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ABSTRACT

A new approach to robust testing in cointegrated systems is proposed using nonparamet-
ric HAC estimators without truncation. While such HAC estimates are inconsistent, they
still produce asymptotically pivotal tests and, as in conventional regression settings, can
improve testing and inference. The present contribution makes use of steep origin kernels
which are obtained by exponentiating traditional quadratic kernels. Simulations indicate
that tests based on these methods have improved size properties relative to conventional
tests and better power properties than other tests that use Bartlett or other traditional
kernels with no truncation.

JEL Classification: C12; C14; C22
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1 Introduction

Recent research by Kiefer and Vogelsang (2002a, 2002b, 2005, hereafter KV) and the present
authors (2005a, 2005b, hereafter PSJa, PSJb) has shown that there are certain advantages
to constructing robust tests in regression models with inconsistent rather than consistent
estimates of the relevant variance matrices. Such ‘inconsistent HAC’ estimates can be based
on standard kernels with the bandwidth parameter set to the sample size (or possibly some
fixed proportion of the sample size) or on power kernels which exponentiate traditional
kernels. Such variance estimates are inconsistent and tend to random matrices instead of
the true variance matrix, but this randomness in the limit succeeds in bringing the finite
sample distribution of test statistics based on them closer to the limit distribution, thereby
improving the finite sample size properties of the resulting tests. Some formal results of this
type have been proved recently by Jansson (2004) and the present authors (2005, hereafter
PSJc). Using this approach, asymptotically similar tests can be constructed for which the
limit distribution is nonstandard but easily computed and easily approximated by series
expansions (PSJc).

The contribution of the present paper is to apply these methods in the context of
cointegrated regression equations. Making use of steep origin kernels, as in PSJb, we provide
a limit theory for the corresponding cointegrating regression test statistics based on these
inconsistent HAC estimates. Simulations show that these alternative robust tests have
greater accuracy in size, but also experience some loss of power, including local asymptotic
power, in relation to conventional tests. In this sense, the results mirror the earlier findings
for regression models in KV and PSJb. Steep origin kernels seem to have the best properties
in the class of tests considered here.

The plan of the rest of paper is as follows. The test statistics, limit distributions and
local asymptotic powers are given in Section 2. Finite sample simulations are presented in
Section 3. Some discussion and concluding remarks are given in Section 4. Proofs are given
in Section 5.

2 Tests and Limit Theory

We consider the cointegrated regression model

yt = α+ x0tβ + u0t, (1)

where xt is an m-dimensional vector of full rank integrated regressors generated by

∆xt = uxt, (2)

where t = 1, ..., T. The error vector ut = (u0t, u0xt)
0 is jointly stationary with zero mean and

long run covariance matrix Ω > 0.
The following high level condition for which sufficient conditions are well known (e.g.,

Phillips and Solo, 1992) facilitates the asymptotic development:

T−1/2
[Tr]X
t=1

ut →d B(r) =

∙
B0(r)
Bx(r)

¸
≡ BM(Ω), r ∈ [0, 1] , (3)
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with

Ω =

∙
ω20 Ω0x
Ωx0 Ωxx

¸
, (4)

where B0(·) and Bx(·) are Brownian motions corresponding to u0t and uxt respectively, and
where the partition of Ω is conformable with that of ut. Defining u0.xt = u0t −Ω0xΩ−1xxuxt,
it follows that T−1/2

P[Tr]
t=1 u0.xt → B0.x(r), and

T−1/2
Ã P[Tr]

t=1 u0.xtP[Tr]
t=1 uxt

!
→
∙
B0.x(r)
Bx(r)

¸
≡ BM

∙
ω20.x 0
0 Ωxx

¸
, (5)

where B0.x(r) = B0(r) − Ω0xΩ−1xxBx(r) = BM(ω20.x) = ω0.xW0, and is independent of
Bx = Ω

1/2
xx Wx, with ω20.x = ω20 − Ω0xΩ−1xxΩx0. W0 and Wx are independent standard

Brownian motions of dimensions 1 and m, respectively.
Let bβ+ be the FM-OLS estimator of β in (1), Mxx =

PT
t=1(xt − x)(xt − x)0)−1, where

x = T−1
PT

t=1 xt, and bω∗20.x be constructed by introducing kernel based estimators of ω0.x
where the bandwidth parameter is set equal to the sample size:

bω∗20.x = T−1X
h=−T+1

k

µ
h

T

¶bΓ(h), (6)

with

bΓ(h) = ( 1
T

PT−j
t=1 bu0.xt+hbu00.xt for j ≥ 0

1
T

PT
t=−j+1 bu0.xt+hbu00.xt for j < 0

(7)

and bu0.xt is the FM-OLS regression residual. The class of kernels we consider contains
most conventional kernels k (x), as well as steep origin kernels, kρ(x) = (kquad (x))

ρ, which
were introduced in PSJb and involve arbitrary powers ρ > 1 of a conventional quadratic
kernel kquad (x) with Parzen characteristic exponent 2. For the steep origin kernels, we
focus on the steep Parzen kernel (i.e. kquad (x) is the traditional Parzen kernel) throughout
the paper. The results for other steep origin kernels are similar and will not be reported
here.

The cointegrating regression F -statistic for the q-dimensional hypothesis Rβ = r takes
the usual form

F ∗ = (Rbβ+ − r)0
£
RMxxR

0¤−1 (Rbβ+ − r)/bω∗20.x. (8)

or when q = 1, the t-ratio

t∗ =
£
RMxxR

0¤−1/2 (Rbβ+ − r)/bω∗0.x. (9)

Similar arguments to those given in Theorems 1 and 5 of PSJa lead to the following results.
First, the conditional long run variance estimator bω∗20.x has the random limit

bω∗20.x ⇒ ω20.x

Z 1

0

Z 1

0
k(r − s)dη(r)dη(s), (10)
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where

η(r) =W0(r)− rW0(1)−
Z r

0
W 0

x(

Z 1

0
W xW

0
x)
−1
Z 1

0
W xdW0, (11)

withW x =Wx−
R 1
0 Wx. Second, the limit of the regression F -statistic and t-statistic under

the null is

F ∗ ⇒

³R 1
0 W 1.2dW0

´0 ³R 1
0 W 1.2W

0
1.2

´−1 ³R 1
0 W 1.2dW0

´
R 1
0

R 1
0 k(r − s)dη(r)dη(s)

, (12)

t∗ ⇒

³R 1
0 W 1.2W

0
1.2

´−1/2 ³R 1
0 W 1.2dW0

´
qR 1

0

R 1
0 k(r − s)dη(r)dη(s)

, (13)

where W 1.2 =W 1−
R 1
0 W 1W

0
2(
R 1
0 W 2W

0
2)
−1W 2 is the L2 regression residual of W 1 onW 2,

W 1 is the vector of the first q coordinates of W x, and W 2 is the last (m− q) coordinates.
Third, under the local alternative Rβ = r + c/T, the F and t statistics have the following
limit distributions

F ∗ ⇒

∙³R 1
0 W 1.2W

0
1.2

´−1 R 1
0 W 1.2dW0 + δ

¸0 ³R 1
0 W 1.2W

0
1.2

´ ∙³R 1
0 W 1.2W

0
1.2

´−1 R 1
0 W 1.2dW0 + δ

¸
R 1
0

R 1
0 k(r − s)dη(r)dη(s)

,

t∗ ⇒

³R 1
0 W 1.2W

0
1.2

´−1/2 R 1
0 W 1.2dW0 + δ

³R 1
0 W 1.2W

0
1.2

´1/2qR 1
0

R 1
0 k(r − s)dη(r)dη(s)

,

where δ =
¡
RΩ−1xxR

0¢−1/2 c/ω0.x.
Remarks

(a) While bω∗20.x is inconsistent for ω20.x, its limit distribution is scale dependent on ω20.x,
which explains why it is possible to construct asymptotically pivotal tests using bω∗20.x.

(b) The limit distributions of the F -statistic and t-statistic are nonstandard in view of the
random limit of the inconsistent HAC estimates.

(c) Under the null, the numerator in the limit distribution follows χ2q or standard normal
distribution. As shown in the proof, the numerator is independent of the denominator
in the limit distribution. These are the same as in the stationary case. However, the
η(r) process is not a Brownian bridge process and depends on the number of regressors
in the model, which is different from the stationary case.
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(d) When the steep origin kernel of the form k(x) = (kquad(x))
ρ is used in the tests,

consistency of bω∗20.x requires the following rate condition
T 6/ρ5 + ρ/T 2 → 0 as T →∞, and ρ→∞ (14)

(see PSJb for details), in which case the limit distributions for F ∗ and t∗ (denoted
as F ∗ρ and t∗ρ to emphasize their dependence on ρ) under the null are F ∗ρ ⇒ χ2q , and
t∗ρ ⇒ N(0, 1). The corresponding limit distributions under the local alternative are

F ∗ρ ⇒
"µZ 1

0
W 1.2W

0
1.2

¶−1µZ 1

0
W 1.2dW0

¶
+ δ

#0µZ 1

0
W 1.2W

0
1.2

¶

×
"µZ 1

0
W 1.2W

0
1.2

¶−1µZ 1

0
W 1.2dW0

¶
+ δ

#
, (15)

t∗ρ ⇒
µZ 1

0
W 1.2W

0
1.2

¶−1/2 Z 1

0
W 1.2dW0 + δ

µZ 1

0
W 1.2W

0
1.2

¶1/2
. (16)

Asymptotic critical values are given in Table 1 for the t∗ test for a selection of well
known kernels, such as Bartlett, Parzen, Tukey-Hanning, QS, Normal as well as Steep origin
kernels (SO) with ρ = 8, 32, and the asymptotic case which is represented by “ρ =∞” with
m = 1. The Brownian motion and detrended Brownian motion paths are calculated using
normalized partial sums of T = 1000 iidN(0, 1) random variables. 50,000 replications are
employed.

Table 1: Asymptotic Critical Value of t∗ Test (m=1)
Kernel 90.0% 95.0% 97.5% 99.0%
Bartlett 3.2299 4.3825 5.4780 6.9642
Parzen 3.5666 5.2742 7.1273 10.1487

Tukey-Hanning 5.2969 8.4123 12.8590 20.7183
QS 7.0547 11.2629 16.9171 27.4247

Normal 3.8622 5.8006 7.9304 11.5824
SO (ρ = 8) 1.8871 2.5549 3.2348 4.1203
SO (ρ = 32) 1.5537 2.0514 2.5121 3.1046
SO (ρ =∞) 1.2820 1.6450 1.9600 2.3260

Following PSJa and PSJb, we perform local asymptotic power simulations using the t∗ρ-
statistic as the benchmark. We compute asymptotic power for t∗ tests with a 5% significance
level using the kernels from Table 1 for δ ∈ [0, 9.3] with m = 1. Results for m > 1 are
similar and are not presented here. As is apparent in Fig. 1, and similar to KV(2002a),
the Bartlett kernel delivers higher power than other well-known kernels, including Parzen,
Normal, Tukey-Hanning, and QS. However, steep Parzen kernels produce even better power
properties than the Bartlett kernel, and the power curve moves up uniformly as ρ increases.
Notice that when ρ = 32, the power curve is very close to the power envelope. This
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Figure 1: Asymptotic Local Power Function of the t∗ Tests with Various Kernels

is expected. When ρ is large, it may be regarded as being roughly compatible with the
rate condition in (14) for these sample sizes. In that case, the test statistic is effectively
constructed using a consistent estimate of ω20.x, and Remark (d) above applies. In sum,
tests based on steep Parzen kernels appear to dominate those based on other commonly
used kernels.

3 Simulations

This section compares the finite sample performance of the t∗ tests and the t-test that uses
a HAC estimator, which we denote by tHAC . We use the following simple data generating
process

yt = α+ xtβ + u0t, (17)

where α = β = 0, u0t = ρ1u0t−1 + ρ2u0t−2 + et, xt = xt−1 + uxt, uxt = 0.8uxt−1 + ηt, et and
ηt are iid(0, 1) with cov(et, ηt) = 0, and x0 = u0 = u−1 = 0. Sample sizes T = 50, 100 and
200 are used and 2000 replications apply in all cases. We want to test one sided hypothesis
H0 : β ≤ 0 v.s. H1 : β > 0. The cointegrating regression (17) is estimated using OLS
(which is asymptotically equivalent to FM-OLS in this model) and t∗ tests are constructed
as in (9). For tHAC , the bandwidth is chosen using the data-driven procedure in Andrews
(1991).

We here compare the null rejection probabilities of tHAC computed with a Bartlett
kernel with those of t∗ tests for the Bartlett, Parzen, and steep Parzen kernels with different
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values of ρ. Rejections were determined using the asymptotic 5% critical values from Table
1. Two patterns emerge in Table 2. First, finite sample null rejection probabilities are closer
to 0.05 for t∗ than for tHAC , and the differences become more significant as ρ1 approaches
1 when the errors follow an AR(1) process. Second, the power improvement of the steep
Parzen kernels incurs some cost — the size distortions of the t∗ test increases as ρ increases.
However, both these patterns diminish with increases in sample size.

Another striking feature of steep Parzen kernels lies in the finite sample power im-
provement. Fig. 2 depicts the finite sample (size adjusted) power for the DGP with
ρ1 = 0.85, ρ2 = 0.0 with sample size T = 50, and Fig. 3 shows the power curves for the
DGP with ρ1 = 1.9, ρ2 = −0.95 with sample size T = 50. The power of the t∗-tests increases
as ρ increases. While the power of the tHAC test is higher than that of the t∗-test when
the Bartlett and QS kernels are used, mirroring results for regression models reported in
KV, the power of the two tests is almost the same when steep Parzen kernels with large ρ
are used. In fact, for some cases as when ρ = 32, the power of the t∗-test dominates that
of the tHAC test.

Simulation results are similar when the regressors are allowed to be endogenous in
the cointegration system and cov(et, ηt) 6= 0 for various correlation coefficients (see Table
3). The approach therefore turns out to provide a good alternative to tests based on
conventional HAC estimation.

4 Conclusion and Extension

This paper shows that asymptotically valid cointegrating regression coefficient tests may
be constructed using inconsistent HAC estimates. Simulations and asymptotic local power
comparisons indicate that steep origin kernel methods typically work well in such situations,
improving size properties and having power that is close to tests based on conventional HAC
estimates. As in regression model testing, there remain issues of trade off between power
and size in testing. Recent work by the authors (PSJc) provides one way in which this trade
off may be confronted by using power parameter (or bandwidth) selection to minimise loss
arising from power loss and size distortion.
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Table 2: Finite Sample Null Hypothesis Rejection Probabilities: 50,000 Replications
DGP: yt = α+ xtβ + u0t; xt = xt−1 + uxt; uxt = 0.8uxt−1 + ηt;u0t = ρ1u0t−1 + ρ2u0t−2 + et;

et and ηt iid(0, 1) with cov(et, ηt) = 0, x0 = u0 = u−1 = 0;α = β = 0;
H0 : β ≤ 0 ; H1 : β > 0. Nominal level = 0.05.

ρ1 ρ2 tHAC t∗-Bartlett t∗-Parzen t∗ρ=2 t∗ρ=4 t∗ρ=8 t∗ρ=16 t∗ρ=32

T = 50
−0.500 0.000 0.059 0.043 0.060 0.058 0.055 0.054 0.053 0.050
0.000 0.000 0.063 0.057 0.062 0.059 0.056 0.054 0.053 0.052
0.300 0.000 0.090 0.065 0.063 0.061 0.057 0.056 0.055 0.057
0.500 0.000 0.110 0.073 0.066 0.062 0.059 0.059 0.060 0.066
0.700 0.000 0.137 0.086 0.070 0.067 0.065 0.067 0.074 0.088
0.900 0.000 0.191 0.115 0.081 0.081 0.086 0.100 0.119 0.148
0.950 0.000 0.214 0.130 0.086 0.092 0.100 0.118 0.144 0.175
0.990 0.000 0.247 0.152 0.103 0.111 0.126 0.150 0.181 0.214
1.500 −0.750 0.123 0.048 0.057 0.052 0.045 0.035 0.027 0.026
1.900 −0.950 0.263 0.069 0.052 0.045 0.042 0.047 0.062 0.087
0.800 0.100 0.194 0.118 0.081 0.083 0.089 0.102 0.124 0.152

T = 100
−0.500 0.000 0.054 0.049 0.057 0.058 0.057 0.056 0.055 0.053
0.000 0.000 0.058 0.057 0.058 0.059 0.057 0.056 0.054 0.052
0.300 0.000 0.081 0.061 0.059 0.059 0.058 0.056 0.054 0.054
0.500 0.000 0.094 0.064 0.060 0.060 0.058 0.057 0.056 0.057
0.700 0.000 0.114 0.072 0.062 0.060 0.059 0.059 0.061 0.067
0.900 0.000 0.159 0.094 0.068 0.068 0.069 0.076 0.090 0.110
0.950 0.000 0.182 0.107 0.071 0.074 0.080 0.093 0.113 0.141
0.990 0.000 0.223 0.127 0.082 0.090 0.103 0.125 0.153 0.186
1.500 −0.750 0.090 0.048 0.057 0.057 0.055 0.051 0.043 0.032
1.900 0.950 0.197 0.038 0.047 0.046 0.038 0.025 0.018 0.019
0.800 0.100 0.162 0.096 0.069 0.069 0.071 0.079 0.094 0.116

T = 200
−0.500 0.000 0.048 0.049 0.055 0.055 0.054 0.054 0.053 0.051
0.000 0.000 0.054 0.053 0.055 0.055 0.054 0.054 0.052 0.051
0.300 0.000 0.073 0.055 0.055 0.055 0.054 0.053 0.052 0.051
0.500 0.000 0.081 0.057 0.055 0.056 0.055 0.054 0.052 0.052
0.700 0.000 0.093 0.061 0.066 0.057 0.055 0.054 0.053 0.055
0.900 0.000 0.130 0.075 0.059 0.058 0.058 0.062 0.067 0.079
0.950 0.000 0.155 0.089 0.062 0.063 0.065 0.074 0.087 0.108
0.990 0.000 0.202 0.112 0.071 0.078 0.089 0.107 0.132 0.164
1.500 −0.750 0.074 0.047 0.054 0.055 0.054 0.053 0.051 0.047
1.900 −0.950 0.133 0.034 0.051 0.053 0.053 0.049 0.036 0.018
0.800 0.100 0.135 0.077 0.059 0.059 0.059 0.063 0.070 0.082
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Figure 2: Finite Sample Power at 5% Nominal Level with T = 50,
yt = α+ x0tβ + u0t;u0t = 0.85u0t−1 + et;xt = xt−1 + uxt,

uxt = 0.8uxt−1 + ηt,
H0 : β0 ≤ 0, H1 : β0 > 0, With No Prewhitening
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Figure 3: Finite Sample Power at 5% Nominal Level with T = 50,
yt = α+ x0tβ + u0t;u0t = 1.9u0t−1 − 0.95u0t−2 + et;xt = xt−1 + uxt,

uxt = 0.8uxt−1 + ηt,
H0 : β0 ≤ 0, H1 : β0 > 0, With No Prewhitening
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Table 3: Finite Sample Null Hypothesis Rejection Probabilities:
DGP: yt = α+ xtβ + u0t; α = β = 0;xt = xt−1 + uxt; uxt = 0.8uxt−1 + ηt;

u0t = ρ1u0t−1 + ρ2u0t−2 + et, et and ηt iid(0, 1), cov(et, ηt) = σ, x0 = u0 = u−1 = 0;
H0 : β ≤ 0 ; H1 : β > 0. Nominal level = 0.05,T = 50, with 50, 000 Replications

ρ1 ρ2 tHAC t∗-Bartlett t∗-Parzen t∗ρ=2 t∗ρ=4 t∗ρ=8 t∗ρ=16
σ = −0.400 0.900 0.000 0.170 0.075 0.050 0.054 0.059 0.069 0.085

0.950 0.000 0.147 0.061 0.042 0.043 0.049 0.059 0.074
0.990 0.000 0.136 0.054 0.038 0.041 0.047 0.058 0.073

σ = 0.400 0.900 0.000 0.389 0.083 0.051 0.088 0.115 0.144 0.176
0.950 0.000 0.447 0.155 0.100 0.148 0.182 0.222 0.248
0.990 0.000 0.510 0.269 0.190 0.231 0.266 0.311 0.339

σ = 0.800 0.900 0.000 0.484 0.061 0.037 0.075 0.127 0.188 0.253
0.950 0.000 0.665 0.183 0.115 0.209 0.299 0.389 0.467
0.990 0.000 0.814 0.461 0.347 0.467 0.550 0.623 0.684

5 Proofs

We derive the limit distribution of the regression F -statistic and t-statistic in the case where
Ω is block diagonal. The general case could then be easily obtained.

When Ω is block diagonal, OLS is asymptotically equivalent to FM-OLS. Thus,

T (bβ − β) ⇒
∙Z 1

0
BxB

0
x

¸−1 ∙Z 1

0
BxdB0

¸
= ω0Ω

−1/2
xx

µZ 1

0
W xW

0
x

¶−1 Z 1

0
W xdW0, (18)

where bβ is the OLS estimator for β. Using standard arguments we obtain from (3)

T−2Mxx ⇒
Z 1

0
BxB

0
x = Ω

1/2
xx

µZ 1

0
W xW

0
x

¶
Ω1/2xx , (19)

and combining these results, the limit distribution of the Wald statistic is of the form

F ∗ = T (Rbβ − r)0[R(T−2Mxx)
−1R0]−1T (Rbβ − r)/bω∗20 (20)

⇒
Q0
∙ eR³R 10 W xW

0
x

´−1 eR0¸−1QR 1
0

R 1
0 k(r − s)dη(r)dη(s)

. (21)

where

eR = RΩ−1/2xx , and Q = eRµZ 1

0
W xW

0
x

¶−1µZ 1

0
W 0

xdW0

¶
(22)
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Note that conditional on W x,
R 1
0 W

0
xdW0 and η(r) are normal random variables with co-

variance

E

(
W0(r)− rW0(1)−

Z r

0
W 0

x

µZ 1

0
W xW

0
x

¶−1 Z 1

0
W xdW0

)Z 1

0
W 0

xdW0

=

Z r

0
W 0

x(s)ds− r

Z 1

0
W 0

x(s)ds−
Z r

0
W 0

x(s)ds

µZ 1

0
W xW

0
x

¶−1 Z 1

0
WxW

0
x

=

Z r

0
W 0

x(s)ds− r

Z 1

0
W 0

x(s)ds−
Z r

0
W 0

x(s)ds = 0, (23)

where we have used
R 1
0 W

0
x(s)ds = 0 by definition. Therefore,

R 1
0 W

0
xdW0 and η(r) are con-

ditionally independent. This implies that
R 1
0

R 1
0 k(r−s)dη(r)dη(s) andQ0[ eR(R 10 W xW

0
x)
−1 eR0]−1Q

are conditionally independent. But conditional on W x, Q
0[ eR(R 10 W xW

0
x)
−1 eR0]−1Q follows

the χ2q distribution, which does not depend on W x. As a result,
R 1
0

R 1
0 k(r − s)dη(r)dη(s)

and Q0[ eR(R 10 W xW
0
x)
−1 eR0]−1Q are independent.

Let

H =

∙ eR
M

¸
m×m

, and H−1 =

∙ eR
M

¸−1
:=
£
A B

¤
m×m (24)

where M is some (m − q) ×m matrix such that H is of full rank m and eR0M = 0, A is
a m × q matrix of rank q, and B is a m × (m − q) matrix. It is clear that eRA = Iq×q
and eRB = 0 since HH−1 = Im×m. Denote fWx = H 0−1Wx and fW x = H 0−1W x, then the
variance of fWx(1) is

eΩxx = ¡HH 0¢−1 = ∙ eR eR0 0
0 MM 0

¸−1
=

∙
( eR eR0)−1 0

0 (MM 0)−1

¸
. (25)

Partition fW x into submatrices
hfW 0

1,fW 0
2

i0
and fWx into submatrices

hfW 0
1,
fW 0
2

i0
, then fW1

and fW2 are independent Brownian motion with Var(fW2(1)) = (MM 0)−1 and

Var(fW1(1)) = ( eR eR0)−1 = (RΩ−1xxR0)−1 := eΛ1eΛ01 (26)

Using W x = H 0fW x, we can rewrite Q as

Q = eRµZ 1

0
H 0fW x

fW 0
xH

¶−1
H 0
Z 1

0

fW xdW0

= eRH−1
µZ 1

0

fW x
fW 0

x

¶−1 Z 1

0

fW xdW0

= eR £ A B
¤Ã R 1

0
fW 1

fW 0
1

R 1
0
fW 1

fW 0
2R 1

0
fW 2

fW 0
1

R 1
0
fW 2

fW 0
2

!−1 " R 1
0
fW 1dW0R 1

0
fW 2dW0

#
(27)

which, by the partitioned inverse formula, is equal to
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µZ 1

0

fW 1
fW 0
1 −

Z 1

0

fW 1
fW 0
2(

Z 1

0

fW 2
fW 0
2)
−1
Z 1

0

fW 2
fW 0
1

¶−1 Z 1

0

fW 1dW0

−
µZ 1

0

fW 1
fW 0
1 −

Z 1

0

fW 1
fW 0
2(

Z 1

0

fW 2
fW 0
2)
−1
Z 1

0

fW 2
fW 0
1

¶−1
×
Z 1

0

fW 1
fW 0
2

µZ 1

0

fW 2
fW 0
2

¶−1 Z 1

0

fW 2dW0

=

µZ 1

0

fW 1.2
fW 0
1.2

¶−1 Z 1

0

fW 1.2dW 0 (28)

by the fact that eRA = Iq×q and eRB = 0 where

fW 1.2 = fW 1 −
Z 1

0

fW 1
fW 0
2(

Z 1

0

fW 2
fW 0
2)
−1fW 2, (29)

the L2 regression residual from projecting fW 1 on fW 2.
Similarly, we can get

R

µZ 1

0
W xW

0
x

¶−1
R0 =

µZ 1

0

fW 1.2
fW 0
1.2

¶−1
. (30)

Thus,

F ∗ ⇒
(
R 1
0
fW 1.2dW 0)

0
³R 1
0
fW 1.2

fW 0
1.2

´−1 R 1
0
fW 1.2dW 0R 1

0

R 1
0 k(r − s)dη(r)dη(s)

= d

(
R 1
0 W 1.2dW 0)

0
³R 1
0 W 1.2W

0
1.2

´−1 R 1
0 W 1.2dW 0R 1

0

R 1
0 k(r − s)dη(r)dη(s)

, (31)

where ‘=d’ denotes distributional equivalence, W 1.2 = W 1 −
R 1
0 W 1W

0
2(
R 1
0 W 2W

0
2)
−1W 2,

the L2 regression residual ofW 1 onW 2, andW 1 is the first q coordinates ofW x, andW 2 is
the last (m − q) coordinates. The distributional equivalence holds because

(
R 1
0 W 1.2dW 0)

0
³R 1
0 W 1.2W

0
1.2

´−1 R 1
0 W 1.2dW 0 is independent of W 1.2.

Under the local alternative hypothesis H1 : Rβ = r + c/T for some c 6= 0, we have

T (Rbβ − r) = RT (bβ − β) + c⇒d ω0Q+ c. (32)

So

T (Rbβ − r)0[R(T−2Mxx)
−1R0]−1T (Rbβ − r)

⇒ (ω0Q+ c)0
" eRµZ 1

0
WxW

0
x

¶−1 eR0#−1 ω0Q+ c

13



= ω20

"µZ 1

0

eΛ−11 fW 1.2
fW 0
1.2
eΛ0−11 ¶−1 Z 1

0

eΛ−11 fW 1.2dW 0 + eΛ01c/ω0
#0

×
µZ 1

0

eΛ−11 fW 1.2
fW 0
1.2
eΛ0−11 ¶

×
"µZ 1

0

eΛ−11 fW 1.2
fW 0
1.2
eΛ0−11 ¶−1 Z 1

0

eΛ−11 fW 1.2dW 0 + eΛ01c/ω0
#

(33)

and

bω∗20 ⇒ ω20

Z 1

0

Z 1

0
k(r − s)dη(r)dη(s) (34)

where η(r) can be represented as

W0(r)− rW0(1)−
Z r

0
W 0

x

µZ 1

0
W xW

0
x

¶−1 Z 1

0
W xdW0

= W0(r)− rW0(1)−
Z r

0

fW 0
xH

µZ 1

0
H 0fW x

fW 0
xH

¶−1 Z 1

0
H 0fW xdW0 (35)

= W0(r)− rW0(1)−
Z r

0

³eΩ−1/2xx
fW x

´0½Z 1

0

eΩ−1/2xx
fW x

³eΩ−1/2xx
fW x

´0¾−1 Z 1

0

eΩ−1/2xx
fW xdW0.

Here we have written the weak limits of both T (Rbβ − r)0[R(T−2Mxx)
−1R0]−1T (Rbβ − r)

and bω∗20 in terms of the transformed Brownian motion fW x so that the weak convergence
in (33) and (34) holds jointly.

Hence,

F ∗ ⇒ F1,∞R 1
0

R 1
0 k(r − s)dη(r)dη(s)

(36)

where

F1,∞ =

"µZ 1

0
W 1.2W

0
1.2

¶−1 Z 1

0
W 1.2dW 0 + δ

#0µZ 1

0
W 1.2W

0
1.2

¶

×
"µZ 1

0
W 1.2W

0
1.2

¶−1 Z 1

0
W 1.2dW 0 + δ

#
, (37)

δ = eΛ01c/ω0 = ¡RΩ−1xxR0¢−1/2 c/ω0.x, and
η(r) =W0(r)− rW0(1)−

Z r

0
W 0

x

µZ 1

0
W xW

0
x

¶−1 Z 1

0
W xdW0. (38)

The weak convergence in (36) follows because we can replace the normalized and demeaned
Brownian motion process eΩ−1/2xx

fW x in (33) and (34) by any demeaned standard Brownian
motion, say, W x without affecting the distribution of their ratio.

The proof of limit distribution of t∗ is straightforward and is omitted.

14



References

Andrews, D. W. K., 1991, Heteroskedasticity and Autocorrelation Consistent Covariance
Matrix Estimation, Econometrica 59, 817—854.

Jansson, M., 2004, On the Error of Rejection Probability in Simple Autocorrelation Robust
Tests, Econometrica, 72, 937-946.

Kiefer, N. M. and T. J. Vogelsang, 2002a, Heteroskedasticity-autocorrelation Robust Test-
ing Using Bandwidth Equal to Sample Size, Econometric Theory 18, 1350—1366.

–––, 2002b, Heteroskedasticity-autocorrelation Robust Standard Errors Using the Bartlett
Kernel without Truncation, Econometrica 70, 2093—2095.

–––, 2005, A New Asymptotic Theory for Heteroskedasiticy-Autocorrelation Robust
Tests, forthcoming, Econometric Theory.

Phillips, P. C. B. and V. Solo, 1992, Asymptotics for Linear Processes, Annals of Statistics,
20, 971—1001.

Phillips, P. C. B., Y. Sun and S. Jin, 2005a, Long Run Variance Estimation and Robust
Regression Testing Using Sharp Origin Kernels with No Truncation, forthcoming,
Journal of Statistical Planning and Inference.

–––, 2005b, Spectral Density Estimation and Robust Hypothesis Testing using Steep
Origin Kernels without Truncation, forthcoming, International Economic Review.

–––, 2005c, Improved HAR Inference Using Power Kernels without Truncation, Yale
University, mimeographed.

15


