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Abstract

We consider a robust version of the classic problem of optimal monopoly pricing

with incomplete information. In the robust version, the seller faces model uncertainty

and only knows that the true demand distribution is in the neighborhood of a given

model distribution.

We characterize the optimal pricing policy under two distinct, but related, decision

criteria with multiple priors: (i) maximin expected utility and (ii) minimax expected

regret. The resulting optimal pricing policy under either criterion yields a robust policy

to the model uncertainty.

While the classic monopoly policy and the maximin criterion yield a single determin-

istic price, minimax regret always prescribes a random pricing policy, or equivalently,

a multi-item menu policy. Distinct implications of how a monopolist responds to an

increase in uncertainty emerge under the two criteria.
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1 Introduction

In the past decade, the theory of mechanism design has found increasingly widespread

applications in the real world, favored partly by the growth of the electronic marketplace

and trading on the internet. Many trading platforms, such as auctions and exchanges,

implement key insights of the theoretical literature. With an increase in the use of optimal

design models, the robustness of these mechanisms with respect to the model speci�cation

becomes an important issue. In this paper, we investigate a robust version of the classic

monopoly problem of selling a product under incomplete information. Optimal monopoly

pricing is the most elementary instance of a pro�t maximizing problem in mechanism design

with incomplete information.

We investigate the robustness of the optimal selling policy by enriching the standard

model to account for model uncertainty. In the classic model, the valuation of the buyer

is drawn from a given prior distribution. In contrast, in the robust version, the seller only

knows that the true distribution is in the neighborhood of a given model distribution. The

size of the neighborhood represents the extent of the model uncertainty faced by the seller.

We consider the neighborhoods induced by the Prohorov metric which is the standard

metric in robust statistical decision theory (see the Huber (1981) and Hampel, Ronchetti,

Rousseeuw, and Stahel (1986)). In the context of our demand model, the Prohorov metric

gives a literal description of the two relevant sources of model uncertainty. With a large

probability, the seller could misperceive the willingness to pay by a small margin, and with

a small probability, the seller could be mistaken about the market parameters by a large

margin. The Prohorov metric incorporates exactly these two di¤erent types of deviations,

allowing both for a large probability of small errors and a small probability of large errors.

The optimal pricing policy of the seller in the presence of model uncertainty is an instance

of decision-making with multiple priors. We therefore build on the axiomatic decision

theory with multiple priors and obtain interesting new insights for monopoly pricing. The

methodological insight is that robustness can be guaranteed by considering decision making

under multiple priors. The strategic insight is that we are able predict how an increase in

uncertainty e¤ects the pricing policy by using exclusively the data of the model distribution.
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There are two leading approaches to incorporate multiple priors into axiomatic decision

making: maximin utility and minimax regret. The maximin utility approach with multiple

priors is due to Gilboa and Schmeidler (1989). Here, the decision maker evaluates each ac-

tion by its minimum expected utility across all priors. The decision maker selects the action

that maximizes the minimum expected utility. The minimax regret approach, originating

in Savage (1951), was axiomatized by Milnor (1954) and recently adapted to multiple priors

by Hayashi (2008) and Stoye (2008). Here, the decision maker evaluates foregone oppor-

tunities using regret and chooses an action that minimizes the maximum expected regret

among the set of priors.

From an axiomatic perspective, the maximin utility and minimax regret criteria rep-

resent di¤erent departures from the standard model of Anscombe and Aumann (1963) by

allowing for multiple priors. The maximin utility criterion emerges by giving up the inde-

pendence axiom and replacing it with the weaker certainty independence axiom and adding

a convexity axiom. The minimax regret criterion emerges by maintaining the certainty inde-

pendence axiom but relaxing the axiom of independence of irrelevant alternatives, to allow

the choice to be menu dependent. A convexity axiom and a version of the betweenness

axiom complete the characterization. Both the maximin utility and the minimax regret

criteria can interpreted as re�nements of subjective expected utility theory.

The analysis of the optimal pricing under the two decision criteria reveals that either

criterion leads to a family of robust policies in the following sense. We say that a candidate

family of policies, indexed by the size of the uncertainty, is robust, if for any demand

su¢ ciently close to the model distribution, the di¤erence between the expected pro�t under

the optimal policy for this demand and the expected pro�t under the candidate policy is

arbitrarily small. While the optimal policies under maximin utility and minimax regret

share the robustness property, the response to the uncertainty leads to distinct qualitative

features.

The pricing policy of the seller is obtained as the equilibrium strategy of a zero-sum game

between the seller and adversarial nature. The strategy by nature selects the least favorable

demand given the objective of the seller. Under maximin utility the seller is worse o¤ when

valuations are lower. The least favorable demand thus maximizes the weight on the lowest
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valuations subject to the restriction that the selected distribution is in the neighborhood

of the model distribution. In particular, as we increase the uncertainty represented by an

increase in the size of the neighborhood, the buyers valuations as determined by the least

favorable demand are lower in the sense of �rst order stochastic dominance. In consequence

the best response of the seller always consists in lowering her price.

When we analyze the behavior under regret minimization, the optimal pricing policy is

still determined by a zero-sum game between the seller and nature. The notion of regret

modi�es the trade-o¤ for the seller and for nature. The regret of the seller is the di¤erence

between the actual valuation of a buyer for the object and the actual pro�t obtained by

the seller. The regret of the seller can therefore be positive for two reasons: (i) a buyer

has a low valuation relative to the price and hence does not purchase the object, or (ii) he

has a high valuation relative to the price and hence the seller could have obtained a higher

pro�t. In the equilibrium of the zero-sum game, the optimal pricing policy of the seller has

to resolve the con�ict between the regret which arises with low prices against the regret

associated with high prices. If the seller o¤ers a low price, nature can cause regret with

a distribution which puts substantial probability on high valuation buyers. On the other

hand, if the seller o¤ers a high price, nature can cause regret with a distribution which puts

substantial probability at valuations just below the o¤ered price. It then becomes evident

that a single price will always expose the seller to substantial regret. Consequently, the

seller can decrease her exposure by o¤ering many prices. This can either be achieved by

a probabilistic price or, alternatively, by a menu of prices. With a probabilistic price, the

seller diminishes the likelihood that nature will be able to cause large regret. Equivalently,

the seller can o¤er a menu of prices and quantities. The quantity element in the menu

can either represent the quantity of a divisible object or the probability of obtaining an

indivisible object.

We provide additional intuition by contrasting the pricing policy under regret to the

standard pro�t maximizing policy. An optimal policy for a given distribution of valuations

is always to o¤er the entire object at a �xed price (a classic result by Harris and Raviv

(1981) and Riley and Zeckhauser (1983)). In contrast, here the policy will o¤er many prices

(with varying quantities). With a single price, the risk of missing a trade at a valuation just
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below the given price is substantial. On the other hand, if the seller were simply to lower

the price, she would miss the chance of extracting pro�t from higher valuation customers.

She resolves this con�ict by o¤ering smaller trades at lower prices to the low valuation

customers. The size of the trade is simply the probability by which a trade is o¤ered or

the quantity o¤ered at a given price. In the game against nature, the seller will have to

be indi¤erent between o¤ering small and large trades. In terms of the virtual utility, the

key notion in optimal mechanisms, this requires that the seller will receive zero virtual

utility over a range of valuations. The resulting conditions on the distribution of valuations

determine the least favorable demand. Importantly, an increase in uncertainty may now

lead to an increase in the expected price. In the special case of a linear model distribution,

we �nd that the expected price increases if the optimal price for the model distribution is

low and decreases if the optimal price for the model distribution is high.

We conclude the introduction with a brief discussion of the directly related literature.

The basic ideas of robust decision making (see De�nition 1) were �rst formalized in the

context of statistical inference, in particular, with respect to the classic Neyman-Pearson

hypothesis testing framework. The statistical problem is to distinguish between two known

distributions on the basis of a sample. The model misspeci�cation and consequent concern

for robustness come from the fact that each of the two distributions might be misspeci�ed.

Huber (1964), (1965) �rst formalized robust estimation as the solution to a minimax problem

and an associated zero-sum game. A recent contribution by Prasad (2003) employs this

notion of robustness to the optimal policy without uncertainty, where it is referred to as

�-robustness, and demonstrates the non-robustness of some economic models. In particular,

he shows that the pro�t maximizing price in the optimal monopoly problem considered here

is not robust to model misspeci�cation. The non-robustness is demonstrated by a simple

example. Suppose the model distribution is a Dirac distribution, which put probability

one on a particular valuation v. Then the optimal monopoly price p is equal to v. This

policy is not robust to model misspeci�cation, because if the true model puts probability

one on a value arbitrarily close, but strictly below v, then the resulting revenue is 0 rather

than v. One of the objectives of this paper to identify robust policies, but not necessarily

the optimal policy without uncertainty, that do not su¤er from such discontinuity in the
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pro�ts.1

A recent paper by Bose, Ozdenoren, and Pape (2006) determines the optimal auction

in the presence of an uncertainty averse seller and uncertainty averse bidders. Lopomo,

Rigotti, and Shannon (2006) consider a general mechanism design setting when the agents,

but not the principal, have incomplete preferences due to Knightian uncertainty. In related

work, Bergemann and Schlag (2008) consider the optimal monopoly problem under regret

without any priors. There, the analysis is concerned with optimal policies in the absence

of information rather than robustness and responsiveness to uncertainty as in the current

contribution. The notion of regret was investigated in mechanism design by Linhart and

Radner (1989) in the context of bilateral trade as well as by Engelbrecht-Wiggans (1989)

and Selten (1989) in the context of auctions. Recently, Engelbrecht-Wiggans and Katok

(2007) and Filiz-Ozbay and Ozbay (2007) present experimental evidence indicating concern

for regret in �rst price auctions.

The remainder of the paper is organized as follows. In Section 2, we present the model,

the notion of robustness and the neighborhoods. In Section 3, we characterize the pricing

policy under the maximin utility criterion. In Section 4, we characterize the pricing policy

under the minimax regret criterion. We show that the resulting policies are robust under

either criterion. Section 5 concludes with a discussion of some open issues. The appendix

collects auxiliary results and the proofs.

2 Model

2.1 Monopoly

The seller faces a single potential buyer with value v 2 [0; 1] for a unit of the object. The

value v is private information to the buyer and unknown to the seller. The buyer wishes

to buy at most one unit of the object. The marginal cost of production is constant and

normalized to zero. The net utility of the buyer with value v of purchasing a unit of the

1There is also a rapidly growing literature on robust decision making in macroeconomics, see Hansen and

Sargent (2007) for a comprehensive introduction, that uses related notions of robustness for maximizing the

minimum utility in the context of intertemporal decision-making.
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object at price p is v � p. The pro�t of selling a unit of the object at a deterministic price

p 2 R+ if the valuation of the buyer is v is:

� (p; v) , pIfv�pg;

where Ifv�pg is the indicator function specifying:

Ifv�pg =

8<: 0; if v < p;

1; if v � p:

By extension, if the valuation of the buyer is v, a random pricing policy � 2 �R+ yields

an expected pro�t:

� (�; v) ,
Z
� (p; v) d� (p) .

Given the risk neutrality of the buyer and the seller, a random pricing policy � by the

seller can alternatively by represented as a menu policy (q; t (q)) where q is the probability

that the buyer receives the object and t (q) is the tari¤ that the buyer pays for the probability

q. Given the random pricing policy �, we can de�ne for every p 2 supp f�g :

q , � (p) ; (1)

and the corresponding nonlinear price t (q) as:

t (q) ,
Z p

0
yd� (y) : (2)

In the menu interpretation, q is either the probability of receiving the object if the object

is indivisible or the quantity if the object is divisible.

In the classic monopoly problem with incomplete information, the seller maximizes the

expected pro�t for a given prior F over valuations. In the robust version, we assume that

the seller faces uncertainty (or ambiguity) in the sense of Ellsberg (1961). The uncertainty

is represented by a set of possible distributions. We �rst introduce the basic notation for the

classic monopoly model and then de�ne the model with uncertainty. For given a distribution

F and given deterministic price p, the expected pro�t is:

� (p; F ) ,
Z
� (p; v) dF (v) .
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We note that the demand generated by the distribution F can either represent a single large

buyer or many small buyers. In this paper, we phrase the results in terms of a single large

buyer, but the results generalize naturally to the case of many small buyers.

With a random pricing policy � 2 �R+, the expected pro�t is given by:

� (�; F ) ,
Z Z

� (p; v) d� (p) dF (v) .

A random pricing policy that maximizes the pro�t for given distribution F is denoted by

�� (F ):

�� (F ) 2 argmax
�2�R+

� (�; F ) .

A well-known result by Riley and Zeckhauser (1983) states that for every distribution F ,

there exists a deterministic price p� (F ) that maximizes pro�ts, so:

� (p� (F ) ; F ) = max
�2�R+

� (�; F ) .

2.2 Uncertainty

We assume that the seller faces uncertainty (or ambiguity) in the sense of Ellsberg (1961).

The uncertainty is represented by a set of possible distributions, where the set is described

by a model distribution F0 and includes all distributions in a neighborhood of size " of

the model distribution F0. The magnitude of the uncertainty is thus quanti�ed by the size

of the neighborhood around the model distribution. Given the model distribution F0 we

denote by p0 a pro�t maximizing price at F0:

p0 , p� (F0) :

For the remainder of the paper we shall assume that at the model distribution F0: (i) p0 is

the unique maximizer of the pro�t function � (p; F0) and (ii) the density f0 is continuously

di¤erentiable near p0. These regularity assumptions enable us to use the implicit function

theorem for the local analysis.

We consider two di¤erent decision criteria that allow for multiple priors: maximin utility

and minimax regret. In either approach, the unknown state of the world is identi�ed with

the value v of the buyer.
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Neighborhoods Given the model distribution F0, we de�ne the " neighborhoods, denoted

by P" (F0), through the Prohorov metric:

P" (F0) = fF jF (A) � F0 (A") + "; 8 measurable A � [0; 1]g , (3)

where the set A" denotes the closed " neighborhood of any measurable set A.2 Formally,

the set A" is given by:

A" =

�
x 2 [0; 1]

���� miny2A
d (x; y) � "

�
;

where d (x; y) = jx� yj is the distance on the real line. The Prohorov metric has evidently

two components. The additive term " in (3) allows for a small probability of large changes

in the valuations relative to the model distribution whereas the larger set A" permits large

probabilities of small changes in the valuations. The Prohorov metric is a metric for weak

convergence of probability measures.

Maximin Utility Under maximin utility, the seller maximizes the minimum utility, where

the utility of the seller is simply the pro�t, by solving:

�m 2 argmax
�2�R+

min
F2P"(F0)

� (�; F ) :

Accordingly, we say that �m attains maximin utility. We refer to Fm as a least favorable

demand (for maximin utility) if

Fm 2 argmin
F2P"(F0)

max
�2�R+

� (�; F ) :

The least favorable demand Fm minimizes pro�ts across all pro�t maximizing pricing poli-

cies.3

2See Dudley (2002) for the de�nition of the Prohorov metric and the link to weak convergence and Huber

(1981) and Hampel, Ronchetti, Rousseeuw, and Stahel (1986) for its application in robust statistics.
3Klibano¤, Marinacci, and Mukerji (2005) propose a related and smooth model of ambiguity aversion by

enriching the multiple prior model with a belief � over distributions and with an increasing transformation

' representing ambiguity aversion. The additional elements, belief � and ambiguity index ', render the

analysis of multiple priors richer but also substantially more complex. In addition, the one-dimensional

representation of ambiguity in terms of the size of the neighborhood is not available anymore.

9



Minimax Regret The regret of the monopolist at a given price p and valuation v of a

buyer is de�ned as:

r (p; v) , v � pIfv�pg = v � � (p; v) ; (4)

The regret of the monopolist charging price p facing a buyer with value v is the di¤erence

between (i) the pro�t the monopolist could make if she were to know the value v of the

buyer before setting her price and (ii) the pro�t she makes without this information. The

regret is non-negative and can only vanish if p = v. The regret of the monopolist is strictly

positive in either of two cases: (i) the value v exceeds the price p, the indicator function

is then Ifv�pg = 1; or (ii) the value v is below the price p, the indicator function is then

Ifv�pg = 0.

The expected regret with a random pricing policy � when facing a distribution F is

given by:

r (�; F ) ,
Z
r (p; v) d� (p) dF (v) =

Z
vdF (v)�

Z
� (p; F ) d� (p) . (5)

Thus, the probabilistic price � is pro�t maximizing at F if and only if � minimizes (ex-

pected) regret when facing F: The pricing policy �r 2 �R+ attains minimax regret if it

minimizes the maximum regret over all distributions F in the neighborhood of a model

distribution F0:

�r 2 argmin
�2�R+

max
F2P"(F0)

r (�; F ) :

Fr is called a least favorable demand if

Fr 2 argmin
F2P"(F0)

min
�2�R+

r (�; F ) = argmax
F2P"(F0)

�Z
vdF (v)� max

�2�R+
� (�; F )

�
:

Thus, a least favorable demand maximizes the regret of a pro�t maximizing seller who

knows the true demand. It should be pointed out that while this regret criterion seems to

relate to foregone opportunities when the information is revealed ex post, this particular

interpretation is solely an additional feature of the minimax regret model. In particular,

the decision maker does not need additional information to become available ex post. As

in the case of the maximin utility criterion of Gilboa and Schmeidler (1989), the minimax
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regret criterion in Hayashi (2008) and Stoye (2008) is completely characterized by a set of

axioms.4

The notion of regret naturally extends to the case of many buyers as follows. The

regret of the seller facing n buyers is equal to the sum of the regret accrued over n buyers

and n, possibly distinct, prices. While the seller is thus allowed to o¤er a di¤erent price

to each buyer, the additivity of the regret implies that we can con�ne attention to price

(distributions) which are identical across buyers.

2.3 Robust Pricing

For a given model distribution F0, we de�ne a robust family of random pricing policies,

f�"g">0, which are indexed by the size of the neighborhood " as follows.

De�nition 1 (Robust Pricing)

A family of pricing policies f�"g">0 is called robust if, for each  > 0, there is " > 0 such

that:

F 2 P" (F0) ) � (�� (F ) ; F )� � (�"; F ) < :

The above notion presents a formal criterion of robust decision making in the spirit

of the statistical decision literature pioneered by Huber (1964). It requires that for every,

arbitrarily small, upper bound , on the di¤erence in the pro�ts between the optimal policy

�� (F ) without uncertainty and an element of robust family of policies f�"g, we can �nd

a su¢ ciently small neighborhood " so that the robust policy �" meets the upper bound 

for all distributions in the neighborhood. Each member �" in the robust family f�"g">0 is

allowed to depend on the size " of the neighborhood. A natural and ideal candidate for a

robust policy is the optimal policy �� (F ) itself. In other words, we would require that for

each  > 0, there is " > 0 such that:

F 2 P" (F0) ) � (�� (F ) ; F )� � (�� (F0) ; F ) < : (6)

4 In particular, the axiomatic approach to minimax regret is distinct from the ex-post measure of regret

due to Hannan (1957) in the context of repeated games or from the more behavioral approaches to regret

o¤ered by Bell (1982) and Loomes and Sugden (1982).
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This notion of robustness, applied directly to the optimal policy �� (F ), constitutes the

de�nition of � robustness in Prasad (2003) and his earlier mentioned example of the Dirac

distribution shows that the optimal policy �� (F ) is in general not robust.5 For a given model

distribution F0, there are potentially many robust families of pricing rules. Our objective is

to select among these rules by considering decision making under multiple priors and then

to show that the resulting pricing rules are robust in the above sense of statistical decision

making.

3 Maximin Utility

We consider the problem of the monopolist who wishes to maximize the minimum pro�t for

all distributions in the neighborhood of the model distribution F0. Following Von Neumann

(1928), the pricing rule that attains maximin utility can be viewed as the equilibrium strat-

egy in a game between the seller and adversarial nature. The seller chooses a probabilistic

price � and nature chooses a demand distribution F from the set P" (F0). In this game, the

payo¤ of the seller is the expected pro�t while the payo¤ of nature is the negative of the

expected pro�t. Formally, a Nash equilibrium of this zero-sum game can be characterized

as a solution to the saddle point problem of �nding (�m; Fm) that satisfy:

� (�; Fm) � � (�m; Fm) � � (�m; F ) ; 8� 2 �R+, 8F 2 P" (F0) . (SPm)

In other words, at (�m; Fm) the probabilistic price �m is pro�t maximizing at Fm and Fm

is a pro�t minimizing demand given �m.

The objective of adversarial nature is to lower the expected pro�t of the seller. For

a given price p o¤ered by the seller, the pro�t minimizing demand given p is achieved by

increasing the cumulative probability of valuations strictly below p as much as possible

within the neighborhood. The pro�t minimizing demand then minimizes the probability of

sale by the seller. Given the model distribution F0 and the size " of the neighborhood, the

5 In Prasad (2003), the de�nition of � robustness evaluates the pro�ts at the model distribution F0 rather

than at the elements F in the neighborhood P" (F0) of the model distribution F0 as in (6). This di¤erence

is irrelevant in the case of a failure of robustness, which is the focus in Prasad (2003), due to the symmetry

property of the Prohorov distance.
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resulting distribution is uniquely determined for every p (up to a set of measure 0). The

equilibrium analysis is now simpli�ed by the fact that the pro�t minimizing demand does

not depend on the, possibly probabilistic, price of the seller. We obtain the least favorable

demand by shifting the probabilities as far down as possible, given the constraints imposed

by the model distribution F0 and the size " of the neighborhood.

The exact construction of the least favorable demand in the Prohorov metric is rather

transparent. Given a model demand F0 and a neighborhood size ", we shift, for every v, the

cumulative probability of the model distribution F0 at the point v+ " downwards to be the

cumulative probability at the point v. In addition, we transfer the very highest valuations

with probability " to the lowest valuation, namely v = 0: This results in the distribution

Fm that is within the " neighborhood of F0, with Fm given by:

Fm (v) , min fF0 (v + ") + "; 1g : (7)

The �rst shift represents the possibility that small changes in valuations may occur with

large probability. The second shift represents the idea of large changes occurring with a

small probability. It is easily veri�ed Fm is a pro�t minimizing demand for any price given

the constraint imposed by the size of the neighborhood. We illustrate the least favorable

demand Fm and the price pm that attain maximin utility below for a model distribution

with uniform density on the unit interval and a neighborhood of size " = 0:05. We visualize

the uncertainty around the model demand F0 by the grey shaded area, which represents

the smallest set that contains all cumulative distributions that lie within the Prohorov

neighborhood of the uniform distribution (see also Lemma 1 for a characterization of the

distribution functions that lie within the Prohorov neighborhood.)

Insert Figure 1: Pricing and Least Favorable Demand under Maximin Utility

Given that the pro�t minimizing demand Fm does not depend on the o¤ered prices,

the monopolist acts as if the demand is given by Fm. In consequence, the seller maximizes

pro�ts at Fm by choosing a deterministic price pm where

pm , p� (Fm) :
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Proposition 1 (Maximin Utility)

For every " > 0; there exists a pair (pm; Fm), such that pm 2 [0; 1] attains maximin utility

and Fm is a least favorable demand.

An important implication of the above result is that a deterministic pricing policy pm

can always attain maximin utility. In contrast, under minimax regret a random pricing

policy will always be strictly preferred to a deterministic pricing policy.

We now ask how the optimal price will change with an increase in uncertainty. The

rate of the change in the price depends on the curvature of the pro�t function at the model

distribution F0. By the earlier assumption of concavity, we know that the curvature is

negative and given by:

@2� (p0; F0)

@p2
= �2f0 (p0)� p0f 00 (p0) < 0:

We can directly apply the implicit function theorem to the optimal price p0 at the model

distribution F0 and obtain the following comparative static result.

Proposition 2 (Pricing under Maximin Utility)

The price pm responds to an increase in uncertainty at " = 0 by:

dpm
d"

����
"=0

= �1 + 1� f0 (p0)
@�2 (p0; F0) =@p2

< �1
2
:

Accordingly, the price that attains maximin utility responds to an increase in uncertainty

with a lower price. Marginally, this response is equal to �1 if the objective function is

in�nitely concave. As the pro�t function becomes less concave, the rate of the price change

increases as the pro�t function of the seller becomes less sensitive to a (downward) change

in price and a more aggressive response of the seller diminishes the impact that the least

favorable demand has on the sales of the monopolist.

Consider now the pro�ts realized by the price pm;" - which attains maximin utility

within the neighborhood P" (F0) - at a given distribution F 2 P" (F0). By construction,

these pro�ts will be at least as high as those obtained when facing the least favorable

demand Fm. We now use the lower bound on the pro�ts supported by Fm to show that the

optimal pro�ts are continuous in the demand distribution F . This will imply that pro�ts
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achieved by pm;" when facing F are close to those achieved by p� (F ) when facing F: The

family of pricing rules that attain maximin utility thus qualify as being robust.

Proposition 3 (Robustness)

The family of pricing policies fpm;"g">0 is a robust family of pricing policies.

4 Minimax Regret

4.1 Random Pricing

Next we consider the minimax regret problem of the seller. In contrast to the case of

maximin utility, we now �nd that the seller chooses to o¤er a random pricing policy. The

minimax regret strategy �r and the least favorable demand Fr are the equilibrium policies

of a zero-sum game. In this zero-sum game, the payo¤ of the seller is the negative of the

regret while the payo¤ to nature is regret itself. That is, (�r; Fr) can be characterized as a

solution to the saddle point problem of �nding (�r; Fr) that satisfy:

r (�r; F ) � r (�r; Fr) � r (�; Fr) ; 8� 2 �R+, 8F 2 P" (F0) . (SPr)

The saddlepoint result permits us to link minimax regret behavior to payo¤maximizing

behavior under a prior as follows. When minimax regret is derived from the equilibrium

characterization in (SPr) then any price chosen by a monopolist who minimizes maximal

regret, is at the same time a price which maximizes expected pro�t against a particular

demand, namely, the least favorable demand. In fact, the saddle point condition requires

that �r is a probabilistic price that maximizes pro�ts given Fr and Fr is a regret maximizing

demand given �r.6

In the equilibrium of the zero-sum game, the probabilistic price has to resolve the con�ict

between the regret which arises with low prices, against the regret associated with high

prices. The regret of the seller depends critically on the price o¤ered by the seller. If
6We emphasize that we consider a simultaneous move game between the seller and nature. In this static

environment, the earlier discussed axiomatic foundations lead the decision-maker, here the seller, to be

concerned with the expected regret of the mixed pricing rule. In contrast, in a multi-stage game, one might

analyze the regret relative to a realized price to avoid time inconsistency by the decision-maker.
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she o¤ers a low price, nature can cause regret with a distribution which puts substantial

probability on high valuation buyers. On the other hand, if she o¤ers a high price, nature can

cause regret with a distribution which puts substantial probability at valuations just below

the o¤ered price. It now becomes evident that a single price will always expose the seller

to substantial regret. Conversely, the regret maximizing demand will now typically depend

on the price o¤ered by the seller. In fact, the seller can decrease her exposure by o¤ering

many prices in form of a probabilistic price. In contrast to the maximin pro�t, the regret

maximizing demand is the result of an equilibrium argument and cannot be constructed

independently of the strategy of the seller. We shall prove the existence of a solution to the

saddlepoint problem (SPr) and thus existence of a probabilistic price attaining minimax

regret using results from Reny (1999).

Proposition 4 (Existence of Minimax Regret)

A solution (�r; Fr) to the saddlepoint condition (SPr) exists.

The minimax regret probabilistic price of the seller has to respond to a set of possible

distributions. With an adversarial nature, the minimax regret policy of the seller is to o¤er

many prices. We might guess intuitively that even the lowest price o¤ered by the seller is

not very far away from p0, the optimal price for the model distribution. In consequence,

the price might not be low enough to dissuade nature from �undercutting� by placing

probability just below the lowest price o¤ered by the seller. This in turn might suggest

that an equilibrium of the minimax regret pricing game fails to exist, however contradicting

Proposition 4 above. Equilibrium strategies will be established by using the constraints on

the least favorable demand. Naturally, the seller will price close to the optimal price without

uncertainty. A mass point in the pricing strategy of the seller will be placed precisely at the

point where nature is constrained by the neighborhood to shift any additional probability

from above to just below the mass point of the seller. The seller then places the remaining

mass in a neighborhood [a; c] of this mass point b to protect against an increase in regret

through local increases in values near this mass point.
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Proposition 5 (Minimax Regret)

1. Given � > 0; if " is su¢ ciently small, there exist a; b and c with 0 < a < b < c < 1

and p0 � � < a < p0 < c < p0 + � such that a minimax regret probabilistic price �r is

given by:

�r (p) =

8>>>>>><>>>>>>:

0 if 0 � p < a;

ln pa if a � p < b;

1� ln cp if b � p � c;

1 if c < p � 1:

2. The boundary points a; b and c respond to an increase in uncertainty at " = 0:

(a) lim"!0 a0 (0) = �1;

(b) lim"!0 b0 (0) is �nite,

(c) lim"!0 c0 (0) =1:

We construct a probabilistic price that attains minimax regret by means of the implicit

function theorem, for which we need the di¤erentiability of the density function near p0.

The least favorable demand makes the seller indi¤erent among all prices p 2 [a; c]. As

uncertainty increases, the interval over which the seller randomizes increases substantially

in order to protect against nature either undercutting or moving mass to the highest possible

prices. At the same time, the mass point b does not change drastically.

We now illustrate the equilibrium behavior with the uniform model distribution:

F0 (v) = v;

where the pro�t maximizing price p0 under the model distribution is given by p0 = 1
2 : We

graphically represent the optimal behavior of the seller and nature for a small neighborhood.

Insert Figure 2: Pricing and Least Favorable Demand under Minimax Regret

The interior curve in the above graph identi�es the model distribution. Constraints

induced by small changes in values cause the distribution function of Fr to be within an "
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bandwidth of the model distribution. The large changes of values, occurring with probability

of at most ", move the smallest valuation to the largest valuation, namely 1. The strategy

of nature is then to place as little probability as necessary below the range of the prices

o¤ered by the seller and to shift values above the range as high as possible. Inside the range

of prices o¤ered by the seller, nature uses a density function which maintains the virtual

utility of the seller at 0. In turn, the seller sets the density to make nature indi¤erent

between all values above the mass point and all values below the mass point. Given the

mass point set by the seller, nature shifts as much mass as possible below this point. We

observe that even with the small neighborhood of " = 0:05, the impact of the uncertainty

on the probabilistic price is rather large and leads to a wide spread in the prices o¤ered by

the seller.

It remains to describe the comparative static of the probabilistic price and the regret

of the seller as a function of the size of the neighborhood. The behavior of regret and

of the expected price to a marginal increase in uncertainty can be explained by the �rst

order e¤ects. For a small level of uncertainty, we may represent the regret through a linear

approximation

r� = r0 + "
@r�

@"
,

where r0 is the regret at the model distribution. For a small level of uncertainty, the marginal

change in regret can then be computed by holding the probabilistic price of the seller at

the optimal price p0 without uncertainty. Suppose then for the moment that p0 � 1
2 : If the

uncertainty increases marginally, the constraints on the choice of a least favorable demand

are relaxed. What precisely then can nature do, given the speci�cation of neighborhood.

First, nature can place the density f0 (p0) slightly below p0 to marginally increase regret

by p0f0 (p0), then nature can shift each value up by " to marginally increase regret by 1

and �nally shift mass from 0 to 1 to marginally increase regret by 1 � p0: The �rst two

changes correspond to small changes in valuation with large probability, the third to large

changes in the valuation with small probability. So the overall marginal e¤ect on regret of

an increase in " near " = 0 is p0f0 (p0) + 1 + (1� p0). If instead the optimal price without

uncertainty were p0 > 1
2 , then the robust modi�cation would only pertain to the third

element as nature would move mass from 0 to just below p0, so that the marginal increase
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would be p0f0 (p0) + 1 + p0.

The optimal response of the seller to an increase in uncertainty is now to �nd a proba-

bilistic price which minimizes the additional regret

"
@r�

@"
;

coming from the increase in uncertainty. Of course, the consequence of adjusting the price to

minimize the marginal regret is that it changes the regret relative to the model distribution

F0. Locally, the cost of moving the price away from the optimum is given by the second

derivative of the objective function. With small uncertainty, the curvature of the regret

is identical to the curvature of the pro�t function. The rate at which the minimax regret

price responses to an increase in uncertainty is then simply the ratio of the response of the

marginal regret to a change in price divided by the curvature of the pro�t function, or

@E
@"
[�r] =

@2r�

@"@p

@2�(p0;F0)

(@p)2

.

The next proposition shows that the above intuition can be made precise and shows its

implication for the net utility of the buyer.

Proposition 6 (Comparative Statics with Minimax Regret)

The expected price E [�r] responds to an increase in uncertainty at " = 0 by:

@

@"
E [�r]j"=0 =

8<: �1� f0(p0)+1
@�2(p0;F0)=@p2

> �1 if p0 � 1
2 ;

�1� f0(p0)�1
@�2(p0;F0)=@p2

< �1
2 if p0 >

1
2 :

(8)

We observe that for p0 > 1
2 , the response of the expected price E [�r] to an increase in

uncertainty is identical under regret minimization and pro�t maximization. The di¤erence

arises at a low level of p0 at which the seller is less aggressive in lowering her price due to

an increase in uncertainty. For the case of p0 � 1
2 , it turns out that the expected price can

be strictly increasing in ": In fact, we �nd that in the class of linear densities the change

in expected price as well as the change in the mass point is strictly positive if, and only

if, the density is strictly decreasing. This has to be contrasted with the maximin behavior

where any increase in size of the uncertainty has a downward e¤ect on prices for all model

distributions.
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4.2 Menu Pricing

The equilibrium menu policy can be directly derived from the random pricing policy �r.

We identify the regret minimizing menu (q; tr (q)) by determining the transfer price of every

o¤ered quantity q through the random pricing policy �r. The resulting net utility for a

buyer with value v is given by:

q � v � tr (q) :

Speci�cally, the construction of the menu (q; tr (q)) proceeds as follows. Every price p 2 R+
of the random pricing policy �r such that p 2 supp (�r), determines a probability q in the

menu by:

q , � (p) ; (9)

and a corresponding nonlinear price tr (q) for the quantity q by:

tr (q) ,
Z p

0
yd� (y) : (10)

By the very construction of the transfer function tr (q), it follows that a buyer with value

v will select the item q on the menu such that q = �(v). The self-selection condition for

a buyer with value v is determined by choosing the quantity q, such that the net utility of

the buyer is maximized, or

v � t0r (q) = 0,

which occurs at q = �(v) as t0r (q) = v by (10). By the taxation principle in the theory

of mechanism design, the menu (q; tr (q)) can also be viewed as an incentive compatible

allocation plan (qr (v) ; tr (v)) in the corresponding direct mechanism.

The equilibrium use of menus allows us to understand the selling policies from a di¤erent

and perhaps more intuitive point of view. The optimality of menus emphasizes the concern

for robustness as menus would never be used in the standard setting for a given demand

distribution. The minimax regret menu o¤ered by seller has three important characteristics.

These properties can be described with reference to the mass point b in the random pricing

policy �r of Proposition 5: (i) low volume o¤ers are made for buyers with low valuations,

or v < b, (ii) a much higher o¤er is made for all buyers with valuation v = b, and (iii)

even higher volume o¤ers are made to buyers with large values v > b. We may think of
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a standard o¤er as given by the quantity o¤ered at v = b. In addition, the seller o¤ers

low volume downgrades and high volume upgrades. The expanded menu relative to the

optimal single item menu for the model distribution, seeks to minimize the exposure to

regret. Obviously, the seller loses pro�ts on the high value buyers from making o¤ers to

the low value buyers by granting the high value buyers a larger information rent. The size

of the information rent is kept small by o¤ering menu items to the low value buyers only

of substantially lower volume. This is the source of the gap in the quantities o¤ered in the

menu.

Insert Figure 3: Menu Pricing Under Minimax Regret

The response of the seller to an increase in uncertainty is informative when we consider

menus. In a menu, the seller is o¤ering many di¤erent choices to the buyers. An immediate

question therefore is how the size of the menu and the associated prices change with an

increase in the uncertainty. The size of the menu is simply the range of quantities o¤ered

by the seller (and accepted by some buyers) in equilibrium.

Proposition 7 (Menus and Uncertainty)

For small uncertainty ":

1. The size of the menu is increasing in ":

2. The price per unit tr (v) =qr (v) is decreasing in " for every v 2 (a; c) nb.

As the uncertainty increases, the seller seeks to minimize her exposure to regret by

o¤ering more choices to the buyers and hence increasing the probability of a sale, even

if the sale is not �big� in terms of the sold quantity. For every given valuation v, the

seller also increases the size of the deal o¤ered. As larger deals are o¤ered to buyers with

lower valuations, it follows that the seller is willing to concede a larger information rent

to buyers with higher valuations. In consequence, the average price per unit is decreasing

as well. Jointly, these three properties imply that the seller is o¤ering her products more

aggressively and to a larger number of buyers with an increase in uncertainty. We observe

that the monotonicity in the unit price holds even as the previous proposition showed that
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the expected price may be increasing. The resolution of this apparent con�ict comes from

the fact that the seller is o¤ering larger quantities in response to an increase in uncertainty.

An interesting comparison to a minimax regret decision maker is a risk averse decision

maker. In particular, we could ask how the behavior of a risk averse seller would di¤er

from the behavior of a minimax regret seller. Clearly, a risk averse seller would never �nd

a probabilistic price optimal. However, if she were to be allowed to o¤er a menu, either of

lotteries (in terms of probabilities of receiving the good) or di¤erent qualities of the good,

then a risk averse seller might indeed o¤er a menu. The menu would consist of a set of

possible quantity and price combinations. The di¤erence with respect to the minimax regret

seller would then be in the shape of the menu. In particular, if a risk averse seller were

to face a continuous demand function (as expressed by F0), then the optimal menu can be

shown to be continuous. Yet, with a minimax regret seller, we saw that the optimal menu is

discontinuous (at a single jump point) and essentially o¤ers two (or three) classes of distinct

service.

The minimax regret problem with uncertainty then o¤ers an interesting and novel reason

for menus to complement existing insights. The literature currently o¤ers two leading

explanations for menus in the standard monopoly setting: menus can be optimal if the

marginal willingness to pay changes with the quantity o¤ered as in Deneckere and McAfee

(1996) or if the buyers are budget constrained as in Che and Gale (2000).

4.3 Robustness

We conclude this section by showing that the solution to the minimax regret problem also

generates a robust family of policies in the sense of De�nition 1.

Proposition 8 (Robustness)

If f�r;"g">0 attains minimax regret at F0 for all su¢ ciently small ", then f�r;"g">0 is a

robust family of pricing policies.
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5 Conclusion

In this paper, we analyzed pricing policies of a monopolist which are robust to model

uncertainty. The introduction of uncertainty about the true demand distribution formally

lead to a decision theoretic model with multiple priors. The parsimonious representation

of the uncertainty in terms of the neighborhood of a model distribution allowed us to deal

with added complexity and maintain an intuitive understanding of how uncertainty a¤ects

optimal policies.

We analyzed the optimal pricing of a monopolist under two distinct, but related decision

criteria with multiple priors: maximin pro�t and minimax regret. We showed that the

solution under either criterion yields a robust solution in the statistical sense. The expected

pro�t under either pricing rule is arbitrarily close to the optimal price for any distribution in

a su¢ ciently small neighborhood of the model distribution. Despite the common robustness

property, the prices respond di¤erently to the uncertainty. The maximin policy uniformly

maintains a deterministic price policy and uniformly lowers the price as a response to an

increase in uncertainty. In contrast, the minimax policy balances the downside versus the

upside when responding to the uncertainty. Here the trade-o¤ is optimally resolved by

a probabilistic price. Importantly, the expected price does not necessarily decrease with

an increase in uncertainty. Interestingly, an equivalent policy to the probabilistic price is

achieved by a menu. The menu o¤ers a variety of quantities, ranging from small to large, to

the buyer. By o¤ering a menu, the seller can guarantee himself small deals on the downside

and large deals on the upside. In consequence, the seller hedges to reduce maximal regret

by o¤ering multiple choices through a menu. A common feature of both models of decision

making is that we can analyze how uncertainty in�uences pricing without adding degrees

of freedom to the model. This renders our results parsimonious and falsi�able.

The problem of optimal monopoly pricing is in many respects the most elementary

mechanism design problem. It would be of interest to extend the insights and apply the

techniques developed here to a wider class of design problems, such as the discriminating

monopolist (as in Mussa and Rosen (1978) and Maskin and Riley (1984)) and optimal

auctions. The monopoly setting has the simplifying feature that the buyers have complete
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information about their payo¤ environment. Given their known valuation and known price,

each buyer simply has to make a decision as to whether or not to purchase the object. With

the complete information of the buyer, there is no need to look for a robust purchasing rule.

A substantial task would consequently arise by considering multi-agent design problems

with incomplete information such as auctions, where it becomes desirable to simultaneously

make the decisions of the buyers and the seller robust. The complete solution of these

problems poses a rich �eld for future research.
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6 Appendix

The appendix contains some auxiliary results as well as the proofs for the results in the

main body of the text.

Proof of Proposition 1. As shown in the text, if Fm is such that

Fm (v) = min fF0 (v + ") + "; 1g ,

then � (p; Fm) � � (p; F ) for all F 2 P" (F0) : On the other hand, if pm = p� (Fm), then

� (pm; Fm) � � (p; Fm) holds for all p by the de�nition of pm: Together this implies that

(pm; Fm) is a saddle point as described in (SPm) and thus pm attains maximin payo¤ and

Fm is a least favorable demand. �

Proof of Proposition 2. For su¢ ciently small " our assumptions on F0 imply that Fm is

di¤erentiable near pm: Since pm is optimal given demand Fm, we �nd that pm satis�es the

associated �rst order conditions:

d

dp
(p (1� Fm (p))) jp=pm = 0:

The earlier strict concavity assumption on � (p; F0) implies that we can apply the implicit

function theorem at " = 0 to the above equation to obtain

dpm
d"
j"=0 = �1 +

1� f0 (p0)
�2f0 (p0)� p0f 00 (p0)

=
f0 (p0) + p0f

0
0 (p0) + 1

�2f0 (p0)� p0f 00 (p0)
:

Since �2f0 (p0)� p0f 00 (p0) < 0; we observe that the lhs of the above equation as a function

of f0 (p0) is increasing in f0 (p0) and hence by taking the limit as f0 (p0) tends to in�nity it

follows that this expression is bounded above by �1=2. �

Proof of Proposition 3. We show that for any  > 0, there exists " > 0 such that

F 2 P" (F0) implies � (p� (F ) ; F ) � � (pm; F ) < : Note that � (pm; F ) � � (pm; Fm) and

thus

� (p� (F ) ; F )� � (pm; F ) � � (p� (F ) ; F )� � (pm; Fm) :

Since � (pm; Fm) = � (p� (Fm) ; Fm) the proof is complete once we show that � (p� (F ) ; F )

is a continuous function of F with respect to the weak� topology. Consider F;G such that
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G 2 P" (F ) : Using the fact that

G (p) � F (p+ ") + ";

we obtain

� (p� (G) ; G) � � (p� (F )� ";G) = (p� (F )� ") (1�G (p� (F )� "))

� (p� (F )� ") (1� F (p� (F ))� ") � � (p� (F ) ; F )� 2":

Since the Prohorov norm is symmetric and thus F 2 P" (G), it follows that

� (p� (F ) ; F ) + 2" � � (p� (G) ; G) � � (p� (F ) ; F )� 2";

and hence we have proven that � (p� (F ) ; F ) is continuous in F . �

Proof of Proposition 4. We apply Corollary 5.2 in Reny (1999) to show that a saddle

point exists. For this we need to verify that the zero-sum game between the seller and

nature is a compact Hausdor¤ game for which the mixed extension is both reciprocally

upper semi continuous and payo¤ secure.

Clearly we have a compact Hausdor¤ game. Reciprocal upper semi continuity follows

directly as we are investigating a zero-sum game. So all we have to ensure is payo¤ security.

Payo¤ security for the monopolist means that we have to show for each (Fr;�r) with

Fr 2 P" (F0) and for every � > 0 that there exists  > 0 and � such that F 2 P (Fr)

implies r
�
�; F

�
� r (�r; Fr) + �:

Let  , �=4 and let � be such that � (p) , �r (p+ ) : Then using the fact that

F (v) � Fr (v � )�  we obtainZ 1

0
vdF (v) � 2 +

Z 1

0
vdFr (v) :

Using the fact that F (v) � Fr (v + ) +  we obtain

�
�
�; F

�
� � (�r (p+ ) ;min fFr (v + ) + ; 1g) � � (�r; Fr)� 2;

and hence

r
�
�; F

�
� r (�r; Fr) + �:

26



To show payo¤ security for nature we have to show for each (�r; Fr) with Fr 2 P" (F0) and

for every � > 0 that there exists  > 0 and F 2 P" (F0) such that � 2 P (�r) implies

r
�
�; F

�
� r (�r; Fr)� �:

Here we set F , Fr: Given  > 0 consider any � 2 P (�r). All we have to show is that

� (�; Fr) � � (�r; Fr) + � for su¢ ciently small : Note that � (p) � �r (p+ ) +  implies

� (�; Fr) �  +

Z
(p+ )

�Z 1

p
dFr (v)

�
d�r (p+ ) =  +

Z
p

�Z 1

p�
dFr (v)

�
d�r (p)

=  + � (�r; Fr) +

Z
p

 Z
[p�;p)

dFr (v)

!
d�r (p)

�  + � (�r; Fr) +

Z Z
[p�;p)

dFr (v) d�r (p) :

Given the continuity of the integral termZ Z
[p�;p)

dFr (v) d�r (p)

in the boundary point , the claim is established. �

In order to derive the equilibrium policies in the case of uncertainty we present a char-

acterization of the Prohorov distance in Lemma 1 that builds on the following result of

Strassen (1965).

Theorem (Strassen (1965)).

F and G have Prohorov distance less than or equal to " if and only if there exist random vari-

ables X and Y such that X has distribution F; Y has distribution G and Pr (jY �Xj � ") �

1� ".

The two cumulative distributions F;G are close in terms of the Prohorov distance if and

only if they are associated to two random variables that realize similar values with high

probability. Our characterization describes the Prohorov distance in terms of monotone

functions that are identi�ed with positive additive measures and cumulative distribution

functions respectively. In order to stay within " distance of a given distribution function G

one may �rst alter any value of G (v) at v by at most ", this creates a probability measure

F1, and then move at most " mass of the values. The new locations are described by a
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measure F2 while locations from where the mass has been taken is described by a measure

F3.

Lemma 1 (Decomposition)

Consider " > 0 and probability measures F and G. F 2 P" (G) if and only if there exists a

probability measure F1 and positive additive measures F2 and F3 such that:

G (x� ") � F1 (x) � G (x+ ") 8x;

and

F2 (1) = F3 (1) � ";

and

F , F1 + F2 � F3:

Proof. (() Suppose F can be decomposed into F1; F2 and F3. We want to show that

F (A) � G (A") + ". To this purpose, it is clearly su¢ cient to consider only closed sets A.

(a) We �rst prove the claim for A = [x; y] with 0 � x � y � 1: Given a probability

measure H; let H� (bv) , limv"bvH (v) : Then
F1 ([x; y]) = F1 (y)� F�1 (x) � G (y + ")�G� (x� ") = G ([x; y]

") :

Since F2 ([x; y]) � " and F3 ([x; y]) � 0 we obtain:

F ([x; y]) = F1 ([x; y]) + F2 ([x; y])� F3 ([x; y]) � G ([x; y]") + ":

(b) Next we consider A = [x1; y1] [ [x2; y2] with y1 + 2" < x2 which implies that

[x1; y1]
" \ [x2; y2]" = ;:

Using part (a) together with the fact that A" = [x1; y1]
"[ [x2; y2]" holds for the [�]" operator,

it follows that:

F1 (A) = F1 ([x1; y1]) + F1 ([x2; y2]) � G ([x1; y1]") +G ([x2; y2]") = G (A") :

Since F2 (A) � " and F3 (A) � 0, the claim is proven.
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(c) The arguments in part (b) are easily generalized for any set A that can be decomposed

into a �nite union of disjoint closed intervals of distance greater than 2" so A = [mk=1 [xk; yk]

with xk � yk < xk+1 � 2" for k � m� 1:

(d) Finally, we show that we do not have to prove the statement for more general sets A.

Notice that if A"1 = A
"
2; A1 � A2 and F (A2) � G (A"2) + " then F (A1) � G (A"1) + ": So we

can restrict attention to proving the claim for closed sets A such that A" = A"1 and A � A1
implies A = A1: Consider x; y 2 A such that x < y � x+ 2": Then fA [ [x; y]g" = A" and

hence [x; y] � A: It follows that A belongs to the class of sets investigated in part (c).

()) Consider probability measures F and G with kF �Gk � ": We extend G to

[�"; 1 + "] such that G (x) = 0 for �" � x < 0 and G (x) = 1 for 1 < x � 1 + ":

Given the result of Strassen (1965), there exist random variables X and Y such that X has

distribution F; Y has distribution G and Pr (jY �Xj � ") � 1� ".

Let Z1 be the random variable with cdf F1 such that Z1 , X if jY �Xj � " and Z1 , Y

if jY �Xj > ". Let "0 , Pr (jY �Xj > ") so "0 � ": Then G (x� ") � F1 (x) � G (x+ ") :

Let Z2 be the random variable with cdf bF2 such that Z2 , 0 if jY �Xj � " and Z2 , X if

jY �Xj > ": Let Z3 be the random variable with cdf bF3 such that Z3 , 0 if jY �Xj � "
and Z3 , Y if jY �Xj > ": Then X = Z1 + Z2 � Z3 and bF2 (0) ; bF3 (0) � 1 � "0: Let

Fi , bFi�(1� "0) for i = 2; 3: Then F2 and F3 are positive additive measures with F2; F3 � "0
and the proof is complete.

Proof of Proposition 5. We start by assuming p0 > 1
2 : The proof proceeds in three steps.

First we show the existence of the parameters a; b and c and use these to construct the least

favorable demand Fr: Second, we decompose the least favorable demand by using Lemma

1 to show that it is close to F0: Third, we use this decomposition to verify that we have a

saddle point.

Step 1. We start by showing that for su¢ ciently small "; there exist parameters a; b; c
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such that a < b < c and a < p0 < c such that

F0 (a� ")� " = 1� b
2f0 (b+ ")

a
; (11)

F0 (b+ ") = 1� b
2f0 (b+ ")

b
; (12)

F0 (c� ") = 1� b
2f0 (b+ ")

c
: (13)

Concerning the existence of b; note that b = p0 solves (12) if " = 0. As

d

db
(1� F0 (b+ ")� bf0 (b+ ")) j"=0 = �2f (p0)� p0f 00 (p0) < 0;

due to the strict concavity of pro�ts at p0, the implicit function theorem implies that a

continuous solution b = b (") to (12) (with b > 0) exists for " in a neighborhood of 0 with

b (0) = p0: To prove existence of c; de�ne

h" (v) , 1�
b2f0 (b+ ")

v
� F0 (v � ") for v > 0:

We need to show that there exists c > b such that h" (c) = 0: Note that

h" (b) = F0 (b+ ")� F0 (b� ") ;

and hence h" (b) > 0 for su¢ ciently small " as f (p0) > 0 by assumption in the statement

of the proposition and as f is continuous in a neighborhood of p0: Moreover,

h0" (b) = f0 (b+ ")� f0 (b� ") ;

h00" (b) = �2f0 (b+ ")
b

� f 00 (b� ") � �
2f0 (p0) + p0f

0
0 (p0)

p0
< 0:

In fact, one can easily show for v in a su¢ ciently small neighborhood around p0 that h0" (v)

is small and that h00" (v) is bounded below 0. Here one uses the fact that f is assumed

to be continuously di¤erentiable in the neighborhood of p0. Speci�cally one shows there

exists � > 0 and a neighborhood of p0 such that if � > 0 and " is su¢ ciently small then

0 < h" (b) < � and h0" (v) < � and h
00
" (v) < �� for any v in this neighborhood. This means

that h" (v) < � + � (v � b) � � (v � b)2 for v in this neighborhood. Choosing � su¢ ciently

small, one then shows that for su¢ ciently small " there exists c > b such that h" (c) = 0

where c! p0 as "! 0.
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For the existence of a; similar calculations for h" (v) + " show that there exists a < b

such that h" (a) + " = 0 with a! p0 as "! 0:

We can describe the local behavior of the parameters a; b and c by appealing to the

implicit function theorem. Since 2f0 (p0) + p0f 00 (p0) > 0; we know that b is di¤erentiable

and by implicitly di¤erentiating (12) we obtain:

b0 (0) = � f0 (p0) + p0f
0
0 (p0)

2f0 (p0) + p0f 00 (p0)
= �1 + f0 (p0)

2f0 (p0) + p0f 00 (p0)
; (14)

with �1 < b0 (0) � �1=2. The second inequality follows from using the fact that b0 (0) as a

function of f0 (p0) is increasing. Next, we show that a is di¤erentiable. Since

b2f0 (b+ ")� a2f0 (a� ")
b� a = (b+ a) f0 (b+ ") + a

2 f0 (b+ ")� f0 (a� ")
b� a

� 2p0f0 (p0) + (p0)
2 f 00 (p0) ;

we �nd that b2f0 (b+ ") > a2f0 (a� ") near " = 0. Hence we can implicitly di¤erentiate

(11) to obtain

a0 (") = �aa+ af0 (a� ") + bf0 (b+ ")
b2f0 (b+ ")� a2f0 (a� ")

; (15)

and so

lim
"!0

b� a
a
a0 (") = � 1 + 2f0 (p0)

2f0 (p0) + p0f 00 (p0)
:

In particular, we obtain that

lim
"!0

a0 (") = �1: (16)

Similarly for c, we �nd that:

c0 (") = �c cf0 (c� ") + bf0 (b+ ")
b2f0 (b+ ")� c2f0 (c� ")

; (17)

and hence

lim
"!0

c� b
c
c0 (") =

2f0 (p0)

2f0 (p0) + p0f 00 (p0)
;

and in particular,

lim
"!0

c0 (") =1: (18)

It now follows from (16) and (18) that a < p0 < c.

31



Step 2. We now construct the least favorable demand on the basis of a; b and c.

Consider Fr given by:

Fr (v) ,

8>>>>>>>>><>>>>>>>>>:

0 if v 2 [0; ") ;

max f0; F0 (v � ")� "g , if v 2 ["; a] ;

1� b2f0(b+")
v , if v 2 (a; c) ;

F0 (v � ") , if v 2 [c; 1) ;

1; if v = 1:

The de�nitions of a and c imply that Fr is continuous at a and c. It follows that Fr is a

probability measure.

Next we show that Fr 2 P" (F0) by using Lemma 1. The proof is by construction and

uses the decomposition of Lemma 1.

De�ne F1 by:

F1 (v) ,

8>>>>>><>>>>>>:

0, if v 2 [0; ") ;

F0 (v � ") , if v 2 ["; a] ;

max fFr (v) ; F0 (v � ")g , if v 2 (a; b) ;

Fr (v) ; if v 2 [b; 1] :

Then F1 is a probability measure with F0 (v � ") � F1 (v) for v 2 ["; 1] : By de�nition of b

we obtain Fr (b) = F0 (b+ ") and F 0r (b) =
d
dvF0 (v + ") jv=b: Moreover, given

F 00r (v) = �
2b2f0 (b+ ")

v3

and
d2

dv2
F0 (v + ") = f

0
0 (v + ") ;

strict concavity of pro�ts near p0 implies that F 000 (v) < F
00
r (v) for v 2 [a; c] and " su¢ ciently

small. Thus, for su¢ ciently small "; as a and c are close to p0; we obtain F1 (v) � F0 (v + ")

with equality if v = b: So F0 (v � ") � F1 (v) � F0 (v + ").

De�ne F2 by:

F2 (v) ,

8>>><>>>:
0, if v 2 [0; a] ;

"�max fF0 (v � ")� Fr (v) ; 0g , if v 2 (a; b] ;

"; if v 2 (b; 1] :
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Since F2 is right continuous, we will obtain that F2 is an additive measure once we show

that
d

dv
(Fr (v)� F0 (v � ")) =

b2f0 (b+ ")

v2
� f0 (v � ") � 0 (19)

holds if v 2 (a; b] and Fr (v) < F0 (v � "). Strict concavity of the pro�t function near

p = p0 can be used to show that v2f0 (v � ") is increasing in v for su¢ ciently small ": We

establish the inequality (19) for v = x where x 2 (a; b) solves Fr (x) = F0 (x� "). Note that

x (1� Fr (x)) = b2f0 (b+ ") and hence we aim to show that

x (1� Fr (x))� x2f0 (x� ") = x (1� F0 (x� ")� xf0 (x� ")) � 0;

which follows once we show that x < p0. By invoking the implicit function theorem on

Fr (x) � F0 (x� ") = 0, we notice that the derivative with respect to x vanishes as " ! 0

while the terms involving " and b (") combine to yield an expression that tends to 2f0 (p0)

as "! 0: Thus we �nd that the slope of x near " = 0 is unbounded and as x (") < b (") and

b0 (0) is �nite it follows that x0 (")! �1 as "! 0.

De�ne F3 by:

F3 (v) ,

8<: 0, if v 2 [0; "] ;

min fF0 (v � ") ; "g , if v 2 ("; 1] ;

and so F3 (v) is an additive measure and F3 (1) = ": Since Fr = F1 + F2 � F3 we obtain

from Lemma 1 that Fr 2 P" (F0) :

Step 3. We now show that (�r; Fr) is a saddle point. For the monopolist we verify

easily that � (p; Fr) = b2f0 (b+ ") for p 2 [a; c] : Next we consider pro�ts nearby but outside

[a; c] : For p < a we verify that � (p; Fr) � b2f0 (b+ ") by showing that

lim
v!a�

d

dv
Fr (v) < lim

v!a+
d

dv
Fr (v)

which means that

f0 (a� ") <
b2f0 (b+ ")

a2
:

Similarly we need to show for the case where p > c that

f0 (c� ") >
b2f0 (b+ ")

c2
;
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which is easily veri�ed for su¢ ciently small " by using the fact that c0 (0) =1 while b0 (0)

is �nite. Thus we have shown that there exists � > 0 such that

[a; c] = arg max
p2[p0��;p0+�]

� (p; Fr) :

In particular, � can be chosen independently of " once " is su¢ ciently small. Upperhemi-

continuity of the set of pro�t maximizing prices then implies that [a; c] � argmaxp � (p; Fr).

Consider now the incentives of nature. The regret r is an additive function over the

measures and so:

r (�r; Fr) = r (�r; F1) + r (�r; F2)� r (�r; F3) : (20)

We show that nature maximizes each term in (20) and then sets Fr = F1 + F2 � F3;

subject to the constraints on F1; F2 and F3 speci�ed in Lemma 1. Notice that we assume

that F1 (1) = F2 (1) = ". Consider �rst F2: By construction of �r, regret r (�r; �) is

constant over v 2 [a; b) and over v 2 [b; c] : Since r (�r; a) < r (�r; b) and since r (�r; v) is

monotone increasing on [0; a] and [c; 1] it follows that argmaxv r (�r; v) � [a; b) [ f1g : For

su¢ ciently small "; r (�r; a) � p0 while r (�r; 1) � 1� p0 and thus given p0 > 1
2 we obtain

[a; b) = argmaxv r (�r; v) and thus maxF :F (1)=" r (�r; F ) = r (�r; F2) :

Concerning F3 let v1 = inf fv : F0 (v � ") � "g : We have to show that r (�r; v0) �

r (�r; v2) for v0 � v1 � v2: Given the above it is su¢ cient to consider only v0 = v1 and

v2 = c where r (�r; c) = c� E (�r) : Let  , 2 supv>0 (v=F0 (v)), then

r (�r; v1) = v1 � "+ F0 (v1 � ") � " (1 + ) :

On the other hand, we showed in Step 1 that c0 (0) =1 and in the proof of Proposition 6,

based only on arguments in Step 1, we �nd that @
@"E (�r) j"=0 <1 so @

@"r (�r; c) j"=0 =1.

Hence, r (�r; v1) < r (�r; c) for " su¢ ciently small which shows that minF :F (1)=" r (�r; F ) =

r (�r; F3).

Finally, consider F1:More mass cannot be allocated to regret maximizing values [a; b) as

F1 (b) = F0 (b+ ") ; weight on values below a and above c are shifted up as far as possible as

Fv (v) = F0 (v � ") for v < a and c < v < 1 and allocation of F1 for F1 2 (F1 (b) ; F0 (c� "))

will not in�uence regret as r (�r; v) is constant on [b; c] : This completes the proof.
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The case of p0 � 1
2 proceeds in an analogous manner. It is easily shown that there exist

parameters a; b; c such that a < b < c and a < p0 < c such that:

F0 (a� ")� " = 1� b
2f0 (b+ ")

a
;

F0 (b+ ") = 1� b
2f0 (b+ ")

b
+ ";

F0 (c� ")� " = 1� b
2f0 (b+ ")

c
;

where

b0 (0) = �f0 (p0) + p0f
0
0 (p0)� 1

2f0 (p0) + p0f 00 (p0)
= �1 + f0 (p0) + 1

2f0 (p0) + p0f 00 (p0)
:

The least favorable demand Fr is now given by:

Fr (v) ,

8>>>>>><>>>>>>:

max f0; F0 (v � ")� "g , if v 2 [0; a] ;

1� b2f0(b+")
v , if v 2 (a; c) ;

max f0; F0 (v � ")� "g , if v 2 [c; 1) ;

1 if v = 1;

decomposed as Fr , F1 + F2 � F3 where we de�ne the measures F1; F2; F3 as follows:

F1 (v) ,

8>>>>>><>>>>>>:

F0 (v � ") , if v 2 [0; a] ;

1� b2f0(b+")
v + ", if v 2 (a; c) ;

F0 (v � ") ; if v 2 [c; 1) ;

1; if v = 1:

F2 (v) ,

8<: 0, if v 2 [0; 1) ;

", if v = 1;

and

F3 (v) , min fF0 (v � ") ; "g ; if v 2 [0; 1] :

Lemma 1 can be applied to show that Fr 2 P" (F0) : In contrast to the previous case of

p0 >
1
2 , now v = 1 maximizes r (�r; v) so that F2 puts all mass at v = 1. �

Proof of Proposition 6. We obtain that

E [�r] =
Z c

a
p
1

p
dp+ b

�
1�

Z c

a

1

p
dp

�
= c� a+ b

�
1� ln c

a

�
:
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As a; b; and c are di¤erentiable as shown in Step 1 of Proposition 5, we have:

@

@"
E [�r] =

b� a
a
a0 (") +

c� b
c
c0 (") +

�
1� ln c

a

�
b0 (") :

Using (14), (15) and (17) we obtain for p0 > 1
2 :

@

@"
E [�r] j"=0 = �1 +

f0 (p0)� 1
2f0 (p0) + p0f 00 (p0)

< �1
2
:

The same operations yield for p0 < 1
2 yield

@

@"
E [�r] j"=0 = �1 +

f0 (p0) + 1

2f0 (p0) + p0f 00 (p0)
> �1;

which concludes the proof. �

Proof of Proposition 7. Following Proposition 5, lim"!0 a0 (") = �1 and lim"!0 c0 (") =

1 and therefore the size of the menu is increasing in " for " su¢ ciently small which proves

(1). Next we verify (2). Assume a < v < b. Then qr (v) = ln va and tr (v) =
R v
a y

1
ydy = v�a

so given a0 < 0 for " small we obtain @
@"qr (v) > 0;

@
@" tr (v) > 0 and

@

@"

tr (v)

qr (v)
=
(v � a) 1a � ln

v
a�

ln va
�2 a0 (") < 0;

as
d

dv

�
(v � a) 1

a
� ln v

a

�
=
1

a
� 1
v
> 0:

Assume b < v < c. Then qr (v) = 1� ln cv and

tr (v) = v � a+
�
1� ln c

a

�
b = E [tr] + v � c;

so @
@"qr (v) < 0;

@
@" tr (v) < 0 and

@

@"

tr (v)

qr (v)
=

@
@"E [tr]
1� ln cv

+
1
c (E [tr] + v � c)�

�
1� ln cv

��
1� ln cv

�2 c0 (") < 0;

where we use the fact that c0 (") is large and

d

dv

�
1

c
(E [tr] + v � c)�

�
1� ln c

v

��
=
1

c
� 1
v
< 0;

for su¢ ciently small " which proves (2).�
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Proof of Proposition 8. Assume that �r attains minimax regret but is not robust. So

there exists  > 0; such that for all " > 0; there exists F" such that F" 2 P" (F0) but

� (p� (F") ; F")� � (�r; F") � : (21)

Assume that (�r; Fr) is a saddle point of the regret problem (SPr) given " > 0. Then

� (�r; Fr) = � (p
� (Fr) ; Fr) :

We can rewrite the left hand side of (21) as follows:

� (p� (F") ; F")� � (�r; F") (22)

= � (p� (F") ; F")� � (p� (Fr) ; Fr) + � (�r; Fr)� � (�r; F") :

Using (SPr) we also obtain

0 � r (�r; Fr)� r (�r; F") =
Z
vdFr (v)�

Z
vdF" (v) + � (�r; F")� � (�r; Fr) ,

so that:

� (�r; Fr)� � (�r; F") �
Z
vdFr (v)�

Z
vdF" (v) :

Entering this into (22) we obtain from (21) that:

� (p� (F") ; F")� � (p� (Fr) ; Fr) +
Z
vdFr (v)�

Z
vdF" (v) � : (23)

Since F"; Fr 2 P" (F0) and since h (v) = v is a continuous function and the Prohorov norm

metrizes the weak� topology we obtain thatZ
vdFr (v)�

Z
vdF" (v) < =2; (24)

if " is su¢ ciently small.

In the proof of Proposition 3 we showed that � (p� (F ) ; F ) as a function of F is contin-

uous with respect to the weak� topology. Hence

� (p� (F") ; F")� � (p� (Fr) ; Fr) < =2; (25)

if " is su¢ ciently small. Comparing (23) to (24) and (25) yields the desired contradiction.�
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