 +
R∗X
R=1

(γcR cos(2πtΦ
c
R)δtr) + (γ

c
R sin(2πtΦ

c
R)δtr) + uct,d (2)

where: γcR = amplitude parameter, county (c), hourly range (R)
ΦcR = phase parameter
uct,d = stochastic disturbance term

In applications, r∗ will usually be small and so the parametric component (1) is a parsimo-

nious representation of the common periodic signature in the series across spatial locations,

while R∗ will generally be larger so that the component (2) better approximates the individ-

ual nonparametric form at location c. In our practical implementation, we find that good

approximations are obtained for R∗ in the region of 7 − 10. It is likely that the smoothing

parameter R∗ will show a broader range of values as the models are applied to more locations.

The complete model (3) is therefore semiparametric and incorporates both the parametric

part (1) and the nonparametric part (2) to model the O3 data over time and at different

locations.

Oc
t,d = βs0+

r∗X
r=1

(βsr cos(2πtΦr)δtr + βsr sin(2πtΦr)δtr)+γ
c
0+

R∗X
R=1

(γcR cos(2πtΦ
c
R)δtr)+(γ

c
R sin(2πtΦ

c
R)δtr)+v

c
t,d

(3)
where vct,d is a stochastic disturbance term.
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2.2 Estimation

(I) In the first stage, estimation focuses on setting appropriate values for the fixed phase

parameters, Φr, and the number of sinusoidal functions, r∗, that are used in model (1). Once

the phase parameters (Φr) and the order parameter (r∗) have been identified, the remaining

statistical problem of estimating (1) reduces to a linear least squares regression to calculate the

amplitude parameters (βsr) . This step-wise approach is advocated by Damsleth and Spjotvoll,

(1982). An alternative approach, not pursued here, is to jointly estimate the phase and

amplitude parameters by nonlinear regression and use model selection methods to determine

the order parameter r∗. In order to determine the number of sinusoidal functions r∗ in (1),

our approach is to visually inspect the O3 cycle in the data1 and find a value of the order

parameter that is sufficient to provide a good representation of the diurnal pattern. (Later,

we use a similar approach for the determination of R∗ in (3)). For the present data set, we

found that a value of r∗ ' 6 worked very well. Turning to the phase parameters, we use

an automated, iterative approach that tests a range of values for Φr on each segment of (1).

Both the sine and cosine functions are tested in each segment. We assessed the accuracy of

the predicted (Ôs
t ) for each segment corresponding to each (Φr) value. An algorithm chooses

the value of Φr that corresponds to the minimum root mean squared error (
√
MSEr)

2 for

each hourly segment (r).

p
MSEr =

s
1

T

TP
t=1

³
Ôs
t −Os

t

´2
. (4)

As an additional diagnostic, we plot the predictedO3 segments along with the measured O3
1This visual inspection approach is also suggested by Damsleth and Spjotvoll (1982).
2The state averages are O3 concentrations for each hour in the day (t) in July, 1996. Thus, the model

averages across monitors (n) and across days (d) so that

Os
t =

1

31

31

d=1

1

N

N

n=1

(Os
t,d,n)

The model (1) allows for amplitude parameter estimates to vary between months since O3 formation is highly
dependent on local climate. Thus, the shape of the daily cycle changes from month to month, as do variables
such as temperature, precipitation, and other factors. The findings in this report focus on July measurements
to display the methodology and can be implemented in the same manner for other months. As a result we
suppress the monthly subscript.
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hourly segments against time. This visual inspection provides an important final verification

of the choice of Φr.

(II) The second stage of estimation solves the least squares minimization problem on the

amplitude parameters (βsr) using the fixed phase parameters Φr identified in stage 1.

min
βs

S(βs) =
6X

r=1

(Os
t,d − βs0 − (βsr cos 2πtΦr)δtr − (βsr sin 2πtΦr)δtr)2, (5)

which completes estimation of the parametric model.

(III) In order to tailor the parametric models to capture local behavior patterns, we

need to estimate idiosyncratic effects for each locality. This is accomplished by calculating

the residuals (ε̂ct,d) obtained from fitting the state-level model (1) to local O3 cycles. Then,

in manner analogous to stage 1, we visually inspect plots of the (ε̂ct,d) against time in order

to determine a suitable order parameter R∗, the number of sinusoidal components in model

(3). In order to accommodate heterogenous O3 cycles, residual plots from various regions of

the contiguous U.S. are inspected. Markedly different patterns in the residuals necessitate

spatially-variant values for the (ΦcR). Distinct (Φ
c
R) are identified for the Southeastern states,

as well as those in the Midwest, the West and the Northeast. Additionally, in Northeastern

and Western states, different phase parameters are specified for the models applied to large

urban areas. This spatially nonparametric approach enhances the ability of model (3) to

capture local variation in the time series structure.

(IV) Once suitable order parameters are obtained, we estimate the coefficients (γcR) in (2)

using ordinary least squares.

min
γc

S(γc) =
7X

R=1

¡
ε̂ct,d − γc0 − (γcR cos(2πtΦcR)δtR

¢
− (γcR sin 2πtΦcR)δtR)2 (6)

(V) Model (2) is appended to (1) additively as in (3) in order to provide local estimates

of the O3 data.
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2.3 Model Evaluation

In many contexts, evaluating such models entails using the leave-one-out method (Hardle,

1990; Stone, 1974). The foundation of the leave-one-out method is that nearby points bear

a strong similarity to one another. Hence, neighboring observations may be used to make

predictions; a local sample of measurements at locations (j) is drawn to make inferences about

the dependent variable at a point of interest (p). That is, if one supposes that a measured

surface is generated by some functional relationship, the leave-one-out method presumes that

this function is relatively smooth and continuous within the neighborhood of (p). In contrast

to this presumption, the spatially erratic nature of the O3 time series implies that, in this

application, such a function is discontinuous. This largely precludes using the leave-one-out

method.

Empirical evidence in the large panel data set used in the present study suggests that

the local processes generating O3 profiles can differ markedly between any two neighboring

sites. Since the local deviations from the underlying periodic signature at any two monitors

may be very different, the residuals from a collection of (j) local points are generally of little

use in trying to model the idiosyncratic process at some given point of interest (p). As an

example of this phenomenon, Figure 3 plots the residuals (ε̂ct,d), calculated as shown in 2.1,

from a local sample of 20 monitors against time. These monitors are a local sample drawn

around a particular monitor (p), whose idiosyncratic effect we hope to estimate3. The residuals

corresponding to monitor (p) are shown in Figure 4. Taken together, these plots show that

the residuals from a sample of points nearby monitor (p) bear little resemblance to those at

(p). Thus, applying the leave-one-out method does not seem appropriate here.

We test the fit of the parametric model by comparing its hourly predictions (Ôs
t ) to state-

averaged hourly observations (Os
t ). The hypothesis is that the state-averages represent the

underlying structure of the 24-hour O3 cycle. Model fit is judged according to the mean

proportional error (MPE) and the root mean squared error
³√

MSE
´
. These statistics are

calculated as shown in (7) and (8). The error is determined at each of the 24 hours in the

3 In this example the monitor (p) is located in Phoenix, Arizona. The 20 monitors in Figure 3 are those
within Maricopa County which encompasses Phoenix.
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cycle, and then reported as an average (for each state) as follows:

MPE =
1

24

24P
t=1

⎛⎝abs
³
Ôs
t −Os

t

´
Os
t

⎞⎠ , (7)

√
MSE =

s
1

24

24P
t=1

³
Ôs
t −Os

t

´2
. (8)

We test the fit of the semiparametric model (3) at two different spatial scales: county

averages and observations taken from specific pollution monitors . In order to evaluate fit at

the county-level, the parametric model is first estimated using all observations from the state

containing the county of interest. Next, we compile the county-average O3 cycle (Oc
t,d) by

averaging across monitors within the county (c) for each day in July, 1996. Then the hourly

deviations of the county average from model (1) predictions are calculated:

ε̂ct,d =
³
Ôs
t,d −Oc

t,d

´
. (9)

The county residuals (ε̂ct,d) are then regressed on the sinusoidal structure as shown in (2).

In order to assess the degree of improvement in fit between model (1) and model (3), we

calculate the error statistics shown in (7) and (8) corresponding to the parametric model

(MPE1,
√
MSE1) and after appending the nonparametric model (MPE3,

√
MSE3). Since

there are approximately 530 counties with O3 monitors, we summarize model performance

by examining the accuracy of the predictions in a sample of counties from three land-use

designations; urban, rural and suburban counties.

The final test of model performance examines the fit to readings at particular pollution

monitors. The experimental structure is the same as for the county-level tests. That is, the

appropriate parametric model is first estimated. In order to evaluate fit at the monitor-level,

we compile the observed O3 cycle at monitor (m) for each day in July, 1996. Then the hourly

deviations of the monitor cycle from model (1) predictions are calculated:

ε̂mt,d =
³
Ôs
t,d −Om

t,d

´
. (10)
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The monitor residuals (ε̂mt,d) are then regressed on the sinusoidal model in (2). Again, the

MPE and
√
MSE corresponding to the parametric model and after appending the nonpara-

metric element are computed. This reveals the degree of improvement in fit between models

(1) and (3) for the monitor data. There are roughly 1, 000 monitors in the network. We report

the fit to a sample of monitors.

2.4 Testing for Idiosyncratic Processes

In order to formally test for the presence of idiosyncratic effects, we explore whether the

amplitude parameters (βsr) are significantly different in model (1) fitted to various states,

and whether the (γcR) are significantly different in model (3) fitted to various counties. This

hypothesis is tested for each hourly segment (r) in (1), and (R) in (2). The test is structured

as a two-tailed test with the following null (H0) and alternative (H1) hypotheses. Here, (11)

and (12) pertain to the tests applied to model (3).

H0 : γiR = γjR (11)

H1 : γiR 6= γjR (12)

The test statistic for two counties (i) and (j), denoted (τ i,j), is assumed to be distributed

according to student’s t.

τ i,j =

Ã
γiR − γjR
σ̂iR

!
˜ t0.05(n− 2) (13)

where: τ = test statistic for counties (i) and (j)
γiR = amplitude parameter, hourly segment (R), county (i)
σ̂iR = standard error estimate for (γiR)

3 Results

Table 1 reports the phase parameters (Φr) derived in stage 1 of estimation and subsequently

used in the parametric model. Table 1 also shows other aspects of the specification used in
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model (1). Employing these (Φr), the least squares fit to the state average data is remarkably

tight. Table 2, which reports results from a sample of ten states, reveals that model (1)

produces a mean proportional error of between 1% and 3%. The
√
MSE is less than 1

part per billion (ppb) for each of these states. Figure 5 plots the predicted daily cycle (Ôs
t )

from model (1) for Illinois and the observed state average (Os
t ) for Illinois against time. This

plot provides additional evidence of the strong fit of the model; the only visually discernible

deviation occurs in the early morning hours at the lowest levels of O3.

Table 3 reports the results derived from applying model (3) to a sample of counties. The

MPE1 statistic reveals that, generally, model (1) fails to capture the local O3 cycle in an

adequate fashion. In the four urban counties sampled, the MPE1 ranges from 22% to 67%.

Applying model (1) to these counties generates a
√
MSE1 of between 4 and 10 ppb. In the six

non-urban counties sampled in this experiment, the parametric model also fails to consistently

fit the data; the lowest MPE1 is 6% and the highest MPE1 is 55%. Similarly, in this sample

the
√
MSE1 exhibits substantial variation: from 2.5 to nearly 13 ppb. However, Table 3 shows

that model (3) is able to emulate the county-average O3 data. In each of the ten counties,

the MPE3 is less than 1%. Further, model (3) reduces the
√
MSE1 by roughly an order

of magnitude; the
√
MSE3 is less than 1 ppb in all of the ten counties. Figure 6 provides

visual evidence of the improvement in fit due to employing model (3). The parametric model

predictions (dots) are biased upwards, relative to the county observations, by a significant

margin. However, it is evident that model (3) (dashed) fits the county average data (line)

quite well.

Model (3) is also tested in terms of fitting the O3 cycle at particular monitors. The results

of this experiment are shown in Table 4. Model (1) is clearly unable to consistently fit the O3

pattern at the four urban monitors sampled. This is evident in theMPE1 which ranges from

20% at a monitor near Phoenix to 113% at a monitor in Chicago. At non-urban monitors, the

performance of model (1) is inconsistent; theMPE1 stretches from 0.3% to 30%. In contrast,

model (3) fits the local patterns remarkably well. At the four urban monitors, the MPE3

is less than 1%. Further, the
√
MSE3 is reduced to less than 1 ppb. At the six non-urban
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sites, model (3) also performs exceptionally well; the MPE3 is only greater than 1% at a

monitor in San Bernardino, CA. The ability of model (3) to fit local observations of the time

series is driven by the model (2) fit to the local residuals. This is evidenced in Figure 7 which

shows both the county and monitor residuals and the corresponding predictions from model

(2). Figure 7 shows that model (2) is able to capture the idiosyncratic process at two levels

of spatial detail.

Table 5 reports the results of the hypothesis tests designed to determine whether the

amplitude parameters in model (1) vary across states. The testing results, which are applied

to California, Illinois, and New York, show strong, consistent evidence that the (βsr) vary

significantly. This suggests that the amplitude of the periodic structure of the O3 time series

is not spatially homogenous. The test comparing the (βsr) estimates using observations from

California and Illinois shows that β1, β2, and β4 are significantly different at the 1% level. β3

and β5 are significantly different at the 5% level. Only for the test applied to β6 can we not

reject the null hypothesis of equal amplitude parameters across spatial location. The tests

comparing the California and New York models indicate that β1 through β6 are significantly

different at the 1% level. Finally, the tests pertaining to the Illinois and the New York models

detect statistically significant evidence of different amplitude parameters for β2 and β4 at the

1% level, for β3 at the 5%, and for β6 at the 10% level. In the tests applied to β1 and β5 we

fail to reject the null hypothesis.

To test for the presence of local process effects, we examine whether the amplitude pa-

rameters (γcR) estimated in model (2) vary significantly across counties. Results from this

testing procedure are reported in Table 6. This test is applied to the models estimated for

Cook County, Illinois (encompassing Chicago), Kings County, NY (Brooklyn), and Los An-

geles County, CA. For the models applied to Kings County and Los Angeles, β2, β3, β5, and

β7 are significantly different at the 1% level, while β1, β4,and β6 are significantly different

at 5%. The test pertaining to Cook County and Kings County reveals that β2 and β4 are

significantly different at the 1% level, while β3 and β5 are significantly different at 5% and

10%, respectively. In the models applied to Chicago and Los Angeles, β3 shows significant
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differences at 1%, while β5 shows significant differences at 5%.

4 Conclusions

This paper demonstrates that models consisting of sinusoidal functions can be used to fit

spatiotemporal data in which there is considerable variation in the periodic structure. While

it is a recognized shortcoming that such models typically have difficulty capturing idiosyncratic

variation, the semiparametric strategy developed in the present article successfully addresses

the deficiency. Past work has sought to overcome the shortcoming by augmenting sinusoidal

models with other modeling forms such as autoregression and deterministic trends. The

approach developed here uses instead a parametric sinusoidal structure at the aggregate level

and combines this common structure with a flexible sieve sinusoidal form to capture local

idiosyncratic effects.

The empirical application reveals that this semiparametric approach can model spatiotem-

poral data with a variable periodic signature in a remarkably tight fashion. Using panel data

of hourly air pollution measurements at monitors located throughout the United States, the

sinusoidal semiparametric model produces an excellent fit at three successive levels of spatial

detail. The state experiments show that the parametric component of the model is able to

mimic state average measurements, thereby giving an underlying common periodic structure

to the data. The county experiments show how the models replicate local idiosyncratic vari-

ation. This particular scale is a crucial test of model accuracy for policy purposes since the

USEPA enforces its air quality standards at the county level. Thus, if the methods are to be

used for interpolation purposes and policy analysis, there must be an adequate fit to county

level readings. Finally, the monitor level experiments emphasize the method’s inherent flex-

ibility as it is able to match the observed O3 time series at particular locations with a mean

proportional error of less than 2.5%.

>From a practitioner’s perspective, the utility in these models lies in their ability to predict

O3 diurnal signatures at points not currently measured by the USEPA’s network. Prior

interpolation models have focused on daily maximum values, seasonal averages, and daily
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Figure 1: Diurnal Ozone Cycle

.0
1

.0
2

.0
3

.0
4

.0
5

.0
6

O
zo

ne
 (p

pm
)

0 5 10 15 20 25
Hour

Hourly Segment (t r) Φr

r = 1 (cos) 1-4 0.9575
r = 2 (cos) 5-9 0.9100
r = 3 (sin) 10-14 0.9460
r = 4 (sin) 15-18 0.9490
r = 5 (sin) 19-22 0.9440
r = 6 (cos) 23-24 0.9550

Table 1: Model (1) Phase Parameters

averages. However, the USEPA’s shift from a one-hour standard to an eight-hour standard

makes it necessary to interpolate the entire daily O3 cycle. One way to accomplish this within

our framework is to functionalize the idiosyncratic effects on covariates of readily observable

variables that are plausibly associated with O3 measurements. Such covariates might include

temperature, precipitation, and wind speed, as well as population and local land-use data.

Then, since the local phase parameters are known, the local amplitude parameters can be

regressed on these covariates to furnish predictions of the idiosyncratic process effects at a

given location where there are no current O3 measurements.
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Figure 2: Ozone Monitor Locations

Figure 3: Residuals from Local Sample
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Figure 4: Residuals from Monitor (p)
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State MPE(%)
√
MSE(ppb)

Colorado 1 0.33
Wash. D.C. 3 0.56
Idaho 1 0.37
Illinois 2 0.38
Indiana 1 0.36
Louisiana 1 0.35
Michigan 1 0.33
New Jersey 1 0.31
Utah 1 0.50
Washington 2 0.49

Table 2: Model (1) Fit
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County State Land Use MPE1(%) MPE3(%)
√
MSE1(ppb)

√
MSE3(ppb)

Los Angeles CA Urban 67 0.0 10 0.4
Harris TX Urban 64 0.1 4.8 0.4
Cook IL Urban 22 0.1 4.3 0.3
Kings NY Urban 26 0.1 5.4 0.6
Westchester NY Suburban 11 0.2 4.3 0.6
Orange CA Suburban 55 0.1 12.6 0.3
Will IL Suburban 9 0.1 2.5 0.4
Oliver ND Rural 6 0.0 2.7 0.4
Florence WI Rural 27 0.2 6.5 0.6
Hamilton NY Rural 21 0.0 5.3 0.4

Table 3: Model (3) Fit: County Experiments

Monitor County State Land Use MPE1(%) MPE3(%)
√
MSE1(ppb)

√
MSE3(ppb)

6-37-4002 Los Angeles CA Urban 30 0.0 10 0.8
48-201-62 Harris TX Urban 71 0.1 6.7 0.4
17-31-4002 Cook IL Urban 113 0.7 11.9 0.5
4-25-2005 Maricopa AZ Urban 20 0.0 9.5 0.7
36-103-4 Suffolk NY Suburban 16 0.0 5.7 0.6
6-71-1 San Bernardino CA Suburban 15 2.3 13.8 1.8
42-17-12 Bucks PA Suburban 0.3 0.2 2.8 0.5
6-109-4 Tuolumne CA Rural 30 0.1 14.9 0.8
37-59-2 Davie NC Rural 13 0.1 5.5 0.8
45-21-2 Cherokee SC Rural 5.1 0.0 2.8 0.5

Table 4: Model (3) Fit: Monitor Experiments
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Figure 5: Model 1 Fit to Illinois State Average (Model 1 = dash, Observed = line)
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Figure 6: Model (3) Fit to County Average (Model (1) = dot , Model(3) = dash, Observed = line)
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Figure 7: Model (2) Fit to County and Monitor Residuals
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State β1 β2 β3 β4 β5 β6
California, Illinois 3.38∗∗∗ 7.5∗∗∗ 17.2∗∗ 11.6∗∗∗ 0.29∗∗ 0.41

California, New York 5.13∗∗∗ 52∗∗∗ 3.96∗∗∗ 21.5∗∗∗ 2.00∗∗∗ 2.24∗∗∗

Illinois, New York 1.40 2.97∗∗∗ 8.75∗∗ 7.9∗∗∗ 1.60 1.70∗

Table 5: Testing for Heterogeneity in Model (1) Amplitude Parameters: *=0.10, **=0.05,
***=0.01

Counties γ1 γ2 γ3 γ4 γ5 γ6 γ7
Los Angeles, Cook 0.26 1.27 6.12∗∗∗ 0.87 2.26∗∗ 0.29 1.29

Los Angeles, Kings 2.09∗∗ 2.57∗∗∗ 12.0∗∗∗ 2.54∗∗ 4.28∗∗∗ 2.36∗∗ 10.5∗∗∗

Cook, Kings 0.91 88.5∗∗∗ 2.43∗∗ 3.25∗∗∗ 1.79∗ 1.59 0.84

Table 6: Testing for Heterogeneity in Model (2) Amplitude Parameters
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Hourly Segment (t r) 2nd Stage (ΦR) Southeast West Midwest Northeast Urban Northeast
R = 1(sin) 1-3 Φ1 0.970 0.970 0.970 0.870 0.895
R = 2 (cos) 4-7 Φ2 0.975 0.910 0.910 0.900 0.925
R = 3 (cos) 8-12 Φ3 0.965 0.930 0.930 0.953 0.946
R = 4 (cos) 13-15 Φ4 0.965 0.927 0.927 0.967 0.963
R = 5 (cos) 16-18 Φ5 0.970 0.973 0.973 0.970 0.970
R = 6 (cos) 19-21 Φ6 0.975 0.980 0.980 0.952 0.952
R = 7(cos) 22-24 Φ7 0.960 0.970 0.958 0.956 0.956

Table 7: Model (2) Phase Parameters
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