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Abstract

In a simple model composed of a structural equation and identity, the finite
sample distribution of the IV/LIML estimator is always bimodal and this is
most apparent when the concentration parameter is small. Weak instrumen-
tation is the energy that feeds the secondary mode and the coefficient in the
structural identity provides a point of compression in the density that gives
rise to it. The IV limit distribution can be normal, bimodal, or inverse normal
depending on the behavior of the concentration parameter and the weakness
of the instruments. The limit distribution of the OLS estimator is normal in
all cases and has a much faster rate of convergence under very weak instru-
mentation. The IV estimator is therefore more resistant to the attractive effect
of the identity than OLS. Some of these limit results differ from conventional
weak instrument asymptotics, including convergence to a constant in very weak
instrument cases and limit distributions that are inverse normal.
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1 Introduction

Some recent attention has been given to the fact that structural equation estima-
tors may have bimodal finite sample distributions. Phillips and Hajivassiliou (1987)
explicitly mentioned the phenomenon, Nelson and Startz (1990) brought the prop-
erty into prominence, and Maddala and Jeong (1992) provided some further analysis.
There has since been a good deal of interest, recent contributions being Woglom
(2001), Hillier (2005), Forchini (2005) and Kiviet and Niemczyk (2005). Forchini
(2005) studies conditions for the finite sample distribution of the instrumental vari-
able estimator to be bimodal, using the factorization of the standard expression of
the density (Phillips, 1980) into a leading term and complementary term to find the
parameter configurations where bimodality occurs.
A demonstration that the distribution of simultaneous equations estimators were

not always unimodal appeared many years ago as a solved (and largely forgotten) ex-
ercise in Phillips and Wickens (1978, Solution 6.19, pp. 351-355), which analyzed the
finite sample distribution of the LIML/IV estimator in a simple Keynesian structural
model. In fact, in this example the finite sample distribution is always bimodal. The
property holds for all parameter values and all sample sizes, although its magnitude
is not always practically important. The present note briefly revisits the Phillips and
Wickens example and adds some further analysis and asymptotics to cover weak and
very weak instrument cases, where some of the outcomes differ from the results in the
conventional weak instrument literature. The model studied by Phillips and Wickens
is, in fact, formally equivalent to the model that was considered much later by Nelson
and Startz (1990), so there are some interesting linkages to the subsequent literature
on the topic.
The Keynesian model is a case of strong endogeneity, where there is a struc-

tural behavioral equation and an identity. The identity is another structural relation
and its role is important in the distribution theory because it provides a magnet for
an alternative centering, pulling consistent estimators like IV and LIML away from
the relevant parameter in the behavioral relation and thereby naturally inducing a
bimodality. In fact, it is the identity that is the source of the bimodality. This sit-
uation differs in some important ways from the standard case that has been studied
intensively in the recent research. The simplicity of the example also means that the
key properties of the distribution can be demonstrated analytically in a straightfor-
ward way without the use of special functions. For the conditions under which their
analysis proceeds, the Nelson and Startz (1990) model is formally equivalent to a
structural equation with a companion structural identity, as indicated above, and it
is the identity that explains the bimodality noted in their paper. This corroborates
the comments by Maddala and Jeong (1992) on the role played by strong endogeneity
in the occurence of bimodality.
The fact that identities are common in structural systems makes results for this

simple model of more than passing theoretical interest. These results reveal elements
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in the earlier work on finite sample theory that have implications on weak instrumen-
tation and weak IV limit theory.

2 Structural Estimation with an Identity

The model considered here is based on the simplest Keynesian model with a single
structural equation involving two measured endogeneous variables yt, xt, and a sto-
chastic disturbance ut, and a parameterized structural identity involving an observed
instrumental variable zt that is assumed to be exogenous. The system is

yt = βxt + ut (1)

xt = yt + γzt (2)

where the (spending propensity) parameter β is assumed to satisfy β 6= 1, so that
an equilibrium solution exists. Of course, this condition is needed for the existence
of a reduced form and a proper data generating mechanism for the sample data
{yt, xt : t = 1, ..., n}. The parameter γ controls the relevance of the instrument zt in
the system and is convenient to use as a scale coefficient in this equation but it could
readily be absorbed into zt and its effects measured in terms of the signal from the
instrument. When γ → 0, the instrument zt becomes irrelevant to the determination
of yt and xt, and we end up with the identity xt = yt in place of (2). On the other
hand, when γ → ∞, the system is dominated by the signal from zt. In view of the
identity (2) and the exogeneity of zt, the degree of endogeneity as measured by the
correlation coefficient of xt and ut is unity, so that there is strong endogeneity in the
system.
Sometimes it is convenient to extend the model by an array formulation and

index one or other of the parameters γ and β by the sample size n. Use of an indexed
sequence γn for γ opens up the study of weak instrument cases, where γn may be
passed to zero at certain rates; and use of βn for β enables the model to be analyzed
for spending propensities in the vicinity of unity, where βn → 1.
For a finite sample development, the errors {ut : t = 1, .., n} in (1) may be assumed

to be iid N (0, σ2) , although Gaussianity is unnecessary for the asymptotics. Phillips
and Wickens, like Bergstrom (1962) who first considered finite sample distributions
in this system, allow for an intercept in (1), which is inconsequential, and they did
not parameterize (2), setting γ = 1.
Define szz =

Pn
t=1 z

2
t . The reduced form is

yt = πyzt +
1

1− β
ut, πy =

βγ

1− β
(3)

xt = πxzt +
1

1− β
ut, πx =

γ

1− β
, (4)
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and β is identified by

β = πy/πx = 1− γ/πx. (5)

The IV or LIML estimator of β is β̂ = π̂y/π̂x, where π̂y and π̂x are the reduced
form least squares estimates. Analogous to Bergstrom (1962), Phillips and Wickens
(1978) gave the exact density of β̂

pdf (b) =
λ1/2n√
2π

|1− β|
σ

1

(1− b)2
exp

(
− λn
2σ2

µ
b− β

1− b

¶2)
, (6)

where λn = γ2szz is the noncentrality parameter. Note that λn depends on the
sample size through the sample moment szz, but also through the parameter γ when
γ = γn depends on n. The exact density (6) is the same as that studied in Nelson
and Startz (1990), after notational translation. This is because the model studied by
Nelson and Startz (1990) is observationally equivalent to a structural equation with a
parameterized identity under the conditioning and zero covariance assumptions that
are made in that paper1.
As shown in Phillips and Wickens (1978), the density pdf(b) is continuous and

has a zero at b = 1, the same result later being given in lemma 2 of Nelson and
Startz (1990). Rather obviously, the tails are O (b−2) , or Cauchy-like (as pointed out
in Sargan (1970/1988) and Phillips (1983,1984,1985,1986) for structural FIML and
LIML estimators), and the distribution therefore has modes on either side of the zero

1Maddala and Jeong (1992) observed that the Nelson and Startz (1990) model is formally equiv-
alent under their stated conditions to the model

yt = βxt + ut

xt = θ (zt − vt) + φut

for certain parameters θ and φ, and where the analysis is conditioned on the supplementary variable
vt. The second equation above may be rewritten as the parametrized identity

xt =
φ

1 + βφ
yt +

θ

1 + βφ
(zt − vt) ,

so that the Nelson and Startz (1990) model is equivalent to (1) and (2) after rescaling xt and β, and
conditioning on vt.
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at b = 1. Simple calculations reveal that there are two modes located at

1 +
λn
4σ2

(1− β)± (1− β)λ1/2n√
2σ

½
1 +

λn
8σ2

¾1/2
∼

⎧⎨⎩ 1 + λ
1/2
n√
2σ
(1− β) + λn(1−β)

4σ2
+O

³
λ3/2n

´
as λn → 0

1− λ
1/2
n√
2σ
(1− β) + λn(1−β)

4σ2
+O

³
λ3/2n

´
as λn → 0

∼

⎧⎨⎩ 2− β + λn
2σ2
(1− β)− 2σ2(1−β)

λn
+O

³
1
λ2n

´
as λn →∞

β + 2σ2(1−β)
λn

+O
³
1
λ2n

´
as λn →∞

,

where the last two expressions are asymptotic expansions of the modal locations
as λn → 0 and λn → ∞, respectively. For small λn, the modes are placed nearly
symmetrically on either side of unity at 1 ± λ

1/2
n√
2σ
(1− β) , and at these points the

density is of O
¡
λ−1n

¢
as λn → 0. For large λn, one mode is located near β around the

value β+ 2σ2(1−β)
λn

and the second mode is located around 2−β+ λn
2σ2
(1− β) . At this

second mode, the density is O
¡
λ−2n

¢
as λn →∞, and so it is negligible in magnitude

for large λn.
These properties hold for β 6= 1 and for all sample sizes n, or all values of the

noncentrality parameter λn provided γ 6= 0. The bimodality disappears asymptoti-
cally when λn →∞ (as happens when γ is fixed and non-zero and n→∞), because
then the distribution of β̂ is asymptotically Gaussian. In this event we have the limit
theory p

λn
³
β̂ − β

´
⇒ N

¡
0, σ2 (1− β)2

¢
,

which we can write in standardized form as
√
λn
³
β̂ − β

´
1− β

⇒ N
¡
0, σ2

¢
,

which covers the case where β = βn → 1. In the latter case, it is apparent that
the presence of a spending propensity in the vicinity of unity raises the convergence
rate above

√
λn, which is explained by the fact that both the structural equation

and the identity work to attract the estimator to unity. Nelson and Startz (1990)
argue that the usual Gaussian limit theory is often a very poor approximation to
the finite sample distribution and that it is particularly bad when the instrument is
weak. This follows earlier arguments made in Phillips (1989) for the case of irrelevant
instruments. However, as we see later, there is an alternative limiting inverse normal
theory in this case that provides a very satisfactory approximation to the finite sample
distribution, including its bimodality.
Some typical shapes of the finite sample density (6) are shown in Figs. 1 and

2. For λn = 50, the distribution is close to symmetric, is centred on β and is well
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Figure 1: Finite sample distributions of β̂ for β = 0.6 and λn = 1 (black and dashed),
5 (green and solid) , 25 (brown and dot-dashed), 50 (purple and dotted).

approximated by the Gaussian limit. For λn = 5, 1 the distributions are decidedly
non-Gaussian in form, and show substantial bias and asymmetry, with the mode
shifting away from β towards unity as λn decreases. In Fig. 1 the mode on the right
side of unity is so small that it cannot be seen on this scale, so the right tail of the
distribution is omitted from view.
Fig. 2 shows the densities when λn = 0.1, 0.01. Both have marked bimodality.

As γ and λn decrease, the pull of the structural identity becomes stronger and the
primary mode shifts closer to unity. As γ and λn decrease further, the secondary
mode on the right side of unity becomes more accentuated and the primary mode
shifts even closer to unity. The following intuition explains the bimodality and the
location of the modes. Since the IV density is held to zero at b = 1, the secondary
mode occurs to the right of unity, much in the same way as a balloon (representing
density) is squeezed and a new bubble (mode) arises outside the point of compression
to accommodate the density that has been squeezed out elsewhere. Here, the identity
serves to provide the point of compression (delivered by the coefficient of the struc-
tural identity) and the weak instrumentation provides the energy of compression.
Interestingly, the distribution becomes more symmetric again as γ and λn decrease
(just as it is for large λn), but now about the value b = 1. Also, while the modes are
more peaked and move closer to unity from the right and left sides, the density still
descends to zero at unity for all n.
As is clear from the functional form (6), the density pdf(b) does not tend to a

proper probability density as λn → 0. In fact, pdf(b)→ 0 for all values of b as λn → 0,
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Figure 2: Finite sample distributions of β̂ for β = 0.6 and λn = 0.1 (blue and squared),
0.01 (red and ringed) and the (very weak) instrument asymptotic distribution (green).

but not uniformly. So the probability mass escapes at infinity in this case as we take
the limit of the density. Nonetheless, we still get convergence of β̂ in this case, but
to unity not to β. In fact, β̂ →p 1 as λn → 0.
In fact, at the limit where γ = 0, we have πy = πx = 0 and the reduced form coef-

ficients contain no information2 about the parameter β. In this case, the instrument
zt is irrelevant for xt in estimating β in the structural equation (1). Nonetheless,
when γ = 0, the identity (2) becomes xt = yt and it is apparent that in this event
β̂ = 1, a.s. for all n. The IV estimator also takes the same value as OLS in this
case. This result is different from the distribution in the irrelevant instrument case
considered in Phillips (1989), where the IV estimator differs from OLS, is random for
all n and converges to a random variable as n → ∞, unlike OLS which has a finite
non-random probability limit.

3 Some Limit Theory for Weak Instruments

Next consider the case where γn depends on n and γn → 0 as n→∞. The simplest
situation of this kind occurs when a local

√
n to zero sequence γn =

d√
n
is used,

an approach that has become conventional in the study of weak instrumentation.
Some recent reviews of this literature are given in Andrews and Stock (2005), Hahn

2The reduced form error variance σ2v = σ2/ (1− β)
2 also contains no recoverable information

about β, as σ2 is unknown

7



and Hausman (2003), and Stock, Wright and Yogo (2002). Cases of many weak
instruments are studied in Chao and Swanson (2005) and Han and Phillips (2005).
The particular

√
n local to zero sequence has no special significance, and limit

results may be obtained for other cases. However, we may usefully start with this case,
because of its popularity in the literature, and compare results with what happens
when γn → 0 at a faster rate. Accordingly, set γn =

d√
n
, require d 6= 0, and suppose

that the sample second moment of the instrument converges to a positive constant,
so that n−1szz → mzz > 0. In this event, the noncentrality parameter tends to a
positive constant

λn = γ2nszz → d2mzz = λ > 0, (7)

and it is apparent that the density (6) has the following limit as n→∞

pdf (b) =
λ1/2√
2π

|1− β|
σ

1

(1− b)2
exp

(
− λ

2σ2

µ
b− β

1− b

¶2)
. (8)

The limit theory in this weak instrument case, analogous to Staiger and Stock (1997),
simply reproduces the finite sample distribution under Gaussianity, a phenomenon
that reflects the fact that as n becomes large, the data (and the instrument in par-
ticular) become less informative about the true value of the parameter of interest, β.
As originally shown in Phillips (1989), it is a straightforward matter to convert the
limit result (8) into an invariance principle. All that is required, is an appeal to a
central limit theorem for the reduced form coefficients on which β̂ depends. In the
present case, we have the singular normal limit

√
n

∙
π̂y − πy
π̂x − πx

¸
⇒ N

µ
0,

σ2

(1− β)2mzz

∙
1 1
1 1

¸¶
, (9)

and the limit distribution (8) follows in a straightforward manner that is analogous
to the finite sample development. Observe that the limit distribution (8), like the
finite sample distribution, has asymmetric bimodality and Cauchy-like tails.
In place of the conventional weak instrument condition (8), we may consider the

very weak instrument case where γn = o
¡
n−1/2

¢
and

λn = γ2nszz → 0. (10)

In this case, observe that
√
nπx =

√
nγn
1−β = o (1) , so that the systematic part of the

reduced form is sufficiently small that the limit theory (9) can be replaced by

√
n

∙
π̂y
π̂x

¸
⇒ N

µ
0,

σ2

(1− β)2mzz

∙
1 1
1 1

¸¶
=

∙
1
1

¸
η, (11)
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where η = σ

|1−β|m1/2
zz

ξ and ξ is standard normal. We deduce that

β̂ = 1− γn
π̂x
= 1−

√
nγn√
nπ̂x
→p 1, (12)

so that β̂ is inconsistent and converges to unity in this case. Some further elementary
manipulations3 reveal that the limit distribution is given by

δn
³
β̂ − 1

´
⇒ −1

η
, (13)

the inverse of a central Gaussian variate and the rate of convergence is given by
δn =

1√
nγn

. In this very weak instrument case, the systematic part of the reduced form
is so small that we do not accumulate information fast enough from the observations
(the rate here is still the conventional

√
n rate in view of the behavior of szz) to learn

enough about πx and πy to distinguish these parameters from zero. In effect, what we
learn from large samples of data is that π̂x and π̂y are distributed about the origin.
Relative to the rate at which γn → 0, we then deduce from the relationship between
β̂ and π̂x in (12) that the estimate β̂ is centred on unity and behaves, after scaling,
like the inverse normal variate 1/

√
nπ̂x.

The asymptotic distribution in the very weak instrument case is shown in Fig. 2.
As is apparent, the asymptotic distribution provides a good approximation to the
finite sample distribution. Unlike the limit distributions given in (8) and in other
weak instrument cases considered in the recent literature, this asymptotic distribution
is symmetrically bimodal. It also has zero density at the probability limit of β̂ and
continues, of course, to have Cauchy-like tails.
At the point in the parameter space where γ = 0, the data generating mechanism

becomes simply yt = xt = ut/ (1− β) . This mechanism incorporates the identity (2)
and the reduced form equations (3) - (4) with γ = 0. It applies whatever the value
of β, and the structural equation (1) is essentially irrelevant to the data generating
mechanism. Similarly, when γn → 0 fast enough, the same effects occur. The asymp-
totic distribution of β̂ is centred about unity (the coefficient in the structural identity
yt = xt), the distribution converges at the rate 1√

nγn
, which reflects the manner in

which the concentration in the data about the structural identity occurs, and the
limit distribution provides no information about β when σ2 is unknown.
On the other hand, as remarked earlier, the value of β does affect the reduced

form error variance and thereby affects the limit distribution of β̂ about unity. Since
this error variance σ2v = σ2/ (1− β)2 → ∞ as β → 1, it follows that 1

η
→p 0, as

β → 1. We therefore may write (13) in the standardized form

δnσ

m
1/2
zz (1− β)

³
β̂ − 1

´
⇒ 1

ξ
,

3 β̂ − 1 = −
√
nγn√
nπ̂x

= −
√
nγn√

nγn
1−β +ηn

= −
√
nγn
ηn

+ op (1) , where ηn ⇒ η.
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where ξ is standard normal. This result covers the case of a localizing sequence βn
for which βn → 1 and then

√
nσ√

λn (1− βn)

³
β̂ − 1

´
⇒ 1

ξ
, (14)

where the rate of convergence is correspondingly accelerated.
These limit results may be compared with those for the least squares estimator

β∗, for which standard calculations lead to the following limit theory for the
√
n local

to zero sequence γn =
d√
n

√
n

γn
(β∗ − 1)⇒ N

Ã
d (1− β)mzz

σ2
,
(1− β)2mzz

σ2

!
, (15)

and for the very weak instrument case where γn = o
¡
n−1/2

¢
√
n

γn
(β∗ − 1)⇒ N

Ã
0,
(1− β)2mzz

σ2

!
. (16)

In both cases β∗ →p 1 and the limit distribution is normal. There is a noncentrality
in the limit distribution for the

√
n local to zero sequence, and the convergence rate is

O (n) in this case. In the very weak instrument case, the limit distribution is central
normal and the convergence rate is O (nδn) , which is faster than O (n) . Again, these
results extend to the case of a localizing sequence βn for which βn → 1 and then (16),
for example, becomes

nδn
(1− βn)

(β∗ − 1)⇒ N
³
0,
mzz

σ2

´
.

It follows from these results that, although the IV and OLS estimators have the
same limit in probability in the very weak instrument case, their limit distributions
and rates of convergence are quite different, so the estimators are not asymptotically
equivalent, in contrast to the case where the degree of apparent overidentification is
large enough to make the estimators equivalent. In the present case, both IV and
OLS estimators are attracted to the same limit point, but in a very different manner
and at different rates.
In weak identification situations, it is sometimes argued that the IV estimator is

drawn toward the least squares estimator4. This can be a misleading representation
of the phenomenon, as the present example shows. Rather than IV being drawn to
OLS, it is the coefficient in the structural identity in the model (or, equivalently,

4For example, one of the referees refers to “the result that under weak instruments and strong
endogeneity the 2SLS estimator is biased towards the least squares value, as discussed by Staiger
and Stock (1997)”.
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the regression coefficient implied by the presence of strong endogeneity) that acts
as an alternative point of attraction in estimation for both estimators. IV is drawn
to this point of attraction from both the left and the right because of its bimodal
distribution, in contrast to OLS. In situations of weak identification, both estimators
tend to be attracted to this point in the parameter space and the magnetic force is
stronger the weaker the instruments. But, as the results above show, the attraction is
far greater for OLS than it is for IV, so that the former estimator has a faster rate of
convergence and the latter estimator is much more resistant to the attractor. Indeed,
for
√
n local to zero sequences like γn =

d√
n
, OLS converges at an O (n) rate to the

attractor, while IV converges to a random variable with the bimodal distribution (8),
so it puts probability mass away from and on both sides of the attractor. On the
other hand, when the instruments are very weak, we have δn

³
β̂ − β∗

´
⇒ −1

η
, so

that the IV estimator has a symmetric bimodal limiting distribution about the least
squares value and IV is “drawn to OLS” but in an ambivalent way. Clearly, this is
very different from the two estimators being the same in the limit or IV simply being
biased toward the least squares value.

4 Further Discussion

In both strong and very weak instrument cases with a structural identity the IV/LIML
estimator converges in probability to a constant. In one case, the constant is the
true value of the structural parameter β. In the other, it is the coefficient in the
structural identity. In conventional weak instrument and irrelevant instrument cases,
the estimator converges weakly to a random quantity whose distribution reflects the
uncertainty associated with a finite sample of data, as in Phillips (1989). So the
presence of a structural identity can lead to substantial changes in weak instrument
limit theory.
The finite sample distribution (and the implied limit distribution under conven-

tional weak instrumentation) is bimodal for all values of the parameters. The source
of the bimodality is the presence of an alternative point of attraction provided by
the coefficient in the structural identity in the system. The attraction process applies
also to OLS but is unidirectional and stronger in the case of OLS and bidirectional
and weaker for IV.
The bimodality is of a magnitude to be practically important in cases where the

concentration parameter λn is small. As λn becomes very small, the distribution
becomes strongly bimodal about the coefficient in the identity, and if λn → 0 the
estimator converges in probability to that coefficient at an O

³
λ−1/2n

´
rate and has

a limit distribution that is proportional to the inverse of a standard normal vari-
ate and is symmetrically bimodal. By contrast, the OLS estimator converges at an
O
³
nλ−1/2n

´
rate and has a limiting normal distribution.
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These results show that, even for the exceedingly simple structural system con-
sidered here, weak instrument limit theory has a richer range of possible outcomes
than are contained in the present literature.
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