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Abstract

It has been know since Phillips and Hansen (1990) that cointegrated sys-
tems can be consistently estimated using stochastic trend instruments that are
independent of the system variables. A similar phenomenon occurs with de-
terministically trending instruments. The present work shows that such “irrel-
evant” deterministic trend instruments may be systematically used to produce
asymptotically efficient estimates of a cointegrated system. The approach is con-
venient in practice, involves only linear instrumental variables estimation, and
is a straightforward one step procedure with no loss of degrees of freedom in
estimation. Simulations reveal that the procedure works well in practice, hav-
ing little finite sample bias and less finite sample dispersion than other popular
cointegrating regression procedures such as reduced rank VAR regression, fully
modified least squares, and dynamic OLS. The procedure is shown to be a form
of maximum likelihood estimation where the likelihood is constructed for data
projected onto the trending instruments. This “trend likelihood” is related to
the notion of the local Whittle likelihood but avoids frequency domain issues
altogether. Correspondingly, the approach developed here has many potential
applications beyond conventional cointegrating regression, such as the estimation
of long memory and fractional cointegrating relationships.
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1. Introduction

Phillips and Hansen (1990) showed that linear cointegrated systems can be con-
sistently estimated using trending instruments that are independent of the system
variables. The instruments can, in fact, be independently generated as random walks
or more general unit root processes. As such, they might be regarded as being irrele-
vant (or spurious) to the model being estimated. Some more recent examples of this
phenomenon in possibly cointegrating regressions, but not necessarily of the I(1)/I(0)
form, are given in Phillips (2005) and Robinson and Gerolimetto (2005).

The reason why consistent estimation is possible, of course, is that such indepen-
dent instruments themselves have trending behavior and the trend co-relates with
that of the system variables. It is the “spurious” correlation these variables have
with the system variables that produces the possibility of consistent estimation. In a
similar way, deterministically trending instruments are well-known to be “spuriously”
correlated with stochastic trends and can lead to consistent estimation of cointegrat-
ing relations. The present paper shows that, spurious though this correlation may be,
it is sufficient in the limit as the number of instruments tends to infinity to produce
asymptotically efficient estimates of the cointegrating coefficients. In fact, as we show
below, straightforward application of linear IV estimation produces asymptotically
efficient one-step estimates of a cointegrated system.

As is apparent from all existing approaches, efficient estimation of the cointe-
gration space requires that estimation address the effects of both joint dependence
and serial dependence. This is done parametrically in the reduced rank regression
VAR approach (Johansen, 1988, 1995), and semiparametrically by fully modified least
squares in Phillips and Hansen (1990) and by frequency domain techniques in Phillips
(1991a). These methods require full system estimation and, in semiparametric cases,
two-step estimation that utilizes consistent estimates of the equation errors. Two-
sided dynamic least squares (Phillips and Loretan, 1991; Saikonnen, 1991; Stock and
Watson, 1993) and narrow-band frequency domain methods (Phillips, 1991a, Phillips
and Loretan, 1991) also produce efficient estimates, using single equation one-step re-
gressions that are augmented with differences as well as levels. Dynamic least squares
has the disadvantage that it requires the inclusion of lead differences and lagged dif-
ferences in the regression, which further reduces degrees of freedom in estimation and
handicaps prediction.

The contribution of the present paper is to introduce an entirely different ap-
proach to efficient estimation. The linear IV regression approach developed here
provides direct one-step efficient estimation of cointegrating coefficients as well as
consistent estimates of the long-run regression coefficients that embody the effects
of joint dependence. Furthermore, since the instrument variables are chosen to be
deterministic functions of time, there is no need for further corrections for serial de-
pendence. In consequence, the approach provides an extremely simple mechanism
for optimally estimating long-run coefficients in cointegrated systems while making
weak assumptions about the generating mechanism so that the procedure has wide
applicability.

The fact that efficient estimation using irrelevant instruments is possible may ap-
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pear somewhat magical, especially in view of existing results on IV estimation in sta-
tionary systems where relevance of the instruments is critical to asymptotic efficiency
and can even jeopardize consistency when the instruments are weak1 (Phillips, 1989;
Staiger and Stock and Staiger, 1997). Furthermore, the new results make clear that
what is often regarded as potentially dangerous spurious correlation among trending
variables can itself be used in a systematic way to produce rather startling positive
results. In this respect, the results of the present paper extend some earlier findings
by the author (1998, 2001, 2005a) on the usefulness of apparently spurious trend
regressions.

The essential idea can be explained as follows. We start by constructing a basis
for a suitably defined space of trending variables using as basis functions what might
initially be regarded as irrelevant deterministic trends that have no direct bearing
on the generation of the stochastically trending system variables. In conducting IV
estimation with these basis functions, we project all the system variables on the trend
space and, in doing so, isolate the long-run behavior of the system variables and their
differences, thereby enabling estimation of all the long-run parameters, including
the cointegrating coefficients and the long-run conditional mean of the equilibrium
error. The estimates are efficient because the set of basis functions is complete in
the limit, so that all possible forms of trend behavior are accounted for, and because
the procedure automatically adjusts for the endogeneity of the system regressors by
consistently estimating the long-run conditional mean of the equilibrium error.

The approach turns out to be economical as well as general because only linear
instrumental variable methods are needed and the trend instruments are straightfor-
ward deterministic functions of time. The approach is also agnostic about the form
of the trend behavior in the system variables, provided it can in the limit be captured
by the basis functions. In effect, this approach simply uses a basis for the trend space
to focus attention on long-run behavior in linear cointegrating regression.

An interesting by-product of the asymptotic analysis is that regression of a sta-
tionary time series on apparently irrelevant trending instruments provides a new way
of consistently estimating long-run covariance matrices and long-run regression co-
efficients. The approach can be used in quite general HAC estimation contexts and
that particular application is systematically explored elsewhere (Phillips, 2005b).

The procedure developed here may be regarded as a form of maximum likelihood
estimation where the likelihood is constructed to focus on trend or long-run features
in the data. Such a “trend likelihood” is closely related to the notion of the local
Whittle likelihood (Künsch, 1987) where only those frequencies in a narrow band
around the origin are used in the construction of the Whittle likelihood. Accordingly,
the IV cointegration estimator given here is most closely related to the narrow band
technique suggested in the author’s earlier work (1991a), although there is no need
for frequency domain calculations or techniques.

Trend likelihood methods will be useful in contexts other than those studied
1However, recent results of Chao and Swanson (2005) and Han and Phillips (2006) show that

it is possible to compensate for the effects of weak (and even irrelevant instruments in some cases)
through the use of large numbers of instruments and moment conditions.
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here. One application that is particularly relevant to recent econometric research is
long memory parameter estimation. In this context, the approach delivers a general
purpose long memory estimator that is applicable in both stationary and nonstation-
ary cases in a manner that is analogous to the frequency domain approach studied
recently by Shimotsu and Phillips (2005). This particular application is discussed
briefly at the end of the paper. Other potential applications are to cointegrated re-
gression models with nearly integrated and fractionally integrated regressors. Dealing
efficiently with endogeneity issues in such models is more complex, however, and is
not pursued in the present work.

The paper is organized as follows. Section 2 lays out the model and preliminaries.
The main results are given in Section 3. Selection of the number of instruments is
considered in Section 4. Section 5 provides some simulation findings for cointegrated
systems. The concept of a trend likelihood is introduced in Section 6 and applica-
tions to long memory estimation are discussed. Section 7 concludes. Proofs and
other technical material, including some lemmas of independent interest, are given in
Section 8. Notation is listed at the end of the paper.

2. Model and Preliminaries

We consider the following cointegrated system

yt = Axt + u0t (1)

∆xt = uxt (2)

relating the observable time series yt (my×1) and xt (mx×1) with initial conditions
at t = 0 and x0 = Op (1) . The composite error ut = (u00t, u

0
xt)

0 is a weakly dependent
time series satisfying

ut = C (L) εt =
∞X
j=0

cjεt−j ,
∞X
j=0

ja ||cj || <∞, a > 3, (L)

where εt = iid (0,Σ) with Σ > 0 and E(||εt||v) <∞, for some v > 2 and matrix norm
kk . The long-run moving average coefficient matrix C(1) is assumed to be nonsingu-
lar, so that xt is a full rank integrated process. The time series ut is stationary with
variance matrix Σu =

P∞
j=0 cjΣc

0
j , autocovariance function Γu (h) = E

¡
utu

0
t+h

¢
=P∞

j=0 cjΣc
0
j+h, finite v’th absolute moment E ||ut||ν ≤

³P∞
j=0 |cj |

´v
E ||εt||v < ∞,

spectrum fu (λ) = (1/2π)C
¡
eiλ
¢
ΣC

¡
e−iλ

¢0
, and long-run variance matrix Ω =

2πfu (0) = C (1)ΣC (1)0 , which is partitioned conformably with ut as

Ω =

∙
Ω00 Ω0x
Ωx0 Ωxx

¸
.

We define the conditional long-run covariance matrix Ω00.x = Ω00 − Ω0xΩ−1xxΩx0.
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The summability condition L implies that
∞X

h=−∞
h3 ||Γu (h)|| <∞, (3)

so that fu (λ) has continuous second derivative f
(2)
u (λ) = −σ2

2π

P∞
h=−∞ h2γu (h) e

−iλh.
While this framework assumes stationary ut, allowance for some heterogeneity in εt
and ut is possible and can be made in the usual way with minor modifications to L
as in Phillips and Solo(1992) without affecting the results given below in an essential
way.

Under L, partial sums St =
Pt

i=1 ui satisfy the functional law (e.g., Phillips and
Solo, 1992)

Bn (·) :=
Sbn·c√

n
=

Pbn·c
i=1 ui√
n

⇒ B(·), (4)

where bac signifies the integer part of a, ⇒ is weak convergence, and B(·) is vector
Brownian motion with variance matrix Ω. We partition B conformably with ut by
setting B = (B00, B

0
x)
0 and define the Brownian motion B0.x = B0 − Ω0xΩ−1xxBx, a

Brownian motion with variance matrix Ω00.x that is independent of Bx.
The limit process B (r) has an almost sure unique representation in terms of

deterministic functions over the interval r ∈ [0, 1]. It is particularly convenient in the
mathematical derivations that follow to use the orthonormal functions corresponding
to the covariance kernel of B and this leads to the following vector Karhunen- Loève
(KL) representation (see Phillips, 1998, 2005b)

B(r) =
√
2
∞X
k=1

sin [(k − 1/2)πr]
(k − 1/2)π ξk =

∞X
k=1

λ
1
2
kϕk(r)ξk, (5)

where the components ξk are iid N(0,Ω), λk = 1/ ((k − 1/2)π)2 , and ϕk(r) =√
2 sin [(k − 1/2)πr] . This series representation of B(r) is convergent almost surely

and uniformly in r ∈ [0, 1]. Let ξK , and ϕK(r) be K- vectors of the first K elements
of {ξk} and {ϕk(r)}, respectively, and ξ⊥, and ϕ⊥(r) be vectors of the remaining
elements of these sequences. Then, we may write (5) as a system of equations with
partitioned regressors

B (r) = ΞKΛ
1
2
KϕK (r) + Ξ⊥Λ

1
2
⊥ϕ⊥ (r) , (6)

where ΛK = diag(λ1, ..., λK), Λ⊥ = diag(λK+1, λK+2, ...) and

ΞK = [ξ1, ..., ξK ], Ξ⊥ = [ξK+1, ξK+2, ...].

We further partition these matrices conformably with ut as

ΞK =

∙
Ξ0K
ΞxK

¸
=

∙
[ξ01, ..., ξ0K ]
[ξx1, ..., ξxK ]

¸
,
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Ξ⊥ =

∙
Ξ0⊥
Ξx⊥

¸
=

∙
[ξ0K+1, ξ0K+2, ...]
[ξxK+1, ξxK+2, ...]

¸
.

Note that the coefficient of the deterministic function ϕk(r) in (5) is of order Op(
1
k ),

so that weighted functions in the KL representation become less important as k gets
large.

Using the Phillips-Solo (1992) approach and extending the probability space, it
is possible to develop a convenient weak approximation to the partial sum process
Bn (·) in terms of a Brownian motion B with variance matrix Ω

sup
t∈[0,1]

kBn (t)−B (t)k = op

µ
1

n
1
2
− 1
ν

¶
as n→∞, (7)

as detailed in Lemma A in the Appendix, which is a multivariate extension of Phillips
(1999a, Lemma E) and Akonom (1993, theorem 3). In what follows, we will assume
that the probability space has been expanded as necessary in order for (7) to apply.

The moment condition ν > 2 in L ensures that op
³
1/n

1
2
− 1
ν

´
= op (1) in (7). The

larger the moment exponent v the smaller is the error magnitude in (7). This weak
approximation helps to simplify the limit theory.

3. Estimation with Many Irrelevant Instruments

Define the augmented regression equation

yt = Axt +Ω0xΩ
−1
xx∆xt + u0.xt, (8)

where u0.xt = u0t − Ω0xΩ−1xxuxt, and write the equation in observation format as

Y 0 = AX 0 +Ω0xΩ
−1
xx∆X

0 + U 00.x,

where Y 0 = [y1, ..., yn] with similar definitions for ∆X 0, and U 00.x.
Let {ϕk}∞k=1 be an orthonormal basis of the space L2[0, 1] of square integrable

deterministic functions on the interval [0, 1] . All functions f ∈ L2[0, 1] can then be
written in terms of the functions {ϕk}∞k=1 as f(x) =L2

P∞
k=1 ckϕk(x), where =L2

signifies equality in the L2 sense. Our approach to estimation of (8) is to use as
instrumental variables for both xt and ∆xt a (potentially infinite) sequence of de-
terministic functions of the form {ϕk

¡
t
n

¢
: k = 1, ...,K}. Thus, we allow K to pass

to infinity with n, so that in the limit an infinite number of instruments are being
employed. Since these instruments are all deterministic functions and are uncorre-
lated with xt and ∆xt they might be regarded as irrelevant to the regression. Indeed,
such deterministic functions of time would, in conventional econometric parlance, be
regarded as being spurious for both xt and ∆xt.

In what follows, it will be convenient for the development to use the orthonormal
sequence

ϕk(r) =
√
2 sin [(k − 1/2)πr] , (9)
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used in the KL representation (5). In practice, there is little difference in regression re-
sults when other sequences of orthonormal instruments are used, and some illustrative
simulation results to this effect will be given later. Let ϕKt =

¡
ϕ1
¡
t
n

¢
, ..., ϕK

¡
t
n

¢¢0
,

Φ0K = [ϕK1, ..., ϕKn] and PK = ΦK (Φ
0
KΦK)

−1Φ0K be the orthogonal projector to the
space spanned by the columns of ΦK . Assume the order condition K ≥ 2mx holds
and apply instrumental variables linear regression to (8) using the matrix of instru-
ments ΦK . As indicated, the instruments are being used here for both the levels xt
and the differences ∆xt in (8). In the regression we can treat C = Ω0xΩ−1xx simply as
an unknown coefficient matrix.

The IV estimator of the cointegrating matrix A and regression coefficient C satisfy

(AIV , CIV ) = argmin
A,C

¡
Y 0 −AX 0 + C∆X 0¢PK ¡Y −XA0 +∆XC 0

¢
. (10)

Accordingly,

AIV = argmin
A

¡
Y 0 −AX 0¢RK (Y −AX) ,

where RK = PK−PK∆X (∆X 0PK∆X)
−1∆X 0PK , leading to the explicit partitioned

regression formula

AIV =
¡
Y 0RKX

¢ ¡
X 0RKX

¢−1
, (11)

and the corresponding residual moment matrix

ΩIV0.xx = K−1Û 00.xPKÛ
0
0.x = K−1 ¡Y 0 −AIVX

0 + CIV∆X
0¢PK ¡Y −XA0IV +∆XC 0IV

¢
(12)

from this regression, where Û 00.x = Y 0−AIVX
0+CIV∆X

0 is the matrix of regression
residuals. In (12), the matrix is weighted by the dimension (K) of the instrument
space rather than the number of observations (n).

The estimator AIV has the advantage that it can be calculated by straight-
forward linear regression and does not involve any preliminary steps or regres-
sion. Moreover, this estimator does not use up additional data or lose degrees of
freedom by leading and lagging the stationary component ∆xt, as is needed for
dynamic OLS regressions of the type formulated in Phillips and Loretan (1991),
Saikonnen (1991) and Stock and Watson (1993). There is also no need to take
complex data transformations, as in the narrow-band frequency domain approach
of Phillips (1991a), which was earlier recognised to be a one-step approach to ef-
ficient cointegrating regression. On the other hand, the latter estimator may it-
self be interpreted in terms of an IV regression. In particular, we may replace
the projector PK in (10) above with PcK = ΦcK (Φ

∗
cKΦcK)

−1Φ∗cK , where ∗ denotes
complex conjugate transpose, Φ

0
cK = [ϕcK1, ..., ϕcKn] , and ϕcKt = ϕcK

¡
t
n

¢
, where

the latter has complex sinusoidal components ϕck
¡
t
n

¢
= (2πn)−1/2 e2πik

t
n . Then,

X 0ΦcK = ((2πn)−1/2
Pn

t=1Xte
2πik t

n ) is a vector of K discrete Fourier transforms
(dfts) of Xt, and it is immediately apparent that IV regression in (10) with PK re-
placed by PcK is equivalent to a narrow-band frequency domain regression involving
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the K harmonic frequencies {λk = 2πk
n : k = 1, ..., n}. What (10) and the results

below show, is that it is not necessary to take dfts and do regression in the frequency
domain. What is important in the regression is that the instruments serve as a basis
for the trend space and, for efficient estimation, that when K → ∞ the basis be
complete. This may just as well be achieved with real polynomials as with complex
polynomials. So the conceptual framework goes beyond frequency domain regression.

The idea behind the IV estimate in (11) is as follows. The deterministic trend
variables ϕKt serve as instruments for the levels of the integrated regressors xt. As
remarked in the introduction, even when using a fixed number of instruments and
without employing the additional regressors ∆xt in the regression equation (8), such
an IV regression is well-known to produce a consistent estimate of the cointegrating
matrix A because of the spurious regression phenomena (Phillips, 1986; Phillips and
Hansen, 1990). However, as we demonstrate below, some particularly interesting
effects emerge as K increases when the regression equation is augmented as in (8).

First, in view of the KL representation (5), it is known from Phillips (1998, 2001)
that deterministic instruments like ϕKt become more effective in modeling integrated
regressors as K →∞. Indeed, in the limit these instruments are capable of capturing
the full KL representation of the limiting Brownian motion that corresponds to the
level regressors xt in (8). Thus, for large K, these regressors are strongly relevant
for xt, while at the same time clearly satisfying the orthogonality condition. Second,
and perhaps more interesting and unexpected, is that in the augmented regression
equation (8), it turns out that, as K increases, the instruments also become more
effective in estimating the precise form of the coefficient matrix C = Ω0xΩ

−1
xx , which

is the long-run regression coefficient of u0t on ∆xt.
Thus, two different effects work simultaneously in the IV regression leading to

(11) — one capturing the movements of the nonstationary regressor xt, while retaining
orthogonality with the equation errors, the other capturing the long-run regression
effects associated with the stationary regressor ∆xt and adjusting the conditional
mean for the endogeneity of the regressor. In fact, as the main result below shows, as
K →∞ and n→∞ the IV regression estimate is asymptotically efficient in the sense
of Phillips (1991) and the IV regression estimate of C is consistent. Thus, in the same
one-step regression and with the same instrument set, we achieve an asymptotically
efficient estimate of the cointegrating matrix A, a consistent estimate of the long-
run regression coefficient Ω0xΩ−1xx , and (as shown below) a consistent estimate of the
long-run conditional error variance matrix Ω00.x. So, all the long-run parameters are
consistently estimated in this one step regression.

The limit theory for AIV is given in the following result, confirming that the
estimate is efficient and asymptotically equivalent to full maximum likelihood under
Gaussian errors in finite dimensional cases and achieves semiparametric efficiency
bounds when ut is a Gaussian linear process of the general form L (c.f., Phillips,
1991b, Jeganathan, 1995). Inference can be conducted in the usual fashion for mixed
normal limit theory using appropriate error variance matrix estimates combined with
the usual inverse of the moment matrix in the partitioned regression, (X 0RKX)

−1.
In the present case, the long-run variance matrix of u0.xt is consistently estimated by
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the standardized residual moment matrix ΩIV0.xx, as shown below.

Theorem Under L and the rate condition

1

K
+

K

n(1−
2
v )∧(

5
6
− 1
3v )

+
K5

n4
→ 0, (R)

as n→∞, the following hold:

(a) n (AIV −A)⇒
³R 1
0 dB0.xB

0
x

´³R 1
0 BxB

0
x

´−1
≡MN

µ
0,Ω00.x ⊗

³R 1
0 BxB

0
x

´−1¶
.

(b) n−2X 0RKX ⇒
R 1
0 BxB

0
x.

(c) ΩIV0.xx →p Ω00.x.

Remarks

(a) Condition R requires that K → ∞ but at a rate that is slower than n4/5 and
the smaller of n1−

2
v and n5/6−1/3v. The latter restriction is likely to be much

stronger than is necessary, particularly when the moment exponent v is small.
However, the restriction is convenient for the proof of the theorem and it arises
because the proof makes direct use of the approximation (7) in determining
error magnitudes. For large v, of course, the condition is hardly restrictive and
amounts to K = o

¡
n4/5−δ

¢
for small δ > 0.

(b) An interesting by-product of the proof of the Theorem is that we have the
convergence n−1U 00.xPKX ⇒

R 1
0 dB0.x (r)Bx (r)

0 dr. In fact, the following weak
convergence to a stochastic integral is established in (72)µ

U 00.xΦK√
n

¶µ
Φ0KX

n3/2

¶
⇒
Z 1

0
dB0.x (r)Bx (r)

0 ,

as n,K → ∞. An important aspect of this result is that the limit processes
B0.x and Bx are independent and have zero quadratic covariation. Of course,
this orthogonality is central to the successful removal of endogeneity in the IV
regression and leads to the mixed normal limit distribution of the IV estimator
AIV . On the other hand, convergence of the corresponding matrix quadratic
form n−1U 0xPKX to the stochastic integral

R 1
0 dBx (r)Bx (r)

0 does not occur, so
that µ

U 0xΦK√
n

¶µ
Φ0KX

n3/2

¶
;
Z 1

0
dBx (r)Bx (r)

0 .

Indeed, as shown in Phillips (2001), in the scalar case we haveµ
u0xΦK√

n

¶µ
Φ0Kx

n3/2

¶
⇒ 1

2
Bx (1)

2 6=
Z 1

0
BxdBx, (13)
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so that the quadratic variation component of the integral is omitted in the limit.
In fact, the weak convergence (13) is to the Stratonovich integral (e.g., Protter,
1991) rather than the Ito integral. Thus, when they are applied to unit root
models or vector autoregressions with some unit roots, IV regressions of the
type considered here do not lead to estimates that have the usual unit root
limit distributions.

4. Instrument Number Selection

Phillips (2005) gave formulae for the optimal choice of K in the context of long-
run variance estimation in terms of minimizing the asymptotic mean square error of
estimation. The optimal rate in that case is K = O

¡
n4/5

¢
. We may extend that

result to the multivariate case, as in Lemma C of the Appendix, to accommodate
estimation of the long-run variance matrix Ω. This approach may be employed in
the present regression context with a focus on finding the optimal choice of K for
estimating the long-run regression coefficient C = Ω0xΩ

−1
xx , which appears in the

augmented regression model (8). Again, the optimal rate is K = O
¡
n4/5

¢
, as is

shown in (77) in the Appendix.
While this approach has some justification in the present context because C is a

regression coefficient in (8), it by no means implies that the asymptotic mean squared
error (AMSE) of estimation of the cointegrating matrix A is optimized by this choice.
To analyze the AMSE of estimation of A, it is necessary to develop an asymptotic
expansion of the estimate AIV . The situation is analogous to that considered by Lin-
ton (1995) and Xiao and Phillips (1998,1999) in semiparametric regression problems
where a smoothing parameter needs to be selected for the nonparametric estimation
component. While the first order limit distribution, as in part (a) of the theorem
above, is invariant to the precise choice of smoothing parameter that is employed
(provided the smoothing parameter obeys some general rate restriction such as con-
ditionR), the second order expansion is affected and higher order AMSE comparisons
might be conducted to develop an optimal criterion.

In the cointegrating regression context studied here, higher order expansions are
complicated by the mixed normal limit theory of AIV and the use of functional limit
theory in the first order asymptotics. The same complications arise with respect to
other semiparametric estimates of A. These issues are yet to be fully explored in the
literature, although Xiao and Phillips (2002) provide some higher order analysis for
the expected value of Wald tests in a related setting. We shall leave the development
of a higher order asymptotic expansion for AIV to future research. Intuition indi-
cates that the primary need in the estimation of the cointegration matrix A is for
bias control and preliminary calculations undertaken by the author indicate that the
optimal expansion rate for K in terms of the AMSE of AIV will be slower than the
O
¡
n4/5

¢
rate for long run variance and regression coefficient estimation, discussed

above.
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n = 50, and K = 20. Moving average errors with θ1 = θ2 = 0.4.
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5. Cointegration Model Simulations

To illustrate, we briefly report some cointegrating regression simulations with trend
IV methods and compare its performance with the most popular existing techniques,
notably reduced rank regression (RRR) in a VAR system, fully modified least squares
(FM-OLS), and dynamic least squares (DOLS) in regressions augmented with leads
and lagged differences.

Figs. 1-6 provide some typical findings from the cointegrated model with moving
average and autoregressive errors

X1t = bX2t + u1t
X2t = X2t−1 + u2t

, ut =

½
εt +Θεt−1 MA(1)
Θut−1 + εt VAR(1)

, (14)

εt =

∙
ε1t
ε2t

¸
∼ iid N

µ
0,

∙
1 ρ
ρ 1

¸¶
, Θ =

∙
θ1 0
0 θ2

¸
, (15)

for b = 2.0, n = 50, K = 20 and the cases ρ ∈ {0.75,−0.75} , each with 10,000
replications. The figures show kernel density estimates of the probability densities of
each of the cointegration estimators. We use DOLS(p) to signify DOLS with p leads
and lags, and RRR(p) to signify RRR with p lags in the corresponding VAR. Tables
I and II provide a summary of the findings for a wider selection of the parameter
values (θ1, θ2) . Similar results were obtained for n = 100 but with smaller differences
between procedures and they are not reported here.

It is apparent from both the figures and the tables that the trending IV estimator
works extremely well against this competing group of cointegrating regression pro-
cedures. From the summary statistics in the tables, the root mean squared error
(RMSE) of the Trend IV estimates is, with just two exceptions, uniformly smaller
than the RMSE of all the other estimates. The exceptions occur when θ1 = −0.8,
θ2 = 0.8 for both MA and AR errors, in which case the OLS estimator has smaller
RMSE than all the other estimates, but the Trend IV estimator has the next best
RMSE and has smaller bias in both these cases.

In the case of both MA and AR errors, the IV estimator shows very little finite
sample bias in general and has smaller dispersion than all the other procedures, except
for the case θ1 = −0.8, θ2 = 0.8 just mentioned. Similar results for the trending IV
estimator were obtained for different values of K in the range 20 ≤ K ≤ 40, so there
seems to be reasonable robustness to the dimension of the instrument space, although
when the serial dependence coefficients θ1 and θ2 have very different magnitudes there
appears to be more sensitivity as K increases - see Figs. 7 and 8 - and in such cases
the bias of OLS is much greater and typically the other procedures perform poorly.

Dynamic OLS and reduced rank regression (RRR) appear to be the next best
procedures. Dynamic OLS has more variance than trending IV and RRR shows
evidence of finite sample bias, especially when ρ is negative. Increasing the order of
the VAR reduces the bias but also increases the dispersion of the RRR estimator.
FM-OLS shows the most dispersion of these procedures, but is generally well centred.
OLS is clearly biased and, interestingly, seems to have more dispersion than trending
IV in almost all cases.
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Figure 3: Distributions of cointegrating coefficient estimators with ρ = −0.75, b = 2.0,
n = 50, and K = 20. Moving average errors with θ1 = θ2 = 0.4.

For VAR errors, trend IV regression works very well and sometimes outperforms
the other methods by a substantial margin. We observe that DOLS can perform quite
poorly under VAR errors and can have substantial finite sample bias, as indicated in
Fig. 6. This seems to be explained by the need for a large number of leads and lags
to control for feedback and serial correlation, especially when the serial dependence
coefficients are of different magnitudes and sign. Similarly, RRR needs four lags in
order to perform adequately in such cases and, as is apparent here from the flat nature
of the density in Fig. 5 and several cases in the tables, RRR is very susceptible to
extreme outliers in some cases, particularly when the AR or MA coefficients are of
different magnitude.

Observe that when ut is iid N (0,Σ) , we have Ω = Σ and the equation error
u0.xt = u0t − Σ0xΣ−1xxuxt is independent of uxt and is normally distributed. In this
case it follows from the calculation in the Appendix that the error in the trending IV
estimator has a leading term whose finite sample distribution is symmetric about the
origin and mixed normal, analogous to the limit distribution. This helps to explain
the good finite sample performance of AIV .

Figs.7,8, and 9 show the effects of varying K on the distribution of the trend IV
estimator. Not surprisingly, as K increases (for given n) the bias in the estimator
increases and the distribution tends to the distribution of the least squares regression
estimate in the augmented regression model (8), i.e., regression of yt on xt and ∆xt.
Since n = 50, the curves corresponding to K = 50 in Figs.7-8 correspond to OLS on
(8). The curves labeled OLS in the figures correspond to OLS regression of yt on xt

13
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Figure 4: Distributions of cointegrating coefficient estimators with ρ = −0.75, b = 2.0,
n = 50, and K = 20. Moving average errors with θ1 = θ2 = 0.4.

(i.e., model (1)). Thus, augmenting the regression equation itself helps to reduce the
least squares regression bias. This figure shows that trend IV regression has virtually
no bias when K = 10 in both these cases but nonnegligible bias for large values of
K. These simulations therefore seem to support the conjecture made earlier that the
optimal expansion rate for K in cointegrating regression is less than the optimal rate
for HAC estimation. Fig. 9 shows that very similar finite sample results hold for the
trend IV estimator when it is constructed from time polynomial instruments (here,
we use Legendre polynomials) rather than the sinusoidal polynomials (9).

6. Trend Likelihood

Define the trend (ϕ) transform of a multiple time series at as ξak =
Pn

t=1
at√
n
ϕk(

t
n)

and the corresponding matrix transform as ξaK =
Pn

t=1
ut√
n
ϕK(

t
n)
0. This transform

simply projects the observations onto the space of the instruments ΦK .
It follows just as in the proof of (69) in theorem 1 that we have the representation

ξuK =
U 0ΦK√

n
=

Z 1

0
dB (r)ϕK(r)

0 +O

µ
K2

n2

¶
+ op

³
n−

1
2
+ 1
ν

´
, (16)

where the error order holds uniformly over the columns for k = 1, ...,K. Since the
first component of (16) is Gaussian with covariance matrix Ω⊗IK , the (negative) log
likelihood function of ξuK is approximately (up to scaling and and an error that can
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Figure 5: Distributions of cointegrating coefficient estimators with ρ = 0.75, b = 2.0,
n = 50, and K = 20. Autoregressive errors with θ1 = 0, θ2 = −0.6.
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Figure 6: Distributions of cointegrating coefficient estimators with ρ = 0.75, b = 2.0,
n = 50, and K = 20. Autoregressive errors with θ1 = 0, θ2 = −0.6.
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Figure 7: Distributions of the trend IV cointegrating coefficient estimator for various
K and AR errors. All other parameters are as in Fig. 6.
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Figure 8: Distributions of the trend IV cointegrating coefficient estimator for various
K and MA errors. All other parameters are as in Fig. 6.

16



0

2

4

6

8

1.6 2 2.4 2.8

Trend IV-Polynomial
  K=10,25,35,45

(from left)

OLS

Figure 9: Distributions of the trend IV cointegrating coefficient estimator for various
K and MA errors using Legendre polynomial instruments. All other parameters are
as in Fig. 8.

be neglected in view of (16))

L (Ω) = K log |Ω|+ tr
©
Ω−1ξuKξ

u0
K

ª
, (17)

which we may regard as a trend likelihood because the ϕ transform ξuK focuses at-
tention on the long-run components of ut. If ut were observed, minimization of (17)
would lead directly to the long-run covariance matrix estimate Ω̂ = K−1ξuKξ

u0
K =

K−1Pn
t=1 ξ

u
kξ

u0
k , which is the HAC estimator developed in Phillips (2005). So, Ω̂

may be considered a trend MLE in the sense that it optimizes the trend likelihood
(17).

Since

ξuK ∼
Z 1

0
dB (r)ϕK(r)

0 =

∙
I Ω0xΩ

−1
xx

0 I

¸" R 1
0 dB0.x (r)ϕK(r)

0R 1
0 dBx (r)ϕK(r)

0

#

=

∙
I Ω0xΩ

−1
xx

0 I

¸ ∙
ξu0.xK

ξuxK

¸
,

and B0.x is independent of Bx, the likelihood (17) transforms to the sum

K log |Ω0.xx|+ tr
©
Ω−10.xxξ

u0.x
K ξu0.x0K

ª| {z }
L(Ω0.xx)

+K log |Ωxx|+ tr
©
Ω−1xx ξ

ux
K ξux0K

ª| {z }
L(Ωxx)

. (18)
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To make this likelihood data dependent, we use the fact that in ϕ transform form
the model is

ξyK = AξxK +Ω0xΩ
−1
xx ξ

∆x
K + ξu0.xK , ξ∆x

K = ξuxtK . (19)

The jacobian of the transformation in (19) is unity and L (Ωxx) does not depend on
the cointegrating matrix A or the long-run regression coefficient matrix C = Ω0xΩ−1xx .
Hence, the trend MLE estimator satisfies³

Â, Ĉ, Ω̂0.xx

´
= arg min

A,C,Ω0.xx
L (A,C,Ω0.xx) ,

where

L (A,C,Ω0.xx) = K log |Ω0.xx|+ tr
n
Ω−10.xx

¡
ξyK −AξxK − Cξ∆x

K

¢ ¡
ξyK −AξxK − Cξ∆x

K

¢0o
.

Concentrating out Ω0.xx leads directly to the IV estimator given in (10). Thus, the
estimates AIV , CIV and ΩIV0.xx may all be regarded as trend maximum likelihood
estimates.

The trend likelihood (17) is Gaussian because it makes use of the asymptotic
normality of the transformed variables ξaK . So one advantage of projecting on the
trend instrument space is that the data become approximately normal, just as discrete
Fourier transforms of stationary time series are approximately normal. In this regard,
the trend likelihood is analogous to the local Whittle likelihood for frequencies in the
vicinity of the origin. This means that common applications of narrow-band frequency
domain techniques, may also be approached using trend likelihood methods that do
not involve complex arithmetic.

One example that is important in recent econometric research is the semipara-
metric estimation of long memory. Phillips (1999b) and Shimotsu and Phillips (2005)
show how to construct an exact form of the local Whittle (LW) likelihood for a long
memory process Xt generated by the model (1− L)d0 Xt = ut1 {t ≥ 1} allowing for
the memory parameter to take any value d0 on the real line and where ut is a short
memory process with spectrum fu (λ). The exact LW likelihood has the form

1

m

mX
j=1

∙
log
³
Gλ−2dj

´
+
1

G
I∆dx (λj)

¸
, (20)

where G = fu (0) =
1
2πω

2, λj =
2πj
n , m defines the upper limit of the frequency band,

and I∆dx (λj) is the periodogram of ∆dXt = (1− L)dXt. Shimotsu and Phillips
(2005) show that under broad regularity conditions the exact LW (ELW) estimator

d̂ that minimizes (20) is consistent and has the limit distribution
√
m
³
d̂− d0

´
⇒

N
¡
0, 14

¢
. The ELW estimator is a good general purpose estimator of the long memory

parameter, covers stationary and nonstationary cases and is well-suited to confidence
interval construction.
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Figure 10: Trend MLE estimates of d for n = 200, K = 65, and d0 = −0.4, 0.5, 1.4, 2.3.
The solid curves show kernel estimates of the densities of d̂ for each of these four cases
and the broken curves represent the limit distribution N

¡
d0,

1
4K

¢
.

Analogous to (20) and using the operator algebra from Phillips (1999b), we may
construct a trend likelihood for the ϕ transform ξ∆

dX
K using the trend instruments

(9). The trend likelihood turns out to have the following form

1

K

KX
j=1

"
logω2 − 2d log

Ã
π
¡
k − 1

2

¢
n

!#
+
1

ω2
ξ∆

dX0
K ξ∆

dX
K , (21)

which may be minimized with respect to ω2 (the long-run variance of ut) and d to
get the corresponding trend IV estimates ω̂2IV and d̂IV . Simulations reveal that these
estimates have performance characteristics close to those of the ELW estimates and we
conjecture that d̂IV has the same limit distribution as the ELW estimator for all values
of d0. Again, the form of (21 avoids the use of complex arithmetic. Fig. 10 illustrates
by showing the densities of d̂IV calculated from 10,000 replications when n = 200,
K = 65 and the true memory parameter has the four values d0 = −0.4, 0.5, 1.4, 2.3.
Also shown in the figure are the corresponding normal densities N

¡
d0,

1
4K

¢
for each

of these cases.

7. Conclusion and Extensions

The results of this paper highlight some of the advantages of working with an agnostic
set of basis functions in capturing the effects of trend. The use of trend basis functions
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as instruments in regression focuses attention on the long-run behavior of the system
variables in both levels and differences. For the nonstationary variables in levels,
the regression provides optimal estimates of the cointegrating coefficients. For the
stationary variables that appear as differences of the system variables, the regression
produces the long-run covariance and regression coefficients that capture and adjust
for the effects of simultaneity in the system.

Thus, using instrumental variables from an agnostic set of trend basis functions
can be viewed as a simple regression device for detecting long-run effects in an econo-
metric model. In this respect, the device operates in the same way as narrow-band
frequency domain techniques that concentrate solely on low frequencies. But it has
the advantages of completely avoiding the complications of the frequency domain and
having a very simple interpretation that should be appealing to applied researchers.
For practical purposes, the approach is very easy to implement, provides asymptot-
ically valid standard errors and tests from the usual regression output, and requires
only basic econometric software packages to implement.

While it is not mentioned earlier, it should be clear that the approach applies
without modification when the cointegrating regression involves an intercept or when
there is deterministic trend cointegration. In both cases, the trend basis instruments
continue to provide asymptotically efficient estimates of the cointegrating coefficients
and no other instruments are required.

Finally, the instruments considered in this paper are deterministic functions. We
might also consider the use of a collection of integrated series as instruments, following
the original analysis in Phillips and Hansen (1990). Large numbers of such instru-
ments are also capable of modeling trend regressors with an R2 that approaches unity,
as shown in Phillips (1998), but are obviously harder to justify in practical work. In
consequence, it seems possible that the results given here may be extended to include
such regressors. However, it is also necessary that such instruments be capable of
modeling the long-run regression coefficients of stationary series and that remains to
be proved.

20



8. Appendix: Lemmas and Proofs

8.1 Lemma A (Phillips, 1999a, lemma E) If ut satisfies L, the probability
space which supports ut can be expanded in such a way that there exists a process
distributionally equivalent to Bn (·) = n−1/2

Pbn·c
i=1 ui and a Brownian motion B(·)

with variance matrix Ω on the new space for which

sup
t∈[0,1]

kBn (t)−B (t)k = op

µ
1

n
1
2
− 1
ν

¶
as n→∞. (22)

8.2 Proof The result follows as in Phillips (1999a, Lemma D). An “in probability”
approximation is all that is needed here. But, as discussed in that reference, a
strong approximation of the same form is also possible, albeit under stronger moment
conditions.2

The following two results are based on results proved in Phillips (2005b).

8.3 Lemma B (Phillips, 2005b, lemma A) Under R, n−1
Pn

t=1 ϕKtϕ
0
Kt =

IK +O
¡
1
n

¢
, and

¡
n−1

Pn
t=1 ϕKtϕ

0
Kt

¢−1
= IK +O

¡
1
n

¢
, as n,K →∞.

8.4 Lemma C Let Ω̂K = K−1U 0PKU. Then, under L and when 1
K +

K
n →∞ we

have:

(a) limn→∞
¡
n
K

¢2
E
³
Ω̂K − Ω

´
= −π2

6

P∞
h=−∞ h2Γu (h) := D;

(b) If K = o
¡
n4/5

¢
, then

√
K
³
vec

³
Ω̂K

´
− vec (Ω)

´
⇒ N (0, 2PD (Ω⊗ Ω)) where

PD = D (D0D)−1D0 projects onto the range of the duplicator matrix D for
which Dω = vec (Ω) where ω is the vector of nonredundant elements of Ω;

(c) If K5/n4 → 1, then limn→∞
¡
n
K

¢4
E
³
vec

³
Ω̂K

´
− vec (Ω)

´³
vec

³
Ω̂K

´
− vec (Ω)

´0
=

vec(D)vec(D)0 + 2PD (Ω⊗Ω.)

(d) K−1U 0PKU →p Ω.

8.5 Proof These results are simply matrix generalizations of the results in Phillips
(2005b).

2 In particular, recent results on multivariate strong approximation (e.g., Zaitsev, 1998) for partial
sums of iid vectors can be used in combination with the Phillips-Solo (1992) device to prove a strong
approximation for partial sums of a multivariate linear process. These results ensure a uniform error

of Oa.s.
logn√

n
when the variates have exponential moments.
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8.6 Lemma D

n−1
nX
t=1

B

µ
t

n

¶
ϕk

µ
t

n

¶
−
Z 1

0
B (r)ϕk(r)dr = Op

µ
1√
nk

¶
.

8.7 Proof Zn = n−1
Pn

t=1B
¡
t
n

¢
ϕK

¡
t
n

¢0−R 10 B (r)ϕK(r)0dr is Gaussian with zero
mean and variance matrix

Ω⊗ n−2
nX

t,s=1

µ
t

n
∧ s

n

¶
ϕK

µ
t

n

¶
ϕK

µ
t

n

¶0
+Ω⊗

Z 1

0

Z 1

0
r ∧ sϕK(r)ϕK(s)0drds

−Ω⊗
(

n−1
Pn

t=1

R 1
0

¡
t
n ∧ r

¢
ϕK

¡
t
n

¢
ϕK (r)

0 dr

+n−1
Pn

t=1

R 1
0

¡
t
n ∧ r

¢
ϕK (r)ϕK

¡
t
n

¢0
dr

)
. (23)

A crude first order approximation is easily obtained as follows. Below we will refine
the approximation to get the stated result. First, taking the k’th diagonal element,
observe that

n−2
nX

t,s=1

µ
t

n
∧ s

n

¶
ϕk

µ
t

n

¶
ϕk

³ s
n

´
= 2n−1

nX
t=1

ϕk

µ
t

n

¶
1

n

tX
s=1

s

n
ϕk

³ s
n

´
− n−2

nX
t=1

ϕ2k

µ
t

n

¶
t

n

= 2n−1
nX
t=1

ϕk

µ
t

n

¶(Z t
n

0
sϕk(s)ds+O

µ
1

n

¶)
+O

µ
1

n

¶
= 2

Z 1

0

Z r

0
sϕk(r)ϕk(s)drds+O

µ
1

n

¶
=

Z 1

0

Z 1

0
r ∧ sϕk(r)ϕk(s)drds+O

µ
1

n

¶
,

where the error orders hold by Euler summation. Next

n−1
nX
t=1

Z 1

0

µ
t

n
∧ r
¶
ϕk

µ
t

n

¶
ϕk (r) dr

= n−1
nX
t=1

ϕk

µ
t

n

¶(Z t
n

0
rϕk (r) dr +

t

n

Z 1

t
n

ϕk (r) dr

)

=

Z 1

0
ϕk (s)

Z s

0
rϕk (r) drds+

Z 1

0
ϕk (s) s

Z 1

s
ϕk (r) dr +O

µ
1

n

¶
=

Z 1

0

Z 1

0
r ∧ sϕk(r)ϕk(s)drds+O

µ
1

n

¶
,

again by Euler summation, with a similar result for n−1
Pn

t=1

R 1
0

¡
t
n ∧ r

¢
ϕk (r)ϕk

¡
t
n

¢
dr.

It follows that (23) is O
¡
n−1

¢
and so Zn = Op

¡
n−1/2

¢
.
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We now proceed to analyze the error in the above approximation more precisely
in order to obtain the stated result for which the error is Op

³
1/
√
nk
´
. The first term

in (23) involves the matrix form

n−1
nX
t=1

ϕK

µ
t

n

¶
1

n

tX
s=1

s

n
ϕK

³ s
n

´0
. (24)

Consider the k’th diagonal element of this matrix and the other matrices in (23). By
direct application of the Euler summation formula, we have the explicit representation

1

n

tX
s=1

s

n
ϕk

³ s
n

´
=

Z t
n

1
n

sϕk(s)ds+
1

2n

½
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1

n
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n
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s

n
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s
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n
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¾
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NowZ t
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1
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Z t
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¶
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and
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For the final term of (25), direct calculation gives
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for all k = 1, ...,K, since
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2)π
s
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2)π

¸j
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⎫⎪⎬⎪⎭
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√
2

n
¡
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2

¢
π

Z t
n

0
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½µ
k − 1

2

¶
πs

¾
ds {1 + o (1)} = O

µ
1

nk

¶
, (29)

which gives the error on (28). The leading term of (28) is¡
k − 1

2

¢
π

n3

tX
j=2

Z j

j−1

µ
s− j +

1

2

¶
s cos

½µ
k − 1

2

¶
π
s

n

¾
ds

=

¡
k − 1

2

¢
π

n3
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⎧⎪⎪⎨⎪⎪⎩
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2

¢
s
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2)π
s
n}

(k− 1
2)π
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j−1

−
R j
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¡
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2

¢ sin{(k− 1
2)π

s
n}
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2)π
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⎫⎪⎪⎬⎪⎪⎭
=

1

n3
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(
j
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n¡
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2

¢
π j
n

o
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n¡

k − 1
2

¢
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o
+
¡
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2
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©¡
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2

¢
π s
n
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©¡
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2

¢
π s
n

ª
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)

=
1
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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2

¢
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o
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2

¢
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+
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2
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s
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∙
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s
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⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=
1
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2

¢
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o
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2
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o
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2)π

h
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2

¢
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n

o
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2

¢
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2)π

h
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2

¢
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n
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2

¢
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n
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2)π

∙
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2)π
s
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2)π
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
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1
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tX
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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2

¢
π j
n

o
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2

¢
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n

o
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1
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2

¢
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n

o
− cos
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2

¢
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n
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2
π2

h
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2

¢
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o
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2

¢
π j
n

oi
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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=
1

n

Z t
n

2
n

∙
a

2
sin

½µ
k − 1

2

¶
πa

¾
+

a

2
sin

½µ
k − 1

2

¶
π
a

n

¾¸
da {1 + o (1)}

− 1
n

1¡
k − 1

2

¢
π

Z t
n

2
n

a

∙
cos

½µ
k − 1

2

¶
πa

¾
− cos

½µ
k − 1

2

¶
πa

¾¸
da {1 + o (1)}

+
1

n

2¡
k − 1

2

¢2
π2

Z t
n

2
n

∙
sin

½µ
k − 1

2

¶
π
j

n

¾
− sin

½µ
k − 1

2

¶
π
j

n

¾¸
da {1 + o (1)}

= O

Ã
1

n
¡
k − 1

2

¢! . (30)

It follows from (29) and (30) that the final term of (25) is

1

n

Z t

1

µ
s− [s]− 1

2

¶½
1

n
ϕk(

s

n
) +

s

n2
ϕ0k(

s

n
)

¾
ds = O

µ
1

nk

¶
. (31)

Combining (31) with (25), (26), and (27), we have

1

n

tX
s=1

s

n
ϕk

³ s
n

´
=

Z t
n

0
sϕk(s)ds+

1

2n

t

n
ϕk(

t

n
) +O

µ
1

nk

¶
,

and the error term holds uniformly for t = 1, ..., n.
The k’th diagonal element of (24) therefore has the form

n−1
nX
t=1

ϕk

µ
t

n

¶
1

n

tX
s=1

s

n
ϕk

³ s
n

´
=

1

n

nX
t=1

ϕk

µ
t

n

¶Z t
n

0
sϕk(s)ds+

1

2

1

n2

nX
t=1

ϕ2k

µ
t

n

¶
t

n
+O

µ
1

nk

¶
. (32)

Take each of these terms in turn. By Euler summation, the second term is

1

2

1

n2

nX
t=1

ϕ2k

µ
t

n

¶
t

n
=

1

2

1

n

Z 1

0
ϕ2k (r) rdr

½
1 +O

µ
1

n

¶¾
=

1

n
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0
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½µ
k − 1

2

¶
πr

¾
rdr

½
1 +O

µ
1

n

¶¾
=

1
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0
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µ
1
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¶
=

1

4n
+O

µ
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nk

¶
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The first term is

1

n

nX
t=1

ϕk

µ
t

n

¶Z t
n

0
sϕk(s)ds

=

Z 1

0

Z r

0
sϕk(r)ϕk(s)drds

+
1

2n

(
ϕk

µ
1

n

¶Z 1
n

0
sϕk(s)ds+ ϕk (1)

Z 1

0
sϕk(s)ds

)

+
1

n

Z n

1

µ
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2

¶(
1

n
ϕ0k

³ p
n

´Z p
n

0
sϕk(s)ds+ ϕk

³ p
n

´ p

n2
ϕk(

p

n
)

)
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=
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0
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0
sϕj(r)ϕk(s)drds+O

µ
1
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¶
+
1

n

Z 1

0

µ
nr − bnrc− 1

2

¶½
ϕ0k (r)

Z r

0
sϕk(s) + rϕ2k(r)

¾
dr. (34)

The final term in expression (34) is

1

n

Z 1

0

µ
nr − bnrc− 1

2

¶½
ϕ0k (r)

Z r

0
sϕk(s) + rϕ2k(r)

¾
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=
1

n
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0

µ
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2

¶
ϕ0k (r)
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0
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1

n
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0

µ
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2
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=
1

n
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0

µ
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2
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"
−s
√
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©¡
k − 1

2

¢
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2

¢
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+
1

n
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0

µ
nr − bnrc− 1

2

¶
ϕ0k (r)
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0

√
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©¡
k − 1

2

¢
πs
ª¡
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2

¢
π
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+
2

n
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0

µ
nr − bnrc− 1

2

¶
sin2
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k − 1

2

¶
πr

¾
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= − 2
n
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0

µ
nr − bnrc− 1

2

¶
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k − 1

2

¶
πr

¾
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+
2

n

Z 1

0

µ
nr − bnrc− 1

2

¶
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k − 1

2

¶
πr

¾"
sin
©¡
k − 1

2

¢
πs
ª¡

k − 1
2

¢
π
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0

+
1

n

Z 1

0

µ
nr − bnrc− 1

2

¶
{1− cos {(2k − 1)πr}} rdr

= − 1
n
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0

µ
nr − bnrc− 1

2

¶
{1 + cos {(2k − 1)πr}} rdr

+
1

n
¡
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2

¢
π
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0

µ
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2

¶
sin {(2k − 1)πr} rdr

+
1

n
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0

µ
nr − bnrc− 1

2

¶
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=
1

n
¡
k − 1

2

¢
π

Z 1

0

µ
nr − bnrc− 1

2

¶
sin {(2k − 1)πr} rdr

− 2
n

Z 1

0

µ
nr − bnrc− 1

2

¶
cos {(2k − 1)πr} rdr

= O

µ
1

nk

¶
,

so that

1

n

nX
t=1

ϕk

µ
t

n

¶Z t
n

0
sϕk(s)ds =

Z 1

0

Z r

0
sϕk(r)ϕk(s)drds+O

µ
1

nk

¶
(35)

It follows from (32), (33) and (35) that

n−1
nX
t=1

ϕk

µ
t

n

¶
1

n
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s

n
ϕk

³ s
n

´
=
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0
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0
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1

4n
+O

µ
1
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¶
,

so that

n−1
nX
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ϕk

µ
t

n

¶
t

n
∧ s

n
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n

´
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2
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nX
t=1

ϕk

µ
t
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1

n
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s

n
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´
− 1

n
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t

n
ϕ2k

µ
t

n

¶
= 2
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0
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0
sϕk(r)ϕk(s)drds+

1
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+O

µ
1

nk

¶
−
½
1
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+O

µ
1

nk

¶¾
=

Z 1

0
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0
r ∧ sϕk(r)ϕk(s)drds+O

µ
1

nk

¶
.

Next, observe that the third term in (23) involves

n−1
nX
t=1

ϕk

µ
t

n

¶Z 1

0

µ
t

n
∧ r
¶
ϕk (r) dr

= n−1
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µ
t

n

¶(Z t
n

0
rϕk (r) dr +

t

n

Z 1

t
n

rϕk (r) dr

)
, (36)

and in the same manner as (35) we find that

n−1
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µ
t

n
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n
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rϕk (r) dr =
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0
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0
sϕk(r)ϕk(s)drds+O

µ
1

nk

¶
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Further, by Euler summation again, we find

n−1
nX
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ϕk

µ
t

n

¶
t

n
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t
n

rϕk (r) dr

=

Z 1

0
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1
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(
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µ
1

n
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1

n
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1
n

rϕk (r) dr

)
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1

n
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1
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2
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n

´ p
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n
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n
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)
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− 1
n
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1

µ
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2
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1
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³ p
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n
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The second term of (38) is O
¡
n−3

¢
and the third term has components
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1

n
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1

n
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1

µ
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p
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¶
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⎧⎪⎪⎨⎪⎪⎩
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2
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¶
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sϕk (s) ds

)
dp

=
2

n

Z 1

1
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2

¶
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2
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¶
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2
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¶
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and

A3 = − 1
n
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1
n
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2
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n
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0
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2
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2
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n
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µ
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2

¶
[1− cos {(2k − 1)πr}] r2dr
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n
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µ
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2
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µ
1

nk

¶
.

Next, we calculate
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=
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n
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=
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∙
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3
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∙
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+
4j

n4
− 1

n

¾
− 1
3

½
−3j

2
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+
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µ
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¶
,

so that A3 = O
¡
1
nk

¢
. It follows that
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µ
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n
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n
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t
n

rϕk (r) dr =
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0
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r
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µ
1
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¶
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Hence, from (36), (37) and (39), we have
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µ
t

n
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0

µ
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ϕk (r) dr =
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0
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µ
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¶
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An analogous result holds for the fourth term of (23). We therefore deduce that
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µ
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1

n

nX
t=1

Z 1

0

µ
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µ
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,

which gives the stated result.

8.6 Proof of the Theorem Write

n (AIV −A) =
¡
n−1U 00RKX

¢ ¡
n−2X 0RKX

¢−1
. (40)

We begin by considering the various terms in the denominator of this matrix quotient,
which we may expand as follows

n−2X 0RKX = n−2X 0PKX −K−1 ¡n−1X 0PK∆X
¢ ¡
K−1∆X 0PK∆X

¢−1 ¡
n−1∆X 0PKX

¢
.

(41)

Starting with the first term in (41) we have

1
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µ
1

n

X 0ΦK√
n
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n
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From the approximation (22) we can write

xt√
n
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µ
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n

¶
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µ
t

n

¶
+ op

µ
1

n
1
2
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,

uniformly over t = 1, ..., n, and by Euler summation (see Lemma D)
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¶
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=
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.

Then, as in the proof of Lemma 2.2 of Phillips (2002), the first factor of (42) is

1

n

X 0ΦK√
n

=
1

n

nX
t=1

xt√
n
ϕK(

t

n
)0

=

Ã
n−1

nX
t=1

∙
Bx

µ
t

n

¶
+ ζxt

¸
ϕK

µ
t

n

¶!
+Op

µ
1√
n

¶

=

Z 1

0
Bx (r)ϕK (r)

0 dr + n−1
nX
t=1

ζxtϕK

µ
t

n

¶0
+Op

µ
1√
n

¶
=

Z 1

0
Bx (r)ϕK (r)

0 dr + op

µ
1

n
1
2
− 1
v

¶
= ΞxKΛ

1
2
K + op

µ
1

n
1
2
− 1
v

¶
:= ΞxKΛ

1
2
K + η0Kn, (43)

where the given error magnitude for the columns of

η0Kn = n−1
nX
t=1

ζxtϕK

µ
t

n

¶0
+Op

µ
1√
n

¶
= op

µ
1

n
1
2
− 1
v

¶
holds uniformly over k = 1, ...,K. It follows thatµ

X 0ΦK
n3/2

¶µ
Φ0KX

n3/2

¶
=

½
ΞxKΛ

1
2
K + η0Kn

¾½
Λ
1
2
KΞ

0
xK + ηKn

¾
= ΞxKΛKΞ

0
xK + η0KnΛ

1/2
K Ξ

0
xK + ΞxKΛ

1
2
KηKn + η0KnηKn

= ΞxKΛKΞ
0
xK + op

Ã
K1/2

n
1
2
− 1
v

+
K

n1−
2
v

!
. (44)

The error magnitude in (44) holds because, taking the i’th row, η0iKn, of η
0
Kn, we

have

η0iKnηiKn = op

µ
K

n1−
2
v

¶
, (45)

and, denoting the j’th column of Ξ0xK by Ξ0xjK ,¯̄̄
η0iKnΛ

1/2
K Ξ

0
xjK

¯̄̄
≤
¡
η0iKnηiKn

¢1/2 ³
ΞxjKΛKΞ

0
xjK

´1/2
= op

Ã
K1/2

n
1
2
− 1
v

!
, (46)
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which combine to give (44) and henceµ
X 0ΦK
n3/2

¶µ
Φ0KX

n3/2

¶
= ΞxKΛKΞ

0
xK + op

Ã
K1/2

n
1
2
− 1
v

!
.

Next, observe that

ΞxKΛKΞ
0
xK =

KX
k=1

λkξxkξ
0
xk =

∞X
k=1

λkξxkξ
0
xk −

∞X
k=K+1

λkξxkξ
0
xk

=

Z 1

0
BxB

0
x −

∞X
k=K+1

λkξxkξ
0
xk, (47)

since, by orthonormality of the ϕk(r), we have the following alternate representationZ 1

0
BxB

0
x =

Z 1

0

Ã ∞X
k=1

λ
1
2
kϕk(r)ξxk

!Ã ∞X
k=1

λ
1
2
kϕk(r)ξ

0
xk

!
dr =

∞X
k=1

λkξxkξ
0
xk.

Thus, µ
X 0ΦK
n3/2

¶µ
Φ0KX

n3/2

¶
=

Z 1

0
BxB

0
x −

∞X
k=K+1

λkξxkξ
0
xk + op

Ã
K1/2

n
1
2
− 1
v

!

=

Z 1

0
BxB

0
x +Op

µ
1

K

¶
+ op

Ã
K1/2

n
1
2
− 1
v

!
, (48)

since E
°°P∞

k=K+1 λkξxkξ
0
xk

°° ≤const.P∞
k=K+1

1
k2Eξ

0
xkξxk = O

¡
1
K

¢
.

Finally, use Lemma B and let
¡
n−1

Pn
t=1 ϕKtϕ

0
Kt

¢−1
= IK + 1

nG, where the
elements of the K ×K matrix G are uniformly O (1) . Thenµ

1

n

X 0ΦK√
n

¶Ã
n−1

nX
t=1

ϕKtϕ
0
Kt

!−1µ
1

n

Φ0KX√
n

¶
=

µ
1

n

X 0ΦK√
n

¶µ
1

n

Φ0KX√
n

¶
+
1

n

µ
1

n

X 0ΦK√
n

¶
G

µ
1

n

Φ0KX√
n

¶
=

Z 1

0
BxB

0
x + op

Ã
K1/2

n
1
2
− 1
v

!
+Op

µ
1

K

¶
+Op

µ
1

n

µ
ξxKΛ

1
2
K + η0Kn

¶
G

µ
Λ
1
2
Kξ

0
xK + ηKn

¶¶
.

As in (45) and (46) we have

¯̄
η0iKnGηjKn

¯̄
≤
¡
η0iKnGG

0ηiKn

¢1/2 ¡
η0jKnηjKn

¢1/2
= op

µ
K

n1−
2
v

¶
,
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and ¯̄̄̄
η0iKnGΛ

1
2
KΞ

0
xjK

¯̄̄̄
≤
¡
η0iKnGG

0ηiKn

¢1/2 ³
ΞxjKΛKΞ

0
xjK

´1/2
= op

Ã
K1/2

n
1
2
− 1
v

!

so that

Op

µ
1

n

µ
ξxKΛ

1
2
K + η0Kn

¶
G

µ
Λ
1
2
Kξ

0
xK + ηKn

¶¶
= op

Ã
K1/2

n
3
2
− 1
v

+
K

n2−
2
v

!
.

We deduce that

1

n2
X 0PKX =

Z 1

0
BxB

0
x + op

Ã
K1/2

n
1
2
− 1
v

!
+Op

µ
1

K

¶
⇒
Z 1

0
BxB

0
x, (49)

as n→∞.
Now consider the second term in (41), viz.

K−1 ¡n−1X 0PK∆X
¢ ¡
K−1∆X 0PK∆X

¢−1 ¡
n−1∆X 0PKX

¢
. (50)

First, from Lemma B,

K−1∆X 0PK∆X →p Ωxx > 0. (51)

Next,

n−1X 0PK∆X = n−1X 0PK∆X =

µ
1

n

X 0ΦK√
n

¶µ
Φ0KΦK

n

¶−1µΦ0K∆X√
n

¶
=

µ
1

n

X 0ΦK√
n

¶µ
IK +

1

n
G

¶µ
Φ0K∆X√

n

¶
=

µ
1

n

X 0ΦK√
n

¶µ
Φ0K∆X√

n

¶
+
1

n

µ
1

n

X 0ΦK√
n

¶
G

µ
Φ0K∆X√

n

¶
. (52)

The limit form of n−3/2X 0ΦK is given above in (43), so we concentrate on the
second factor, n−1/2Φ0K∆X = n−1/2Φ0KUx. Using partial summation and setting
Sxt =

Pt
s=1 uxs, we get

U 0xΦK√
n

=
nX
t=1

uxt√
n
ϕK(

t

n
)0

=
1√
n
SxnϕK(1)

0 −
nX
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t

n
)0. (53)
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Note that

∆ϕk(
t

n
) =

√
2

∙
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¶
π
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n

¾
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k − 1

2

¶
π
t− 1
n

¾¸
=
√
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½
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µ
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2
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π
1

n

¾
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=
√
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©
1
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2

¢
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1
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¡
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¶
π
t− 1

2
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2

¶
π
1

n

=
√
2

∙
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µ
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2

¶
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2
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¶
π
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n
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2

n
)
1

n

½
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µ
K2
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, (54)

uniformly in k = 1, ...,K. The approximation (7) implies that

sup
r∈[0,1]

°°°°°°n−1/2
bnrcX
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uxt −Bx (r)

°°°°°° = op

³
n−

1
2
+ 1
ν

´
,

as n→∞, and so, using (54) and Lemma D, we have

1√
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n
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t

n
)0

=

µ
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t

n
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=
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µ
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0
Bx (r)ϕ
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½
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µ
K2

n2

¶¾
+Op

µ
1√
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=
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½
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Thus, we may write

U 0xΦK√
n

=

Z 1

0
dBx (r)ϕK(r)

0dr + ϑ0xKn, (55)

where the elements of ϑxKn are uniformly O
³
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´
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³
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1
2
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ν

´
over k = 1, ...,K.

Combining (43) and (55) we haveµ
1

n

X 0ΦK√
n
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n

¶
=

µ
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1
2
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0
ϕK(r)dBx (r)

0 dr + ϑxKn
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1
2
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+η0Kn
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0
ϕK(r)dBx (r)
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In view of (47) and the order of the elements of ϑxKn and ηKn, and denoting the j’th
row of ϑ0xKn by ϑ

0
xjKn, we have¯̄̄

ΞxjKΛ
1/2
K ϑxjKn

¯̄̄
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³
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!
,

(56)
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2
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v

+
K
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2
v

¶
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and, at most

η0Kn

Z 1
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µ
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¶
.

Thus, µ
1
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µ
K
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¶
,

sinceZ 1
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1
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0 =
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0
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n
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1/2
k ϕk(r)

o
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as K → ∞ because
P∞

k=1 ξxkλ
1/2
k ϕk(r) = Bx (r) is almost surely convergent. Simi-

larly,

1

n

µ
1

n
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,

and, thus, at most

n−1X 0PK∆X = Op (1) + op

µ
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n
1
2
− 1
v

¶
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from (52) and (58). Combining (59) and (51) in (50) we obtain

K−1 ¡n−1X 0PK∆X
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¢−1 ¡
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¶
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(60)
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It follows from (49), (60) and R that

1

n2
X 0RKX ⇒

Z 1

0
BxB

0
x. (61)

Now consider the numerator in the matrix quotient (40), viz.,

n−1U 00RKX = n−1U 00PKX −
¡
K−1U 00PK∆X

¢ ¡
K−1∆X 0PK∆X

¢−1 ¡
n−1∆X 0PKX

¢
.

From Lemma B, we have K−1U 00PK∆X →p Ω0x which, combined with (51), gives
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¡
Ω−1xx + op (1)

¢ ¡
n−1∆X 0PKX

¢
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¢
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Next

1

n
U 00.xPKX =

µ
U 00.xΦK√

n

¶µ
Φ0KΦK

n

¶−1µΦ0KX
n3/2

¶
=

µ
U 00.xΦK√

n

¶µ
IK +

1

n
G

¶µ
Φ0KX

n3/2

¶
=

µ
U 00.xΦK√

n

¶µ
Φ0KX

n3/2

¶
+
1

n

µ
U 00.xΦK√

n

¶
G

µ
Φ0KX

n3/2

¶
=

µ
U 00.xΦK√

n

¶µ
Φ0KX

n3/2

¶
+Op

µ
K

n

¶
, (64)

since, as shown below in (69), the elements of U 00.xΦK√
n

are Op (1) as are those of
Φ0KX

n3/2

from (43). Indeed, from (43), we have

Φ0KX
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nX
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n
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n
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1
2
KΞ

0
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where the elements of ηKn are uniformly op
¡
n−1/2+1/v

¢
. Using partial summation,

we have as in (53)
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n
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and by virtue of the approximation (7), we have
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as n→∞. Thus, combining (66), (67) and (54), and using Lemma D, we obtain
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¶
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Thus, we may write

U 00.xΦK√
n

=

Z 1

0
dB0.x (r)ϕK(r)

0 + ϑ00.xKn, (69)

where the elements of ϑ0.xKn are uniformly O
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´
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³
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1
2
+ 1
ν

´
over k = 1, ...,K.

Then µ
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¶
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1
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. (70)

The error orders in (70) are justified as follows: first,

ϑ00.xKn

µ
Λ
1
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0
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¶
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K

n1−
2
v

¶
,

which is obtained as in (56) and (57) above; and, second, since
R 1
0 dB0.x (r)ϕK(r)

0ηKn

has zero mean and conditional variance matrix Ω00.x⊗ η0KnηKn = op

³
K

n1−
2
v

´
in view
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of (45), it follows thatZ 1

0
dB0.x (r)ϕK(r)

0ηKn = op

Ã
K1/2

n
1
2
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v

!
.

Thus, under the rate condition R, we haveµ
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¶
=
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dB0.x (r)ϕK(r)

0
¶
Λ
1
2
KΞ

0
xK + op (1) .

Next, observe that conditional on ΞxK , we haveµZ 1

0
dB0.x (r)ϕK(r)

0
¶
Λ
1
2
KΞ

0
xK

¯̄̄̄
ΞxK

≡ N

µ
0,Ω00.x ⊗

µ
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1
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1
2
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0
xK

¶¶
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µ
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0
BxB

0
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¶
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since ΞxKΛKΞ0xK =
R 1
0 BxB

0
x −

P∞
k=K+1 λkξxkξ

0
xk →p

R 1
0 BxB

0
x as K → ∞ in view

of (47) and (48). As K →∞, we therefore have the weak convergenceµZ 1

0
dB0.x (r)ϕK(r)

0
¶
Λ
1
2
KΞ

0
xK ⇒

Z 1

0
dB0.x (r)Bx (r)

0 .

Thus, as n→∞ µ
U 00.xΦK√

n

¶µ
Φ0KX

n3/2

¶
⇒
Z 1

0
dB0.x (r)Bx (r)

0 dr. (72)

Combining (63), (64), and (72) we have

n−1U 00RKX ⇒
Z 1

0
dB0.x (r)Bx (r)

0 dr. (73)

The stated limit result (a) now follows from (40), (61) and (73). Part (b) is shown
in (61) above. To prove (c), it is sufficient to observe that as in (63)

K−1Û 00.xPKÛ
0
0.x = K−1 ¡Y 0 −AIVX

0 + CIV∆X
0¢PK ¡Y −XA0IV +∆XC 0IV

¢
= K−1U 00RKU0 = K−1U 00.xPKU0.x + op (1)→p Ω00.x,

since K−1U 0PKU →p Ω from Lemma C.

8.7 An Optimal AMSE Expansion Rate for K

To simplify the presentation, we consider the scalar case, with corresponding ad-
justments to notation so that (8) becomes yt = axt +

ω0x
ωxx
∆xt + u0.xt. Our ultimate

object is to expand the estimation error

n (aIV − a) =
¡
n−1u00RKx

¢ ¡
n−2x0RKx

¢−1
(74)
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in an asymptotic series. However, here we will be content to examine certain of its
leading components. First, consider the numerator. Using (62) and Lemma B, we
have

n−1u00RKx = n−1u00PKx−
¡
K−1u00PK∆x

¢ ¡
K−1∆x0PK∆x

¢−1 ¡
n−1∆x0PKx

¢
. (75)

Since K−1u00PK∆x = K−1u00PKux and K−1∆x0PK∆x = K−1ux0PKux are elements
of Ω̂K = K−1U 0PKU, we have the following expansion from Lemma C

Ω̂K − Ω =
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n2
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1√
K
EK ,

where EK ⇒ N (0, 2PD (Ω⊗ Ω)) , from which we deduce that, in an obvious subscript
notation,

K−1u00PK∆x = K−1u00PKux = ω0x +
K2

n2
D0x +

1√
K
EK,0x,

K−1∆x0PK∆x = K−1ux
0PKux = ωxx +

K2

n2
Dxx +

1√
K
EK,xx

= ωxx

½
1 +

K2

n2
Dxx

ωxx
+

1√
K

EK,xx

ωxx

¾
.

Define the long-run regression coefficient ρ0.x = ω0x/ωxx, which appears as a coeffi-
cient in the augmented regression model (8). Observe that expression (75) involves
the following implied estimate of ρ0.x

ρ̂0.x =
¡
K−1u00PK∆x

¢ ¡
K−1∆x0PK∆x

¢−1
= ρ0.x +

1

ωxx

µ
K2

n2
D0x +

1√
K
EK,0x

¶
−ω0x
ωxx

µ
K2

n2
Dxx

ωxx
+

1√
K

EK,xx

ωxx

¶
+Op

µ
K2

n2
+

1√
K

¶2
= ρ0.x +

K2

n2
1

ωxx

µ
D0x −

ω0x
ωxx

Dxx

¶
+

1√
K

1

ωxx

µ
EK,0x −

ω0x
ωxx

EK,xx

¶
+Op

µ
K2

n2
+

1√
K

¶2
, (76)

from which we may derive an AMSE optimal formula for the choice ofK in estimating
ρ0.x. In particular, setting a

0
ω =

³
1,−ω0x

ωxx

´
, e02 = (0, 1) , using row vectorization, and

writing

EK,0x −
ω0x
ωxx

EK,xx = a0ωEKe2 =
¡
a0ω ⊗ e02

¢
vec (EK) ,

D0x −
ω0x
ωxx

Dxx = a0ωDe2 := B,

V = 2
¡
a0ω ⊗ e02

¢
PD (Ω⊗ Ω) (aω ⊗ e2) ,
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we have from the leading term of (76)

E {ρ̂0.x − ρ0.x}2 ∼ E

½
K2

n2
a0ωDe2
ωxx

+
1√
K

a0ωEKe2
ωxx

¾2
=

½
K4

n4
B2 +

1

K
V

¾
.

Minimizing this expression with respect to K gives the following AMSE optimal rule

K = n4/5
∙

V

4B2

¸1/5
, (77)

which is analogous to the usual AMSE optimal rule in HAC estimation with quadratic
kernels.
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10. Notation

→a.s. almost sure convergence
→p convergence in probability
≡,=d distributional equivalence
B (r) Brownian motion
BM (Ω) Brownian motion with variance matrix Ω
1 (A) indicator of A
MN (0, G) mixed normal distribution with mixing variate G

⇒,→d weak convergence
b·c integer part of
r ∧ s min(r, s)
op(1) tends to zero in probability
oa.s.(1) tends to zero almost surely
:= definitional equality
ξak =

Pn
t=1

at√
n
ϕk(

t
n) ϕ transform of at
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Table I: Finite Sample Performance of Cointegration Estimators
with AR errors, b = 2, ρ = 0.75, T = 50, N = 10, 000 replications

AR coeffs Estimator Bias SD RMSE AR coeffs Bias SD RMSE
(θ1, θ2) (θ1, θ2)

OLS 0.023 0.040 0.046 0.256 0.222 0.339
FMOLS 0.010 0.081 0.082 0.200 0.210 0.290
RRR1 -0.015 0.057 0.059 0.011 0.038 0.040

(0.8, 0.8) RRR4 -0.009 1.261 1.261 (−0.8,−0.8) 0.001 0.086 0.086
DOLS2 0.000 0.044 0.044 0.001 0.042 0.042
DOLS4 0.000 0.048 0.048 0.000 0.046 0.046
TrendIV 0.000 0.037 0.037 0.001 0.035 0.035

OLS 0.034 0.041 0.053 0.098 0.090 0.133
FMOLS 0.012 0.055 0.056 0.045 0.075 0.088
RRR1 -0.006 0.035 0.036 0.004 0.035 0.035

(0.4, 0.4) RRR4 0.004 1.062 1.062 (−0.4,−0.4) 0.000 0.209 0.209
DOLS2 0.000 0.038 0.038 -0.001 0.038 0.038
DOLS4 0.000 0.038 0.038 -0.001 0.039 0.039
TrendIV 0.000 0.0034 0.034 0.000 0.034 0.034

OLS 0.055 0.054 0.077 0.335 0.220 0.401
FMOLS 0.020 0.058 0.061 0.204 0.329 0.387
RRR1 -0.001 0.035 0.035 2.003 148.97 148.98

(0, 0) RRR4 0.001 0.203 0.203 (−0.8, 0.8) 0.019 5.586 5.586
DOLS2 0.000 0.036 0.036 0.378 0.312 0.490
DOLS4 -0.001 0.038 0.038 0.383 0.322 0.500
TrendIV 0.000 0.034 0.034 0.330 0.301 0.447
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Table II: Finite Sample Performance of Cointegration Estimators
with MA errors, b = 2, ρ = 0.75, T = 50, N = 10, 000 replications

MA coeffs Estimator Bias SD RMSE MA coeffs Bias SD RMSE
(θ1, θ2) (θ1, θ2)

OLS 0.036 0.041 0.054 0.366 0.208 0.421
FMOLS 0.014 0.059 0.060 0.393 0.196 0.439
RRR1 -0.007 0.036 0.036 0.004 0.057 0.057

(0.8, 0.8) RRR4 0.000 0.149 0.149 (−0.8,−0.8) 0.000 0.053 0.053
DOLS2 0.000 0.038 0.038 0.001 0.067 0.067
DOLS4 0.000 0.038 0.038 0.001 0.070 0.070
TrendIV 0.000 0.033 0.033 0.001 0.047 0.047

OLS 0.039 0.043 0.058 0.117 0.102 0.155
FMOLS 0.016 0.056 0.059 0.065 0.089 0.110
RRR1 -0.005 0.035 0.036 0.004 0.036 0.036

(0.4, 0.4) RRR4 0.001 0.142 0.142 (−0.4,−0.4) 0.000 0.069 0.069
DOLS2 0.000 0.038 0.038 0.000 0.039 0.039
DOLS4 0.000 0.038 0.038 -0.001 0.040 0.040
TrendIV 0.000 0.033 0.033 0.000 0.034 0.034

OLS 0.170 0.132 0.215 0.444 0.221 0.496
FMOLS 0.087 0.145 0.169 0.483 0.276 0.556
RRR1 -0.025 0.435 0.440 -15.028 1667 1667

(−0.4, 0.4) RRR4 -0.002 1.030 1.030 (−0.8, 0.8) 0.048 3.200 3.200
DOLS2 0.103 0.106 0.148 0.536 0.339 0.635
DOLS4 0.103 0.110 0.151 0.541 0.349 0.644
TrendIV 0.065 0.090 0.111 0.430 0.321 0.537
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