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Abstract 
 

In previous work, the current authors derived a mathematical expression for the 
optimal (or “saturation”) number of reinsurers for a given number of primary insurers (see 
Powers and Shubik, 2001).  In the current paper, we show analytically that, for large 
numbers of primary insurers, this mathematical expression provides a “square-root rule”; 
i.e., the optimal number of reinsurers in a market is given asymptotically by the square 
root of the total number of primary insurers.  We note further that an analogous “fourth-
root rule” applies to markets for retrocession (the reinsurance of reinsurance). 
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1.  Introduction 

In previous work, the current authors derived a mathematical expression for the 

optimal (or “saturation”) number of reinsurers for a given number of primary insurers (see 

Powers and Shubik, 2001).  Specifically, we identified the optimal number of reinsurers as 

the maximum value of       n1 ∈ 2,3,K,n0{ } such that the price per unit of primary insurance in 

a market with     n0  primary insurers and   n1 reinsurers remains less than the price of 

insurance in a market with     n0 +1  primary insurers and   n1 −1 reinsurers.  This marginal 

analysis yields 
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,                (1) 

and the existence of a unique solution    n1* ∈ 2,3,K,n0 −1{ } is guaranteed by the fact that 

the inequality in (1) is satisfied for   n1 = 2 , but not for   n1 = n0. 

Having computed     n1 * for values of   n0  in the interval  10,5000[ ], we presented a 

graph of these results, which is reproduced in Figure 1. 

 

 

 

 

 

 

 

 

Figure 3.  U.S. Insurance/Reinsurance Market
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 Figure 1.  Insurance/Reinsurance Market 
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From a tabular display of the same results (see Table 1), it is easy to see that the solution to 

(1),     n1 *, is approximately equal to the square root of   n0  (although this observation was not 

made in Powers and Shubik, 2001). 

 

n0 
(Number of 

Primary 
Insurers) 

n1* 
(Optimal 

Number of 
Reinsurers) 

10 3 
20 4 
30 5 
40 6 
50 7 

100 10 
200 14 
300 17 
400 20 
500 22 

1000 31 
2000 44 
3000 54 
4000 63 
5000 70 

10,000 101 
 

Table 1.  Optimal Numbers of Reinsurers for Selected Numbers of Primary Insurers 

 

2.  A Square-Root Rule 

In the current research, we show analytically that, for large numbers of primary 

insurers, the solution to problem (1) is indeed a “square-root rule”; i.e., the optimal 

number of reinsurers in a market is given asymptotically by the square root of the total 

number of primary insurers, as stated formally in the following result. 
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Theorem 1:  For sufficiently large     n0 , there exists a unique solution 

      n1* = n1 * n0( )∈ 2,3,K,n0 −1{ } to problem (1), where 

    n1 * n0( )~ n0  

as     n0 → ∞ . 

Proof:  First, we extend problem (1) from the two-dimensional integer grid 

    n0 ,n1( ): 2 ≤ n1 ≤ n0{ } to the corresponding two-dimensional real space     a,x( ): 2 ≤ x ≤ a{ } by 

considering the inequality 
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Apart from its points of unboundedness, (2) is equivalent to the cubic polynomial 

inequality 

    f x( )= 3a2 − 3a+1( )x 3 − 5a3 + 3a2 − 5a+ 2( )x 2  

                + 9a3 − 3a2 − a+1( )x + a4 − 3a3 + 3a2 − a( )> 0 .                                               (3) 

Thus, the unique solution specified by the theorem—if it exists—is given by     n1* = x *⎣ ⎦, 

where     x* = x * a( )∈ 2, a( ) is a positive real root of  f x( ) such that   ′ f x( )< 0. 

For large   a, one can rewrite (2) as 
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from which it follows that we seek the roots  x a( ) of 

    
f x( )= 1+ x −1( )2O a−2( )[ ]a2 − x 2 − x −1+ x −1( )3O a−2( )[ ]a 

                                              
  
− x 3 − 2x 2 + x + x x −1( )2O a−2( )[ ]= 0 .                           (4) 

Solving (4) for   a as a function of   x  yields 
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a=
x 2 − x −1+ x −1( )3O a−2( )[ ]

2 1+ x −1( )2O a−2( )[ ]
 

    

±
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+ 4 1+ x −1( )2O a−2( )[ ]x 3 − 2x 2 + x + x x −1( )2O a−2( )[ ]
2 1+ x −1( )2O a−2( )[ ]

.      (5) 

Anticipating that there exists at least one positive root   x a( )= o a2 3( ) to (4), we find 

exactly one solution to (5); namely, 

    
a=

ˆ x 2 +O ˆ x ( )
2 1+ o 1( )[ ]

+
ˆ x 4 +O ˆ x 3( )

2 1+ o 1( )[ ]
~ ˆ x 2 , 

which implies 

  ̂  x a( )~ a . 

For sufficiently large   a, it is clear that   ̂  x a( )∈ 2, a( ). 

To confirm that   ̂  x a( ) is the desired root of  f x( ), we consider the local extrema of 

this polynomial, given by 

    ′ f x( )= 3 3a2 − 3a+1( )x 2 − 2 5a3 + 3a2 − 5a+ 2( )x + 9a3 − 3a2 − a+1( )= 0 , 

or equivalently, 

    
x =

5a3 + 3a2 − 5a+ 2( )± 5a3 + 3a2 − 5a+ 2( )2
− 3 3a2 − 3a+1( ) 9a3 − 3a2 − a+1( )

3 3a2 − 3a+1( )
.             (6) 

As   a → ∞ , the two solutions to (6) are 

    
xL a( )=

5a3 + 3a2 − 5a+ 2( )− 5a3 + 3a2 − 5a+ 2[ ]2
+ −81a5 +O a4( )[ ]

9a2 +O a( )
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−
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and 

    
xU a( )=

5a3 +O a2( )+ 25a6 +O a5( )
9a2 +O a( )

~ 10
9

a, 

respectively.  For sufficiently large   a, it follows that  ̂  x a( ) lies between  xL a( ) and   xU a( ), 

implying     ′ f ˆ x ( )< 0.  Therefore,   x * a( )= ˆ x a( ).                                                                                  

 

3.  Extension to Retrocession 

Beyond the world of ordinary reinsurance lie the misty realms of retrocession 

(second-order reinsurance), second-order retrocession (third-order reinsurance), and so 

on.  Although the model in our 2001 paper was extended to an arbitrary number of 

reinsurance levels, we acknowledged that such clearly defined levels are not reflective of 

the real world.  While a few specialized purveyors of retrocession do exist, higher-order 

reinsurance is typically provided by ordinary reinsurers through the packaging and 

repackaging of risk through various types of pooling arrangements. 

It may be argued that the absence of distinct higher-order reinsurance markets is 

consistent with the analytical results of our game-theoretic model.  Assuming that there 

exist at least two second-order reinsurers in the market, and again using the minimization 

of price in the primary insurance market as the optimality criterion, our expression for the 

optimal number of second-order reinsurers is given by: 
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By methods analogous to those employed in the proof of Theorem 1, it is quite 

straightforward to show the following result. 

Theorem 2: For sufficiently large     n0 , if   n1 ~ n0 , then there exists a unique solution 

      n2* = n2 * n0( )∈ 2,3,K,n1 −1{ } to problem (7), where 

    n2 * n0( )~ n0
4  

as     n0 → ∞ . 

In short, the number of retrocessionaires in a market should be approximately equal 

to the fourth-root of the number of primary insurers, which for most national insurance 

markets (other than that of the U.S.) is rather small.  Thus, according to the model, one 

should not expect to see distinct significant retrocession markets, except perhaps in the 

U.S.  This result agrees with empirical observation. 

 

4.  A Comment on Paper on Paper 

More generally, for all financial instruments involving risk and transaction costs, 

the principles dictating how many levels of paper are economically optimal need to be 

considered.  We suspect that four or five is an extreme upper bound, and our result here 

conforms to this. 
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