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1 INTRODUCTION

The estimation of continuous-time models, such as those described by potentially nonlinear

stochastic di¤erential equations, has been intensively studied in recent research. In the last few

years, this literature has shown a tendency to turn to fully functional procedures to identify and

estimate the two functions that describe the solution to the stochastic di¤erential equation of

interest, namely the drift and di¤usion functions (the interested reader is referred to the review

paper by Bandi and Phillips (2002) �hereafter BP �and the references therein). The motivation

for this focus is clear. By not imposing a speci�c parametric structure, fully functional methods

reduce the extent of potential misspeci�cations. Unfortunately, they do so at the expense of slower

convergence rates and inferior e¢ ciency over their parametric counterparts. Yet, the informational

content of accurately implemented functional methods can be put to work as a useful descriptive tool

to understand more about the underlying dynamics from a general perspective and to investigate

more e¤ective procedures for parametric inference.

This paper seeks to design a simple parametric estimation method that matches parametric

estimates of the drift and di¤usion functions to their functional counterparts. In order to do so, we

specify a parametric class for the underlying di¤usion process and estimate the drift and di¤usion

parameters individually by minimizing two criteria which can be readily interpreted as the inte-

grated squared di¤erences between functional estimates of drift and di¤usion and their correspond-

ing parametric expressions. The �rst-stage nonparametric estimates are de�ned as straightforward

sample analogues to the theoretical functions. Drift and di¤usion function are known to have con-

ditional moment representations. Hence, the nonparametric estimates are empirical analogues to

conditional moments written as weighted averages. The weights are constructed using conventional

kernels (c.f., BP (2003)).

The limit theory relies on in�ll (i.e., increasingly frequent observations over time) and long

span asymptotics (i.e., increasing span of data). Both features are crucial to derive the consistency

of the �rst-stage nonparametric estimates and, as consequence, of the �nal parameter estimates

under recurrence (c.f., BP (2003)). Recurrence is the identifying assumption used in this paper.

It guarantees return of the continuous sample path of the scalar di¤usion process to sets of non-

zero Lebesgue measure in its range an in�nite number of times over time. Being the in�nitesimal

moments de�ned pointwise, the return of the path of the process to neighborhoods of each spa-

tial level appears to be an important property to exploit for the purpose of their identi�cation.

More precisely, the in�ll assumption allows us to approximate the continuous sample path of the
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underlying process with its discrete counterpart while replicating the in�nitesimal features of the

conditional moments of interest by virtue of sample analogues. The long span assumption permits

us to make use of the dynamic properties of the underlying Markov process for the sake of the

consistent estimation of drift and di¤usion through repeated visits to each spatial set, as implied

by recurrence.

Recurrence is known to be a milder assumption than stationarity and mixing (see Meyn and

Tweedie (1993), for instance). Recurrent processes do not have to possess a time-invariant probabil-

ity measure. They are called null recurrent in this case. Positive recurrent processes are recurrent

processes that are endowed with a stationary density to which they converge in the limit. Station-

ary processes are positive recurrent processes that either have reached the time-invariant stationary

density or are started at it. The validity of the limit theory in this paper only requires recurrence.

Even though our theory could (and will) be specialized to the positive recurrent and stationary

case, in general potential users do not have to make assumptions about the stationarity properties

of the process when estimating individual in�nitesimal moments. Consistency of the drift (di¤u-

sion) parameter estimates is preserved under misspeci�cation of the di¤usion (drift) fuction in the

recurrent class. Furtermore, while it is true that the dynamic features of the underlying process

shape the asymptotic distributions in general, we show that all the relevant information about such

features is embodied in estimable random objects that de�ne the variances of asymptotically normal

variates. Hence, from the sole point of view of statistical inference, the limiting distributions do

not depend on whether the process is stationary or not, being de�ned in terms of random norming.

Such invariance is a valuable feature for applied work.

Some additional observations are in order. Starting with the fundamental work of Gouriéroux

et al. (1993) and Gallant and Tauchen (1996), a variety of simulation-based methods have been

recently introduced to consistently estimate parametric models for di¤usions. For example, Brandt

and Santa-Clara (2002), Durham and Gallant (2002), Elerian et al. (2001) and Eraker (2001)

among others, suggest simulation-based procedures for maximum likelihood estimation. Somewhat

di¤erent is the approach in Aït-Sahalia (2002) who recommends approximations to the true, gen-

erally unknown, transition density of the discretely sampled process for the purpose of consistent

likelihood estimation. Carrasco et al. (2002), Chacko and Viceira (2003), Jiang and Knight (2002),

and Singleton (2001) suggest characteristic function-based generalized method of moment (GMM)

estimation. GMM-based estimation is also discussed in Conley et al. (1997), Du¢ e and Glynn

(2004) and Hansen and Scheinkman (1995), inter alia. While some of these techniques permit to

achieve the same e¢ ciency that (the generally infeasible) maximum likelihood estimation would
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guarantee,1 they do so at the cost of some computational burden. In addition, most of these

methods explicitly trade o¤ robustness for e¢ ciency.

The parametric procedure that we discuss in this paper has two main features. The �rst

feature is computational simplicity : the methodology only requires straightforward estimation of

nonparametric functionals à la Nadaraya-Watson type in the �rst stage and implementation of

a minimization routine similar to conventional nonlinear least-squares in the second stage. The

second feature is robustness. Speci�cally, the statistical assumptions that are used for consistency

are minimal and the information contained in the nonparametric estimates of drift and di¤usion is

fully exploited for the purpose of parametric inference. As such, our method can be employed as

a preliminary descriptive tool and be regarded as complementary rather than alternative to some

existing methods.

Furthermore, the �minimum distance�type of estimation that is discussed in this work might

be interpreted as extremum estimation for potentially nonstationary and nonlinear continuous-

time models of the di¤usion type. Minimum distance methods for robust estimation have a long

history in statistics (the interested reader is referred to Chiang (1956), Ferguson (1958), Koul

(1992), and the review papers in Maddala and Rao (1997)) and have been recently applied to

potentially nonlinear, but strictly stationary, di¤usion processes by Aït-Sahalia (1996). Altissimo

and Mele (2003) have recently extended the procedure in Aït-Sahalia (1996) to estimate multivariate

models with unobservables through simulation methods. Aït-Sahalia estimates nonparametrically

the stationary density of the process and, given a parametric class for drift and di¤usion, designs an

estimation method that matches the nonparametric density function of the process to its uniquely

speci�ed parametric counterpart. Speci�cally, matching is obtained through minimization of the

mean-squared di¤erence between the nonparametric estimate of the density function of the process

and its parametric counterpart.

There are several di¤erences between our approach and the methodology in Aït-Sahalia (1996).

First, we do not employ the informational content of the nonparametric density. As pointed out

earlier, the adopted parametric model might not imply the existence of a time-invariant measure

and can be null recurrent. Second, in our framework, parametric inference on the second in�nitesi-

mal moment does not depend on inference on the �rst in�nitesimal moment. In other words, when

interested in the identi�cation of the di¤usion function, as is often the case in practise, the econo-

metrician does not have to estimate the �rst in�nitesimal moment or specify a parametric class for

1The true conditional distribution of the discretely sample data is known in closed-form only for few processes
(c.f. Lo (1998), for example).
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it. Interestingly, we show that this is true even if the two moments imply explosion (or attraction)

of the underlying di¤usion and �nite returns (rather than in�nite returns, as implied by recurrence)

to sets of non-zero Lebesgue measure. Hence, the consistency of the di¤usion parameters, as well

as the feasibility of their asymptotic distribution, are not a¤ected by potential misspeci�cations

of the drift function. In addition, the process can be transient. As far as the drift parameters

are concerned, only their asymptotic covariance depends on the true in�nitesimal second moment.

However, the drift parameters may be consistently estimated even when the di¤usion function is

misspeci�ed provided the underlying process is in the recurrent class.

The above-mentioned properties are achieved through the use of increasingly frequent data

points in the limit as well as increasing spans of data. The appropriateness of this twofold limit

theory is an empirical issue which depends on the application. Nonetheless, it is known to be

a realistic approximation in �elds, such as �nance, where data sets are often characterized by a

large number of observations sampled at relatively high frequencies over long spans of time. The

simulation studies of Bandi and Nguyen (1999) and Jiang and Knight (1999) show that daily data,

for example, are good approximations to very frequent observations for estimators relying on very

frequent observations. Long spans of daily data are commonplace in �nance. Higher than daily

frequencies are also now available in �nance, albeit over generally shorter time spans. However,

the use of very high-frequency (intradaily, for example) observations poses microstructure-related

issues (see Bandi and Russell (2005) for a review of recent contributions on this topic). Dealing

with these issues is beyond the scope of the present paper.

The paper proceeds as follows. Section 2 presents the model and the objects of econometric

interest. Section 3 details the estimation procedure. Section 4 lays out the limiting results. In

Section 5 we specialize our general theory to the Brownian motion and positive recurrent case, as

well as to the stationary case. Section 6 discusses covariance matrix estimation. Section 7 focuses

on e¢ ciency issues. Section 8 concludes and discusses extensions. Appendix A provides proofs and

technicalities. A glossary of notation is in Appendix B.

2 THE MODEL

We consider a �ltered complete probability space (
;=; (=t)t�0; P ) on which is de�ned the

continuous adapted process

Xt = X0 +

Z t

0
�(Xs; �

�)ds+

Z t

0
�(Xs; �

�)dBs; (1)

where fBt : t � 0g is a standard Brownian motion. The initial condition X0 is square integrable
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and is taken to be independent of fBt : t � 0g. The probability space satis�es the usual hypotheses

(see Protter (1995)), namely (i) =0 contains all the null sets of = and (ii) (=t)t�0 is right continuous,

i.e., =t = \u>t=u 8t. The parameter vectors �� and �� are such that (��; ��) = � 2 �; where �

is an open and bounded subset of RM for a generic M . More speci�cally, �� 2 �� � Rm1 and

�� 2 �� � Rm2 with m1 + m2 = M . The vectors �� and �� jointly de�ne a parametric family

for the process in Eq. (1). Since we will be dealing with extremum estimation procedures, it is

convenient to denote the true values of these parameters by ��0 and �
�
0 .

As in BP (2003), the following conditions are used in the study of the continuous process in Eq.

(1). In what follows the symbol D denotes the admissible range of Xt.

Assumption 1:

(i) �(:; ��) and �(:; ��) are time-homogeneous, B-measurable functions on D = (l; u) with �1 �

l < u � 1; where B is the �-�eld generated by Borel sets on D. Both functions are at least

twice continuously di¤erentiable. Hence, they satisfy local Lipschitz and growth conditions.

Thus, for every compact subset J of the range of the process, there exist constants CJ1 and

CJ2 such that, for all x and y in J ,

j�(x; ��)� �(y; ��)j+ j�(x; ��)� �(y; ��)j � CJ1 jx� yj; (2)

and

j�(x; ��)j+ j�(x; ��)j � CJ2 f1 + jxjg. (3)

(ii) �2(:; ��) > 0 on D.

(iii) We de�ne S(�; �), the natural scale function, as

S(�; �) =

Z �

c
exp

�Z y

c

�
�2�(x; �

�)

�2(x; ��)

�
dx

�
dy (4)

where c is a generic �xed number belonging to D. We require S(�; �) to satisfy

lim
�!l

S(�; �) = �1: (5)

and

lim
�!u

S(�; �) =1 (6)
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(iv) �(x; ��) and �(x; ��) are at least twice continuously di¤erentiable in �� and �� for all x 2 D.

Under Conditions (i), (ii), and (iii), the adapted process in Eq. (1) is recurrent (see Karatzas

and Shreve (1991), for example). Condition (iv) will be used in the development of our asymptotics.

If, in addition to Conditions (i) through (iii), we have

m =

Z
D
m(a; �)da <1; (7)

where m(:; �) is the so-called speed function de�ned as

m(:; �) =
2

�2(:; ��)S0(:; �)
; (8)

with S
0
(:; �) being the �rst derivative of the scale function in Eq. (4), then the process is positive

recurrent and possesses an time-invariant probability measure f(:; �) = m(:;�)
m according to which

it is distributed, at least in the limit. As mentioned, our theory also applies to processes for which

Conditions (i), (ii), and (iii) are satis�ed and m = 1: Such processes are nonstationary. They

are typically called null recurrent. Brownian motion is an example of null recurrent di¤usion.

Nonetheless, the class of null recurrent di¤usion processes is substantially broader than Brownian

motion and is known to include highly nonlinear processes (see BP (2002), for instance).

As discussed in the Introduction, if interest centers on the identi�cation of the second in�nitesi-

mal moment, recurrence can be further relaxed. In fact, this moment can be estimated consistently

under transience, that is in situations where the process of interest is not guaranteed to visit every

level in its admissible range an in�nite number of times over time with probability one, as implied

by our Assumption 1 (iii) above. We will come back to this observation (see Remark 11 below).

The objects of econometric interest in this paper are the drift, �(:; ��), and the di¤usion term,

�2(:; ��). The conditional moment interpretations of these objects are well known, representing

the �instantaneous�conditional mean and the �instantaneous�conditional variance of increments

in the process (see Karlin and Taylor (1981), for instance). More precisely, �(:; ��) describes the

conditional expected rate of change of the process for in�nitesimal time changes, whereas �2(:; ��)

gives the conditional rate of change of volatility, for in�nitesimal variations in time.

3 THE ECONOMETRIC PROCEDURE

We de�ne a �minimum distance�type of estimation that exploits the consistency of accurately

de�ned functional estimators and provides estimates of the parameters of interest by matching the
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parametric expressions to their nonparametric counterparts.

The �rst step consists of de�ning the functional estimates. We consider the estimators in

BP (2003) in their single smoothing versions. Assume the data Xt is recorded discretely at

ft = t1; t2; ::; tng in the time interval (0; T ], where T is a positive constant. Also, assume equi-

spaced data. Hence,

fXt = X�n;T ; X2�n;T ; X3�n;T ; :::; Xn�n;T g (9)

are n observations at

ft1 = �n;T ; t2 = 2�n;T ; t3 = 3�n;T ; :::; tn = n�n;T g; (10)

where �n;T = T=n: The drift estimator is de�ned as

b�(n;T )(:) = 1

�n;T

Pn�1
j=1 K

�
Xj�n;T�:
hn;T

� h
X(j+1)�n;T �Xj�n;T

i
Pn
j=1K

�
Xj�n;T�:
hn;T

� . (11)

The di¤usion estimator is de�ned as

b�2(n;T )(:) = 1

�n;T

Pn�1
j=1 K

�
Xj�n;T�:
hn;T

� h
X(j+1)�n;T �Xj�n;T

i2
Pn
j=1K

�
Xj�n;T�:
hn;T

� . (12)

The function K (:) that appears in Eq. (11) and Eq. (12) is a conventional kernel whose properties

are listed below.

Assumption 2: The kernel K(:) is a continuously di¤erentiable, symmetric and nonnegative func-

tion whose derivative K0(:) is absolutely integrable and for which

Z 1

�1
K(s)ds = 1;

Z 1

�1
K2(s)ds <1; sup

s
K(s) < C3; (13)

and

K2 =

Z 1

�1
s2K(s)ds <1: (14)

Remark 1: The estimators in Eq. (11) and Eq. (12) are straightforward sample analogues

to the theoretical functions. BP (2003) discuss their properties of consistency and asymptotic

normality. They show that recurrence, which is implied by Assumption 1 above, rather than positive

recurrence or stationarity, is all that is needed to achieve identi�cation. BP (2003) derive the
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asymptotics as the time span (T ) and the number of data points (n) increase with the frequency of

observations (�n;T = T=n! 0). Increasing the data frequency over time is crucial for the consistent

estimation of continuous-time models using fully functional methods under general assumptions on

the statistical evolution of the underlying process and equispaced data. By letting the time span

increase to in�nity, the drift and di¤usion function can be recovered in the limit since the process

continues to make repeated visits to all spatial points in its range by virtue of recurrence. However,

enlarging the time span is necessary only for consistent drift estimation. The local dynamics of the

process contain su¢ cient information to identify consistently the in�nitesimal second moment.

In other words, recurrence su¢ ces for the pointwise estimation of di¤usions since it is all that

one needs to imply in�nite returns to each spatial level x with probability one. When we combine

the recurrence property with di¤erences between adjacent observations Xj�n;T ; X(j+1)�n;T going

to zero as �n;T ! 0, it is intuitive to understand why b�(n;T )(x) and b�2(n;T )(x) represent consistent
estimates of the in�nitesimal �rst and second moments for all x 2 D (BP (2002) contains further

discussions).

Remark 2: More general sample analogues to the true functions of the convoluted type described

in BP (2003) could be used instead to derive the functional estimates. Here we employ speci�cations

based on simple smoothing rather than on convoluted kernels, as in the most general case examined

by BP (2003), for simplicity in the proofs.

The use of more involved speci�cations is known to potentially improve the asymptotic mean-

squared error of the pointwise functional estimates and be bene�cial in a �nite sample (see Bandi

and Nguyen (1999)). In particular, we know that the choice of the optimal smoothing parameter

for the drift is empirically cumbersome. Yet, the use of convoluted kernels limits the e¤ects of

potentially suboptimal choices. Extension to convoluted kernels can be easily derived from the

apparatus discussed below. BP (2003) discuss bandwidth selection.

We now turn to parametric estimation. Consider a subset of n � n observations over a �xed

time span T � T . Assume the observations are equispaced with distance between adjacent data

points given by �n;T = T=n. Let b� be the column vector of nonparametric drift estimates at

the n data points Xi�n;T with i = 1; :::; n, i.e., b� = �b�(n;T ) �X�n;T � ; :::; b�(n;T ) �Xn�n;T ��0 . Let
�(��) be the column vector of the parametric drift speci�cations at the same n data points, i.e.,

�(��) =
�
�
�
X�n;T ; �

�
�
; :::; �

�
Xn�n;T ; �

�
��0

: Assume b�2 and �2(��) are de�ned analogously.
Consider the criteria
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Q�n;n;T =
T

n
jjb�� �(��)jj2 = T

n

nX
i=1

�b�(n;T ) �Xi�n;T �� ��Xi�n;T ; ����2 (15)

and

Q�n;n;T =
T

n
jjb�2 � �2(��)jj2 = T

n

nX
i=1

�b�2(n;T ) �Xi�n;T �� �2 �Xi�n;T ; ����2 ; (16)

where b�(n;T )(:) and b�2(n;T )(:) are de�ned in Eq. (11) and Eq. (12), respectively. Eqs. (15) and (16)
can be interpreted as the integrated mean squared di¤erences between the kernel estimates and

their corresponding parametric speci�cations.

The kernel estimates are de�ned over an enlarging time span T , whereas the criteria are de�ned

over a �xed time span T � T . In both cases, we assume that the distance between observations

goes to zero asymptotically, namely �n;T ! 0 and �n;T ! 0. Our sampling scheme can be

easily understood with an example.2 Assume T =
p
n, for instance, but a di¤erent increasing

function of n could be adopted. Then, the observations in the full sample are equispaced at times

f1=
p
n; 2=

p
n; :::; 1; 1 + 1=

p
n; :::;

p
ng since �n;T = T=n = 1=

p
n. We can now split the sample

in two parts, namely observations in (0; T ] and observations in (T ; T ]: Assume, without loss of

generality, that T = 1. Also, in agreement with our previous notation, assume that there are n

equispaced observations in the �rst part of the sample. Then, 1
n =

1p
n
. This implies that the

number of observations in the �rst part of the sample, which is de�ned over a �xed time span

T = 1, grows with
p
n, whereas the number of observations in the second part of the sample grows

with n. Given this discussion, one should really write Tn and nn to make the dependence of T and

n on n explicit. We choose to simply write T and n for conciseness in the formulae.

From a theoretical standpoint, �xing the time span over which the criteria are de�ned is a

convenient way to discuss consistency issues, as in Theorem 1 and 3, without having to deal with

a possibly unbalanced criterion function. The intuition is as follows. As we show in Theorem 1

and 3, the criteria depend on a random quantity, i.e., local time, which diverges to in�nity almost

surely in the case of recurrent processes. In order for the criteria to be bounded in probability, local

time would have to be de�ned over a �xed observation span. This is what our sampling scheme

accomplishes. Alternatively, one could let T go o¤ to in�nity just like T , but local time would have

to be standardized appropriately for the criteria to be bounded in probability. The standardization

would have to be process speci�c and, as such, would defeat the goal of the present paper.3 Having

2We thank an anonymous referee for suggesting this example.
3Even given a complete parametric model that fully speci�es drift and di¤usion in the recurrent class, the relevant

standardization would be known only in few speci�c cases (see Section 5 below). In general, however, one might
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made this point, we should stress that it is relatively straightforward to obtain weak convergence

results even when T !1 (see, for example, Remarks 12 and 13 below).

From an applied standpoint, �xing the time span T over which the criteria are constructed

while de�ning the kernel estimates over an enlarging time span T is immaterial. It simply implies

that the entire sample (i.e., data between 0 and T ) is used to de�ne the kernel estimates, whereas

the �rst part of the sample (i.e., data between 0 and T with T � T ) is used to de�ne the criteria.

But, of course, the �rst part of the sample can be chosen to be large (i.e., T can be chosen to be

approximately equal to T , if not equal to T ).

To summarize, in the sequel the notation T ! 1 will refer to the situation where the kernel

estimates are de�ned over an enlarging span of time. The criteria in Eq. (15) and Eq. (16) will

always be de�ned over a �xed time span T � T unless otherwise noted (c.f., Remarks 12 and 13

below). In all cases n, the number of equispaced observations between 0 and T , and n, the number

of equispaced observations between 0 and T , will be assumed to diverge to in�nity with �n;T = T=n

and �n;T = T=n going to zero.

Speci�cally, we will use the notation !
n;n;T!1

and )
n;n;T!1

for consistency and weak convergence

results obtained as the time span T over which the kernel estimates are de�ned increases while the

time span T over which the criteria are de�ned is �xed. We will use the notation !
n!1

and )
n!1

for

consistency and weak convergence results obtained as both the time span T over which the kernel

estimates are de�ned and the time span T over which the criteria are de�ned is �xed (in this case

we will also assume that T = T = constant and n = n). Finally, we will use the notation )
n;T!1

to

de�ne weak convergence results obtained as both the time span T over which the kernel estimates

are de�ned and the time span T over which the criteria are de�ned increase asymptotically (in this

case, again, we will assume that T = T and n = n)

The semiparametric estimates b��n;n;T and b��n;n;T are obtained as follows:
b��n;n;T := arg min

��2����
Q�n;n;T = arg min

��2����

T

n
jjb�� �(��)jj2 (17)

and

b��n;n;T := arg min
��2����

Q�n;n;T = arg min
��2����

T

n
jjb�2 � �2(��)jj2 : (18)

Remark 3: As in the fully nonparametric case discussed in BP (2003), we identify the drift and

di¤usion parameters
�
namely, b��n;T and b��n;T� separately. This is of particular importance when

be simply interested in either the drift or the di¤usion function. In this case, one might wish to avoid imposing
unnecessary structure on the other in�nitesimal moment.
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one is interested in the parametrization of a speci�c function in situations where the other function

is treated as a nuisance parameter. On the other hand, the drift and the di¤usion function can

have parameters in common. If this is the case, one should entertain the possibility of achieving

e¢ ciency gains by accounting for this commonality. We discuss the case of common elements in

Section 7 below.

4 LIMIT THEORY

We start with the drift case.

Theorem 1: (Consistency of The Drift Parameter Estimates) Assume n; n ! 1,

T ! 1, and hn;T ! 0 (as n; T ! 1) so that LX(T;x)
hn;T

(�n;T log(1=�n;T ))
1=2 = oa:s:(1) and

LX(T; x)hn;T
a:s:! 1 8x 2 D, then

Q�n;n;T (�
�)

p!
n;n;T!1

Q� (��; �0) =

Z
D
(� (a; ��0 )� �(a; ��))

2
LX(T ; a)da; (19)

uniformly in ��, where LX(T ; a) is the chronological local time of the underlying di¤usion process

at T and a, i.e., the nondecreasing (in T ) random process which satis�es

LX(T ; a) = lim
"!0

1

"

1

�20(a)

Z T

0
1[a;a+")(Xs)�

2
0(Xs)ds; (20)

with probability one. Now, let B(��; ") denote an open ball of radius " around �� in ��. Assume

that 8" > 0

inf�� =2B(��0 ;")

Z
D
(� (a; ��0 )� �(a; ��))

2
LX(T ; a)da > 0 a:s: (21)

Then,

b��n;n;T p!
n;n;T!1

��0 . (22)

Theorem 2: (The Limit Distribution of the Drift Parameter Estimates): Given n; n!

1, T ! 1, and hn;T ! 0 (as n; T ! 1) such that LX(T;x)
hn;T

(�n;T log(1=�n;T ))
1=2 = oa:s:(1);

��1� (T )h
4
n;T

a:s:! 0, and LX(T; x)hn;T
a:s:! 1 8x 2 D, then

�b��(T )��1=2 �b��n;n;T � ��0� )
n;n;T!1

N(0; Im1); (23)

where b��(T ) is a consistent estimate of ��(T ) as de�ned by
��(T ) = B(T )

�1
� V (T )�B(T )

�1
� ; (24)
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with

B(T )� =

�Z
D

@�0(a)

@��
@�0(a)

@��
0 LX(T ; a)da

�
; (25)

V (T )� =

 Z
D
�20(a)

�
@�0(a)

@��
@�0(a)

@��
0

� �
LX(T ; a)

�2
LX(T; a)

da

!
, (26)

where LX(:; a) is the chronological local time of the underlying di¤usion process at a. If ��1� (T )h
4
n;T =

Oa:s:(1); then

�b��(T )��1=2 �b��n;n;T � ��0 � ��� )
n;n;T!1

N(0; Im1); (27)

where

�� = h2n;TB(T )
�1
�

Z
D
K2

 
@�0(a)

@a

@m(a)
@a

m(a)
+
1

2

@2�0(a)

@a

!
@�0(a)

@��
LX(T ; a)da; (28)

m(:) is the speed function of the underlying di¤usion and K2 =
R1
�1 c

2K(c)dc.

Remark 4: Both the chronological local time LX(T; x), i.e., the random amount of time that the

di¤usion spends in the local neighborhood of the generic spatial point x, and the speed function of

the process of interest play a role in the de�nition of our asymptotics. This is a by-product of the

generality of our assumptions.

As opposed to the time-invariant probability density that emerges from stationary estimation

procedures, both quantities are known to be well-de�ned for stationary as well as for nonstationary

di¤usion processes, while having a close connection to the stationary density f(x) should positive

recurrence, or strict stationary, be satis�ed. In fact,

LX(T; x)

T

p! f(x) =
m(x)

m
(29)

8x 2 D as T !1 when the process is positive recurrent (m <1). Theorem 6.3, page 150, in Bosq

(1998) contains an even stronger (with probability one) consistency result in the case of strictly

stationary processes. For positive recurrent process, the result can be derived from an application

of the Darling-Kac theorem, for example (see Darling and Kac (1957) and Bandi and Moloche

(2001) for a recent use of the theorem).

Eq. (29) says that the standardized local time of a positive recurrent di¤usion process converges

to its stationary density. Additionally, LX(T; x) diverges linearly with T . Ifm =1 and the process

13



is null recurrent, then local time diverges at a speed slower than T . In general, the local time of

a recurrent process diverges to in�nity with T almost surely since (i) the process visits every level

in its range an in�nity number of times as the time span increases inde�nitely and (ii) local time

measures data density. As shown, the divergence properties of the local time factor a¤ect the

convergence properties of the drift parameter estimates (c.f., Eq. (23) above). A similar result

applies to the di¤usion case that we discuss below.

Remark 5: For a smoothing sequence converging to zero at a fast enough rate as to eliminate

the asymptotic bias term �� (i.e., so that ��1� (T )h
4
n;T

a:s:! 0) the weak convergence result in Eq.

(23) is consistent with what we would expect to obtain in a correctly speci�ed standard nonlinear

regression context with heteroskedastic errors (c.f., Davidson and MacKinnon (1993) for a classical

treatment). The only di¤erence is that we replace integrals with respect to probability measures

with spatial integrals, i.e., integrals de�ned with respect to local time (see Park and Phillips (1999,

2001) for discussions in the context of unit-root models for discrete time-series).

Remark 6: Coherently with the fully nonparametric case discussed elsewhere (BP (2003)), the

rate of convergence is path-dependent and is driven by the rate of divergence to in�nity of the local

time factor through the spatial integral V�: By virtue of the averaging, this rate is generally faster

than in the fully functional context where it is known to be equal to
q
hn;TLX(T; x).

Remark 7: The limit theory clari�es the sense in which enlarging the time span (T ! 1) is

crucial for consistent estimation of the in�nitesimal �rst moment of a di¤usion. In e¤ect, if we �x

T (= T ), then LX(T ; :) is bounded in probability and does not diverge to in�nity with probability

one. Consequently, the matrix b��(T ) = b��(T ) = ��(T ) + oa:s:(1) is also bounded in probability.

Hence, b��n(=n);T p9
n!1

��0 when T is �xed (c.f., Eq. (23) above). Thus, even though we de�ne the

criterion over a �xed span of data T , the drift kernel estimates ought to be de�ned over an enlarging

span of observations to obtain consistency of the drift parameter estimates. This result mirrors

the analogous result in the fully functional case where it was shown that, contrary to the di¤usion

function, the drift term cannot be estimated over a �xed observation span (see BP (2003)).

We now turn to the di¤usion parameter estimates.

Theorem 3: (Consistency of the Diffusion Parameter Estimates): Assume n; n ! 1,

T ! 1, and hn;T ! 0 (as n; T ! 1) such that LX(T;x)
hn;T

(�n;T log(1=�n;T ))
1=2 = oa:s:(1) 8x 2 D,

then

14



Q�n;n;T (�
�)

p!
n;n;T!1

Q� (��; �0) =

Z
D

�
�2 (a; ��0 )� �2(a; ��)

�2
LX(T ; a)da (30)

uniformly in ��, where LX(T ; a) is the chronological local time of the underlying di¤usion process

at T and a; i.e., the nondecreasing (in T ) random process which satis�es

LX(T ; a) = lim
"!0

1

"

1

�20(a)

Z T

0
1[a;a+")(Xs)�

2
0(Xs)ds; (31)

with probability one. Now, let B(��; ") denote an open ball of radius " around �� in ��. Assume

that 8" > 0

inf�� =2B(��0 ;")

Z
D

�
�2 (a; ��0 )� �2(a; ��)

�2
LX(T ; a)da > 0 a:s: (32)

Then,

b��n;n;T p!
n;n;T!1

��0 . (33)

Theorem 4: (The Limit Distribution of the Diffusion Parameter Estimates): Given

n; n!1, T !1, and hn;T ! 0 (as n; T !1) such that LX(T;x)hn;T
(�n;T log(1=�n;T ))

1=2 = oa:s:(1)

8x 2 D and
��1� (T )h4n;T

�n;T

a:s:! 0, then

1p
�n;T

�b��(T )��1=2 �b��n;n;T � ��0� )
n;n;T!1

N(0; Im2) (34)

where b��(T ) is a consistent estimate of ��(T ) as de�ned by
��(T ) = B(T )

�1
� V (T )�B(T )

�1
� (35)

with

B(T )� =

�Z
D

@�20(a)

@��
@�20(a)

@��
0 LX(T ; a)da

�
; (36)

V (T )� =

 Z
D
2�40(a)

�
@�20(a)

@��
@�20(a)

@��
0

� �
LX(T ; a)

�2
LX(T; a)

da

!
; (37)

where LX(:; a) is the chronological local time of the underlying di¤usion process at a. If
��1� (T )h4n;T

�n;T
=

Oa:s:(1); then

�b��(T )��1=2 �b��n;n;T � ��0 � ��� )
n;n;T!1

N(0; Im2); (38)
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where

�� = h2n;TB(T )
�1
�

Z
D
K2

 
@�20(a)

@a

@m(a)
@a

m(a)
+
1

2

@2�20(a)

@a

!
@�20(a)

@��
LX(T ; a)da; (39)

m(:) is the speed function of the underlying di¤usion and K2 =
R1
�1 c

2K(c)dc.

Remark 8: In light of Remark 5, the integrals B� and V� can be interpreted as spatial analogues

of the integrals with respect to probability measures that would arise from the standard nonlinear

estimation of conditional expectations in discrete time. The term 2�40(a) is due to the quadratic

nature of the nonparametric estimator of the in�nitesimal second moment.

Remark 9: As in the drift case, the rate of convergence is path-dependent being driven by a local

time factor. Also, the parametric estimates entail e¢ ciency gains with respect to their nonpara-

metric counterparts. In fact, the functional estimates have generally slower pointwise convergence

rates given by
p
hn;TLX(T;x)p

�n;T
(BP (2003)).

Remark 10: The rate of convergence of the di¤usion estimates is faster than the rate of convergence

of the drift estimates. The di¤erence is given by the multiplicative factor 1p
�n;T

=
p

n
T and is

consistent with corresponding results in the fully functional case.

We now consider the case where the di¤usion parameters are estimated by de�ning both the

kernel estimates and the relevant criterion over a �xed observation span. In other words, we assume

that T = T and is �xed. The symbolMN in Theorem 5 below denotes a mixed normal distribution.

Theorem 5: (The Limit Distribution of the Diffusion Parameter Estimates with T

fixed): Given n(= n)!1 and hn;T ! 0 (as n!1) so that 1
hn;T

(�n;T log(1=�n;T ))
1=2 = o(1)

and
h4
n;T

�n;T
! 0, then

1q
�n;T

�b��n;T � ��0� )
n!1

MN(0;��(T )) (40)

with

��(T ) = B(T )
�1
� V (T )�B(T )

�1
� (41)

and

B(T )� =

�Z
D

@�20(a)

@��
@�20(a)

@��
0 LX(T ; a)da

�
; (42)
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V (T )� =

�Z
D
2�40(a)

�
@�20(a)

@��
@�20(a)

@��
0

�
LX(T ; a)da

�
; (43)

where LX(:; a) is the chronological local time of the underlying di¤usion process at a.

Remark 11: The di¤usion parameters can be identi�ed over a �xed time span. Hence, recurrence

is not necessary to identify the second in�nitesimal moment and the process can be transient.

In this case, the convergence rate ceases to be path-dependent. We experience
p
n-convergence

for the parametric estimates (since 1p
�n;T

=
p
np
T
and T is �xed) and

q
nhn;T -convergence for

the nonparametric estimates in Eq. (12) above (see BP (2003)). The gain in e¢ ciency which is

guaranteed by the adoption of the parametric approach in this paper is noteworthy and coherent

with more traditional semiparametric models in discrete time (see Andrews (1989), for example).

5 SOME SPECIAL CASES: BROWNIAN MOTION AND
STATIONARY PROCESSES

Since the rate of convergence of the estimates is in�uenced by the rate of divergence to in�nity

of the chronological local time factor, it is worth analyzing the cases for which such a rate is known

in closed-form, namely Brownian motion and the wide class of positive recurrent and stationary

processes.

It is important to point out again that consistent estimation of either in�nitesimal moment of

interest does not require a complete parametrization of the underlying process. Hence, potential

users do not have to take an a priori stand on the stationarity properties of the process in gen-

eral. This is an important aspect of our methodology. Furthermore, the dynamic features of the

process a¤ect the limiting distributions only through estimable random objects that characterize

the variance of asymptotically normal variates. While null recurrent processes are expected to

converge at a slower pace than positive recurrent and strictly stationary processes due to the slower

divergence rates of the corresponding local time factors (c.f., Remark 4 above), the convergence

rates are embodied in random variance-covariance matrices (in Eqs. (24) and (35) above) which

can be estimated from the data as we discuss in Section 6 below. Consistent estimation of the

variance-covariance matrices only requires recurrence.

In what follows we explicitly discuss the convergence rates of the parametric estimates in the

two cases that were mentioned above: Brownian motion and positive recurrent (as well as strictly

stationary) processes. The results in this section are mainly of a theoretical interest but can also

be of help to the user should stationarity of the underlying process be known, for instance.We start
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with Brownian motion.
5.1 Brownian motion

Assume the data is generated from a Brownian motion eB = �Bt with local variance �2: We

parametrize the di¤usion process as

dXt = �dt+ �dBt (44)

and minimize the criteria in Eqs. (15) and (16). It follows that

b��n;n;T = T

n

nX
i=1

b�(n;T ) �Xi�n;T � = b�n;n;T (45)

and

b��n;n;T =
vuutT

n

nX
i=1

b�2(n;T ) �Xi�n;T � = b�n;n;T : (46)

The limit theories can be expressed in closed-form since the rate of divergence to in�nity of the

Brownian local time is known. In particular, D = (�1;1) and

B� =

�Z 1

�1

@�0(a)

@��
@�0(a)

@��
0 LX(T ; a)da

�
(47)

=

Z 1

�1
L eB(T ; a)da (48)

=
1

�2
[ eB]T (49)

=

Z 1

�1

1

�
T

1
2LB

 
1;
1

T
1
2

a

�

!
da (50)

=

Z 1

�1
TLB (1; x) dx (51)

= T [B]1 (52)

= T ; (53)

also
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V� =

 Z 1

�1
�20(a)

�
@�0(a)

@��
@�0(a)

@��
0

� �
LX(T ; a)

�2
LX(T; a)

da

!
(54)

=

Z 1

�1
�2

1
�2

�
T

1
2LB

�
1; 1

T
1
2

a
�

��2
1
�T

1
2LB

�
1; 1

T
1
2

a
�

� da (55)

=

Z 1

�1
�2
1

�

T
1
2

T
1
2

�
T

1
2LB

�
1; 1

T
1
2

a
�

��2
T

1
2LB

�
1; 1

T
1
2

T
1
2

T
1
2

a
�

� da (56)

=

Z 1

�1
�2T

1
2

�
T

1
2LB (1; x)

�2
T

1
2LB

�
1; T

1
2

T
1
2
x

�dx (57)

=
1

T
1
2LB (1; 0 + o(1))

Z 1

�1
�2T

3
2 (LB (1; x))

2 dx: (58)

Then,

T
1
4

 Z 1

�1
�2

 
(LB (1; x))

2

T
1
2LB (1; 0)

!
dx+ op(1)

!�1=2 �b��n;n;T � �� )
n;n;T!1

N (0; 1) (59)

with � = 0. The rate of convergence, T
1
4 , is faster than in the fully nonparametric case, where it

is known to be T
1
4h
1=2
n;T (BP (2003)).

We now turn to di¤usion estimation. Write

B� =

�Z 1

�1

@�20(a)

@��
@�20(a)

@��
0 LX(T ; a)da

�
(60)

=

Z 1

�1
4�2L eB(T ; a)da (61)

= 4�2T ; (62)

and

V� =

 Z 1

�1
2�40(a)

�
@�20(a)

@��
@�20(a)

@��
0

� �
LX(T ; a)

�2
LX(T; a)

da

!
(63)

=

Z 1

�1
2�4

�
4�2
� �L eB(T ; a)�2

L eB(T; a)
!
da (64)

=
1

T
1
2LB (1; 0 + o(1))

Z 1

�1
2�4(4�2)T

3
2 (LB (1; x))

2 dx: (65)
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In consequence,

T
1
4p
�n;T

 Z 1

�1
2�4

 
(LB (1; x))

2

T
1
2LB (1; 0)

!
dx+ op(1)

!�b��n;n;T � �� )
n;n;T!1

N (0; 1) : (66)

As in the previous case, the rate of convergence that would emerge from purely functional estimation

is slower and equals T
1
4p

�n;T
h
1=2
n;T .

Remark 12: It appears that we can increase further the rate of converge by working with

criteria de�ned over an enlarging time span T = T (!1) implying n = n. In this case,

p
T
�b��n;T � �� )

n;T!1
N
�
0; �2

�
; (67)

with � = 0, and

p
n
�b��n;T � �� )

n;T!1
N

�
0;
1

2
�2
�
. (68)

5.2 Positive recurrent and stationary processes

Since local time converges to the stationary density of the process f(:) when standardized by

T (c.f., Remark 4), in the drift case we obtain

p
T (�� + op(1))

�1=2
�b��n;n;T � ��0� )

n;n;T!1
N (0; Im1) ; (69)

where

�� = B(T )
�1
� V�B(T )

�1
� ; (70)

and

B(T )� =

�Z
D

@�0(a)

@��
@�0(a)

@��
0 LX(T ; a)da

�
; (71)

V� =

 Z
D
�20(a)

�
@�0(a)

@��
@�0(a)

@��
0

� �
LX(T ; a)

�2
f(a)

da

!
. (72)

In agreement with the Brownian motion case, the rate of convergence,
p
T , is faster than in the

fully nonparametric case where it was shown to be
p
hn;TT (BP (2003)). As for the di¤usion case,

we can write
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p
Tp
�n;T

(�� + op(1))
�1=2

�b��n;n;T � ��0� (73)

=
p
n (�� + op(1))

�b��n;n;T � ��0� )
n;n;T!1

N (0; Im2) ; (74)

where

�� = B(T )
�1
� V�B(T )

�1
� (75)

and

B(T )� =

�Z
D

@�20(a)

@��
@�20(a)

@��
0 LX(T ; a)da

�
; (76)

V� =

 Z
D
2�40(a)

�
@�20(a)

@��
@�20(a)

@��
0

� �
LX(T ; a)

�2
f(a)

da

!
. (77)

Again, the di¤usion estimates converge at a faster speed,
p
n, than in the fully functional case,p

nhn;T .

Remark 13: We can now de�ne the criteria over an enlarging time span T = T (! 1) with

n = n. Contrary to the Brownian motion case, no additional improvement in the convergence rates

is obtained over the situation illustrated above. Nonetheless, the asymptotic variances have a more

familiar look. In fact,

p
T (�� + op(1))

�1=2
�b��n;T � ��0� )

n;T!1
N(0; Im1); (78)

where

�� = B
�1
� V�B

�1
� ; (79)

and

B� =

�Z
D

@�0(a)

@��
@�0(a)

@��
0 f(a)da

�
= E

�
@�0(X)

@��
@�0(X)

@��
0

�
; (80)

V� =

�Z
D
�20(a)

�
@�0(a)

@��
@�0(a)

@��
0

�
f(a)da

�
= E

�
�20(X)

@�0(X)

@��
@�0(X)

@��
0

�
. (81)

Additionally,
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p
n (�� + op(1))

�1=2
�b��n;T � ��0� )

n;T!1
N(0; Im2); (82)

where

�� = B
�1
� V�B

�1
� (83)

and

B� =

�Z
D

@�20(a)

@��
@�20(a)

@��
0 f(a)da

�
= E

�
@�20(X)

@��
@�20(X)

@��
0

�
; (84)

V� =

�Z
D
2�40(a)

�
@�20(a)

@��
@�20(a)

@��
0

�
f(a)da

�
= E

�
2�40(X)

@�20(X)

@��
@�20(X)

@��
0

�
. (85)

6 COVARIANCE MATRIX ESTIMATION

We now discuss estimation of the covariance matrices in Theorems 2 and 4 above. We only

focus on the �rst in�nitesimal moment. The results readily extend to the di¤usion case with obvious

modi�cations. From Theorem 2, write the asymptotic covariance as

acov
�b��n;n;T� = �� (�0) = (B� (�0))�1 (V� (�0)) (B� (�0))�1 (86)

with

B� (�0) =

�Z
D

@� (a; ��0 )

@��
@� (a; ��0 )

@��
0 LX(T ; a)da

�
(87)

and

V� (�0) =

 Z
D
�2 (a; ��0 )

�
@� (a; ��0 )

@��
@� (a; ��0 )

@��
0

� �
LX(T ; a)

�2
LX(T; a)

da

!
. (88)

It is straightforward to show (see the proof of Theorem 4) that

bB�(��)n;T
= �n;T

nX
i=1

@�
�
Xi�n;T ; �

�
�

@��

@�
�
Xi�n;T ; �

�
�

@��
0 (89)

a:s:!
n!1

Z
D

@�(a; ��)

@��
@�(a; ��)

@��
0 LX(T ; a)da (90)

= B�(�) (91)
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and

bV�(�)n;n;T
=

hn;T
hn;T

�
�n;T

�2
�n;T

nX
i=1

�2
�
Xi�n;T ; �

�
� @��Xi�n;T ; ���

@��

@�
�
Xi�n;T ; �

�
�

@��
0

Pn
j=1K

�
Xj�

n;T
�Xi�

n;T

hn;T

�
Pn
j=1K

�
Xj�n;T�Xi�n;T

hn;T

�
(92)

a:s:!
n;n;T!1

Z
D
�2(a; ��)

�
@�(a; ��)

@��
@�(a; ��)

@��
0

� �
LX(T ; a)

�2
LX(T; a)

da = V�(�) (93)

uniformly in �. We combine this result with the continuity of @�(:;�
�)

@�� and �2(:; ��) at ��0 and �
�
0

(c.f. Assumption 1) and the consistency of b��n;n;T and b��n;n;T (from Theorems 1 and 3) to yield

bB� �b��n;n;T�
n;T

p!
n;n;T!1

B� (�0) (94)

and

bV� �b�n;n;T�
n;n;T

p!
n;n;T!1

V� (�0) : (95)

The proof follows standard arguments in extremum estimation (see the proof of Theorem 2 for a

similar derivation). In consequence,

b�� �b��n;n;T� = � bB� �b��n;n;T�
n;T

��1�bV� �b�n;n;T�
n;n;T

�� bB� �b��n;n;T�
n;T

��1
p!

n;n;T!1
(B� (�0))

�1 V� (�0) (B� (�0))
�1 = �� (�0) . (96)

De�ning the criterion over an enlarging time span as in Remarks 12 and 13, we obtain

bB� �b��n;T�
n;T

= �n;T

nX
i=1

@�
�
Xi�n;T ;

b��n;T�
@��

@�
�
Xi�n;T ;

b��n;T�
@��

0 (97)

p!
n(=n);T (=T )!1

Z
D

@� (a; ��0 )

@��
@� (a; ��0 )

@��
0 LX(T; a)da (98)

= B� (�0) (99)

and
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bV� �b�n;T�
n;T

= �n;T

nX
i=1

�2
�
Xi�n;T ;

b��n;T� @�
�
Xi�n;T ;

b��n;T�
@��

@�
�
Xi�n;T ;

b��n;T�
@��

0 (100)

p!
n(=n);T (=T )!1

Z
D
�2 (a; ��0 )

�
@� (a; ��0 )

@��
@� (a; ��0 )

@��
0

�
LX(T; a)da (101)

= V� (�0) . (102)

This discussion further clari�es the analogy between the methods developed here and more standard

nonlinear estimation problems. As conventional in correctly speci�ed nonlinear regression models

with heterogeneous errors, the asymptotic covariance matrix can be consistently estimated using a

convolution of averages involving the outer-product of the gradient of the conditional expectation

calculated at the estimated parameter vector.

In sum, the methods proposed here can be viewed as nonlinear least-squares in continuous time.

The main di¤erence between the standard approach in discrete time and the approach in this paper

is that preliminary kernel estimates of drift and di¤usion function must be obtained. Normality of

the resulting estimates can be fruitfully used for inference. As always, the asymptotic covariance

matrices can be estimated by virtue of sample analogues.

7 EFFICIENCY ISSUES

7.1 Presence of cross-restrictions between drift and di¤usion function

Standard econometric theory suggests that if the �rst and second moment have elements in

common (namely if �� \ �� 6= 0 in our case), one should consider taking an optimally-de�ned

convex combination of the estimated common parameters for the purpose of minimizing their

asymptotic variance and increase e¢ ciency. In general, though, the drift and di¤usion parameter

converge at di¤erent rates (c.f., Theorems 2 and 4). In this sense, our problem is nonstandard. In

the limit, in fact, a linear combination of drift and di¤usion parameters would have an asymptotic

distribution that is dominated by the terms that converge at the slowest pace, namely the drift

parameters. Thus, should the drift and di¤usion have parameters in common, we recommend

recovering the parameters of interest from the di¤usion estimates. Not only are these estimates

consistent over a relatively short time span (as indicated by Theorem 5), but they also converge at

a faster speed than the corresponding drift estimates.

7.2 Weighted least-squares in continuous-time

We can push the analogy between our methods and conventional least-squares procedures with
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heteroskedastic errors a step forward. Speci�cally, given the form of the asymptotic variances, one

can employ generalized or weighted least-squares methods to increase e¢ ciency.

Consider estimation of the di¤usion function over a �xed time span T as in Theorem 5. Let

	�
n;T

be a diagonal matrix of size n� n (or, equivalently in this case, of size n� n) with diagonal

elements given by 2b�4(X�n;T ); :::; 2b�4(Xn�n;T ). Write now the criterion
b��;GLSn;T := arg min

��2����

T

n
jj
�
	�
n;T

��1=2 �b�2 � �2(��)� jj2 : (103)

The following corollary to Theorem 5 readily derives.

Corollary to Theorem 5: Given n(= n)!1 and hn;T ! 0 (as n!1) so that

1

hn;T
(�n;T log(1=�n;T ))

1=2 = o(1)

and
h4
n;T

�n;T
! 0, then

1q
�n;T

�b��;GLSn;T � ��0
�
)
n!1

MN(0;�GLS� (T )) (104)

with

�GLS� (T ) =

�Z
D

1

2�40(a)

@�20(a)

@��
@�20(a)

@��
0 LX(T ; a)da

��1
; (105)

where LX(:; a) is the chronological local time of the underlying di¤usion process at a.

Both ��(T ) in Eq. (41) and �GLS� (T ) can be converted from spatial integrals to integrals over

time by virtue of the occupation time formula. �GLS� (T ), for example, can be expressed as follows

 Z T

0

1

2�40(Xs)

@�20(Xs)

@��
@�20(Xs)

@��
0 ds

!�1
: (106)

Conventional geometry in L2[0; T ]; therefore, reveals4 that the random matrix ��(T )��GLS� (T ) is

positive semi-de�nite with probability one. Hence, the weighting guarantees e¢ ciency gains.

4By the Cauchy-Schwarz inequality, in the scalar function case we have
�R
fh
�2 � R f2 R h2. Setting f = g=� and

h = �g this leads to
�R
g2
�2 � R g2

�2

R
g2�2 so that�Z
g2

�2

��1
�
�Z

g2
��1�Z

g2�2
��Z

g2
��1

:

In a similar way, in the vector function case when
R
hh0 is positive de�nite we have���� R ff 0 R

fh0R
hf 0

R
hh0

���� = ����Z hh0
����
�����
Z
ff 0 �

Z
fh0

�Z
hh0
��1 Z

hf 0

����� � 0:
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Generalized or weighted least-squares are expected to be bene�cial even in the case where the

kernel estimates are de�ned over an enlarging time span while the criteria are de�ned over a �xed

span of observations as in Theorem 1 through 4 above. However, due to the path-dependency of the

rates of convergence in this case, the results are, at least theoretically, less clean than in the case

of Theorem 5. Let 	�
n;T

be a diagonal matrix of size n� n (= n� n) with diagonal elements given

by b�2(X�n;T ); :::; b�2(Xn�n;T ). Assume the criteria in Eqs. (15) and (16) are weighted by 	�n;T and
	�
n;T
, respectively, as in the case of Eq. (103) above. Hence, the limiting covariance matrices in

Theorem 2 and 4 can be represented as follows:

�GLS� = BGLS(T )�1� V
GLS
� (T )BGLS(T )�1� (107)

with

BGLS(T )� =

�Z
D

1

�20(a)

@�0(a)

@��
@�0(a)

@��
0 LX(T ; a)da

�
; (108)

V GLS(T )� =

 Z
D

1

�20(a)

�
@�0(a)

@��
@�0(a)

@��
0

� �
LX(T ; a)

�2
LX(T; a)

da

!
, (109)

and

�GLS� (T ) = BGLS(T )�1� V
GLS(T )�B

GLS(T )�1� (110)

with

BGLS(T )� =

�Z
D

1

2�40(a)

@�20(a)

@��
@�20(a)

@��
0 LX(T ; a)da

�
; (111)

V GLS(T )� =

 Z
D

1

2�40(a)

�
@�20(a)

@��
@�20(a)

@��
0

� �
LX(T ; a)

�2
LX(T; a)

da

!
: (112)

Since potential users will typically choose T close to T , if not equal to it (see the discussion in

Section 3), then

Setting f = g=� and h = �g as before, this leads toZ
1

�2
gg0 �

Z
gg0

�Z
�2gg0

��1 Z
gg0 � 0

or �Z
1

�2
gg0
��1

�
�Z

gg0
��1�Z

�2gg0
��Z

gg

��1
;

as required.
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�GLS� �
T�T

�Z
D

1

�20(a)

@�0(a)

@��
@�0(a)

@��
0 LX(T ; a)da

��1
(113)

and

�GLS� (T ) �
T�T

�Z
D

1

2�40(a)

@�20(a)

@��
@�20(a)

@��
0 LX(T ; a)da

��1
: (114)

The expressions in Eq. (113) and Eq. (114) con�rm the bene�t of weighted least-squares for the

case where the kernel estimates are de�ned over expanding spans of observations.

8 CONCLUSIONS and EXTENSIONS

This paper discusses a methodology that utilizes the informational content of nonparametric

methods in the parametric estimation of continuous-time models of the di¤usion type while im-

proving on their generally poor convergence properties.

The technique presented here allows us to estimate the parameters of the in�nitesimal moments

of potentially nonlinear stochastic di¤erential equations in situations where the transition density of

the discretely sampled process is unknown, as is typically the case in practice. Our procedure does

not require simulations, or approximations to the true transition density, and has the simplicity of

standard nonlinear least-squares methods in discrete-time.

The method combines the appeal of limit theories that can be interpreted as spatial counterparts

of the standard asymptotics for nonlinear econometric models with the generality of procedures that

are robust to deviations from strong distributional assumptions, such as positive recurrence or strict

stationarity. In both the stationary and nonstationary cases the limiting distributions are normal

with random limiting variance-covariance matrices that can be readily estimated from the data.

Several extensions can be considered.

(1) Parametric estimation of multivariate di¤usions and jump-di¤usion processes - Given the

nature of our criteria, both extensions would require preliminary consistent estimates of the

corresponding in�nitesimal moments under recurrence. However, these moments can be eval-

uated as in recent work by Bandi and Moloche (2001) in the case of multivariate di¤usions

and Bandi and Nguyen (2003) in the case of jump-di¤usion processes. In particular, in Bandi

and Moloche (2001) it was shown that the absence of a notion of local time for multivari-

ate semimartingales does not represent an impediment when deriving a fully nonparametric

theory of inference for functionals of multidimensional di¤usions. Similarly, the absence of a

notion of local time is not expected to hamper parametric estimation by virtue of (weighted)

least-squares methods as in this paper.
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(2) Speci�cation tests for possibly nonstationary di¤usions - A testing procedure for alternative

parametric speci�cations for di¤usions based on our quadratic criteria can be provided. De-

signing speci�cation tests for di¤usions is a vibrant area of recent research. Aït-Sahalia (1996)

provides a speci�cation test for parametric drift and di¤usion function based on the stationary

density of the process. Corradi and White (1999) focus on the in�nitesimal second moment

but dispense with the assumption of stationarity. Hong and Li (2003) discuss speci�cation

tests for both the drift and the di¤usion function of a stationary di¤usion process relying on

the informational content of the process�transition density. Empirical distribution function-

based tests for stationary scalar and multivariate di¤usion processes are discussed in Corradi

and Swanson (2005). In order to �x ideas in our framework, consider the drift case. As-

sume one wishes to test the hypotheses H0 : �0(x) = �(x; �
�) against H1 : �0(x) 6= �(x; ��).

Provided a consistent (under the null) parametric estimate of ��, e��n say, is obtained and
the distribution of Q�n;n;T (

e��n) is derived under the null, intuitions and methods typically
employed in discrete time can be put to work to construct a consistent test. Interestingly,

while the drift parameter estimates discussed in this paper are natural candidates for e��n;
alternative estimates, eventually obtained by virtue of one of the existing consistent methods

for di¤usions, such as those cited in the Introduction, can be employed. In consequence, a

testing method relying on Q�n;n;T or Q
�
n;n;T might be regarded as a speci�cation test for a

chosen parametric model versus a consistent functional alternative. This procedure would

be in the tradition of more conventional semiparametric tests of parametric speci�cations for

marginal densities as in Bickel and Rosenblatt (1973), Fan (1994), Rosenblatt (1975), and,

more recently, Aït-Sahalia (1996) in the context of di¤usion estimation. Due to the broadly

applicable identifying information that is embodied in the estimated functional drift and dif-

fusion functions and the �nite sample accuracy of the asymptotics of the functional estimates

(c.f., Bandi and Nguyen (1999)), such a testing methodology is likely to be attractive. It can,

for instance, be expected to have better size properties and more power than testing meth-

ods for potentially nonlinear continuous-time processes based on density-matching methods

relying on stationarity (Pritsker (1998)). Research on this subject is under way and will be

reported in later work.
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APPENDIX A: PROOFS

Proof of theorem 1: In the proof of Theorem 1 through 4 we assume that hn;T ! 0 and

LX(T; x)

hn;T
(�n;T log(1=�n;T ))

1=2 = oa:s:(1) 8x 2 D (115)

given n; T !1 with �n;T = T
n ! 0. First, we prove uniform convergence of the criterion Q�n;n;T (�

�) as in
Eq. (19). Write

Q�n;n;T (�
�)

=
T

n

nX
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�
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(118)

Using the modulus of continuity of a di¤usion as in Florens-Zmirou (1993), page 797, as well as the occupation
time formula for continuous semimartingales (Revuz and Yor (1994), Corollary 1.6, page 215), we can readily
show that

bn;n;T =
T

n

nX
i=1

�2
�
Xi�n;T

; ��
�

(119)

=

Z T

0

�2(Xs; �
�)ds+ oa:s:(1) (120)

=

Z
D

�2(a; ��)LX(T ; a)da+ oa:s:(1); (121)

(see BP (2003)). Furthermore, we can write
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It follows that,
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Z
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given Assumption 2, namely
R1
�1K(s)ds = 1: As in the proof of Theorem 2, one can also show that
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p!

n;n;T!1
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and
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We now examine the quadratic term an;n;T . Write,
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We start with the �rst term, namely a1n;n;T : Following the same steps leading to the asymptotic expression
of term c1n;n;T above we deduce that
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We now examine term a2n;n;T . Write
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for J = [nr] with [x] denoting, as usual, the largest integral that is less than or equal to x: M i
n;T (r) is an L
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Furthermore,
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Z r

0

dM i
n(s) (142)
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and
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Given the continuous martingaleM i
n;T (r); there is a unique decomposition of the continuous submartingale�

M i
n;T (r)

�2
as the sum of a continuous martingale and a continuous integrable increasing process (Chung

and Williams (1990), Theorem 4.6, page 88, for example) such that
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i
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with M i
n;T (0) = 0; in our case. Hence,

32



a2n;n;T=r =
T

n

nX
i=1

1�
�n;T

hn;T

Pn
j=1K

�
Xj�n;T

�Xi�
n;T

hn;T

��2 �M i
n;T (r)

�2
(147)

=
T

n

nX
i=1

1�
�n;T

hn;T

Pn
j=1K

�
Xj�n;T

�Xi�
n;T

hn;T

��2 [M i
n;T ]r

| {z }
a2n;n;T=r

+2
T

n

nX
i=1

1�
�n;T

hn;T

Pn
j=1K

�
Xj�n;T

�Xi�
n;T

hn;T

��2 �Z r

0

M i
n;T (s)dM

i
n;T (s)

�
| {z }

a2n;n;T=r

: (148)

Using Eq. (141) and proceeding as for term bn;n;T and term c1n;n;T above, the quantity a2n;n;T=r can be
readily evaluated at r = 1 and represented as follows,
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where K2 =
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2(s)ds <1, by Assumption 2. In consequence,
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if hn;TLX(T; x)
a:s:! 1 8x 2 D as stated in our assumptions. We now analyze the second component of term

a2n;n;T=r, namely a2n;n;T=r. Given
n
Xi�n;T

: i = 1; :::; n
o
, a2n;n;T=r constitutes a weighted sum of continu-

ous martingales evaluated at r 2 [0; 1]. By virtue of Eq. (145) and noting that
R r
0

�
M i
n;T ;M

k
n;T

�
s
d[M i

n;T ;M
k
n;T ]s =

[Mi
n;T ;M

k
n;T ]

2
r

2 ; the variation process of a2n;n;T=r at r = 1 can be expressed as follows. Write
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Now �x T = T . By virtue of conventional arguments (Revuz and Yor (1994), Theorems 1.9, page 175, and
Theorem 2.3, page 496, for example) each martingale
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0
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n;T
(s)dM i

n;T
(s) can be embedded in a Brownian

motion with quadratic variation process given by
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(s)dM i
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i
r
. Let T increase. Thus,�Z

0

M i
n;T (s)dM

i
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Similarly, when standardized by its vanishing variation process at r = 1; the linear combination a2n;n;T=r=1
is normally distributed in the limit. In fact,h

a2n;n;T

i�1=2
r=1

a2n;n;T=r=1 = Op(1); (165)
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This, in turn, implies that
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Similar steps allow us to show that the term a3n;n;T
p!

n;n;T!1
0: This proves pointwise weak convergence of

Q�n;n;T (�
�) to Q�(��; �0): We now prove uniform convergence. De�ne Zn;n;T (�; �0) = Q

�
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Using our regularity conditions from Assumptions 1 and 2, it readily follows that 8" > 0 9 > 0 such that

limn;n;T!1P

 
sup
�2��

sup
�
�2B(�;)

�
jZn;n;T (�

�
; �0)� Zn;n;T (�; �0)j > "

�!
< " , (168)

where B(�; ) is an open ball of radius  centered at �. The expression in Eq. (168) is a stochastic
equicontinuity condition. By virtue of the boundedness of �, let fB(�j ; ) : j = 1; :::; Jg be a �nite cover
of �� � � so that

SJ
j=1B(�j ; ) � ��: We wish to show that 9eT ; en; and en so that for T > eT ; n > en; and

n > en there exists an arbitrarily small " > 0 such that
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�
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< "; (173)

where the last inequality follows from (i) the condition in Eq. (168) and (ii) pointwise weak convergence of
Q�n;n;T (�) to Q

�(�; �0); as shown earlier. Hence, uniform convergence of the criterion function holds. This
result proves the �rst part of the theorem. We now discuss consistency. For every " > 0, 9� > 0 such that
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where the �rst inequality follows from the identi�cation condition implied by Eq. (21), the third inequality
derives from the fact that b��n;n;T is de�ned to satisfy

b��n;n;T 2 �� � � and Q�n;n;T (b��n;n;T ) � inf
�2����

Q�n;n;T (�) + op(1) (178)

and the �nal result is implied by uniform convergence of the criterion. This result proves the second part of
the theorem. �

Proof of theorem 2: Using the mean-value theorem, write
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Notice that ��n;n;T
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n;n;T!1
��0 since b��n;n;T p!
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��0 and �

�
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and ��0 . First, we examine
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n;n;T ). Consider
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�). Using previous methods, we obtain
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Now notice that, given pointwise strong convergence as implied by Eq. (187) and the continuity of
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can be proved by using the same methods that were discussed in the proof of Theorem 1 to obtain Eq. (169).
Hence,
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where the second inequality holds by the triangle inequality and the �nal result follows from almost sure

uniform convergence of
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Following similar steps, it is straightforward to prove that
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For simplicity, and given that there is no ambiguity with the notation, we express �
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First, we examine the second term, namely Bn;n;T (1). Write
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Now consider Bn;n;T (r) =
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For r = 1; given the asymptotic orthogonality between its elements, the vector Bn;n;T (r) can be embedded

in a vector Brownian motion with quadratic variation
h
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= Im1
(c.f., Revuz and Yor (1994),

Corollary 2.4, page 497). Then,��
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Next, we examine An;n;T .

An;n;T

=
T

n

nX
i=1

0BB@
1

hn;T

Pn�1
j=1 K

�
Xj�n;T

�Xi�
n;T

hn;T

��
�0(X

�)� �0(Xj�n;T
)
�
�n;T

�n;T

hn;T

Pn
j=1K

�
Xj�n;T

�Xi�
n;T

hn;T

�
1CCA @�0

�
Xi�n;T

�
@��

| {z }
A1
n;n;T

+
T

n

nX
i=1

0BB@
1

hn;T

Pn�1
j=1 K

�
Xj�n;T

�Xi�
n;T

hn;T

��
�0(Xj�n;T

)� �0(Xi�n;T
)
�
�n;T

�n;T

hn;T

Pn
j=1K

�
Xj�n;T

�Xi�
n;T

hn;T

�
1CCA @�0

�
Xi�n;T

�
@��

| {z }
A2
n;n;T

;

(203)

where X� 2
�
X(j+1)�n;T

; Xj�n;T

�
by the mean-value theorem. A1
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where �n;T = maxi�n supj�n;T�s�(j+1)�n;T
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Now consider the term A2
n;n;T . Using the Quotient Limit Theorem (Revuz and Yor (1994), Theorem 3.12,

page 408) as in Bandi and Moloche (2001), we obtain
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where m(:) is the speed function of the process and K2 =
R1
�1 c

2K (c) dc <1. Then,
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with K2 =
R1
�1 c

2K (c) dc: This proves the stated result. �

Proof of theorem 3: We can follow similar steps as for the proof of Theorem 1.�
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First, we examine
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n;n;T ). Consider
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�). We obtain
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using the continuity of the underlying semimartingale as in previous proofs and the occupation time formula.
Uniform strong convergence over �� can be shown following the same steps leading to Eq. (169) in the proof
of Theorem 1. Hence,
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Then, using the continuity of
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(:; �0), the consistency of b��n;n;T ; and the result in Eq. (225) as in the
proof of Theorem 2, we can readily obtain
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First, we examine the second term, namely Bn;n;T (1). Considers
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As in the case of the corresponding term in the proof of Theorem 2,
q
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Bn;n;T (r) is a weighted sum of

local martingales whose quadratic variation can be expressed as"s
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with Ms =
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j�n;T

�0(Xu)dBu: For simplicity, in Eq. (233) we abuse notation by writing w2(:) even though

w2(:) is an m1-vector. The simpli�cation should cause no confusion. Hence,
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where K2 =
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2K(c)dc, by virtue of the Quotient Limit Theorem. As for An;n;T and C1n;n;T , it is
immediate to see that An;n;T = op (Bn;n;T (1)) and C1n;n;T = op
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with K2 =
R1
�1 c

2K (c) dc: This concludes the proof of Theorem 4. �
Proof of theorem 5: The proof largely follows the proof of Theorem 4. We simply need to show

mixed normality of the limiting distribution when performing the asymptotics over a �xed time interval T
(with n = n). Considers
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with w(Xj�n;T
) as de�ned in Eq. (232). By using standard embedding arguments (c.f. Revuz and Yor

(1994), Theorem 2.3, for example), it is simple to show that
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whereW denotes standard Brownian motion. We now need to prove thatW is independent of the asymptotic
variance. In order to do so, one can show that the asymptotic variance is independent of XrT . This
independence would imply independence between W and LX(rT ; :) and, as a consequence, mixed normality.
We therefore evaluate the limiting covariation process between
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where the �rst and the second asymptotic approximations derive from the faster asymptotic vanishing rate
of the di¤usion�s �nite variation component and the penultimate line follows from integration by parts. The
term qv2

n;T
has a variation which could be expressed as

[qv2
n;T
]r

� n

T

 
max

1�j�[nr]�1

Z
(j+1)�

n;T

j�n;T

�20(Xs)ds

!2 [nr]�1X
j=1

w2(Xj�n;T
)4

 Z (j+1)�n;T

j�n;T

�20(Xs)ds

!
(261)

= Op

�
1

n

� [nr]�1X
j=1

w2(Xj�n;T
)4

 Z (j+1)�n;T

j�n;T

�20(Xs)ds

!
p!

n!1
0: (262)

(As earlier in the proof of Theorem 4 we abuse notation slightly by squaring the vector weight w.) Hence,

qv2
n;T

= op(1): As for qv1n;T , this term is trivially op(1) since
P[nr]�1

j=1 w(Xj�n;T
)
R (j+1)�

n;T

j�n;T
�0(Xs)dBs is

bounded in probability and
q

n
T

R (j+1)�n;T

j�n;T
�20(Xs)ds = op(1) uniformly in j: Finally, the covariation process

between
q

1
�n;T

Bn;T and �n;T is zero since X0 is independent of the Brownian path and the Brownian

increments are independent of each other. This proves the stated result. �
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APPENDIX B: NOTATION

a:s:! almost sure convergence
p! convergence in probability

); d! weak convergence
!

n;n;T!1
; )
n;n;T!1

convergence, weak convergence with �T �xed and T !1

!
n!1

; )
n!1

convergence, weak convergence with �T = T �xed.

)
n;T!1

weak convergence with �T = T !1

:= de�nitional equality
op(1) tends to zero in probability
Op(1) bounded in probability
oa:s:(1) tends to zero almost surely
Oa:s:(1) bounded almost surely
d
= distributional equivalence
MN(0; V ) mixed normal distribution with variance V
Ck; k = 1; 2; ::: constants
[X]t quadratic variation of X at t
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