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Abstract

This paper provides a first order asymptotic theory for generalized method of mo-
ments (GMM) estimators when the number of moment conditions is allowed to increase
with the sample size and the moment conditions may be weak. Examples in which these
asymptotics are relevant include instrumental variable (IV) estimation with many (pos-
sibly weak or uninformed) instruments and some panel data models covering moderate
time spans and with correspondingly large numbers of instruments. Under certain
regularity conditions, the GMM estimators are shown to converge in probability but
not necessarily to the true parameter, and conditions for consistent GMM estimation
are given. A general framework for the GMM limit distribution theory is developed
based on epiconvergence methods. Some illustrations are provided, including consistent
GMM estimation of a panel model with time varying individual effects, consistent LIML
estimation as a continuously updated GMM estimator, and consistent IV structural
estimation using large numbers of weak or irrelevant instruments. Some simulations
are reported.
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1 Introduction

Generalized method of moments (GMM) provides an attractive estimation methodology that
has been widely used in empirical research and is well suited to situations where economic
information is given in terms of moment conditions. The approach has several well known
advantages including an easily implemented asymptotic theory. On the other hand, GMM
asymptotics depend on regularity conditions that are not always satisfied and which can
affect finite sample performance adversely. One example that is discussed in Stock and
Wright (2000) occurs when the moment conditions are weak in the sense that their expected
first derivatives vanish at the specific rate O(n−1/2) where n is the sample size. Under
such weak moment conditions, GMM estimates are not consistent but converge weakly to a
nondegenerate limit distribution.
Lack of consistency can be understood in terms of the relative weakness of the ‘signal’

delivered by the moment conditions compared to the ‘noise’ component. To fix ideas, consider
the moment restrictions

Eg(wi, θ0) = 0, i = 1, ..., n(1)

where the wi are here assumed to be iid for expository purposes, θ0 is the ‘true’ parameter,
and g is a vector function of fixed dimension. The GMM estimator θ̂ minimizes ḡ(θ)0ḡ(θ),
where ḡ(θ) is the sample moment function defined as ḡ(θ) = n−1

Pn
i=1 g(wi, θ), and which

we decompose as ḡ(θ) = Eḡ(θ) + [ḡ(θ) − Eḡ(θ)]. The point θ0 in the parameter space is
identified as the parameter value satisfying (1). So, information on θ0 is contained in the
function Eg(wi, θ). Correspondingly, information on θ0 produced by the sample wn = (wi)

n
1

is contained in Eḡ(θ), whereas the component involving ḡ(θ)− Eḡ(θ) is noise that disturbs
this information. We may therefore regard Eḡ(θ) as the signal and ḡ(θ)−Eḡ(θ) as the noise
of the sample moment function. When Eḡ(θ) is flat and zero (respectively, close to zero)
throughout a neighborhood of θ0, the sample function will fail to identify (clearly identify)
the unique parameter value θ0, and we may say that the signal is uninformative (weak).
In conventional GMMasymptotics the signal from the sample moment function is taken to

be strong in the sense that Eḡ(θ) is zero uniquely at θ0 and this identifying information does
not diminish as n → ∞. Further, the noise is eliminated asymptotically by the action of a
uniform law of large numbers. In consequence, the signal dominates the noise asymptotically
and consistency is obtained. By contrast, in weak moment condition asymptotics like those
in Stock and Wright (2000), the signal of the sample moment function is permitted to
diminish to zero at a controlled

√
n rate. Since the noise also vanishes asymptotically in this

case again at a
√
n rate by virtue of a functional limit law, the signal does not dominate

the noise, GMM is inconsistent and its limit behavior is governed by weak convergence to a
limiting functional of the sample components. In effect, at the

√
n rate, the noise component

is retained asymptotically and the GMM estimate has a non-degenerate limit distribution.
The effect is entirely analogous to that shown originally in Phillips (1984, 1989) where, in
the case of a totally unidentified structural system, the uncertainty that is inherent in lack
of identification is retained in the limit by way of the estimator converging to a random
variable.
The present paper reconsiders the GMM limit theory by allowing the number (q) of

moment conditions to be large while at the same time permitting the moment conditions
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to be weak. Here, the signal from a fixed number of moment functions again does not
dominate the noise but, as q increases, variation over the moment conditions accumulates and
provides an alternate route by which the totality of the signal and its cumulative variability
can dominate random noise asymptotically. In such a situation, the GMM estimator has a
nonrandom probability limit. However, the contribution from the variation over the sample
moment conditions (or signal variability) as q grows does not necessarily reinforce the effect
of the true signal coming from the mean of the sample moment conditions. Therefore,
the probability limit of the GMM estimator may or may not equal the true parameter
θ0. When there is a failure in the consistency of GMM, the extent of the inconsistency
depends on how weak the moment conditions are in relation to their degree of variation.
This relationship is made explicit in the asymptotic theory developed here. In this regard
the results of the present paper differ from those of Donald, Imbens and Newey (2003) and
Koenker and Machado (1999), who consider GMM and empirical likelihood estimation under
strong moment conditions and explore conditions on q that permit usual asymptotic theory
and statistical testing.
A primary contribution of the paper therefore lies in the generality with which the GMM

asymptotics are obtained. The treatment of nonlinearities in the GMM context introduces
substantial complications in the theoretical development over linear IV estimation with many
(possibly weak) instruments and leads to new results that extend existing findings in that
literature. In making these extensions, the paper provides an analytical framework for con-
fronting problems of the type where there may be a multiplicity of conditions or instruments
of varying quality that relate to the underlying econometric model. As discussed in Koenker
and Machado (1999) and elaborated below, there are many examples of such situations that
arise in practical work.
A further contribution of the paper is to study some of these examples in detail. For

instance, in considering linear structural equation estimation within our framework, we show
how consistent estimation is possible in the presence of an increasing collection of weak and
even apparently irrelevant instruments. This asymptotic theory highlights the role that is
played in consistent estimation between the quality of the instruments in their totality on the
one hand and the degree of endogeneity in the system on the other. In the finite instrument
case, this is a feature of simultaneous equations estimation that is well-known to be of central
importance from exact finite sample distribution theory (Phillips, 1980, 1983, 1989; Hillier,
2004). Its nature in the case of increasing numbers of instruments becomes manifest in the
limit theory here, which shows that consistent structural estimation with many irrelevant
instruments is possible when the degree of endogeneity is local to zero.
As another illustration, we explore some of the effects of proliferating moment conditions

in panel data modeling. Here, the phenomenon of moment condition proliferation is far
from being a theoretical construct and arises in a natural way in many empirical econometric
settings. Some striking examples are: Angrist (1990), who generates 884 dummy instruments
by natural experiments; Angrist and Krueger (1991), who use two stage least squares (2SLS)
estimation with 180 instruments; Han, Orea and Schmidt (2003), who consider a panel data
model with time varying individual effects in which O(T 2) moment conditions are exploited,
where T is the time span of the panel; and Ahn and Schmidt (1995), who estimate a dynamic
panel data model with O(T 2) moment conditions. In general, this type of moment condition
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proliferation is endemic to dynamic panel data models in which instruments are generated
from lagged dependent variables and the time span of the panel is of moderate size.
An example of this phenomenon that we investigate arises in the following simple panel

data model with time varying individual effects

yit = β0 + λt(θ0)αi + n1/2εit, λt(θ) = exp{θ(t− 1)/(T − 1)},

where β0 and θ0 are to be estimated from panel observations of yit for i = 1, . . . , n and
t = 1, . . . , T. In this model, the intercept and the (weak) time trend become negligible
compared with the idiosyncratic error as n → ∞. As a result, the information content in
yit that is useful for estimation of β0 and θ0 is dominated by the random disturbances, and
so the derived moment conditions for these parameters are weak in the Stock and Wright
(2000)’s sense. It follows that when T is finite, the GMM estimator is not consistent. But
if T → ∞, then a specifically weighted GMM estimator turns out to be consistent and is
an application of the method that is developed later in this paper. This illustrative panel
model is further pursued as Example 18 in Section 5.
Important precedents of the present paper are contained in Bekker (1994) and Chao

and Swanson (2002), as well as the early research by Anderson (1977) and Morimune (1983)
who considered linear instrumental variable (IV) structural equation estimation in which the
number of instruments increases with the sample size. Just as Stock and Wright (2000) is a
natural generalization to the GMM situation of the weak IV asymptotics of Staiger and Stock
(1997) and Phillips (1989), so the present paper builds on Bekker (1994) and Chao and Swan-
son (2002) by providing a natural GMM extension of asymptotic theories with large numbers
of instruments. Chao and Swanson made the important departure of combining the effect of
large numbers of instruments with allowance for weak instrumentation, thereby extending
the framework of both Staiger and Stock (1997) and Bekker (1994). That extension made it
possible to study large sample effects in which the concentration parameter was allowed to
grow at rates different from the sample size, so that different degrees of instrument weakness
could be analyzed. While there is no immediate analogue of the concentration parameter in
the GMM set up, our asymptotic theory similarly allows for varying degrees of instrument
weakness (including the interesting special case of uninformative instruments) and in this
respect our work is most closely related to Chao and Swanson (2002). Our limit distribution
theory also complements ongoing independent work by Chao and Swanson (2003) for the
linear structural equation case. Other recent work on IV limit theory with many instruments
has been done by Stock and Yogo (2004) using sequential and joint limit arguments based
on the methods of Phillips and Moon (1999). A review of the weak instrument literature is
given in Stock, Wright and Yogo (2002).
The plan of the paper is as follows. The model, assumptions and GMM set up are given

in Section 2. Section 3 provides results on the convergence property, giving the probability
limits of GMM estimators in a general form that is applicable to cases where there are many
weakly identifying moment conditions. Section 4 develops some general conditions for a limit
distribution theory of GMM estimation where the number of moment conditions increases
with the sample size and explores some specific examples, including some cases where the
instruments are irrelevant. Section 5 provides some extensions to the weighted GMM case,
consideration of continuous updating estimators (CUEs) and a limited information maximum
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likelihood (LIML) and panel model application. Concluding remarks are made in Section 6.
Section 7 provides a notational summary and proofs and technical derivations are given in
the Appendices.

2 Moment Conditions and GMM Estimation

Suppose we have an array of observable random vectors wni, i = 1, . . . , n, whose dimension
may vary with the sample size n and whose elements include dependent variables, indepen-
dent variables and instrumental variables. One reason the variable dimension of wni is useful
in practice is that we may wish to allow the number of potential instrumental variables to
grow with n. Accordingly, we presume the existence of an array of real (nonrandom) func-
tions {gnk; k = 1, . . . , qn, n = 1, 2, . . . } of these variables and parameters whose mean values
constitute moment conditions of the form

Egnk(wni, θ0) = 0, i = 1, . . . , n, k = 1, . . . , qn, n = 1, 2, . . .(2)

where θ0 is a fixed p-vector of parameters to be estimated. In (2), qn prescribes the dimension
of the moment condition vector, which depends on n, as it does for example when the moment
conditions correspond to increasing numbers of instrumental variables.
In some cases it is convenient and appropriate to assume that the observables wni are

independently distributed across i for all n, in which case the gnk(wni, θ) are independently
distributed across i for each n. But even when there is independence in the observations
over i, the functions gnk(wni, θ) are not necessarily independent across k.
This framework is intended to be fairly general so that it encompasses many existing

GMM models. It includes, for example, linear structural equation systems with increasing
numbers of instrument variables such as the model of Bekker (1994). In this case, we have
a linear model yi = x0iθ + εi relating the jointly dependent variables (yi, xi) and a potential
array of instrumental variables znki that are uncorrelated with εi. The moment functions are
then the cross products znki(yi − x0iθ), k = 1, . . . , qn, where qn is the number of instruments,
the variables wni in (2) are (yi, xi, znki) and we have

gnk(wni, θ) = znki(yi − x0iθ), k = 1, . . . , qn.

In conventional GMM asymptotics qn is fixed and the functional form of gnk(·, θ) and
its moments do not depend on n. In Staiger and Stock (1997) the covariance structure of
wni allows for local to zero correlation at a specific

√
n rate between the regressors and the

instruments, thereby accommodating weak instrumentation. In an analogous way, the GMM
asymptotics in Stock and Wright (2000) permit the functions gnk(·, θ) to flatten out at the√
n rate, so that the moment conditions are weakly identifying. In addition, the approach

used in Chao and Swanson (2002), Bekker (1994), Morimune (1983) and Anderson (1977)
all allow for qn to increase with n, as explained above. This brief synopsis of earlier research
in relation to the present work is summarized for convenience in Table 1, where some of the
notation is defined later.
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Dimension qn Moment properties of Limit criterion
of wni gnk (wni, θ) function

Conventional fixed fixed fixed nonrandom
Phillips (1989) fixed fixed cov(znki, xi) = 0 random
Staiger & Stock fixed fixed local to zero: random

(1997) cov(znki, xi) = O(n−1/2)
Stock & Wright fixed fixed local to zero: random

(2000) Egnk (wni, θ) = O
¡
n−1/2

¢
Bekker (1994) O (qn)

qn
n
→ α Concentration parameter nonrandom

π0z0zπ = O (n)
Chao & Swanson O (qn) qn →∞ π0z0zπ = O (rn) nonrandom

(2002)
√
qn
rn
→ 0

Han & Phillips O (qn) qn →∞ Strength measured by cn nonrandom
(2004) qn

ncn
→ α π0z0zπ →∞,constant or zero & random

Table 1: Comparison of Different GMM Asymptotics (notation defined in Sections 2 and 3)

Unweighted GMM is defined by minimizing the criterion function

Gn (θ) =

qnX
k=1

ḡnk(θ)
2 = ḡn(θ)

0ḡn(θ),(3)

where ḡnk(θ) = n−1
Pn

i=1 gnk(wni, θ) and ḡn (θ) = (ḡn1 (θ) , . . . , ḡnqn (θ))
0. In what follows, we

use notation like ḡn(θ), where the subscript k is eliminated, to signify the qn-vector formed
by taking the column vector of the relevant elements, such as ḡnk(θ). Later in the paper it
will be convenient to use the scaled GMM objective function

fn (θ) = c−1n Gn (θ) = c−1n ḡn(θ)
0ḡn(θ),(4)

which is constructed with a normalizing sequence cn that is introduced in Assumption 2.

3 Convergence in Probability

It is helpful to fix some aspect of the moment conditions as a standard for analytical purposes.
Accordingly, we find it useful on occasions to normalize the moment conditions by dividing
by the square-root of the quantity

q−1n

qnX
k=1

E

"
n−1/2

nX
i=1

gnk(wni, θ0)

#2
,(5)

which is the average (over k) long run variance of the moment conditions evaluated at
the true parameter θ0. We assume that (5) is nonzero, which will be so unless all the
moment conditions have zero (long run) variance at θ0, which seems of little practical or
theoretical interest. Of greater interest is the case where (5) converges to zero or diverges
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to infinity. The normalization then forces the moment conditions to have unit average (long
run) variance evaluated at the true parameter. We emphasize that this scaling does not
have to be performed in practical applications, nor does it alter any aspects of the extremum
estimation problem. It is also unnecessary for the theoretical development when the quantity
(5) converges to a nonzero value. From now on, therefore, we assume that the moment
functions either need no normalization or have already been normalized by this quantity.
The implications of this convention are discussed further below.
We also assume that the random variables wni are independent across i. This assumption

allows us to put regularity conditions in a convenient and conventional form. If the assump-
tion is relaxed, then the regularity conditions and proofs change correspondingly, but the
essential ideas developed in what follows remain unaffected.
Let ξnk(wni, θ) = gnk(wni, θ) − Egnk(wni, θ) and ξn(wni, θ) be the column qn-vector of

ξnk(wni, θ), k = 1, . . . , qn. Define

ζnk(θ) := n−1/2
nX
i=1

ξnk(wni, θ),

and let ζn(θ) be the corresponding column qn-vector. Under usual circumstances, ζnk(θ)
would follow a (functional) central limit theorem for each k. Let Θ be a subset of Rp.
Our focus of interest is mainly on the role of the number and the weakness of the moment

conditions in the asymptotics and the following assumption about the stochastic behavior of
the sample moment functions helps in the development of the limit theory. A particularly im-
portant role is played by the variability of the signal over k, as measured by Eζn(θ)

0ζn(θ)/qn.

Assumption 1 (Signal Variability)

(i) The eigenvalues of Eξn(wni, θ)ξn(wni, θ)
0 are bounded from above by a universal con-

stant for all θ ∈ Θ, for all i, and for all qn and n;

(ii) Eξnk(wni, θ)
4 ≤ B <∞, for all k = 1, . . . , qn, for all θ ∈ Θ, for all i, and for all n;

(iii) δn(θ) := q−1n Eζn(θ)
0ζn(θ) converges to δ(θ) uniformly in θ ∈ Θ;

(iv) The sequence of random processes max1≤k≤qn |ζnk(θ)| is tight.

Conditions (i) and (ii) require that fourth moments of ξn(wni, θ) exist and that the second
moment matrix has bounded eigenvalues. Note that condition (i) is not necessarily implied
by (ii) and requires that the moment conditions ξnk(wni, θ) be not too closely correlated
across k. A sufficient condition for (i) is that the covariance structure is dominated as in

sup
θ∈Θ

Eξn(wni, θ)ξn(wni, θ)
0 ≤ aIqn + bqnb

0
qn,

where a is some (possibly large) constant and the elements of the vector bqn are square
summable, viz., b0qnbqn =

Pqn
k=1 b

2
k ≤

P∞
k=1 b

2
k <∞.

When the moment conditions are rescaled by (5), we have δn(θ0) ≡ 1 in condition (iii).
In case the rescaling is unnecessary, we again have δn(θ0) converging to a nonzero value. So
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if the Eξnk(wni, θ) are uniformly continuous, then δn(θ) is nicely uniformly bounded, and
(iii) adds that it also converges uniformly. When the random variables are independent as
assumed here, δn(θ) equals q−1n

Pqn
j=1 n

−1Pn
i=1Eξnk(wni, θ)

2, so the condition loosely means
that the average long-run variance function of the moment conditions converges uniformly.
Condition (iv) means that the centered and rescaled moment functions are uniformly tight,
and it is satisfied if ζnk(θ), as a sequence (indexed by n) of processes indexed by k and θ,
follows a functional cental limit theorem. An important implication of this tightness is that
max1≤k≤qn ζnk(θ)

2 is also tight, and as a result, so is q−1n ζn(θ)
0ζn(θ) (see Lemma 19 in the

Appendix).
As discussed in the Introduction, two sources of signal emanate from the moment condi-

tions. The first of these, which we call the main signal, arises from the squared sum of the
expected sample moment functions. It is comparable to the usual sample moment matrix
in a regression model, which leads to the conventional persistent excitation condition for
consistency in regression (Lai and Wei, 1982, theorem 1). The second signal source, which
we call the signal variability, arises from variation over the sample moment functions and is
measured by δn(θ). The strength of the main signal depends on how well the expected sample
moment functions m̄nk(θ) := Eḡnk(θ) separate the true parameter θ0 from other parameter
values and its role is well known (e.g., Stock and Wright, 2000). Stock and Wright work
with a fixed number of moment conditions and embody the weakness of the signal strength
in terms of the individual moment functions.
Our treatment allows for an increasing number of moment conditions and we therefore

need a tool to express the totality of the strength of the main signal. The quantity cn that
is introduced next fulfils this role. Let m̄n(θ) be the qn-vector of the m̄nk(θ).

Assumption 2 (Main Signal) There is a sequence of positive numbers cn such that

(i) γn(θ) := c−1n m̄n(θ)
0m̄n(θ)→ γ(θ) uniformly in θ ∈ Θ;

(ii) αn := qn/ncn → α ∈ [0,∞) and ncn →∞ as n→∞;

In view of (2), the function γn(θ) is minimized at θ0 and its minimal value is zero. If the
moment conditions alone identify θ0, then θ0 uniquely minimizes γn(θ). Whether these
properties are retained as n → ∞, is instrumental in determining the usual asymptotic
behavior of the GMM estimator. Loosely speaking, cn measures the order of magnitude of
the main signal. Of course, {cn} is unique only up to a sequence that converges to a positive
constant, but rescaling cn does not alter any aspect of the convergence property of the GMM
estimator.
The functions γn(θ) and δn(θ) in Assumptions 2 and 1, respectively, incorporate the main

signal from the expected sample moment functions and the collective signal variability over
individual moment conditions up to some scaling factor. The main signal in γn(θ) obviously
conveys what sample information there is (if any) on the true parameter θ0 arising directly
in the moment conditions (2), while information in δn(θ) may or may not correspond to θ0,
in the sense that γn(θ) is minimized at θ0 (at least when the specification is correct), but
δn(θ) may not be.
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The decomposition

E
£
n1/2ḡn (θ)

¤0 £
n1/2ḡn (θ)

¤
=

£
n1/2m̄n (θ)

¤0 £
n1/2m̄n (θ)

¤
+Eζn (θ)

0 ζn (θ)

= ncnγn (θ) + qnδn (θ)

= ncn {γn (θ) + αnδn (θ)} , αn =
qn
ncn

(6)

makes it possible to compare the relative amount of information in the main signal and the
signal variability through the quantities ncnγn(θ) and qnδn(θ). So, roughly speaking, the
quantity αn measures the relative strength of the signal variability compared with the main
signal. Of course, as cn may be scaled up or down by any sequence converging to a strictly
positive value, the ratio αn would be rescaled correspondingly and so the ratio is not an
absolute measure.
The ratio qn/ncn may diverge to infinity in some situations, as when ncn increases more

slowly than qn and qn →∞. When this happens, the main signal (whose order of magnitude
is ncn, if γ(θ) = 0 at θ = θ0 uniquely) is asymptotically dominated by the signal variability
(of order qn), and the result is the same as the case γn(θ) → 0 and αn → α > 0. So the
condition that the sequence αn converges is not actually binding, because cn can always be
chosen to be large enough for αn to converge and for c−1n m̄n(θ)

0m̄n(θ)→ 0.
Note that {cn} may be chosen to diverge so fast that the above conditions are trivially

satisfied in such a way that γn(θ)→ 0, αn → 0 and ncn →∞. The asymptotic identification
condition given next excludes this trivial possibility.
Following the decomposition (6), we define f̄n(θ) := γn(θ) + αnδn(θ) and let f∞(θ) :=

limn→∞ f̄n(θ) = γ(θ) + αδ(θ).

Assumption 3 (Asymptotic Identification) The moment functions and the sequence
(cn) are such that the limit function f∞(θ) = γ(θ) + αδ(θ) is minimized at some unique
parameter value θ∗ ∈ Θ, i.e., for any ε > 0,

inf
|θ−θ∗|>�

f∞(θ) > f∞(θ
∗).(7)

Condition (7) implies that θ∗ uniquely minimizes f∞(θ) and is well separated from other pa-
rameter values, thereby implying a form of asymptotic identification. An important element
in this condition is the potential contribution of the limiting signal variability, δ(θ), which
may be influential or even decisive in asymptotic identification. For example, in an extreme
case where the expected sample moment functions have no information, i.e., when γ(θ) ≡ 0,
asymptotic identification (of θ∗ not θ0) may still be achieved through the presence of the
δ(θ) term.
It is worth noting that if there is no sequence {cn} that satisfies Assumption 3 and only

a subset of parameters are asymptotically identified by γ(θ)+αδ(θ) for some sequence {cn},
then we would have an asymptotically partially identified model. In this case a nondegenerate
limit for the unidentified parameters is expected, similar to the case Phillips (1989) analyzed
for IV estimation of linear models.
A final set of conventional regularity assumptions are introduced to ensure the existence

of the GMM estimator and to simplify derivations.
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Assumption 4 (Standard Conditions)

(i) Θ is a compact subset of Rp;

(ii) For all n and for all k, E[gnk(wi, θ)] and var[gnk(wi, θ)] are continuous in θ ∈ Θ, and
the criterion function (3) attains its minimum in Θ.

When θ0 is estimated under constraints, the Θ set may be regarded as the parameter set
satisfying the constraints.
The first result states that, under these assumptions, the aggregate signal (i.e., the main

signal plus the contribution from the signal variability) dominates the noise in extremum
estimation and convergence in probability to a nonrandom limit occurs. Some modifications
to the result (discussed in case II below) allow for weak identification under a finite number
of weak moment conditions and corresponding weak convergence to a random limit. Proofs
of this and later results are contained in the Appendix.

Theorem 5 (Convergence) Under Assumptions 1, 2, 3 and 4, θ̂ →p θ
∗, where θ∗ is the

unique minimizer of γ(θ) + αδ(θ) on Θ.

We consider the following three leading cases.

Case I: Conventional GMM Asymptotics. When qn is fixed and the moment conditions
are strong in the usual sense, we can choose cn ≡ 1 (or any constant converging to a posi-
tive number). The strength of the signal carried by the expected sample moment function
m̄n(θ) = Eḡn(θ) is then, loosely speaking, fixed, while the contribution of the signal vari-
ability as well as the noise diminishes at a

√
n rate. The assumptions for Theorem 5 are

then satisfied with α = 0, which implies that the GMM estimator converges in probability
to the true parameter .

Case II: Weak Identification with a Fixed Number of Moment Conditions. In the usual
weak moment condition case (c.f., Stock and Wright (2000)), it is assumed that m̄nk(θ)
diminishes at a

√
n rate and that qn is fixed. In this case, a natural choice of cn would seem

to be n−1 (c.f. Assumption 6 below). But this sequence of cn does not satisfy the second part
of Assumption 2 (ii). When cn > O(n−1) instead, Assumptions 1 and 2 are all satisfied in
such a way that γn(θ)→ 0 and αn → 0, but then the identification assumption 3 is violated.
The aggregate signal does not dominate the noise and Theorem 5 fails. In this case, as is
well known, the criterion function has a nondegenerate weak limit and the GMM estimator
converges weakly to a nondegenerate distribution.
This case of weak moment identification with a fixed number of moment conditions,

qn = q, can be covered in the above theory by making some simple modifications to the as-
sumptions and formulation. In particular, we can proceed as follows: (i) replace Assumption
1 (iii) by condition 6 (i) below; (ii) replace the second part of Assumption 2 (ii) by condition
6 (ii); and (iii) replace Assumption 2 (i) with condition 6 (iii) below. These changes allow
for weak convergence of a standardized version of the GMM extremum condition.

Assumption 6 (Weak Identification)

(i) ζn(θ)→ ζ (θ) on Θ, where ζ (θ) is a q-vector Gaussian stochastic process.
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(ii) αn := qn/ncn → α ∈ (0,∞) and ncn → c ∈ (0,∞) as n→∞;

(iii) 1√
cn
m̄n(θ)→ m (θ) uniformly on Θ..

Then

c−1n Gn (θ) = c−1n ḡn(θ)
0ḡn(θ)

= c−1n
©
m̄n(θ) + n−1/2ζn(θ)

ª0 ©
m̄n(θ) + n−1/2ζn(θ)

ª
)

→
©
m (θ) + c−1/2ζ (θ)

ª0 ©
m (θ) + c−1/2ζ (θ)

ª
:= G (θ) ,

and by standard weak convergence arguments (e.g. van de Vaart and Wellner, 1996, theorem
3.2.2, p. 286) we obtain

θ̂→ θ∗ = argmin
θ

G (θ) .

The unidentified case (c.f. Phillips, 1989) occurs as the special case where m (θ) = 0. A
further simple extension along the above lines covers the case where the parameter vector
is partitioned as θ = (θ01, θ

0
2)
0 and only the subvector θ1 is weakly identified (c.f. Stock and

Wright, 2000).

Case III: Many Weak Moment Conditions. When there are many (qn) moment conditions
each of which is weak (as in Stock and Wright, 2000), we can set cn = qn/n. A special case
occurs when each moment condition delivers no signal, i.e., if m̄nk(θ) = 0 for all k. In that
case, the moment conditions may be said to be irrelevant, and any non-zero sequence cn
satisfies Assumption 2 (i) with limit γ(θ) = 0. However, Assumption 2 (ii) requires that
cn = O(qn/n) and, in view of Assumption 3, cn should be chosen such that αn converges to a
nonzero constant, so that δ (θ) enters the limit function f∞ (θ). The simplest such sequence
would be cn = qn/n. In this event, we have αn ≡ 1, γn(θ) = 0 and the limit function γ (θ) = 0.
In the case where the moment conditions are weak but not irrelevant, i.e., m̄nk(θ) 6= 0, we
have γn(θ) 6= 0 and possibly γ (θ) 6= 0. Then, the aggregate signal from the two alternative
sources asymptotically dominates the noise and convergence in probability to a nonrandom
limit is obtained. Of course, the limit may not equal the true parameter identified by the
expected moment functions because the main signal is contaminated in the limit by the
alternative signal which may not reinforce the main signal.

The following Corollary states sufficient conditions under which the GMM estimator is
consistent and is a straightforward consequence of the above result.

Corollary 7 Under the assumptions of Theorem 5, θ̂ →p θ0 if γ(θ) is minimized uniquely
at θ0 and α = 0, or if δ(θ) is minimized at θ0.

The following examples help to illustrate the above results and some of the many possi-
bilities that can arise in modeling with weak instrumentation.

Example 8 (Location Model and Weak Instrumentation) Let yi be an i.i.d. sequence with
mean θ0 and variance σ2. Suppose that θ0 is estimated by IV estimation using instruments
znki, which are i.i.d. for each n with Eznki = n−1/2r and var (znki) = σ2z for all n. The mean
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of znki is assumed to be local-to-zero, which suggests that the instruments are weak (for an
intercept), and the znki are assumed to be independent of yi. In this simple location model,
of course, OLS estimation (i.e., the sample mean of yi) is consistent and IV estimation is not
needed. Nonetheless, this example serves to illustrate some interesting features of estimation
with large numbers of instruments, including the possibility of consistent estimation with
apparently irrelevant instruments (when r = 0). This example of weak instrumentation
is intriguing because it shows that instruments can carry useful information in unexpected
ways.
Consider the moment conditions

gnk(wni, θ) = znki(yi − θ), k = 1, . . . , qn,(8)

where wni = (yi, z
n
1i, . . . , z

n
qni). All the above assumptions are satisfied and we have

Egnk(wni, θ) = −n−1/2r(θ − θ0),

and

var (gnk(wni, θ)) = σ2σ2z + σ2z(θ − θ0)
2 + n−1r2σ2.(9)

Therefore, with the choice cn = qn/n, we have αn ≡ 1 = α, and

γn(θ) = r2(θ − θ0)
2, δn(θ) = σ2σ2z + σ2z(θ − θ0)

2 + n−1r2σ2.

Hence,

γ(θ) + αδ(θ) = r2(θ − θ0)
2 + σ2σ2z + σ2z(θ − θ0)

2,(10)

which is minimized uniquely at θ = θ0 regardless of the value of r (including r = 0) if σ2z > 0.
Therefore, the GMM estimator using (8) is consistent whenever σ2z > 0. Interestingly,
even if σ2z = 0, we still have consistency if r 6= 0. With σ2z = 0 and r 6= 0, we have
znki ≡ Eznki = n−1/2r and the qn moment functions reduce to the single moment function
n−1/2r(yi − θ), corresponding to a constant instrument. GMM estimation using this single
moment condition is equivalent to estimation using r(yi−θ) as the moment condition, which
is handled in our framework according to conventional GMM asymptotics. In effect, the
GMM estimator is θ̂ = ȳ, the sample mean of yi, and is consistent for Eyi = θ0. If both
σ2z = 0 and r = 0, the moment conditions are empty and the GMM estimator is not defined.
To understand how θ̂ is consistent for θ0 when the instruments are independent random

quantities, let y∗nk =
1√
n

Pn
i=1 z

n
kiyi, x

∗
nk =

1√
n

Pn
i=1 z

n
ki and u∗nk =

1√
n

Pn
i=1 z

n
ki(yi − θ0). Then

clearly,

y∗nk = θ0x
∗
nk + u∗nk, k = 1, . . . , qn.(11)

Note that Ex∗nk = r, Ex∗nk
2 = r2 + σ2z, Eu

∗
nk = 0, Eu

∗
nk
2 = σ2σ2z and Ex∗nku

∗
nk = 0, and that

the x∗nk are independent across k but the u
∗
nk are not. We can easily verify that

θ̂ = (x∗0nx
∗
n)
−1x∗0n y

∗
n = θ0 + (q

−1
n x∗0nx

∗
n)
−1q−1n x∗0nu

∗
n

12



where x∗n, y
∗
n and u∗n are qn-vectors of x∗nk, y

∗
nk and u∗nk respectively, i.e., θ̂ is the OLS

estimator of θ0 in (11). It can be shown that q−1n x∗0nx
∗
n →p r2 + σ2z and q−1n x∗0nu

∗
n →p 0.

Therefore, θ̂ →p θ0 as long as r2+ σ2z > 0 as qn →∞. Furthermore, this analysis appears to
suggest that the rate of convergence is

√
qn because qn serves as the effective “sample size”.

However, the
√
qn rate is not entirely obvious because the u∗nk are not independent across k

and the development of a limit distribution theory is more challenging. See the next section
for more discussion on this point.
As indicated, θ̂ is consistent even when r = 0, provided σ2z > 0. This case is especially

interesting because the instruments znki have zero mean and therefore appear to be totally
irrelevant for estimating an intercept parameter like θ. In fact, the GMM estimator is
inconsistent if qn = q is fixed (see below). However, when σ2z > 0, the instruments znki take
non zero values with positive probability and, since there are an infinite number of them
as qn → ∞, the instruments end up providing enough leverage for consistent estimation
(although the resulting estimator is infinitely deficient in comparison to the sample mean).
The leverage is revealed by the fact that the variance of the moment conditions (9) has value
σ2σ2z + σ2z(θ − θ0)

2 when r = 0, which is informative about θ. As we have seen earlier, this
variance figures in the limiting value of the objective function (10) because of role played by
the variability of the signal over k, as measured by Eζn(θ)

0ζn(θ)/qn.
On the other hand, suppose that qn = q is fixed. Then, by standard central limit theory,

the q collection (x∗nk, u
∗
nk), k = 1, . . . , q, converges in distribution to joint normal random

variables (x̃k, ũk), k = 1, . . . , q, as n → ∞, where Ex̃k = r, var(x̃k) = σ2z, Ex̃kx̃j = 0 for
k 6= j, Eũk = 0, Eũ2k = σ2σ2z, Eũkũj = 0 for k 6= j, and Ex̃kũk = 0. Therefore, by continuous
mapping we have

θ̂→ θ0 + (x̃
0x̃)−1x̃0ũ,

where x̃ and ũ are q-vectors of the x̃k and ũk, respectively. When r = 0, this is a scaled and
translated t distribution, as shown in Phillips (1989).

In the next example, the GMM estimator is generally (but not always) inconsistent for θ0
because the moment conditions are too weak in relation to the endogeneity of the structural
equation. The example highlights the trade-off between the degree of endogeneity and the
quality of the instrumentation that is needed for the successful estimation of a structural
equation. This trade-off was mentioned in the Introduction and plays a role in the exact
finite sample distribution theory of the simultaneous equations model. The present example
shows that the trade-off is also manifest in the limit theory and, moreover, that consistent
estimation of structural systems even with irrelevant instruments (if there are increasing
numbers of them) is possible when the degree of endogeneity is local to zero.

Example 9 (Linear Structural Equation Estimation) Consider the linear model

yi = θxi + εi, i = 1, . . . , n,(12)

where the regressors xi may be correlated with εi and the (xi, εi) are iid across i. For
simplicity, set Exi = 0 and Eεi = 0. Denote σ2x = Ex2i , and σ2ε = Eε2i . Suppose that there
are available qn instrumental variables znki which are valid in the sense that they satisfy the
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orthogonality condition E (εi|znki) = 0, and which are iid over both i and k with Eznki = 0,
Eznki

4 <∞ and Eznki
2 = σ2z for all n. Let E (xi|znki) = πnkz

n
ki for all n and j, and then for all

n, E(xi|znki, k = 1, . . . , qn) =
Pqn

k=1 π
n
kz

n
ki. Let

vni = xi −E(xi|znki, j = 1, . . . , qn) = xi −
qnX
k=1

πnkz
n
ki.

Suppose that for all n, E(vni
2|znki, j = 1, . . . , qn) = Evni

2 = σ2v,n, which means that the
expected variation of xi around its conditional mean does not depend on the condition-
ing variables though it may depend on the totality of them (for instance, by way of their
moments). Assume also that

E(xiεi|znki, k = 1, . . . , qn) = E (vni εi|znki, k = 1, . . . , qn) = ρn,(13)

and E(ε2i |znki, k = 1, . . . , qn) = σ2ε for all n. With no surprise, we then have σ
2
v,n = σ2x −Pqn

k=1 π
n
k
2σ2z.

In the weak instrument case, we assume that the coefficients πnk in the reduced form
behave in such a way that

A2n :=
n

qn

qnX
k=1

πnk
2 → A2 > 0(14)

(so that the instruments znki are “mildly weak” in the sense of Chao and Swanson, 2002).
Then, σ2v,n = σ2x− cnA

2
nσ

2
z. We also assume that the endogeneity measure ρn in (13) satisfies

ρn →a.s. ρ as n→∞. In doing so, we allow for the (conventional) case where ρ > 0 as well
as the case where ρ = 0, in which the endogeneity of the system may be described as being
local to zero.
Now consider the qn moment conditions

gnk(wni, θ) = znki(yi − θxi) = znkiεi − (θ − θ0)z
n
kixi,

where wni contains all the observable variables yi, xi, znki, k = 1, . . . , qn. Clearly,

Egnk(wni, θ) = −(θ − θ0)π
n
kσ

2
z,

so when we choose cn = qn/n, we have αn ≡ 1 and γn(θ) = (θ − θ0)
2σ4zA

2
n → γ(θ) =

(θ − θ0)
2σ4zA

2. Further,

var gnk(wni, θ) = var (z
n
kiεi)− 2(θ − θ0)cov(z

n
kiεi, z

n
kixi)

+ (θ − θ0)
2var (znkixi)

= σ2z{σ2ε − 2(θ − θ0)ρn + (θ − θ0)
2[σ2x + πnk

2(κ4z − 1)σ2z]},

where κ4z = E(znki/σz)
4 <∞ is assumed, and we have δ(θ) = σ2z[σ

2
ε−2(θ−θ0)ρ+(θ−θ0)2σ2x]

because q−1n
Pqn

k=1 π
n
k
2 → 0 as qn → ∞ by virtue of the weak instrument condition (14). It

follows that γ (θ)+ δ (θ) = σ4zA
2 (θ − θ0)

2+σ2z [σ
2
ε − 2(θ − θ0)ρ+ (θ − θ0)

2σ2x], and therefore

θ̂→p θ0 +
ρ

σ2zA
2 + σ2x

,(15)
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which is the minimizer of γ∗(θ) + δ∗(θ), if the limit is in Θ.
To reiterate the argument in another form, we may use the variables y∗nk, x

∗
nk, and u∗nk

that were introduced at the end of Example 8, and correspondingly change the previous
definition of x∗nk to n−1/2

Pn
i=1 z

n
kixi. Due to the correlation between xi and εi, we then

have Ex∗nku
∗
nk = E(znki

2xiεi) = σ2zρn, which leads naturally to the inconsistency of the GMM
estimator.
The inconsistency ρ/ (σ2zA

2 + σ2x) of θ̂ in (15) is a ratio that depends on ρ, A2 and the
variance parameters. Roughly speaking, this ratio measures the limiting endogeneity in the
system (ρ) relative to the strength of the instruments (A2). In doing so, the ratio quantifies
the trade-off between the extent of the endogeneity in a simultaneous system and the quality
of the instruments needed for a ‘good’ estimate asymptotically. Observe that if ρ = 0, then
θ̂ is consistent and will be so even if A2 = 0. Thus, even when the instruments are totally
irrelevant for the regressors xi (that is, when πnk = 0 and znki is independent of xi), these
instruments still produce a consistent estimate of θ0 provided there are increasing numbers of
them and provided the endogeneity in the system is local to zero in the sense that ρn → 0 as
n→∞. This result is provides an interesting structural equation extension of the consistency
result for many irrelevant instruments given in Example 8. Of course, consistency also holds
when A2 =∞ and the quality of the instruments is high relative to the limiting endogeneity
in the system.

4 Asymptotic Distribution Theory

Define the normalized objective function fn(θ) = c−1n ḡn(θ)
0ḡn(θ) as in (4) and let f̄n(θ) =

γn(θ) + αnδn(θ), as before. The previous section established that under suitable conditions

fn (θ)− f̄n (θ)→p 0, uniformly in θ,

f̄n (θ)→ f∞ (θ) = γ (θ) + αδ (θ) , uniformly in θ,

and the minimizing value θ̂ = argminθ fn(θ) converges in probability to the minimizing
value θ∗ = argminθ f∞(θ). This section examines the asymptotic distribution of θ̂. Since the
limit θ∗ is not necessarily equal to the true parameter value θ0 = argminθ γ(θ), appropriate
centering as well as rescaling is required for a complete development. The situation is
analogous in this respect to the development of limit theory under conditions that allow for
possible misspecification. However, in the present context, the recentering arises from the
fact that the moment conditions may not be sufficiently informative about the parameters
of interest to secure consistency even though there may be an increasing number of such
conditions. As the examples just discussed and those considered below in Section 5 illustrate,
there are many situations of this type in structural equation and panel data modeling where
the moment conditions are plentiful but may or may not be strong enough to secure consistent
estimation to the true parameter. To handle such cases at a reasonable level of generality,
we need a framework that will allow for increasing numbers of moment conditions and
potential inconsistencies arising from the weakness of these conditions. The development
below uses epiconvergence techniques to help achieve this level of generality in a reasonably
straightforward manner.
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A common starting point in developing an asymptotic distribution theory for an ex-
tremum estimator is to define a centred stochastic process based on the objective function
and study its limit behavior. In the present case, we define

hn(t) := r2n[fn(θ̄ + t/rn)− fn(θ̄)](16)

constructed from the objective function fn with an appropriate centering parameter θ̄ and
a suitable rate of convergence sequence rn. In his development of constrained M-estimators,
Geyer (1994) uses this approach with

√
n for rn and θ0 for θ̄. (In general, the leading factor

r2n in (16) does not have to be the square of the rate of convergence rn, but it is so in our
limit theory.) In conventional GMM, θ̄ is θ0 and rn is

√
n, just as in Geyer (1994). However,

to achieve the required degree of generality in our framework, we have to allow for both
the centering and the convergence rate to be nonstandard. Once (16) is formulated, the
usual approach is to invoke a general result on the weak convergence of argmax or argmin
functionals for which epiconvergence is helpful. The following theorem of Knight (2003,
theorem 1) is particularly useful in this regard.

Proposition 10 (Knight, 2003) Suppose that hn(t) epiconverges in distribution to h(t)
and

(i) t̃n is such that hn(t̃n) ≤ inft hn(t) + op(1);

(ii) t̃n = Op(1);

(iii) h(t) has an almost sure unique minimizer t̃.

Then t̃n → t̃.

The theorem is proved and the meaning of epiconvergence in distribution is fully discussed in
Knight (2003) (see also Geyer, 1994). Epiconvergence and similar concepts in a nonstochastic
environment are considered in Rockafellar and Wets (1998). Epiconvergence is a form of
convergence that is particularly useful in the context of function optimization, making it
well suited to extremum estimation problems. Thus (see Geyer, 1994, Proposition 3.1), if
fn epiconverges to f, xn → x, and fn (xn) = infy fn (y) + o (1) , then f (x) = infy f (y) =
limn→∞ fn (xn) , thereby preserving optimization in the limit.
The above proposition is more flexible in application than well-known results such as

theorem 3.2.2 of van der Vaart and Wellner (1996) or Theorem 2.7 of Kim and Pollard
(1990) on the weak convergence of argmax/argmin functionals which have been used in
the econometric literature in the past. In particular, Knight’s result readily accommodates
restrictions on the parameter space Θ. It is therefore particularly appropriate for developing
a limit theory in a general moment condition context.
To fix ideas, first assume that a second order Taylor series expansion of fn(θ) is permiss-

able and takes the form

fn(θ) = fn(θ̄) +∇fn(θ̄)0(θ − θ̄) + 1
2
(θ − θ̄)0∇2fn(θ̄)(θ − θ̄) +R2n(θ, θ̄),(17)
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where ∇fn(·) and ∇2fn(·) are the first and the second derivative arrays of fn(·) respectively,
and R2n(θ, θ̄) is a remainder term satisfying

lim
θ→θ̄

lim sup
n→∞

P

µ
R2n(θ, θ̄)

|θ − θ̄|2 > �

¶
= 0,

for any � > 0. This expansion leads to the expression

hn(t) = rn∇fn(θ̄)0t+ 1
2
t0∇2fn(θ̄)t+ op(1).

Looking at the hessian matrix first, we observe that convergence of∇2fn(θ̄) in an appropriate
mode is generally a consequence of the smoothness of fn(θ), since fn(·)→p f∞(·) uniformly.
However, the term involving rn∇fn(θ̄) usually converges in distribution as a result of some
central limit theory or weak convergence argument and presents much more difficulty in the
present context because of the nonstandard convergence rate, which relies on the number of
moment conditions, and the dependence properties among the moment conditions.
In conventional GMM, we haveE∇fn(θ0) ≡ 0, where standard regularity conditions allow

the interchange of integration and differentiation. Consequently, rn∇fn(θ̄), which becomes√
n∇fn(θ0) upon setting rn =

√
n and θ̄ = θ0, constitutes a sequence of zero mean random

variables that are stochastically bounded, and the term converges in distribution under
regularity conditions that permit the use of standard central limit theory. In the present
case, however, E∇fn(θ∗n) rather than E∇fn(θ∗) is zero, and, for any fixed θ̄, E∇fn(θ̄) may
be different from 0. Though the discrepancy diminishes to 0 as n increases with the choice of
θ̄ = θ∗, the amplified mean Ern∇fn(θ̄)may be significantly different from 0 or even divergent
so that the sequence rn∇fn(θ̄) may not be tight.
To address this difficulty, we choose the sequence θ∗n = argminθ f̄n(θ) as the centering

sequence for θ̂ and correspondingly define hn(t) as

hn(t) := r2n[fn(θ
∗
n + t/rn)− fn(θ

∗
n)],(18)

for some rn, in place of (16). Naturally hn(t) is minimized at t̃n := rn(θ̂ − θ∗n) and θ∗n → θ∗.
We establish the limit distribution of rn(θ̂ − θ∗n), whose center drifts with n in a form of
moving center asymptotics like that of local power asymptotics. Unlike rn∇fn(θ∗), the
term rn∇fn(θ∗n) has zero mean and under suitable regularity conditions may converge in
distribution.
The rate of convergence rn is closely related to the convergence rate of fn(θ) and the mod-

ulus of continuity of the properly rescaled function. We simplify and modify Theorem 5.52
of van der Vaart (1998) to accommodate the moving center asymptotics in this application.
Let Wn(·) = fn(·) − f̄n(·). The notation ‘A(θ) . B(θ)’ means that A(θ) is bounded from
above by B(θ) up to a finite universal constant (and B(θ) & A(θ) has the same meaning).

Proposition 11 (Rate of Convergence) Suppose that there exist an n0<∞ and a neigh-
borhood of θ∗ such that for every θ in the neighborhood,

f̄n(θ)− f̄n(θ
∗
n) & |θ − θ∗n|2, n > n0.(19)
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Suppose also that there exists some δ0 > 0 such that for all n and for all 0 < δ ≤ δ0, rnWn(·)
has the following modulus of continuity:

E sup
|θ−θ∗n|<δ

|rnWn(θ)− rnWn(θ
∗
n)| . δ.(20)

Then

rn(θ̂ − θ∗n) = Op(1).

Condition (19) is satisfied if f̄n(·) has a nonsingular second derivative matrix and its
curvature is uniformly bounded away from singularity for n > n0. It is not necessarily implied
by the corresponding condition for f∞(·), i.e., the condition that f∞(θ)− f∞(θ

∗) & |θ− θ∗|2,
even though f̄n(·)→ f∞(·) uniformly and θ∗n → θ∗. To show this, a simple counter example
defined on Θ = [−1, 1] is given by the following sequence f̄n(θ) and limit function f∞(θ) :

f̄n(θ) = θ2{|θ| > n−1}+ (θ4 + n−2 − n−4){|θ| ≤ n−1}, f∞(θ) = θ2.

In this case, both f̄n(·) and f∞(·) are continuous, θ∗ = 0, θ∗n ≡ 0 and f̄n(·)→ f∞(·) uniformly
(the uniform distance is n−2 − n−4). Furthermore, the limit function f∞(·) satisfies that
f∞(θ)− f∞(0) ≥ |θ− 0|2 in any open neighborhood of 0. Nevertheless, f̄n(·) does not satisfy
(19) in any neighborhood of 0.
If the quadratic order on the right of (19) changes to another order, then the rate of

convergence will change accordingly. That is, a lower order gives faster convergence.
Regarding condition (20), the scale factor rn can be chosen such that rnWn(·) remains

tight and its distribution is non-degenerate. Condition (20) means that the modulus of
continuity of the noise function rescaled this way is ‘Lipschitz in parameters’ with exponent
unity in the stochastic sense. Of course, this result is not as general as Theorem 5.52 of van
der Vaart (1998), but it is useful for our development here and is implied by further low-
level smoothness assumptions, especially, the first order Taylor series expandability combined
with other regularities. Again, if the order of the right hand side of (20) (the modulus of
continuity) changes, then the rate of convergence correspondingly changes. As the order
increases, the rate of convergence becomes faster.
Note that centering at θ∗n and defining Wn(·) as the residual around the mean of fn(·) in

the above proposition are essential. For, if we re-defineWn(·) = fn(·)−f∞(·), then condition
(20) is not generally satisfied (unless |f̄n(θ) − f∞(θ)| shrinks to zero faster than rn); or, if
we kept the current definition of Wn(·) and centered at θ∗ instead, then condition (19) is
unlikely to hold; or if we assumed (19) and (20) and centered at θ∗ then the proof breaks
down (in particular, equation (50) of the Appendix A fails).
Naturally, similar results could be established by more traditional methods such as use

of the Taylor expansion (17), scaling by ncn and with θ∗n replacing θ̄. But we choose epi-
convergence arguments to secure the most generality and convenience, so that the present
method is applicable with little modification to specific problems possibly involving non-
smooth functions or constraints.
With these tools in hand, we make the following ‘high level’ assumptions on fn(·). Of

course, it is also of interest to find ‘low level’ regularity conditions which are sufficient for
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this asymptotic development in particular cases. But the issues involved are sufficiently
complicated to make a general treatment difficult, and it seems more appropriate to leave
such developments to later work where further specific applications of the present method
are considered.

Assumption 12 The fn(·) function satisfies the following conditions.

(i) f̄n(·) permits a local quadratic approximation of the form

f̄n(θ) = f̄n(θ
∗
n) +

1
2
(θ − θ∗n)

0Vn(θ
∗
n)(θ − θ∗n) + R̄2n(θ),(21)

where Vn(θ
∗
n) converges to a positive definite matrix V and the residuals R̄2n(·) are such

that for any � > 0 there exists a neighborhood B of θ∗ such that

lim sup
n→∞

sup
θ∈B

|R̄2n(θ)|
|θ − θ∗n|2

< �;(22)

(ii) Wn(·) permits a local linear approximation of the form

Wn(θ) =Wn(θ
∗
n) +∆n(θ

∗
n)
0(θ − θ∗n) +R1n(θ),(23)

where

(ncn)
1/2∆n(θ

∗
n)→ Z,(24)

for some random vector Z; and, for any � > 0 and η > 0, there exists a neighborhood
B of θ∗ such that

lim sup
n→∞

P

µ
sup
θ∈B

|(ncn)1/2R1n(θ)|
|θ − θ∗n|

≥ η

¶
≤ �.(25)

Also, there is a neighborhood B1 and a finite number M̃1 such that

E sup
θ∈B1

(ncn)
1/2|Wn(θ)−Wn(θ

∗
n)| ≤ M̃1 for all n;(26)

(iii) The sequence of sets (ncn)1/2(Θ − θ∗n) converges to a closed set T (θ
∗) in the sense of

Painlevé-Kuratowski set convergence.

Some comments on these conditions are in order. First, we remark that condition (i)
is analogous to Assumption A of Geyer (1994). The only difference is that in our case the
regularity is imposed on the sequence of the mean processes, which is necessary because the
number of moment conditions is possibly increasing and their distributions are unlikely to
be identical. The restriction (22) on the remainder term is a natural generalization because
of the increasing number of moment conditions and its further complication relates to the
presence of moving center asymptotics around θ∗n.
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Condition (i) requires twice continuous differentiability of f̄n(θ), which seems mild espe-
cially since f̄n(θ) = γn(θ) + αnδn(θ) and the components γn(θ) and δn(θ) involve functions
of expectations. Also, Taylor’s theorem implies that for any � > 0, there is a neighborhood
Bn such that

sup
θ∈Bn

|R̄2n(θ)|/|θ − θ∗n|2 ≤ �,

for each n. Equation (22) goes further and requires that the continuity be uniform, which
again seems mild because f̄n(·) converges uniformly. It should be noted, as in Geyer (1994),
that the first derivative term of this expansion is set to zero as θ∗n (in Θ) satisfies the first
order conditions for minimizing f̄n(θ).
The nonsingularity requirement on V in condition (i) is conventional. If V were singular,

then higher order expansions would be needed and the rate of convergence and other related
asymptotic properties would be affected correspondingly.
Condition 12 (ii) is more easily understood by considering the form of (ncn)1/2Wn(·), viz.,

(ncn)
1/2Wn(θ) = −2c−1/2n m̄n(θ)

0ζn(θ) + α1/2n q−1/2n

qnX
k=1

[ζnk(θ)
2 −Eζnk(θ)

2].(27)

For each θ, if the moment conditions are not too closely correlated in the sense that¯̄̄̄
¯ 1qn X

k 6=l
cov

£
ζnk(θ)

2, ζnl(θ)
2
¤¯̄̄̄¯ <∞,(28)

then (27) has a bounded second moment under Assumption 1. We can go a step further and
assume that (27) is (uniformly) tight. Then it seems natural for Wn(·) to have an (ncn)1/2
rate of convergence. If the left hand side of (28) is not bounded and/or Assumption 1 is
violated, thenWn(·) will have a different rate of convergence (e.g., if there are I(1) variables
in the instrument set).
Since Wn(θ) has zero mean for all θ, it is natural to assume that ∆n(θ) also has zero

mean. From the zero mean property and the (ncn)1/2 rate of convergence ofWn(·), the weak
convergence (24) to some limit random variable Z seems a reasonable high-level condition.
Equation (25) is a uniform stochastic version of the corresponding first order Taylor series
expansion for each n. Uniform integrability in (26) is explicitly assumed to facilitate the
derivation of the (ncn)1/2 convergence rate as an application of Proposition 11 above, and is
a reasonable extension of the (ncn)1/2 convergence rate of Wn(·) in (23) and (24).
Condition 12 (ii) modifies Assumptions B and C of Geyer (1994) in a suitable way to allow

for moving center asymptotics and nonstandard convergence rates. The linear approximation
(23) and the stochastic equicontinuity condition (25) correspond to Geyer’s Assumption B,
and the convergence in (24) to his Assumption C. The probability in (25) may be replaced
by outer probability if measurability of the supremum were in doubt.
Condition 12 (iii) puts a requirement on the sequence of sets (ncn)1/2(Θ−θ∗n). Here, a set

a+ bC (or bC + a) for some real numbers a, and b and a given set C ⊂ Rp is defined in the
usual way as the set {t ∈ Rp : t = a+ bc for some c ∈ C}. Condition 12 (iii) is stronger than
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Θ’s being Chernoff regular at θ∗, as described in Geyer (1994). While Chernoff regularity is
relevant when the estimates are centered at a fixed value, our case needs a requirement on
the parameter set centered at a convergent sequence of points, rescaled appropriately. Clarke
regularity is more appropriate here and condition (iii) is implied by it. This condition relaxes
the conventional assumption that θ∗ is an interior point of Θ. Discussion of this requirement
is given in Knight (2003), Geyer (1994) and Rockafellar and Wets (1998) to which the reader
is referred.
Under these conditions, we have the following result.

Theorem 13 (Asymptotic Distribution) Define

h(t) = Z 0t+ 1
2
t0V t, t ∈ Rp

where Z is defined in (24). Under Assumptions 1, 2, 3, 4 and 12,

(ncn)
1/2(θ̂ − θ∗n)→ argmin

t∈T (θ∗)
h(t)

where the minimizer is unique almost surely.

Theorem 13 implies that if θ∗ is an interior point of Θ, so that T (θ∗) spans Rp, then the
minimizer of h(t) is −V −1Z, so that

(ncn)
1/2(θ̂ − θ∗n)→ −V −1Z.(29)

The limit distribution (29) may not be normal. Taking as an example the case where the
series expansion (23) is satisfied with ∆n(·) = ∇Wn(·), we notice that

(ncn)
1/2∇Wn(θ

∗
n) = 2n

−1/2
nX
i=1

c−1/2n ∇{m̄n(θ
∗
n)
0ξn(wni, θ

∗
n)}

+ α1/2n q−1/2n

qnX
k=1

∇
©
ζ2nk(θ

∗
n)− Eζ2nk(θ

∗
n)
ª
.

The first term of the right above is likely to converge to a normal distribution if the Lindeberg
condition is satisfied. But the summands of the second term may not be independent of one
another except for some special cases (e.g., Bekker, 1994), and consequently Z may be non-
normal. If the second term diminishes to 0 as n → ∞ (e.g., when αn → 0), then this
potential source of nonnormality vanishes and asymptotic normality will follow from the
first term provided central limit theory regularity conditions hold for this term.

Corollary 14 Suppose that the conditions for Theorem 13 hold with ∆n(·) = ∇Wn(·). Sup-
pose further that αn → 0, θ0 is an interior point of Θ, and

2n−1/2
nX
i=1

∇{c−1/2n m̄n(θ
∗
n)
0ξn(wni, θ

∗
n)}→d N(0, A).

Then

(ncn)
1/2(θ̂ − θ∗n)→d N(0, V

−1AV −1).
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If in addition to the requirement that αn → 0, the moment conditions are sufficiently
strong and the number of moment conditions is not too large, then we end up with a limit
theory that is analogous to that of the ‘usual’ asymptotics centered at θ0, albeit with a
different rate of convergence.

Corollary 15 Suppose that the assumptions for Corollary 14 hold. Suppose further that (i)
∇f̄n(·) permits a linear approximation

∇f̄n(θ) = ∇f̄n(θ0) + Vn(θ̃)(θ − θ0),(30)

with Vn(θn)→ V (θ0) if θn → θ0 where V (θ0) is nonsingular, and (ii) qn/(ncn)1/2 → 0. Then

(ncn)
1/2(θ̂ − θ0)→d N(0, V

−1AV −1).

It is worth summarizing the two special cases of conventional GMM and GMMwith weak
moment conditions.

Case I: Conventional GMM asymptotics. When qn is fixed and the moment conditions
are strong, we choose cn ≡ 1 as described in Section 3. By the second result of Corollary 14,
we have asymptotic normality for

√
n(θ̂ − θ0) under regularity.

Case II: Weak moment conditions. If qn is fixed, consistency does not apply and the
case reduces to that considered in Stock and Wright (2000), as discussed earlier. If qn →∞
instead, then the limit theory may be non-normal unless αn → 0. If αn → 0, asymptotic
normality may hold, but the centering will still be θ∗n rather than θ0. In order for (ncn)

1/2(θ̂−
θ0) to be asymptotically normal, the moment conditions need to be quite strong and the
growth in the number of moment conditions should be quite slow, so that qn → ∞ but
qn/(ncn)

1/2 → 0. Interestingly, for the last claim (i.e., asymptotic normality) to hold, the
moment conditions should be stronger than in Stock and Wright (2000)’s setting (cn = qn/n)
since if cn = qn/n and qn → ∞ then qn/(ncn)

1/2 = q
1/2
n → ∞. More specifically, if the

strength of the moment conditions is such that cn = qn/n
b for some b, then in order for

(qnn
1−b)1/2(θ̂ − θ0) to have a proper asymptotic distribution it is necessary that qn → ∞

and qn = o(n1−b). If instead cn = 1, then qn → ∞ and qn = o(n1/2) will guarantee an
asymptotic distribution for

√
n(θ̂ − θ0); if O(n1/2) ≤ qn < O(n), then θ̂ →p θ0 but the

asymptotic distribution theory is established for
√
n(θ̂ − θ∗n), so that there is some bias in

the limit theory.

Table 2 summarizes some of these results, detailing the convergence properties, the rate
of convergence and the appropriate centering for the asymptotic distributions under various
scenarios.
Returning to the general case, although asymptotic normality does not usually apply,

the asymptotic variance can be calculated in the case where ∆n(·) = ∇Wn(·) and V =
limn→∞∇2f̄n(θ∗n). The results for this case are provided in Appendix B. Moreover, if α = 0,
then the asymptotic variance of (ncn)1/2(θ̂ − θ∗n) has the ‘usual’ sandwich form

(c−1n D0
nDn)

−1c−1n D0
nΩnDn(c

−1
n D0

nDn)
−1,(31)
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cn qn →∞? Order of qn θ̂→p θ0? Rate of conv. Centering

qn/n yes any no q
1/2
n θ∗n

qn/n
b o(n1−b) θ0

0 < b < 1
yes

≥ O(n1−b)
yes (n1−bqn)

1/2

θ∗n
no fixed† yes θ0

o(n1/2) yes θ01
yes ≥ O(n1/2), o(n) yes

n1/2
θ∗n

∼ n‡ no θ∗n

† Conventional GMM. ‡ Bekker’s (1994) result belongs here.

Table 2: Comparison of Limit Results by the Strength and the Number of the Moment
Conditions.

where Dn = ∇Eḡn(θ0) and Ωn = Eζn(θ0)ζn(θ0)
0. Accordingly, we may say that the usual

large sample asymptotic variance is calculated under the implicit assumption that α = 0.
Note here that (31) makes sense only when c−1n D0

nDn converges to a nonsingular matrix.
Note also that Eḡn(θ) ≡ 0, which implies ∇Eḡn(θ) ≡ 0, necessarily implies α > 0 and
accordingly (31) can not be the asymptotic covariance matrix.

Example 16 (Continuation of Example 8) The minimizer of γn(θ)+αnδn(θ) in Exam-
ple 8 is θ0. The asymptotic variance of q

1/2
n (θ̂ − θ0) is then found to be

[cr4 + (1 + 2c)r2σ2z + (1 + c)σ4z]σ
2

(r2 + σ2z)
2

,(32)

where c = lim qn/n, from the calculation given in Appendix B. The rate of convergence q
1/2
n

follows from the fact that cn = qn/n and so (ncn)1/2 = (nqn/n)1/2 = q
1/2
n .

In the extreme case where the moment conditions are uninformative (in the sense that the
mean functions are all 0) which corresponds to r = 0, the asymptotic variance of q1/2n (θ̂−θ0)
is simply (1+c)σ2. In this specific case, we can also show that the asymptotic distribution is
normal under certain regularity conditions (see Appendix B for details). Simulation results
are provided in Figure 1 for this case, based on 2000 replications with n = 100, qn = 10, c =
0.1 and Gaussian random variables. The dotted lines correspond to the normal distribution
with mean 0 and variance (1 + c)σ2, which is N(0, 1.1) in this case. The limit distribution
looks close to normal.
Simulations not reported here show that the N(0, 1 + c) distribution is close to the

empirical distribution of the estimates under other settings, even including those where qn
is as large as qn = 10n.

5 The Matter of Weighting

In classical large sample GMM asymptotics, a weight matrix W is usually embodied in
the criterion function by way of the quadratic form as in ḡ(θ)0Wḡ(θ). The optimal weight
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Figure 1: Example 8 with σ2 = 1, σ2z = 1, r = 0, n = 100 and qn/n = 0.1

is the inverse of Eg(wi, θ0)g(wi, θ0)
0. This optimal weighting is equivalent to transforming

the moment conditions linearly so that each of the transformed moment conditions, when
evaluated at the true parameter, has unit variance and is uncorrelated with the others.
In GMM estimation with a large number of moment conditions, a weight matrix may

be used in the same way. Thus, for some given sequence of symmetric and positive definite
nonrandom matrices Wn, the criterion function becomes ḡn(θ)0Wnḡn(θ), which is equivalent
to transforming the moment conditions as gn(wni, θ) 7−→ Angn(wni, θ), where An satisfies
A0nAn = Wn. All the arguments in the proceeding sections hold if the transformed moment
conditions Angn(wni, θ) satisfy the stated regularity conditions. In the present case, it is
interesting to observe that the probability limit of the weighted GMM estimator may differ
from that of the unweighted GMM estimator.
In general, it is difficult to use the optimal weighting matrix because the asymptotic

variance matrix is so complicated. An alternative is to use the weight matrix

[n−1
nX
i=1

Egn(wni, θ
∗)gn(wni, θ

∗)0]−1,

where θ∗ is the probability limit of the unweighted GMM estimator, and minimize the cor-
responding criterion function. The simplicity of the optimal weighting scheme found in
traditional (i.e., fixed “q”) large sample asymptotics does not apply in general in the present
case. But if α = 0 then θ̂ is consistent, the asymptotic variance has the conventional form,
and the weight matrix Ω−1n is optimal. In this case the asymptotic variance becomes³

lim
n→∞

c−1n D0
nΩ

−1
n Dn

´−1
,

with Dn and Ωn denoting E∇ḡn(θ0) and n−1
Pn

i=1Egn(wni, θ0)gn(wni, θ0)
0.

One can also apply “continuous updating” procedures in estimation with the (nonran-
dom) weight function Wn(θ), which is equivalent to minimizing

c−1n ḡn(θ)
0Wn(θ)ḡn(θ).

When the weight function Wn(θ) is chosen such that the regularity assumptions given in the
previous sections are satisfied, θ̂ converges in probability to the minimizer of the limit of

c−1n m̄n(θ)
0Wn(θ)m̄n(θ) + αnq

−1
n Eζn(θ)

0Wn(θ)ζn(θ).(33)

24



The most interesting case is Wn(θ) = Ωn(θ)
−1 where Ωn(θ) = Eζn(θ)ζn(θ)

0. In that case,
the center of the weighted criterion function (33) is

c−1n m̄n(θ)
0Ωn(θ)

−1m̄n(θ) + αn,

which is minimized at θ0 provided m̄n(θ) = 0 only at θ0.1 So the Ωn(θ)
−1 weighted continuous

updating estimator (CUE) is consistent as long as limn→∞ c−1n m̄n(θ)
0Ωn(θ)

−1m̄n(θ) uniquely
identifies θ0 even when αn → α > 0.
It is remarkable here that Assumption 1 (i) is automatically satisfied with this use of

weighting but in order for the CUE to be consistent, the strength of the moment conditions
represented by cn should be reasonably high so that the main signal identifies θ0.
It seems very difficult (if it is even possible) to obtain a feasible consistent CUE in the

completely general case, mainly because the remainder

q−1n ζn(θ)
0
h
Ω̂n(θ)

−1 − Ωn(θ)
−1
i
ζn(θ)(34)

does not seem to converge to zero in general even if Ω̂n(θ) is uniformly consistent (uniformly
in θ and for all elements). However, when the qn × qn matrix Ωn(θ) is a product of a
consistently estimable scalar function of θ and an increasing number of known elements, a
consistent feasible CUE is available. More specifically, let

Ωn(θ) = ψn(θ)Qn(θ),(35)

where ψn(θ) is a scalar function and Qn(θ) is a known matrix of increasing dimension.
Suppose that ψn(θ) is uniformly consistently estimated by ψ̂n(θ), viz.,

sup
θ∈Θ

|ψ̂n(θ)− ψn(θ)|→p 0,

with lim infn→∞ infθ∈Θ ψn(θ) > 0. Let Ω̂n(θ) = ψ̂n(θ)Qn(θ). Then (34) equals"
ψn(θ)

ψ̂n(θ)
− 1
#
q−1n ζn(θ)

0Ω−1n (θ)
−1ζn(θ),(36)

which converges in probability uniformly to zero under regularity, and therefore the feasible
CUE using Ω̂n(θ)

−1 as weight function shares the same limit as the infeasible CUE using
Ωn(θ)

−1 as weight and is therefore consistent whether or not αn → 0.
Let Jn(θ) = ψn(θ)/ψ̂n(θ), and fn(θ) = c−1n ḡn(θ)

0Ωn(θ)
−1ḡn(θ). Then, the criterion func-

tion for feasible CUE is Jn(θ)fn(θ). When all the regularity conditions hold for fn(θ), the
asymptotic distribution of the feasible CUE is determined by the limit of

r2n[Jn(θ0 + t/rn)fn(θ0 + t/rn)− Jn(θ0)fn(θ0)],

if its behavior is regular. Rewrite this expression as

Jn(θ0 + t/rn)r
2
n[fn(θ0 + t/rn)− fn(θ0)] + fn(θ0)r

2
n[Jn(θ0 + t/rn)− Jn(θ0)].(37)

1We thank an anonymous referee who pointed this out.
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The first term demonstrates conventional behavior since Jn(θ0 + t/rn) would normally con-
verge to 1 and the factor r2n[fn(θ0+ t/rn)−fn(θ0)] is usual. So any unusual behavior may be
ascribed to the second term of (37). Under regularity, fn(θ0) = αn + op(1), and when Jn(θ)
allows a second order Taylor series expansion at t = 0, we have

fn(θ0)r
2
n [Jn(θ0 + t/rn)− Jn(θ0)] = αn

£
rn∇Jn(θ0)0t+ 1

2
t0∇2Jn(θ0 + t̃/rn)t

¤
+ op(1),(38)

where t̃ lies in between 0 and t, if rn∇Jn(θ0) = Op(1). In the special case where αn → 0,
the asymptotic distribution of the CUE should be equal to that of the feasible CUE (which
substitutes ψ̂(·) for ψ(·)), and asymptotic normality for √ncn(θ̂−θ0) is expected. (Compare
this result to Table 2, where the estimator needed centering at θ∗n when qn → ∞, αn → 0
and qn/

√
ncn →∞.) Limited information maximum likelihood (LIML) estimation for linear

simultaneous equation models is an example, which we consider next.

Example 17 (LIML) Reconsider Example 9 but this time from the perspective of a feasible
CUE. For simplicity, let θ0 = 0 and assume that the znki are independent of εi and vni .
Let x and y be the n-vectors of xi and yi respectively. Let z be the n × qn observation
matrix of the znki. Then, conditional on the instruments, we have Ωn(θ) = ψ(θ)( 1

n
z0z), where

ψ(θ) = σ2ε − 2σεvθ + σ2vθ
2, and by the law of large numbers,

ψ̂(θ) = n−1(y − xθ)0(y − xθ)→p ψ(θ).

Now denote Ω̂n(θ) = ψ̂(θ)( 1
n
z0z). Then, the CUE using Ω̂n(θ)

−1 as the weight function solves

min
θ∈Θ

(y − xθ)0Pz(y − xθ)

(y − xθ)0(y − xθ)
,

which is the LIML objective function, where Pz = z(z0z)−1z0 and Mz = I − Pz, as usual.
LIML as a feasible CUE shares the same probability limit as the CUE using Ωn(θ)

−1 as
the weight matrix. It follows that LIML is consistent under this asymptotic setting because
δ (θ) = 1, due to the standardization of the criterion function by ψ̂(θ), and so δ (θ) does
not depend on θ. Note again that consistency requires that the parameter “A” in (14) be
nonzero. Finally, the conditional consistency of LIML implies unconditional consistency by
dominated convergence.
If we assume that A2n =

Pqn
k=1 π

n2
k → A2 > 0 (as in Donald and Newey, 2001) instead of

the local-to-zero setting (14) for the strength of the instruments, we have cn = 1, rn = n1/2,
and if furthermore αn = qn/n→ 0, then (38) is negligible because

rn∇Jn(θ0) = 2Jn(θ0)n1/2
µ
n−1x0ε

n−1ε0ε
− σεv

σ2ε

¶
= Op(1),

usually. So in this case n1/2(θ̂−θ0) would converge to a normal distribution. See Proposition
2 of Donald and Newey (2001).

Consistent CUE can be useful in practical applications as the following panel data ex-
ample shows.
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Example 18 (Time varying individual effects) We consider a panel data model with
weak temporal variation in the individual effects and dominating disturbances,

yit = β0 + λt(θ0)αi + n1/2εit, λt(θ) = exp{θ(t− 1)/(T − 1)}.

Let T → ∞ as n →∞. Consider GMM estimation making use of the zero mean condition
E(εit) = 0 for all t. Assume at the same time that the εit are white noise over time and iid
across i, and that the αi are iid across i. For identification, let µα = E(αi) 6= 0. Denote
σ2 = E(ε2it) and σ

2
α = E[(αi−µα)

2]. Since yi1 = β0+αi+ εit, the (T − 1) moment functions
are

g◦it(β, θ) = [yit − λt(θ)yi1]− [1− λt(θ)]β, t = 2, . . . , T.

(See Han, Orea and Schmidt, 2003, for the derivation of the moment conditions.) We have
g◦it(β0, θ0) − Eg◦it(β0, θ0) = n1/2εit − λt(θ0)εit, and divide the moment functions by

√
n in

view of (5). Then the moment functions are

git(β, θ) = n−1/2g◦it(β, θ), t = 2, . . . , T.(39)

The mean functions are

Egit(β, θ) = −n−1/2{[1− λt(θ)](β − β0) + [λt(θ)− λt(θ0)]µα}, t = 2, . . . , T,

where µα = E(αi), and the deviations ξit(β, θ) = git(β, θ)−Egit(β, θ) are

ξit(β, θ) = [εit − λt(θ)εi1]− n−1/2[λt(θ)− λt(θ0)](αi − µα),

implying that

δn(β, θ) = q−1n

TX
t=2

[1 + λt(θ)
2]σ2 + (nqn)

−1
TX
t=2

[λt(θ)− λt(θ0)]
2σ2α

→ σ2
Z 1

0

¡
1 + e2rθ

¢
dr = δ(β, θ),

where qn = T − 1 is the number of moment conditions. Because cn = qn/n, we have αn ≡ 1,
and the unweighted GMM estimator using (39) is likely to be inconsistent if convergent
because δ(β, θ) is minimized at θ = −∞. (In fact, the moment conditions violate Assump-
tion 1 (i), and we expect the GMM to have a nondegenerate limit distribution. See the
simulation below.)
Let λ(θ) be the vector of λt(θ) for t = 2, . . . , T and λ∗(θ) = λ(θ)−λ(θ0). Then from the

calculation of

Eξitξis = [1{t = s}+ λt(θ)λs(θ)]σ
2 + n−1 [λt(θ)− λt(θ0)] [λs(θ)− λs(θ0)]σ

2
α,

we get (suppressing the arguments)

Ωn = σ2 [IT−1 + λλ0] + n−1σ2αλ∗λ
0
∗ = Ω0,n + n−1σ2αλ∗λ

0
∗.
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Next, we show that the CUE using Ω−1n as the weight function has the same limit as the
CUE using Ω−10,n. Note that

q−1n ζ 0n
¡
Ω−10,n − Ω−1n

¢
ζn = q−1n ζ̃

0
n

¡
Ω1/2n Ω−10,nΩ

1/2
n − Iq

¢
ζ̃n,(40)

where ζ̃n = Ω
−1/2
n ζn has zero mean and identity covariance matrix. Writing

Ω0,n = σ2(I + λλ0) = σ2[Mλ + (1 + λ0λ)Pλ],

where Pλ = λ(λ0λ)−1λ0 and Mλ = IT−1 − Pλ, we get

Ω−10,n = σ−2[Mλ + (1 + λ0λ)−1Pλ], and Ω
−1/2
0,n = σ−1[Mλ + (1 + λ0λ)−1/2Pλ].

The eigenvalues of Ω1/2n Ω−10,nΩ
1/2
n − IT−1 are equal to those of

Ω−10,nΩn − IT−1 =
1

n

µ
σ2α
σ2

¶µ
λ∗ −

λ0λ∗
1 + λ0λ

λ

¶
λ0∗,(41)

which comprise (T − 2) zeros and one non zero value, being the trace. Now, by Schur’s
decomposition, (40) equals the trace (i.e., the non zero eigenvalue) of (41) times q−1n (b

0
nζ̃n)

2

where bn is the orthogonal eigenvector corresponding to the nonzero eigenvalue. Noting that
b0nζ̃n is a centered random function (of θ) with unit variance (for all θ), it is most likely
that (40) is Op(q

−1
n ), which converges in probability to zero as T → ∞. As a result, the

CUE using Ω0,n(β, θ)−1 as weight function has the same probability limit as the CUE using
Ωn(β, θ)

−1, and therefore the former is also consistent. Finally, because σ2 does not depend
on the parameter values, the CUE using σ2Ω0,n(β, θ)−1 is also consistent. This CUE equals
the minimizer of

ḡ◦(β, θ)0
³
Mλ(θ) + [1 + λ(θ)0λ(θ)]−1Pλ(θ)

´
ḡ◦(β, θ)

where ḡ◦i is the vector of n
−1Pn

i=1 g
◦
it for t = 2, . . . , T .

It is interesting that the unweighted GMM may have a nondegenerate limit distribution
(see the simulation below) while the CUE is consistent. It is because the weighting forces
the variance matrix of the transformed moment conditions to abide by the regularity con-
ditions needed for convergence. In this case, the behavior of the two step GMM estimator
is intriguing because the first step GMM estimator and the weighting matrix at the sec-
ond step seem to be random while the second step objective function effectively eliminates
asymptotic randomness. According to the simulation below, the two step GMM estimator
seems to converge. A theoretical analysis of these properties is certainly interesting but is a
topic to be pursued in separate work.
We report simulation results from 3000 iterations with n = 50 and n = 100 for T/n = 0.8.

The true parameters are β0 = −2 and θ0 = 2. Numerical minimizations are done by the R
function optim. The starting parameter value for β in the CUE is set to the global average
of yit, i.e., the OLS estimator, and zero is used for θ. The resulting CUE for β and θ is
used as the initial value in unweighted GMM estimation, which in turn is fed into the two
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Figure 2: Kernel densities. The upper panel plots are for β estimates and the lower panel
for θ estimates. From left to right are shown unweighted GMM, usual two step GMM, and
CUE estimation. The solid lines are for n = 50 and T = 40, and dashed lines for n = 100
and T = 80. The solid diamonds signify the true parameters.
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Figure 3: Simulation densities of conventional t-statistics. Solid lines show n = 50 and
T = 40; dashed lines show n = 100 and T = 80; the N(0, 1) distribution is shown in longer
dashes.
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n T Method β estimate θ estimate
50 40 Unweighted -2.7474 (3.0804) 2.0364 (0.7970)
100 80 Unweighted -2.8019 (5.1869) 2.0443 (0.7728)
50 40 Two step -2.4800 (1.9943) 2.0526 (0.7169)
100 80 Two step -2.3783 (1.7219) 2.0564 (0.6660)
50 40 CUE -2.1124 (0.6455) 2.0046 (0.3728)
100 80 CUE -2.0381 (0.4318) 2.0127 (0.2671)

Table 3: Simulated mean and variance. Simulated averages are provided together with the
simulated standard deviations inside parentheses.

step GMM procedure. The individual effects αi are generated from N(1, 1), and the errors
εit are from N(0, 0.25). So the variance of the idiosyncratic error is n × 0.25. Out of 3000
iterations, 12 failed to attain numerical minima with n = 50 and T = 40, and 8 failed with
n = 100 and T = 80.
Figure 2 shows kernel density estimates of the distribution of the various estimates from

the simulation. The upper panel plots results for the β parameter and the lower panel for
θ. The figures from left to right record unweighted GMM, usual two step GMM, and the
CUE, respectively. The solid lines are for n = 50 and T = 40 and the dashed lines are
for n = 100 and T = 80. The solid diamonds signify the true parameters. Observe that
as n doubles, the variability of the unweighted GMM estimator (on the left) remains about
the same, while the variability of the CUE (on the right) reduces by a similar factor. The
outcome is not clear in the case of the two step efficient GMM estimator (in the middle).
The simulated distributions of the estimates for β look skewed in smaller samples especially
for the unweighted GMM.
Figure 3 shows the simulated densities of the t-ratios computed according to the conven-

tional formula “n−1(D0Ω−1D)−1” of two step GMM (on the left) and CUE (on the right). In
both cases, the conventional variance estimates look as if they understate the true variances.
Table 3 summarizes the simulated means and standard deviations of the unweighted

GMM, the usual two step GMM and the CUE.

A slight generalization is possible to the case where Ωn(θ) is a linear combination of a
finite number of known functions, viz.,

Ωn(θ) =
kX

j=1

ψjn(θ)Qjn(θ), k finite, Qjn(θ) positive semidefinite,

where ψjn(θ) is a scalar function bounded away from zero and containing estimable un-
known parameters and Qjn(θ) is a known function of an increasing dimension. Let Ω̂n(θ) =Pk

j=1 ψ̂jn(θ)Qjn(θ). Then (34) can be shown to hold from (suppressing the θ argument)

1

qn
ζ 0n[Ω

−1
n − Ω̂−1n ]ζn =

1

qn
ζ 0nΩ

−1
n [Ω̂n − Ωn]Ω̂

−1
n ζn

=
kX

j=1

(ψ̂jn − ψjn)
1

qn
ζ 0nΩ

−1
n QjnΩ̂

−1
n ζn,
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whose absolute value is bounded by

kX
j=1

|ψ̂jn − ψjn|
1

qn
ζ 0nΩ

−1
n QjnΩ̂

−1
n ζn ≤

kX
j=1

¯̄̄̄
¯ ψ̂jn − ψjn

ψ̂jn

¯̄̄̄
¯ 1qn ζ 0nΩ−1n ζn →p 0.

The above construction of feasible weighting for consistent CUE estimation seems to
allow for some further generalization to nonlinear models as long as there is a result similar
to (34). However, it seems more productive to work with specific applications rather than
attempt to develop a general theorem, and hence we do not pursue that direction further
here.

6 Conclusion

The primary contribution of this paper is to provide a limit theory for GMM estimation
that allows for cases where the number of moment conditions may grow with the sample size
and where the moment conditions may individually be only weakly identifying. Under such
circumstances, GMM estimation can be consistent but the rate of convergence depends on
both the sample size and the number and the quality of the moment conditions. In addition
to the usual source of signal from the moment conditions, the variability across moment
conditions also plays a role in the asymptotic theory and can influence the point of consis-
tency for the GMM estimator. Interestingly, consistent estimation is possible even in the
case of apparently irrelevant instruments, provided there are “enough” of these instruments
asymptotically.
The limit distribution theory presents more difficulties than usual. Our approach has

been to employ some high level conditions and epiconvergence arguments to provide a general
theory. Our analytical framework is best seen as a start in designing appropriate methods
of inference in such general models, including the analysis of statistical tests, and further
research on these problems will be needed to obtain useful inferential procedures for practical
work at a reasonable level of generality. The theory does make it clear that the form of the
limit distribution need not be normal. And some special cases where normality does apply
are considered and, of course, the usual GMM limit theory is one such case. Additionally,
the interesting case of linear structural equation estimation with many weak instruments
falls within our framework. Here, we see that consistent estimation is possible even with
apparently irrelevant instruments and the new limit theory highlights the interacting role in
estimation between the quality of the instruments in their totality (as their numbers increase)
on the one hand and the degree of endogeneity in the system on the other.
As discussed in the Introduction, there are now many instances in empirical research

where large numbers of instruments are employed and where there is evidence of weak in-
strumentation. Asymptotic methods of the type given here seem likely to be useful in such
contexts and show that rates of convergence different from the usual

√
n are to be expected

and that the point of consistency is not always the true parameter.
The asymptotic framework provides the opportunity to consider other interesting issues,

one being the effect of dependence. When the independence assumption on the component
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random variables is relaxed, the analysis naturally becomes more complex but some intrigu-
ing things can occur. For example, in a linear structural model with I(1) instruments, the
unweighted and optimally weighted GMM estimators have different rates of convergence.
The analysis of this case and others of interest that arise in practical work are left for future
research.

7 Notation
gnk(wni, θ) moment functions, k = 1, . . . , qn
ḡnk(θ) sample moment functions, k = 1, . . . , qn

ξnk(wni, θ) gnk(wni, θ)−Egnk(wni, θ)
m̄nk(θ) Eḡnk(θ)
ζnk(θ)

√
n[ḡnk(θ)−Eḡnk(θ)]

γn(θ), γ(θ) c−1n m̄n(θ)
0m̄n(θ), and its limit

δn(θ), δ(θ) q−1n Eζn(θ)
0ζn(θ), and its limit

αn, α qn/ncn, and its limit
fn(θ), f∞(θ) c−1n ḡn(θ)

0ḡn(θ), and its limit
f̄n(θ) Efn(θ) = γn(θ) + αnδn(θ)
Wn(θ) fn(θ)− f̄n(θ)
n, qn, p sample size, # of moment conditions, and # of parameters
| · | Euclidean distance from the origin
op(1) tends to zero in probability
Op(1) bounded in probability

A . B, B & A A ≤ B up to a universal constant
→p convergence in probability
→d, → convergence in distribution, weak convergence
tr(A) trace of A
R, R̄ (−∞,∞), and R ∪ {−∞,∞}

cov(x, y) E(x−Ex)(y −Ey)0

var(x) cov(x, x)
∇x(θ) ∂

∂θ0x(θ) if x is a vector function,
∂
∂θ
x(θ) otherwise.

∇x0 (∇x)0
A(θ) . B(θ) A(θ) ≤ kB(θ), for some finite universal constant k.

33



A Technical Appendix and Proofs

As usual, the first step in the proof of Theorem 5 is to establish the uniform convergence in
probability of the properly scaled criterion function fn(θ) to the limit γ(θ) + αδ(θ). Noting
that f̄n(θ) = Efn(θ)→ f∞(θ) uniformly by assumption, we only have to show that Wn(θ) =
fn(θ)− f̄n(θ) vanishes in probability uniformly as n→∞. In fact, we have

Wn(θ) = c−1n ḡn(θ)
0ḡn(θ)−Ec−1n ḡn(θ)

0ḡn(θ)

= c−1n m̄n(θ)
0m̄n(θ) + 2c

−1
n n−1/2m̄n(θ)

0ζn(θ) + (ncn)
−1ζn(θ)

0ζn(θ)

− c−1n m̄n(θ)
0m̄n(θ)− (ncn)−1Eζn(θ)0ζn(θ)

= 2c−1n n−1/2m̄n(θ)
0ζn(θ) + αnq

−1
n [ζn(θ)

0ζn(θ)−Eζn(θ)
0ζn(θ)]

= 2Ψ1n(θ) + αnΨ2n(θ), say.

(42)

The following lemmas show that (42) converges in probability to zero uniformly in θ.

Lemma 19 Under Assumption 1 (iv), q−1n ζn(θ)
0ζn(θ) is tight.

Proof. Obviously,

q−1n ζn(θ)
0ζn(θ) ≤ max

1≤k≤qn
ζnk(θ)

2 =

µ
max
1≤k≤qn

|ζnk(θ)|
¶2

,

and the right hand side is tight by Assumption 1 (iv).

Lemma 20 Under Assumptions 1 (i), 1 (iv), 2 and 4, Ψ1n(θ) →p 0 uniformly over all
θ ∈ Θ.

Proof. First we note that Ψ1n(θ)→p 0 for all θ ∈ Θ because EΨ1n(θ) ≡ 0 and

EΨ1n(θ)
2 =

1

nc2n
m̄n(θ)

0E[ζn(θ)ζn(θ)
0]m̄n(θ)

. (ncn)−1c−1n m̄n(θ)
0m̄n(θ) = (ncn)

−1γn(θ)→ 0,

(43)

where the curly inequality comes from Assumption 1 (i), and the last convergence is obtained
because ncn →∞ and γn(θ) converges by Assumption 2.
Next we show that Ψ1n(θ) is tight. By the triangle inequality and Hölder’s inequality, we

have

|Ψ1n(θ)| ≤
qn

cn
√
n
· 1
qn

qnX
k=1

|m̄nk(θ)ζnk(θ)|

≤ qn
cn
√
n

Ã
q−1n

qnX
k=1

m̄nk(θ)
2

!1/2Ã
q−1n

qnX
k=1

ζnk(θ)
2

!1/2
= α1/2n γn(θ)

1/2 ·
³
q−1n ζn(θ)

0ζn(θ)
´1/2

.

(44)

34



Clearly, γn(θ) is asymptotically uniformly bounded because γn(θ) is continuous by Assump-
tion 4 and uniformly convergent by Assumption 2. Also, αn converges, and tightness of
q−1n ζn(θ)

0ζn(θ) has been established in Lemma 19.
We next prove that αnΨ2n(θ) vanishes uniformly.

Lemma 21 Under Assumptions 1 and 2 (ii), αnΨ2n(θ)→p 0 uniformly in θ ∈ Θ.

Proof. We abbreviate by writing ξn,i := ξn(wni, θ) without specifying the argument θ (a
notation that is used only in this proof). Note that

Ψ2n(θ) = n−1
nX
i=1

[q−1n ξ0n,iξn,i − Eq−1n ξ0n,iξn,i] + q−1/2n n−1
X
i6=j

q−1/2n ξ0n,iξn,j

= Ψ
(1)
2n +Ψ

(2)
2n , say.

(45)

We will first show that αnΨ2n(θ)→p 0 for each θ by showing αnΨ
(1)
2n →p 0 and αnΨ

(2)
2n →p 0.

The convergence of αnΨ
(1)
2n for each θ follows straightforwardly from the finiteness of the

fourth moments of ξn,i as assumed in Assumption 1(ii) and the Chebyshev inequality. The

convergence of αnΨ
(2)
2n to zero for each θ holds because it has zero mean and its variance

diminishes to zero, as is now shown. The variance of Ψ(2)2n is

var (Ψ
(2)
2n ) = q−1n n−2

X
i6=j

q−1n tr
³
Ωni(θ)Ωnj(θ)

´
,

where Ωni(θ) := Eξn,iξ
0
n,i. Because tr (AB)

2 ≤ tr (A2)tr (B2) for any symmetric A and B,
we have

q−1n tr
³
Ωni(θ)Ωnj(θ)

´
≤
µ
q−1n tr

¡
Ωni(θ)

2
¢
· q−1n tr

¡
Ωnj(θ)

2
¢¶1/2

.

But tr
¡
Ωni(θ)

2
¢
, which is the sum of the squared eigenvalues of Ωni(θ), is O(qn). Hence, the

above displayed expresssion is a bounded sequence, whose upper bound is universal for all i
and j by Assumption 1 (i), and therefore we have var (Ψ(2)2n ) = O(q−1n ). Finally,

var (αnΨ
(2)
2n ) = α2nO(q

−1
n ) = αnO(1/ncn)→ 0 by Assumption 2 (ii).

So far, we have shown that αnΨ2n(θ) →p 0 for each θ. Again by standard arguments
(e.g., Billingsley, 1968), it suffices to prove tightness for Ψ2n(θ). This part is easy. Clearly,

|Ψ2n(θ)| = q−1n |ζn(θ)0ζn(θ)− Eζn(θ)
0ζn(θ)| ≤ q−1n ζn(θ)

0ζn(θ) + δn(θ).(46)

We have already shown that q−1n ζn(θ)
0ζn(θ) is tight in Lemma 19, and δn(θ) is asymptot-

ically bounded because of the uniform convergence condition 1 (iii). The result follows
straightforwardly.

Proof of Theorem 5. Lemmas 20 and 21 imply that fn(θ) − f̄n(θ) →p 0 uniformly in
θ, which together with the uniform convergence f̄n(θ)→ γ(θ) + αδ(θ) imply that fn(θ)→p
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γ(θ) + αδ(θ) uniformly. The result follows from Theorem 9.3.1 of Davidson (2000). In its
proof, (7) of our Assumption 3 can obviously be used instead of the condition that θ∗ is an
interior point of Θ.

We now move on to consider the rate of convergence and the asymptotic distribution.
Instead of Proposition 11, we first prove a somewhat more general version of the result,
which is similar to Theorem 5.52 of van der Vaart (1998).

Proposition 22 Suppose that the assumptions of Proposition 11 are satisfied with (19) re-
placed by

f̄n(θ)− f̄n(θ
∗
n) & |θ − θ∗n|b, n > n0,(47)

and (20) by

E sup
|θ−θ∗n|<δ

¯̄̄
rnWn(θ)− rnWn(θ

∗
n)
¯̄̄
. δa, a < b.(48)

Then

r1/(b−a)n (θ̂ − θ∗n) = Op(1).

Proof. The proof follows Theorem 5.52 of van der Vaart (1998) with minor changes to
accommodate the moving center asymptotics and to simplify the exposition. Fix M > 0.
Let sn = r

1/(b−a)
n for notational simplicity. Let Sj,n = {θ : 2j−1 < sn|θ− θ∗n| ≤ 2j}. Then, for

every η > 0,

P (sn|θ̂ − θ∗n| > 2M) ≤
X

j≥M,2j≤ηsn

P
¡
inf

θ∈Sj,n
[fn(θ)− fn(θ

∗
n)] ≤ 0

¢
+ P (2|θ̂ − θ∗n| ≥ η).

(49)

By Theorem 5, the second probability on the right diminishes to 0 for every η > 0. Because

inf[fn(θ)− fn(θ
∗
n)] ≥ inf[Wn(θ)−Wn(θ

∗
n)] + inf[f̄n(θ)− f̄n(θ

∗
n)]

for any common set over which the ‘inf’ operator applies, we have for each j

P
¡
inf

θ∈Sj,n
[fn(θ)− fn(θ

∗
n)] ≤ 0

¢
≤ P

¡
− inf

θ∈Sj,n
[Wn(θ)−Wn(θ

∗
n)] ≥ inf

θ∈Sj,n
[f̄n(θ)− f̄n(θ

∗
n)]
¢

≤ P
¡
sup
θ∈Sj,n

|Wn(θ)−Wn(θ
∗
n)| ≥ inf

θ∈Sj,n
[f̄n(θ)− f̄n(θ

∗
n)]
¢
.

Choose η small enough that the first condition of the theorem holds for all θ such that
|θ − θ∗n| < η and the second for every δ ≤ η. Then, for each j, the above probability is
bounded by

P
¡
sup
θ∈Sj,n

¯̄
rnWn(θ)− rnWn(θ

∗
n)
¯̄
≥ mrn2

(j−1)bs−an
¢
,(50)
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for some finite constant m by (47). By Chebyshev’s inequality and (48), this last probability
is again bounded bym−12b2−(b−a)j. Therefore, the first term on the right of (49) is eventually
bounded by m−12b

P
j≥M 2

−(b−a)j, which converges to 0 as M →∞ when a < b.

Proof of Proposition 11. Use a = 1 and b = 2 for the above proposition.

The proof of Theorem 13 follows Geyer (1994)’s approach. Denote R̄ = R ∪ {−∞,+∞}
and let rn = (ncn)1/2. The next lemma is a variant of Geyer (1994)’s Lemma 4.1.

Lemma 23 Define a random function Hn(·) from Rp to R̄ by

Hn(t) =

(
r2n

h
fn(θ

∗
n + t/rn)− fn(θ

∗
n)
i
, t ∈ rn(Θ− θ∗n),

+∞, otherwise
(51)

and another random function H(·) from Rp to R̄ by

H(t) =

(
Z 0t+ 1

2
t0V t, t ∈ T (θ∗)

+∞, otherwise,
(52)

where Z is defined in (24). Under the assumptions of Theorem 13, Hn epiconverges in
distribution to H.

The proof below follows Geyer (1994)’s proof of his Lemma 4.1 with some minor changes
for the moving center asymptotics and nonstandard convergence rate in the present case.

Proof. Define

Gn(t) =

(
rn∆n(θ

∗
n)
0t+ 1

2
t0V t, t ∈ rn(Θ− θ∗n)

+∞, otherwise.

Then for t ∈ rn(Θ− θ∗n),

Hn(t)−Gn(t) =
1
2
t0[Vn(θ

∗
n)− V ]t

+ r2n[R̄2n(θ
∗
n + t/rn) +R1n(θ

∗
n + t/rn)].

Let

kHn −Gnkρ = sup
t∈ρBp∩rn(Θ−θ∗n)

|Hn(t)−Gn(t)|,

where Bp is the closed unit ball in Rp. Then because t0[Vn(θ∗n)− V ]t = o(1) · |t|2 and

r2nR̄2n(θ
∗
n + t/rn) =

R̄2n(θ
∗
n + t/rn)

|t/rn|2
· |t|2 = o(1) · |t|2,

we have

kHn −Gnkρ ≤ o(1)ρ2 + ρ sup
θ∈(θ∗n+r−1n ρBp)∩Θ

rn|R1n(θ)|
|θ − θ∗n|

,
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and the right hand side converges to 0 by (25).
All that remains is to show that Hn(t) epiconverges in distribution to H(t), which can be

done with a little modification of the proof of Geyer (1994, Lemma 4.1). Indeed, following
Geyer (1994, Lemma 4.1), set wn to be the function that is 0 on (ncn)1/2(Θ− θ∗n) and +∞
elsewhere, and let w be the same kind of indicator function for T (θ∗). Because of Assumption
12 (iii), wn epiconverges to w. The rest of proof is identical to that of Geyer (1994, Lemma
4.1).

Lemma 24 Under Assumptions 1—4 and 12, (ncn)1/2(θ̂ − θ∗n) = Op(1).

Proof. We first prove that Assumptions 1—4 and 12 (i) imply (19). Let λnmin and λ∗min

denote the minimal eigenvalues of Vn(θ
∗
n) and V, respectively. Then, (21) implies that

f̄n(θ)− f̄n(θ
∗
n) =

1
2
(θ − θ∗n)

0Vn(θ
∗
n)(θ − θ∗n) + R̄2n(θ)

≥ 1
2
λnmin(θ − θ∗n)

0(θ − θ∗n) + R̄2n(θ)

≥ 1
2
λnmin(θ − θ∗n)

0(θ − θ∗n)− |R̄2n(θ)|

=

µ
1
2
λnmin −

|R̄2n(θ)|
|θ − θ∗n|2

¶
· |θ − θ∗n|2.

(53)

Since Vn(θ
∗
n) → V , we have λnmin → λ∗min as n → ∞, where λ∗min > 0 because V is positive

definite, and we can choose an n1 <∞ such that

λnmin ≥ λ∗min/2, n ≥ n1.(54)

Moreover, (22) implies that there exist an n2 <∞ and a neighborhood B of θ∗ such that

sup
θ∈B

|R̄2n(θ)|
|θ − θ∗n|2

≤ 1
8
λ∗min, n ≥ n2.(55)

Now (53), (54) and (55) imply that

f̄n(θ)− f̄n(θ
∗
n) ≥ 1

8
λ∗min |θ − θ∗n|2, θ ∈ B

for n ≥ max(n1, n2), and the first part is complete.
Next, the uniform integrability condition (26) implies that the expectation on the left of

(20) exists and is uniformly bounded with rn = (ncn)
1/2. Then, given this integrability, the

linear approximation (23), the weak convergence (24) and the stochastic equicontinuity (25)
of the residuals together imply the stated modulus of continuity (20). The conclusion now
follows from Proposition 11.

Proof of Theorem 13. The proof that H(t) has an almost surely unique minimizer over
T (θ∗) is identical to Geyer’s (1994) Proposition 4.2 and Theorem 4.4. >From Lemma 24, we
have that t̃n ≡ (ncn)1/2(θ̂− θ∗n) is Op(1), and obviously t̃n minimizes Hn(t) over (ncn)−1(Θ−
θ∗n). Finally, we may invoke Proposition 10 to show that t̃n has the limit distribution of the
minimizer of H(t) over T (θ∗).

Proof of Corollary 14. Since αn → 0, we have Z ∼ N(0, A) and the first result follows
from Theorem 13.
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Proof of Corollary 15. We will show that rn(θ
∗
n− θ0)→ 0, where rn is still (ncn)1/2. By

the definition of θ∗n, we have ∇f̄n(θ∗n) = 0 and hence

rn∇f̄n(θ∗n) = 0.(56)

We expand rn∇f̄n(θ∗n) by (30) to get

rn∇f̄n(θ∗n) = rn∇f̄n(θ0) + Vn(θ̃n)rn(θ
∗
n − θ0) = 0,

where θ̃n lies on the line segment between θ∗n and θ0, and the last equality comes from (56).
Noting that f̄n(θ) = γn(θ) + αnδn(θ), we observe that

rn∇f̄n(θ0) = rnγn(θ0) + rnαnδ(θ0) = rnαnδn(θ0)→ 0,

because rnαn = qn/(ncn)
1/2 → 0 by assumption, and Vn(θ̃n)→ V (θ0), which is nonsingular.

Therefore, rn(θ
∗
n − θ0)→ 0, so that the limit of rn(θ̂ − θ0) equals that of rn(θ̂ − θ∗n).

B Asymptotic Variance Matrix Formula

This section calculates the asymptotic variance matrix of (ncn)1/2(θ̂−θ∗n) under the assump-
tion that fn(·) permits a second order Taylor series expansion, i.e., for the case ∆n(θ) =
∇Wn(θ) and Vn(θ) = ∇2f̄n(θ) = ∇2[γn(θ) + αnδn(θ)]. Let V = limn→∞ Vn(θ

∗
n). We usually

have V = limn→∞∇2[γn(θ∗) + αnδn(θ
∗)].

The limit variance of (ncn)1/2(θ̂ − θ∗n) is

V −1 lim
n

E(Z∗nZ
∗
n
0)V −1, Z∗n = (ncn)

1/2∇Wn(θ
∗
n),

where

(ncn)
1/2Wn(θ) = 2c

−1/2
n m̄n(θ)

0ζn(θ) + α1/2n q−1/2n [ζn(θ)
0ζn(θ)− Eζn(θ)

0ζn(θ)] .

Suppressing the θ argument, we write

1
2
(ncn)

1/2∇Wn = c−1/2n D0
nζn + c−1/2n ∇ζ 0nm̄n + α1/2n q−1/2n (∇ζ 0nζn − E∇ζ 0nζn).

Suppressing the argument again, but this time evaluating the functions at θ∗n, we obtain the
covariance matrix of Z∗n as follows. (It is sometimes useful, e.g., in Example 16, to assume iid
components across i and express the elements of the above formula in terms of the moments
of more primitive variables.) Let ξn,i = ξn(wni, θ

∗) and ξ
(k)
n,i =

∂
∂θk

ξn(wni, θ
∗). This short-cut

notation applies only to (57) below. Let Dn,k be the kth column of Dn, and

Ωn = Eξn,iξ
0
n,i, Ω†n,k = Eξn,iξ

(k)0
n,i , Ω‡n,kl = Eξ

(k)
n,iξ

(l)0
n,i ,

ω`
n,kl = q−2n cov(ξ

(k)0
n,i ξn,i, ξ

(l)0
n,i ξn,i),

ω^
n,kl = q−1n E

³
ξ
(k)0
n,i ξn,jξ

0
n,iξ

(l)
n,j + ξ

(k)0
n,i ξn,jξ

0
n,jξ

(l)
n,i

´
,

Ω1
n,k = q−1n Eξn,iξ

0
n,iξ

(k)
n,i , and Ω2

n,kl = q−1n Eξ
(k)
n,iξ

(l)0
n,i ξn,i.

(57)
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Also let

1
4
An,kl = c−1n

³
D0

n,kΩnDn,l +D0
n,kΩ

†
n,lm̄n +D0

n,lΩ
†
n,km̄n + m̄0

nΩ
‡
n,klm̄n

´
+ αn

³
qn
n
ω`
n,kl + ω^

n,kl

´
− αnn

−1ω^
n,kl

+ αn

¡
D0

n,kΩ
1
n,l +D0

n,lΩ
1
n,k + m̄0

nΩ
2
n,kl + m̄0

nΩ
2
n,lk

¢
,

and let An be the p×p matrix of An,kl, k, l = 1, . . . , p. Then, in this case the limit covariance
of (ncn)1/2(θ̂ − θ∗) is V −1AV −1 where A = limn→∞An.
When αn → 0, we have θ̂ → θ0 and the limit variance matrix of 1

2
Z∗n dramatically

simplifies to limn c
−1
n D0

nΩnDn, where

Dn = ∇m̄n(θ0) and Ωn := n−1
nX
i=1

Eξn(yni, θ0)ξn(yni, θ0)
0.

The component 1
2
V simplifies to lim c−1n D0

nDn, and then the limit variance of (ncn)1/2(θ̂−θ0)
is

lim
n→∞

(c−1n D0
nDn)

−1c−1n D0
nΩnDn(c

−1
n D0

nDn)
−1,

which is comparable to that obtained in conventional large sample asymptotics except that
the estimator itself is scaled by the additional factor of c1/2n with corresponding changes in
the scaling of the variance matrix.

Derivation of (32). Define εi = yi−θ0 and let zi (without the superscript n for simplicity)
be the qn × 1 vector of the znki for k = 1, . . . , qn. Let 1q denote the qn × 1 vector with unity
in each position. Let vi = zi − Ezi = zi − n−1/2r1q. Then, from gn(·, θ) = ziεi − zi(θ − θ0),
we have

ξn(·, θ) = ziεi − vi(θ − θ0), and ∇ξn(·, θ) = −vi.

(Of course, we have Eε2i = var (yi) = σ2 and Eviv
0
i = σ2zI.) Therefore, using the notation in

(57), we have

ξn,i = ziεi, and ξ
(k)
n,i = −vi,

(because θ∗ = θ0). The explicit values for the elements defined in (57) are

Ωn = σ2(σ2zIq + n−1r21q1
0
q), Ω†n = 0, Ω‡n = σ2zIq,

ω`
n = σ2σ4z + q−1n σ2(Evnki

4 − σ4z) + (nqn)
−1r2σ2σ2z, ω^

n = σ2σ4z + n−1r2σ2σ2z,

Ω1
n = −n−1/2rσ2σ2z(1− q−1n )1q, and Ω2

n = 0,

where vnki = znki−Eznki. In addition, m̄n(θ) = −n−1/2r1q(θ− θ0), and therefore from the fact
that θ∗ = θ0,

mn(θ
∗) = 0, and Dn = −n−1/2r1q.
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For the denominator, from (10), we have 1
2
V = r2 + σ2z. The asymptotic variance (32) is

then straightforwardly obtained by direct calculation and by taking limits.

Asymptotic normality when r = 0. Consider the above model again and develop the
limit distribution theory when r = 0. Let z denote the n × qn observation matrix of zij.
Then the (unweighted) GMM estimator is

θ̂ = θ0 + (1
0zz01)−110zz0ε,

where 1 is the n-vector of ones and ε = (ε1, . . . , εn). We show that q
1/2
n (θ̂ − θ0) →d

N [0, (1 + c)σ2] as n→∞ and qn →∞.
First, we can show that (nqn)−110zz01 →p σ

2
z as n → ∞ by showing that its mean is σ2z

and its variance shrinks to zero. So it remains to show that

n−1q−1/2n 10zz0ε→d N
£
0, (1 + c)σ4zσ

2
¤
.(58)

Rewrite n−1q−1/2n 10zz0ε = n−1/2
Pn

i=1(nqn)
−1/210zziεi. Note that when zij has finite fourth

moment,

(nqn)
−1E[(10zzi)

2] = ω2n =
£
n−1E(z4ij) + (1 + qn/n− 2/n) σ4z

¤
.

Let ηni = ω−1n (nqn)
−1/210zzi and vi = σ−1ε εi so that Eη2ni = 1 and Ev2i = 1. Let Un =

n−1/2
Pn

i=1 ηnivi. We will show that if Ez
8
ij < ∞ and Eε2i < ∞ then Un →d N(0, 1) by

showing that for all t,

EeitUn → e−t
2/2,(59)

which implies (58) because ω2n → (1 + c)σ4z.
As the first step, we can show that if Ez8ij <∞ then

1

n

nX
i=1

η2ni →p 1, (60)

max
i≤n

n−1/2|ηni|→p 0, (61)

where (60) holds because the variance shrinks to zero, and (61) holds because

P

µ
max
i≤n

n−1/2|ηni| > c

¶
≤

nX
i=1

P
¡
n−1/2|ηni| > c

¢
≤ n−2c−2ω4n

nX
i=1

Eη4ni → 0.

Let ϕnj(t) = E(eitn
−1/2ηnjεj |z) and ψnj = 1 − t2η2nj/2n. For any sequence of (random) sets

An, we have the inequality

(62)
¯̄̄
EitUn − e−t

2/2
¯̄̄
≤ E

¯̄̄̄
¯
nY
i=1

ϕni(t)− e−t
2/2

¯̄̄̄
¯ ≤ E

¯̄̄̄
¯
nY
i=1

ϕni(t)− ψni(t)

¯̄̄̄
¯ 1An +

E

¯̄̄̄
¯
nY
i=1

ψni(t)− e−t
2/2

¯̄̄̄
¯ 1An + E

¯̄̄̄
¯
nY
i=1

ϕni(t)− e−t
2/2

¯̄̄̄
¯ 1Acn .
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Now fix a δ > 0. Let c∗ = δ/t3 > 0, d∗ = min{t−2, δ/(3a0t2)} > 0, and b∗ such that
(b∗)2 ≤ min{1, t−2, 2/[a1t4(1 + d∗)], 2δ/[3a0a1t

4(1 + d∗)]} and Ev2i {|vi| > c∗/b∗} ≤ δ/(6t2).
Then, because Ev2i <∞, we can choose a b∗ > 0.
Let An = {maxi≤n n−1/2|ηni| ≤ b∗} ∩ {|n−1

Pn
i=1 η

2
ni − 1| ≤ d∗}. Then, because of (60)

and (61), we can pick an n∗ <∞ such that P (An) ≥ 1− δ/6 for all n > n∗. And for those
chosen constants and An, we can show each of the three terms on the right of (62) to be
bounded by δ/3 for n > n∗, and hence2 the sum is bounded by δ.

CUE Weighting. The CUE with Ωn(θ)
−1 as weight function discussed in section 5 is

equivalent to unweighted GMM using Ωn(θ)
−1/2gn(·, θ), so the associated “δ(θ)” function is

constant, θ∗n ≡ θ0, and the associated covariance matrix of the rescaled moment conditions
(i.e, the new “Ωn(θ)” matrix) is the identity. The 1

2
Vn(θ0) matrix reduces to c−1n D0

nΩ
−1
n Dn

where Dn and Ωn are evaluated at θ0. So we have

1
2
V = lim

n→∞

1

cn
D0

nΩ
−1
n Dn.

The “center” part in the sandwich form is more complicated. The CUE using Ωn(θ)
−1 as

weight has

1
2
Wn(θ) = c−1n n−1/2m̄n(θ)

0Ωn(θ)
−1ζn(θ) + αn

£
q−1n ζn(θ)

0Ωn(θ)
−1ζn(θ)− 1

¤
= c−1n n−1/2m̄n(θ)

0Ωn(θ)
−1/2ζ̃n(θ) + αn

h
q−1n ζ̃n(θ)

0ζ̃n(θ)− 1
i
,

where ζ̃n(θ) = Ωn(θ)
−1/2ζn(θ) with Eζ̃n(θ)ζ̃n(θ)

0 = I, and Ωn(θ) = Eζn(θ)ζn(θ)
0 as before.

Because m̄n(θ0) ≡ 0, we have

1
2
Zn =

1
2
(ncn)

1/2∇Wn(θ0)

= c−1/2n Dn(θ0)
0Ωn(θ0)

−1/2ζ̃n(θ0) + α1/2n q−1/2n ∇ζ̃n(θ0)0ζ̃n(θ0).

Clearly,

1
4
EZnZ

0
n = c−1n D0

nΩ
−1
n Dn + αnq

−1
n E

h
∇ζ̃n(θ0)0ζ̃n(θ0)ζ̃n(θ0)0∇ζ̃n(θ0)

i
+ c−1/2n α1/2n q−1/2n Dn(θ0)

0Ωn(θ0)
−1/2E

h
ζ̃n(θ0)ζ̃n(θ0)

0∇ζ̃n(θ0)
i

+ c−1/2n α1/2n q−1/2n E
h
∇ζ̃n(θ0)0ζ̃n(θ0)ζ̃n(θ0)0

i
Ωn(θ0)

−1/2Dn(θ0).

Note that estimation of this variance form is, in practice, quite complicated even in the
simplest model because it involves third and fourth moments and ζ̃n(θ) is a product of the
matrix function Ωn(θ)

−1/2 and the rescaled average n−1/2
Pn

i=1 ξn(wni, θ). Bekker (1994)
provides an estimator for his linear model with Gaussian errors but it is unclear how this
can be generalized to GMM.

2A complete demonstration is available on request.
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