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Abstract

Some extensions of neoclassical growth models are discussed that allow for cross section

heterogeneity among economies and evolution in rates of technological progress over time.

The models o¤er a spectrum of transitional behavior among economies that includes con-

vergence to a common steady state path as well as various forms of transitional divergence

and convergence. Mechanisms for modeling such transitions and measuring them econo-

metrically are developed in the paper. A new regression test of convergence is proposed,

its asymptotic properties are derived and some simulations of its �nite sample properties

are reported. Transition curves for individual economies and subgroups of economies are

estimated in a series of empirical applications of the methods to regional US data, OECD

data and Penn World Table data.
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�The legacy of economic growth that we have inherited from the industrial revo-

lution is an irreversible gain to humanity, of a magnitude that is still unknown....The

legacy of inequality, the concomitant of this gain, is a historical transient�. Lucas

(2002, pp.174-175).

1 Introduction

In his study of the growth of nations in the world economy over the last 250 years, Lucas

(2002) argues that the enormous income inequality across countries that followed in the swath

of the industrial revolution has now peaked. Instead, in the twenty �rst century, as countries

increasingly participate in the economic bene�ts of industrialization, this income inequality will

prove to be a historical transient. Building on a model of Becker, Murphy and Tamura (1990),

Lucas develops a theory that seeks to explain the transition that has occured in the world

economy from the stagnant steady state economies that persisted until around 1800 to modern

economies that experience sustained income growth. Human capital accumulation is posited

as the engine of this growth and the mechanism by which it is accomplished comes by way

of a demographic transition that emerges from the inclusion of fertility decision making into

the theory of growth. These arguments involve two forms of transition: a primary economic

transition involving the move toward sustained economic growth and a secondary, facilitating

demographic transition associated with declining fertility. These arguments are supported

by some descriptive data analysis that document the transitions and suggest the emergent

transience in income inequality mentioned in the headnote quotation.

The present paper looks at the phenomenon of �economic transition� from an economet-

ric perspective. We ask two main questions and then proceed to develop an econometric

methodology for studying issues of economic transition empirically. The �rst question concerns

neoclassical economic growth and asks if the model has the capacity to generate transitional

heterogeneity of economic growth patterns across countries that are consistent with historical

income inequality while still allowing for some form of ultimate growth convergence. Such be-

havior would have to accommodate transient divergence in growth patterns. So, a subsidiary

question relates to the conditions under which such transitional economic divergence could

occur and how it might be parameterized and evaluated empirically.

In seeking to address the �rst question, we start by considering the impact of cross sectional

and temporal heterogeneity on the speed of (beta) convergence in a traditional growth conver-

gence setting such as that considered in Barro and Sala-i-Martin (1992). In such a setting, the

transition dynamics of log per capita real income yit in country i at time t has the following

simple form

log yit = ai + bie
��t + xt; (1)
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where � represents the speed of convergence and may be taken to be a function of the

growth rate of technological progress x; amongst other factors. The de�nition of �techno-

logical progress� can, of course, be rather broad and may include social, political, cultural,

scienti�c, engineering and economic factors. The �rst term, ai; in (1) incorporates initial con-

ditions and steady state levels. In this model, under homogeneity of � and x, neoclassical

theory does not naturally accommodate such enormous di¤erences in observed income growth

as the world economy has witnessed in the success of the Asian Dragons or the growth dis-

asters of Sub Saharan Africa in relation to other developing countries. However, when we

permit cross sectional and temporal heterogeneity in these parameters (leading to �it and xit),

neoclassical growth can provide for such forms of transitional cross sectional divergence. With

these extensions, the model may also allow for ultimate growth convergence, thereby making

the cross country income inequality transient, as argued by Lucas.

The speed of convergence parameter �it may reasonably be regarded as an increasing func-

tion of technological progress xit: Accordingly, poor economies with a low level of technological

accumulation may begin with a low �it and a correspondingly slow speed of convergence: As

such countries learn faster (e.g., from improvements in education and the di¤usion of technol-

ogy), their xit rises and may exceed the rate of technological creation in rich nations. So, �it
rises and the speed of convergence of these economies begins to accelerate. Conversely, if a poor

country responds slowly to the di¤usion of technology by learning slowly or through su¤ering

a major economic disaster which inhibits its capacity to adopt new technology, its speed of

convergence is correspondingly slower in relation to other countries (including rich countries),

thereby producing the phenomenon of transitionally divergent behavior in relation to other

countries. In other words, heterogeneous neoclassical economic growth may accommodate a

family of potential growth paths in which some divergence may be manifest. If over time the

speed of learning in the divergent economies becomes faster than the speed of technology cre-

ation in convergent rich economies, there is recovery and catch-up. In this event, the inequality

that was initially generated by the divergence becomes transient, and ultimate convergence in

world economic growth can be achieved.

Transitional economic behavior of the type described in the last paragraph leads to an-

other major question: what variables govern the behavior of xit and in�uence its transitional

heterogeneity. While this question is not addressed in the present paper, it is hoped that the

methods developed here for studying empirical economic transitions in growth performance will

be relevant in addressing similar issues regarding the transition behavior of the many factors

that in�uence economic growth.

To accommodate the time series and cross sectional heterogeneity of technological progress

in growth empirics, this paper proposes a new econometric approach based on the analysis of

an economy�s transition path in conjuction with its growth performance. The transition path
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can be measured by considering the relative share of per capita log real income of country i in

total income, or hit = log yit= log �yt; where log �yt denotes the cross section average of log per

capita real income in the panel or a suitable subgroup of the panel1. Under certain regularity

conditions on the growth paths, the quantity hit eliminates the common growth components (at

least to the �rst order), and provides a measure of each individual country�s share in common

growth and technological progress. Moreover, since hit is time dependent, it describes how this

share evolves over time, thereby providing a measure of economic transition. In e¤ect, hit is

a time dependent parameter that traces out a transition curve for economy i; indicating that

economy�s share of total income in period t.

If there is a common source of sustained economic growth �t, then with the di¤usion of

technology and learning across countries, learning through formal education, and on the job

learning (Lucas, 2002), we may reasonably suppose that all countries ultimately come to share

(to a greater or lesser extent) in this growth experience. In this context, the parameter hit
captures individual economic transitions as individual countries experience this phenomenon to

varying extents. As with the Galton fallacy, we do not expect all countries to converge. There

will always be an empirical distribution of growth and per capita income among nations, as

indeed there is between individuals within a country. However, there can still be convergence

in the sense of an elimination of divergent behavior (as even the poorest countries begin to

catch up) and an ultimate narrowing of the di¤erences. Transitional growth empirics of the

type considered in this paper seek to map these di¤erences over time in an orderly manner

that provides information about the transition behavior of countries in a world economy as

they evolve toward a limit distribution in which all countries share in the common component

in economic growth.

The paper is organized as follows. Section 2 studies some of the issues that arise in al-

lowing for heterogeneity in neoclassical growth models and examines links between temporal

heterogeneity in the speed of convergence and transitional divergence. Section 3 derives some

stylized facts concerning long term growth patterns across countries based on average real

per capita income for 18 Western OECD countries over the past 500 years. This section also

considers the e¤ects of technological adaptation and learning on the time forms of economic

transition. Section 4 formalizes the concept of an economy�s transition curve, which reveals

the extent to which an individual economy shares at each point in time in the common growth

component of a group of economies. Section 5 develops an econometric formulation of this

concept, which provides the time pro�le of transition for one economy relative to a group av-

erage. This relative transition curve is identi�ed and can be �tted using various smoothing

methods, which we discuss. The �tted transition curves can be used to reveal evidence on

1The idea of measuring transitions by means of a transition parameter was �rst suggested in the working

paper Phillips and Sul (2003).
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central issues such as growth convergence and the possibility of transient divergent behavior.

A regression test is developed to conduct formal econometric tests of this behavior. Empirical

applications of these methods are reported in Section 6, where we study regional transitions

in the US, national economic performance in the OECD nations, and growth and transitional

divergence in the world economy using the Penn World Tables (PWT). Some conclusions and

prospects for further research are given in Section 7. Further technical material, asymptotic

justi�cations, and information on the data are given in the Appendices.

2 Heterogeneous Progress of Technology and Growth

We start from the neoclassical theory of growth convergence and attempt to build some con-

nections between the theoretical formulations and observed empirical regularities. Write the

production function in the neoclassical theory of growth with labor augmented technological

progress as Y = F (K;LHA) and de�ne

~y = f(~k); ~y = Y=LHA; ~k = K=LHA; y = ~yHA = ~yA (2)

where Y is total output, L is the quantity of labor input, H is the stock of human capital, A

is the state of technology, K is physical capital, and ~y is output per e¤ective labor unit. In the

last part of (2), H is normalized to unity so that technology A is de�ned broadly to encompass

the e¤ects of human capital.

It is commonly assumed that technological progress follows a simple exponential path of

the form

Ait = Ai0e
xt; (3)

where the growth rate of technology is common across countries. The latter condition is

obviously restrictive and presumes that all economies experience technological improvements

at the same rate xit = x over time, while operating from di¤erent initial levels (Ai0). A more

plausible assumption is that the technology growth rates xit di¤er across countries and over

time but may possibly converge to the same rate x as t!1: In such a case, the evolution of Ait
is inevitably more complex than (3), thereby accommodating a wider range of possible growth

behavior. This motivation underlies the framework for empirical analysis that we develop later

in this paper.

Let us assume that technology is a public good, is widely available and is represented at

time t by a common technology variable Ct whose time pro�le follows

Ct = C0e
�t: (4)

For developed countries, the full extent of common technology Ct is taken to be instantly

accessible. Indeed, it may be presumed that these countries created Ct and are materially
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Figure 1: A Taxonomy of World Economic Growth over 1960-1996. The arrowed
distances measure �� convergence and show little evidence supporting this form of the conver-
gence hypothesis. The thickness of the shadowed areas can be used to assess ��convergence.
There is apparently some evidence of ��convergence between the rich and richest country
groupings. Taking all the country groupings together, the entire path has a similar form to

the time path of average OECD income over the historical time frame of 500 years shown in

Fig. 3. Details of the country groupings used in the �gure are given in the Appendix.
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involved in determining its future time path. Followers, like the developing nations, generally

have to learn earlier technology �rst and develop an infrastructure to absorb and utilize it.

As a result, it may be assumed that such countires cannot fully share in the present level of

Ct. Depending on the speed of learning in these countries and the time form of their exposure

to the common technology, the actual technological progress of developing countries is likely

to di¤er across i over time. To model such cross section and temporal heterogeneity, we may

treat Ct as a factor of production which di¤erent countries share in at their own idiosyncratic

rate. More speci�cally, we set

Ait = C
�it
t = Ai0e

xitt = A (xit; t; Ai0) ; say. (5)

The technological growth rate of economy i is now xit + t _xit and is time dependent. This for-

mulation means that technological learning di¤ers across countries and over time even though

there is a common underlying technology. These di¤erences among economies allow for phe-

nomena such as technological catch-up and slow-down, which are known to be important in

empirical work.

Using this framework and a Cobb-Douglas technology in (2), the transitional growth path

for country i is shown in Phillips and Sul (2005) to be

log yit = log ~y
�
i + [log ~yi0 � log ~y�i ] e��itt + logAit; (6)

which is an extension of (1), where yi is per capita real income, ~y�i is the corresponding steady

state level, and the speed of convergence parameter �i is functionalized as

�it = �(�i
�
; �i
+
; vi
+
; xit
+
; t): (7)

In this formulation, �i denotes the technology parameter in the Cobb-Douglas function, �i is

the rate of depreciation and vi is the population growth rate. Appropriate sign e¤ects are

indicated beneath these parameters in (7).

The term involving e��itt in (6) decays as t!1 provided the condition

�itt!1 (8)

holds, in which case the path of log per capita real income is primarily dependent on the term

xitt and may therefore be substantially a¤ected by heterogeneity in technology progress over

time and across economies. Following Bernard and Durlauf (1996), growth convergence may

be de�ned as2

lim
k!1

(log yit+k � log yjt+k) = 0: (9)

2For the time being, all variables are taken to be non-stochastic, so a simple limiting operation is used in (9)

in place of the limit of a conditional expectation as in Bernard and Durlauf (1996).
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Thus, growth convergence requires that log per capita real income be the same across countries

in the long run. A necessary condition for (9) in a model with heterogeneous transitional

technology like (5) is

xit+k ! x; for all i as k !1: (10)

Even when there is ultimate growth convergence of the type implied by (10), transient diver-

gence in growth patterns may still occur �for instance, when an initially poor country adopts

technology more slowly than rich countries create new technology. During this period the

speed of learning in the poor economy is slower than the speed of technological creation in the

rich economy and transitional divergence may occur. Subsequently, as xit rises and the speed

of learning picks up, the poor economy may begin to catch up with the richer economies.

3 Empirical Regularities and Economic Transition

We now proceed to develop some stylized empirical regularities concerning long term growth

patterns across economies and use these to demonstrate the practical import of temporal and

cross section heterogeneity in the progress of technology. We look at two separate bodies of

evidence dealing with world and OECD economic growth and provide some graphical analysis

of hypothetical transition e¤ects, relating these to the actual growth paths of certain regional

groupings of world economies.

First, studies by Durlauf and Quah (1999), Easterly (2001), Sun (2001) and others have

recently raised doubts about the empirical evidence for growth convergence across the world

economies. In place of convergence, there is evidence of emerging convergence clubs. In

particular, the richest countries appear to be growing more slowly than some of the newly

developed countries, such as the Asian Dragons and some other rapidly growing developing

countries like China, whereas the remaining world economies appear to be growing at similar

rates or slower rates than the rich countries. These ongoing di¤erences in growth rates make

the idea of convergence clubs and emerging multi-modality in the world distribution of income

appealing.

Fig. 1 provides a new way of looking at some of the evidence on convergence and growth.

This �gure shows �ve groupings of cross sectional averages of log per capita real income for

88 countries from the PWT over 1960 to 1996 ( a data set that has frequently been used in

empirical work).

The subgroupings are based on initial income and the number of countries in each of the

�rst four groups is 17 while the richest group number 20 countries. The time paths of the

subgroup averages are shown over the �ve successive panels in the �gure. Each panel covers

the same 37 year period. While each panel restarts the time pro�le from 1960 onwards, the

arrangement of the panels produces an escalator e¤ect from the poorest to the richest groups
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Figure 2: Cross sectional average of log per capita real income for 18 Western OECD countries

over 500 years.

that is surprisingly connected in form. The escalator begins with a stair that has a fairly �at

shape corresponding to the slow growth of the poorest nations and the stairs generally become

steeper as the nation groups become richer and grow faster.

The content of Fig. 1 also provides summary evidence on growth convergence over 1960-

1996. First, the heights of the shadowed areas in the �gure measure total economic growth

between 1960 and 1996 for the average in each country group and therefore provide information

about �- convergence, according to which initially poor countries will grow faster than initially

rich countries enabling the poor countries to catch up. Evidence on the heights of the shadowed

areas in the �gure does not seem to give any general support to �- convergence. While the �rich�

countries do appear to be catching up with the �richest�nations, the rest of world economies

appear not to be growing fast enough to catch up with either the �rich�or the �richest�countries.

The so-called �-convergence does not seem to have much empirical support either. The heights

of the two arrows in the �gure indicate cross sectional income disparity in 1960 and 1996,

respectively. Evidently, using this criterion, cross sectional income dispersion in the world

seems to be widening rather than narrowing, at least over this time frame. Thus, Fig. 1�s

broad visual evidence on world economic growth and its disparities appears to be consonant

with the conclusions reached by Durlauf and Quah (1999) and others in the articles cited
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Figure 3: Anatomy of Historical OECD Growth over 1870-2001. The curve shows the

e¤ects of two actual (rich country and poor country 1) and two hypothetical (poor countries 1

and 2) learning rates for technological progress.

above.

Notwithstanding this evidence, we may still address the question whether cross section

economic divergence is a transient phenomenon. Transitional divergence in economic growth

may ocur when there is temporal heterogeneity of technology progress. That is, when xit
evolves over time. As is clear from Fig. 1, the heights of the shadowed areas �which measure

economic growth over a 37 year time span for each group average �are positively correlated

with the level of initial income in the group. Moreover, the ordering of total economic growth

within the �rst four groups (i.e. all groups except the �richest�) over 1960-1996 matches exactly

the ordering of initial income in the group. If such a pattern of growth were to persist over the

next 37 years, then the lower income groups (i.e., the �poorest�, �poor�, and �middle�groups)

may grow faster than they have over the last 37 years (as they transition to a higher category),

whereas the �rich�countries may not grow faster as they transition into the �richest�category

(just as the �richest� group have grown on average slower than the �rich� group over 1960-

1996). If this process were to continue, then eventually per capita real income across the world

economies would narrow and recent evidence of cross sectional heterogeneity would then be

viewed as transitional. This reasoning appears to support the observation made by Lucas
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(2002) in the headnote of this article about the transience of income inequality. But much

remains uncertain in this calculation, including the transitioning between groups and the time

frame of the transitions.

As a second body of evidence, we take the cross section average of log per capita real

incomes for 18 OECD countries from 1500 to 2001 and plot the data3 against time in Fig. 2.

Between 1500 and 1800, economic growth was very slow compared to the subsequent periods

of the industrial revolution in the nineteenth century and the scienti�c revolution over the

twentieth century. It is intriguing that this new �gure which is based on 500 years of data

bears more than a passing resemblance to Fig. 1 which is based on only 37 years of data but

involves a much wider distribution of world economies. This resemblance suggests that there

may be information in the long historical economic performance of (now advanced) OECD

countries that is manifest in the world income distribution in recent decades.

We o¤er one possible answer to this question by considering the pattern of average OECD

growth over the last two centuries more closely. We will use the observed historical pattern to

suggest some hypothetical examples that shed light on possible forms of transitional economic

performance. The examples are based on modifying the actual historical pattern to produce

hypothetical economies with di¤ering rates of technological progress. We may focus on (tem-

poral and cross section) heterogeneity in xit because model (6) itself suggests that for long

historical series the term involving the exponential decay factor e��itt may be neglected and

the growth path may be regarded as being principally determined by technological progress

xit through the term logAit:

To proceed, we consider Fig. 3, which plots the cross section average of log yit across

18 OECD countries4 over 132 years between 1870 and 2001 after eliminating business cycle

components. This time pro�le of historical OECD growth is used to explain how transitory

divergence in economic growth patterns can occur. Suppose that we observe two groups of

economies (rich and poor) between time q and T +q where T = 66:We split the cross sectional

average of log yit into two parts. The �rst part starts in q = 1870 (which we now use to represent

the poor group) while the second part starts from q = 1936 (which we use to represent the rich

group). We denote the speed of technological learning or creation by S: Our normalization is

that if S = 1 then either the rich or the poor country takes T = 66 years to complete the given

growth path which is based on the historical OECD record. The initial incomes for the two

groups are approximately $2,000 and $4,000 dollars, respectively. The rich group is assumed

to grow along the given growth path shown in Fig. 3. Now consider three hypothetical poor

countries in the poor group, two of which will involve time dilation e¤ects to capture di¤ering

rates of technological progress. Poor country 1 (which is based on actual OECD performance)

takes 66 years to complete the growth path shown, so that this country�s speed of learning is

3The Data Appendix provides details of the data and data sources.
4See the Data Appendix for details of the countries included.
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Figure 4: Transition, Catch up and Divergence relative to the Speed of Learning.
The curves show the e¤ects of the di¤ering technological learning speeds (taken from Fig. 3)

on growth performance, replacing time dilation by accelerated technological learning.

also just S = 1. Poor countries 2 and 3 are assumed to learn faster than poor country 1 and

their speeds of learning are approximately 1:5 and 1:8, respectively, which are obtained by time

dilation. Hence, poor country 3 grows further than both poor country 2 and poor country 1

because of its higher rate of technological progress. Both countries 2 and 3 will eventually catch

up to the rich group in a �nite period of time because they experience accelerated learning

and growth.

Fig. 4 re-draws the hypothetical growth paths of these countries against the same time

horizon with no time dilation. The e¤ects of a learning speed S > 1 are now assumed to be

transmitted by way of a faster rate of technological progress. Evidently, poor country 1 seems

to diverge since this country�s speed of learning does not exceed the speed of technological

creation of the rich group. Poor country 2 also seems to diverge initially from the rich group

and yet begins to catch up towards the end of the period. Poor country 3, on the other hand,

appears to converge to the rich group. While poor countries 2 and 3 are hypothetical and are

constructed using time dilation e¤ects, all countries are based on the actual OECD record and

poor country 1 is the actual record over chronological time with no temporal distortion.

This simple hypothetical example shows the importance of heterogeneity in the progress of

technology on economic performance. Since we have removed business cycle e¤ects and worked

with average OECD income, the resulting curves are smooth, but they indicate a variety of
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possible forms of transitional behavior that include both convergence and apparent divergence.

Actual patterns of transition, including transitionally divergent behavior, will inevitably be

more complicated than that shown in Figs. 3 and 4. Our econometric objective, taken up

in Section 6 below, is to learn about actual transitional behavior by estimating individual

patterns of transition.

Table 1: Economic Performance and Speed of Learning based
on Long Run historical OECD Growth

y1950 y2001 Base Trajectory Base Trajectory Speed of

Year of yG;1950 Year of yG;2001 Learning

18 OECD 5,150 20,110 1950 2001 1.00

Africa 949 1,796 1727 1860 2.61

Middle East 1,737 5,808 1858 1950 1.80

Asian Dragons 1,533 18,289 1849 1995 2.86

East Asian 620 1,454 before 1500 1847 > 6.80

NIEs 1,072 4,952 1802 1942 2.75

India 619 1,957 before 1500 1866 > 8.18

China 438 3,583 before 1500 1917 > 7.18

Carribean 1,801 4,674 1861 1940 1.55

Japan 1,920 20,683 1920 2001 1.59

Latin American 3,673 6,947 1919 1957 0.75

Next we proceed to relate these hypothetical transition curves to the actual growth paths of

certain regional groupings of the world economies. We start by supposing that Fig. 2 provides

a model for world economic growth in the sense that the actual economic performance of the

18 Western OECD countries over the historical time frame 1500-2001 is a base trajectory for

economic evolution that other countries in the world follow, albeit over di¤erent time frames,

thereby allowing for di¤ering speeds of technological learning across countries. Accordingly,

we seek to estimate where other countries lie on the long run base OECD trajectory and to

calculate the approximate speed of learning within those countries that is necessary to have

achieved their given economic performance.

For many countries, data on annual per capita real income is available only from around

1950, so it is convenient to use the period 1950-2001 to represent recent trends in world

economic growth. The OECD historical data base provides estimates of per capita income

over the long historical period 1500-2001 but not for all 18 constituent OECD countries and

not on an annual basis prior to 1870. Therefore, to obtain a complete base trajectory series for

OECD trend growth, we in�lled observations over the 1500-1870 using a combination of linear
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interpolation and coordinate trend �tting, as proposed in Phillips (2004)5. Next, we formed 9

geographical subgroups from 88 countries in the world economy and used the cross sectional

average of their log per capita income to approximate their common growth component. Using

this data, we matched the initial and last period incomes of the 9 subgroups in 1950 and 2001,

respectively, with the base OECD trajectory and estimated the corresponding speed of learning

for each subgroup (G).

Table 1 reports the results. Base OECD trajectory income in 1950 was $5,150 and takes 52

years to reach $20,110 in 2001. Columns 4 and 5 of the table show the base OECD trajectory

year corresponding to the observed income levels yG;1950 and yG;2001 for each country grouping

G: For example, the average initial and �nal period incomes for the African countries group

in 1950 and 2001 were $949 and $1,796 (columns 2 and 3). These �gures correspond to base

OECD trajectory income in years 1727 and 1860, respectively. We deduce from this calculation

that the speed of learning for the African group is approximately 2.61 (column 6). Thus, the

African countries can be said to be undergoing growth comparable to that of the OECD base

group over 133 years during the industrial revolution in the eighteenth and nineteenth centuries,

but the growth experience of these countries is actually compressed into a 52 year time frame

during the twentieth century. In an analogous way, initial year 1950 income and �nal period

2001 income for the Asian Dragons are $1,533 and $18,289, respectively, which places this group

on the base OECD trajectory over the period from 1849 to 1995. The Asian Dragons have

therefore experienced in 52 years economic growth that is comparable to that of 146 years of

growth for the OECD base group up to 1995. The learning speed of the Asian Dragons is 2.86

and is therefore faster than that of the African group. Moreover, the Asian Dragon experience

co-relates to a much more recent period of the base OECD trajectory. Similarly, Japan�s speed

of technology learning is 1.59 and this implies that it has compressed the last 81 years of base

trajectory OECD growth up to 2001 into 52 years.

The table also reveals that the fastest learning countries are China, India and the East

Asian group. Remarkably, China has experienced over four centuries of base trajectory OECD

growth in the last 52 years taking it to year 1917 levels on the OECD trajectory. India and the

East Asian group of countries have experienced more than three and a half centuries of base

trajectory growth in 52 years, taking them to mid-nineteenth century OECD levels of income.

5From the historical OECD series described in the Data Appendix, there is century data over 1500-1820.

From 1820 onwards, there is annual data for four OECD countries and from 1870 onwards there is annual data

for 18 countries. The gaps in these series are interpolated, �rst by a linear interpolation and subsequently by a

smoothing in�ll �lter based on a �tted coordinate trend (Phillips, 2004).
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4 Economic Transition Curves

We start by developing some econometric formulations of the neoclassical model that allow for

heterogeneity in the speed of convergence and transition e¤ects over time. It is helpful in this

development to use some general speci�cation of the trending mechanism. It is su¢ cient for our

purpose that there be some underlying trend mechanism, which may have both deterministic

and stochastic components, and that this trend mechanism be a common element (for instance

arising from knowledge, technology and industry in developed countries) in which individual

economies can share. We denote this common trend element by �t: The extent to which

economies do share in the common trend depends on their individual characteristics and will

be manifest in their growth performance and the phenomenon of transition.

From (5) and (6), the transition path of log per capita real income can be written as follows

log yit = log ~y
�
i + logAi0 + [log ~yi0 � log ~y�] e��itt + xitt = ait + xitt; (11)

where

ait = log ~y
�
i + logAi0 + [log ~yi0 � log ~y�] e��itt: (12)

Under (8), (12) is a decay model for ait which captures the evolution ait ! log ~y�i + logAi0 as

t ! 1: Correspondingly for large t, log yit eventually follows a long run path determined by
the term xitt in (11).

Following the discussion in Section 2, the growth path xitt is presumed to have some

elements (and sources) that are common across economies. We use �t to represent this common

growth component and can think of �t as being dependent on a common technology variable

like Ct in (5), which enters as a factor of production for each individual economy. According

to this view, all economies share to a greater or lesser extent in certain elements that promote

growth, for instance, the industrial and scienti�c revolutions.

We may then write (11) in the following form

log yit =

�
ait + xitt

�t

�
�t = bit�t; (13)

where bit measures the share of the common trend �t that economy i experiences. In general,

the coe¢ cient bit measures the transition path of an economy to the common steady state

growth path determined by �t: During transition, bit depends on the speed of convergence

parameter �it; the growth rate of technical progress parameter xit and the initial technical

endowment and steady state levels through the parameter ait:

For example, in a neoclassical growth framework, steady state common growth for log yit
may be represented in terms of a simple linear deterministic trend �t = t: Such a formulation

is explicit in (4), for example. Then, according to (13), bit = xit + ait
t and, further, under the
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growth convergence conditions (8) and (10) we have the convergence bit ! x as t!1: When
the economies have heterogeneous technology and xit converges to xi; we have

bit = xit +
ait
t
! xi; as t!1; (14)

so that xi determines the growth rate of economy i in the steady state.

Figure 5: Possible Transition Paths for Yi (r) = bi (r)� (r)

In more general models and in empirical applications, the common growth component

�t may be expected to have both deterministic and stochastic elements, such as a unit root

stochastic trend with drift. In the latter example, �t is still dominated by a linear trend

asymptotically and conditions like (14) then hold as limits in probability. While this case

covers most practical applications, we may sometimes want to allow for formulations of the

common growth path �t that di¤er from a linear trend even asymptotically. Furthermore,

a general speci�cation allows for the possibility that some economies may diverge from the

growth path �t; while others may converge to it. These extensions involve some technical

complications that can be accommodated by allowing the functions to be regularly varying at

in�nity (that is, they behave asymptotically like power functions). We also allow for individual

country standardizations for log per capita income, so that expansion rates may di¤er, as well

as imposing a common standardization for �t: Appendix A provides some mathematical details

of how these extensions and standardizations can be accomplished.
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In brief, we proceed as follows. Our purpose is to standardize log yit in (13) so that the

standardized quantity approaches a limit function that embodies both the common growth

component and the transition path. To do so, it is convenient to assume that there is a suitable

overall normalization of log yit for which we may write equation (13) in the standardized form

given by (15) below. Suppose the standardization factor is diT = T 
iWi (T ) ; for some 
i > 0

and some slowly varying function6 Wi (T ) ; so that log yit grows for large t according to the

power law t
i up to the e¤ect of Wi (t) and stochastic �uctuations. We may similarly suppose

that the common trend component �t grows according to t

Z (t) for some 
 > 0 and where Z

is another slowly varying factor. Then, we may write

1

diT
log yit =

1

T 
iWi (T )

�
ait + xitt

�t

�
�t

=
ait

T 
iWi (T )
+

�
xitt

T 
iWi (T )

T 
Z (T )

�t

��
�t

T 
Z (T )

�
= o (1) +

�
xitt

T 
iWi (T )

T 
Z (T )

�t

��
�t

T 
Z (T )

�
= biT

�
t

T

�
�T

�
t

T

�
+ o (1) ; (15)

where we may de�ne the sample functions �T and biT as

�T

�
t

T

�
=

�
t

T

�
 Z � tT T �
Z (T )

; and biT

�
t

T

�
=

�
t

T

�
i�
 Wi

�
t
T T
�
Z (T )

Wi (T )Z
�
t
T T
� ; (16)

as shown in Appendix A.

Now suppose that t = [Tr] ; the integer part of Tr; so that r is e¤ectively the fraction of the

sample T corresponding to observation t: Then, for such values of t; (15) leads to the following

asymptotic characterization

1

diT
log yi[Tr] � biT

�
[Tr]

T

�
�T

�
[Tr]

T

�
� biT (r)�T (r) : (17)

In (17), �T (r) is the sample growth curve, biT (r) is the sample transition path (given T

observations) for economy i at time T: It is further convenient to assume that these functions

converge in some sense to certain limit functions as T ! 1: For instance, the requirement
that biT and �T satisfy

�T (r)!p � (r) ; biT (r)!p bi (r) ; uniformly in r 2 [0; 1] ; (18)

where the limit functions � (r) and bi (r) are continuous or, at least, piecewise continuous,

seems fairly weak. By extending the probability space in which the functions biT and �T
6That is Wi (xT ) =Wi (T ) ! 1 as T ! 1 for all x > 0: For example. the constant function, log (T ), and

1= log (T ) are all slowly varying functions.

17



are de�ned, (18) also includes cases where the functions may converge to limiting stochastic

processes7. The limit functions � (r) and bi (r) represent the common steady state growth

curve and limiting transition curve for economy i; respectively. Further discussion, examples

and some general conditions under which the formulations (17) and (18) apply are given in

Appendix A.

Combining (17) and (18), we have the following limiting behavior for the standardized

version of log per capita income for economy i

1

diT
log yi[Tr] !p Yi (r) = bi (r)� (r) : (19)

With this limiting decomposition, we may think about � (r) as the limiting form of the common

growth path and bi (r) as the limiting representation of the transition path of economy i as this

economy moves towards the growth path � (r) : The representation (19) is su¢ ciently general

to allow for cases where economies approach the common growth path in a monotonic way

either from below or above � (r) ; just as economies 2 and 3 in the stylized paths shown in Fig.

5, or in a much more indirect manner where there may be periods of transitional divergence,

as shown in the path of economy 1 in Fig. 5.

To illustrate (19), when �t is a stochastic trend with positive drift, we have the simple

standardization factor diT = T and then

T�1�t=[Tr] = g
[Tr]

T
+Op

�
T�1=2

�
!p gr;

for some constant g > 0: If bit satis�es (14); then the limit function bi (r) = bi = xi is a constant

function of r. Combining the two factors gives the limiting path Yi (r) = bigr for economy

i; so that the long run growth paths are linear and parallel across economies. When there is

convergence across economies, we have limit transition curves bi (r) each with the property

that bi (1) = b; for some constant b > 0; but which may di¤er for intermediate values (i.e.,

bi (r) 6= bj (r) for some and possibly all r < 1): In this case, each economy may transition in
its own way towards a common limiting growth path given by the linear function Y (r) = bgr.

In this way, the framework permits a family of potential transitions to a common steady state.

Fig. 5 illustrates some possible transition paths for Yi (r) of this type. Paths 2 and 3 in the

�gure show monotonic convergence to the common growth path � (r) ; whereas path 1 involves

transient divergence of Y1 (r) from � (r) with subsequent catch up and convergence. In this

case, the more complex approach to the common growth path is re�ected in the transition

curve b1 (r) for this economy.

7For example, if �t is a unit root process, then under quite general conditions we have the weak convergence

T�1=2�[Tr] = �T (r) ) B (r) to a limit Brownian motion B (e.g., Phillips and Solo, 1992). After a suitable

change in the probability space, we may write this convergence in probability, just as in (18).
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5 Relative Transition and Convergence

5.1 Some Stylized Models and Asymptotics

Taking ratios to cross-sectional averages in (15) removes the common trend �t and leaves the

following standardized quantity

hiT

�
t

T

�
=

d�1iT log yit
1
N

PN
j=1 d

�1
jT log yjt

=
biT
�
t
T

�
1
N

PN
j=1 bjT

�
t
T

� ; (20)

which describes the relative transition of economy i against the benchmark of a full cross

sectional average. Other benchmarks are possible (including subgroup averages or even a single

advanced economy like the USA) and these will be considered below and in our empirical work.

Clearly, hiT depends on N also but we omit the subscript for simplicity because this quantity

often remains �xed in the calculations. In view of (18), we have

hiT

�
[Tr]

T

�
!p hi (r) =

bi (r)
1
N

PN
j=1 bj (r)

; as T !1; (21)

and the function hi (r) then represents the limiting form of the relative transition curve for

economy i:

The curve hi (r) shows the time pro�le of transition for economy i relative to the average.

At the same time, hi (r) measures economy i�s relative departure from the common steady

state growth path � (r) : Thus, any divergences from � (r) are re�ected in the transition hi (r) :

While many paths are possible, a case of particular interest and empirical importance occurs

when an economy slips behind in the growth tables and diverges from others in the group.

We may then use the transition curve to measure the extent of the divergent behavior and to

assess whether or not the divergence is transient.

When there is common (limiting) transition behavior across economies, we have hi (r) =

h (r) across i; and when there is ultimate growth convergence we have

hi (1) = 1; for all i: (22)

This framework of growth convergence admits a family of relative transitions, where the curves

hi (r) may di¤er across i for r < 1; while allowing for ultimate convergence when (22) holds.

Removing the common (steady state) trend function � (r) that appears in Fig. 5, Fig. 6 shows

the corresponding relative transition curves, each satisfying the growth convergence condition

(22).

While the criterion for the ultimate convergence of economy i to the steady state is given by

(22), the manner of economic transition and convergence can be very di¤erent across economies.

Fig 6 shows three di¤erent stylized paths. Economies 2 and 3 have quite di¤erent initializations
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Figure 6: Relative Transition Curves hi (r) and Phases of Transition

and their transitions also di¤er. While both relative transition parameters converge monotoni-

cally to unity, path 3 involves transition from a high initial state, typical of an already advanced

industrial economy, whereas path 2 involves transition from a low initial state that is typical

of a newly industrialized and fast growing economy. Economy 1, on the other hand, has the

same initialization as 2 but its relative transition involves an initial phase of divergence from

the group, followed by a catch up period, and later convergence. Such a transition is typical of

a developing country that grows slowly in an initial phase (transition phase A), begins to turn

its economic performance around (phase B) and then catches up and converges (phase C).

The framework in (21) is compatible with a situation where there is an in�nite population.

In this event, as N passes to in�nity, if a law of large numbers applies to the transition functions

bi; so that N�1PN
j=1 bj ! �b; we would de�ne hi (r) = bi (r) =�b (r) : Convergence for economy

i would then apply if bi (1) = �b (1), leading to the same criterion as that given in (22) above.

In this extension, some economies may converge (when bi (1) = �b (1) for some i) while others

remain outliers and do not converge to the average (when bj (1) 6= �b (1) for some j). In such
situations, there is per capita income inequality in the limit distribution (or full population of

economies), yet still the possibility of convergence to the mean for some economies, much as

in Galton�s (1886, 1889) work on �regression to mediocrity�in human physical characteristics

like height. So, this form of growth path convergence is analogous to Galton�s empirical �nding
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that the deviation of children�s heights from the mean regresses toward zero over time (relative

to their parents�heights), while the overall distribution of heights in the population does not

necessarily narrow over time. Correspondingly, there is some advantage in not insisting on a

requirement of the form that in the full population
R
(h� 1)2 dPh = 0; where h = h (1) and Ph

is the limit measure of h (r) ; a requirement that would correspond to Galton�s fallacy (Quah,

1993, and Hart, 1995).

On the other hand, in the case of economic growth, we might reasonably ask whether there

is a narrowing in dispersion over time, for example by comparing the variation of h at points

r and s as in a calculation of the formZ �
h (r)�

Z
h (r)

�2
dPh <

Z �
h (s)�

Z
h (s)

�2
dPh for r > s:

Alternatively, we could ask whether for some subgroup of NG economies G there is convergence

in the sense that we have

hGiT !p 1 for i 2 G; (23)

or �2TG = N
�1
G

P
i2G(h

G
iT � 1)2 !p 0; as T !1; where

hGiT =
biT (1)

N�1
G

P
j2G bjT (1)

(24)

is the relative transition curve for economy i in group G:

A regression test of convergence in the transition function hGiT is developed later in this

section. When the time series sample T is large, we have the prospect of estimating the relative

transition curve hi (r) for each individual economy and testing the convergence criterion (22);

possibly for subgroups of economies like G as indicated above or against the benchmark of

a single economy like the US. For short time series with small T; transitions are generally

still occuring because of temporal heterogeneity in the key parameters �it and xit, and it is

therefore di¢ cult and less meaningful to test for growth convergence. Even in such cases,

however, the �tted transition curve may still reveal interesting empirical properties of the

individual economies in transition.

Also, as Figs. 5 and 6 illustrate in a stylized way, when there is temporal and cross

section heterogeneity, there exists an in�nite number of possible transition paths even in cases

where there is ultimate convergence. Moreover, as discussed earlier, there are good reasons for

thinking that there will be income inequality across economies even in the limit distribution

as T !1: Appendix E provides some discussion of these issues in the context of models with
heterogeneous stochastic trends with drift.

5.2 Fitting Transition Curves

There are several possible approaches to �tting transition curves. In its most general form the

problem has two nonparametric elements, involving the unknown transition function bi (r) and
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the growth curve � (r) : Without further assumptions it is not possible to separately identify

these two functions. However, as shown above, many of the important elements are embodied

in the relative transition function hi (r) : So one of the primary goals of the econometric analysis

is to estimate the limiting form of the transition function, hi (r) ; which may then be used for

various purposes, including an analysis of convergence. In practical work, the time series will

often be short and the task therefore presents some di¢ culties.

Of course, the quantity log yit= 1N
PN
i=1 log yit can be calculated directly from observations of

log per capita real income. But it will often be preferable to remove business cycle components

from the data �rst as interest centres on the long run component. Extending (13) to incorporate

a business cycle e¤ect �it; we can write

log yit = bit�t + �it:

Smoothing methods o¤er a convenient mechanism for separating out the cycle �it; and we can

employ �ltering, smoothing and regression methods to achieve this. In our empirical work,

we have used two methods to extract the trend component bit�t. The �rst is the Whittaker-

Hodrick-Prescott (WHP) smoothing �lter8. The procedure is �exible, requires only the input

of a smoothing parameter, and does not require prior speci�cation of the nature of the common

trend �t in log yit: The method is also suitable when the time series are short. In addition to the

WHP �lter, we employed a coordinate trend �ltering method (Phillips, 2004). This is a series

method of trend extraction that uses regression methods on orthonormal trend components to

extract an unknown trend function. Again, the method does not rely on a speci�c form of �t
and is applicable whether the trend is stochastic or deterministic.

The empirical results reported below were little changed by the use of di¤erent smoothing

techniques. The coordinate trend method has the advantage that it produces smooth function

estimates and standard errors can be calculated for the �tted trend component. Kernel meth-

ods, rather than orthonormal series regressions, provide another general approach to smooth

trend extraction and would also give standard error estimates. Kernel methods were not used

in our practical work here because some of the time series we use are very short and comprise

as few as 30 time series observations. Moreover, kernel method asymptotics for estimating

stochastic processes are still largely unexplored and there is no general asymptotic theory to

which we may appeal, although some speci�c results for Markov models have been obtained

in work by Phillips and Park (1998) and Guerre(2004).

8Whittaker (1923) �rst suggested this penalized method of smoothing or �graduating�data and there has

been a large subsequent literature on smoothing methods of this type (e.g. see Kitagawa and Gersch, 1996). The

approach has been used regularly in empirical work in time series macroeconomics since Hodrick and Prescott

(1982/1997).
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Using the trend estimate f̂it = dbit�t from the smoothing �lter, the estimates

ĥit =
f̂it

1
N

PN
i=1 f̂it

(25)

of the transition coe¢ cients hit = bit=
�
N�1PN

i=1 bit

�
are obtained by taking ratios to cross-

sectional averages. Assuming a common standardization9 diT = dT for simplicity and setting

t = [Tr] we then have the estimate ĥi (r) = ĥi[Tr] of the limiting transition curve hi (r) in (21).

We can decompose the trend estimate f̂it as

f̂it = fit + eit =

�
bit +

eit
�t

�
�t; (26)

where eit is the error in the �lter estimate of fit: Since �t is the common trend component, the

condition eit
�t
!p 0 uniformly in i seems reasonable10. Then,

ĥi (r) =

h
bi[Tr] +

ei[Tr]
�[Tr]

i
1
N

PN
i=1

h
bj[Tr] +

ej[Tr]
�[Tr]

i = 1
dT

�
bi[Tr] +

ei[Tr]
�[Tr]

�
1
N

PN
i=1

1
dT

h
bj[Tr] +

ej[Tr]
�[Tr]

i
=

biT
�
t
T

�
1
N

PN
j=1 bjT

�
t
T

� + op (1)!p
bi (r)

1
N

PN
j=1 bj (r)

= hi (r) ;

so that the relative transition curve is consistently estimated by ĥi (r).

5.3 Testing Divergence

We may use the �tted transition curves ĥi (r) to reveal evidence on key issues such as possible

transitional divergence for some individual economies and the ultimate convergence of others.

Under the growth convergence criterion (22) we have ĥi (1)!p 1 for such convergent economies.

In a manner similar to (24) we can construct for a group G of NG economies the consistent

estimate

ĥGit =
f̂it

N�1
G

P
j2G f̂jt

!p h
G
it =

bit

N�1
G

P
j2G bjt

:

9Alternatively, if the standardizations diT were known (or estimated) and were incorporated directly into

the estimates f̂it then ĥit = f̂it=
�
N�1PN

i=1 f̂it
�
would correspondingly build in the individual standardization

factors. Accordingly, ĥit is an estimate of hit = hiT
�
t
T

�
as given in (20).

10Primitive conditions under which eit
�t
!p 0 holds will depend on the properties of �t and the selection of

the bandwidth/smoothing parameter/regression number in the implementation of the �lter. In the case of the

WHP �lter, this turns on the choice of the smoothing parameter (�) in the �lter and its asymptotic behavior

as the sample size increases. For instance, if �t is dominated by a linear drift and �!1 su¢ ciently quickly as

T ! 1; then the WHP �lter will consistently estimate the trend e¤ect. Phillips and Jin (2002) provide some
asymptotic theory for the WHP �lter under various assumptions about � and the trend function.
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Now, if hGi = 1 for all i 2 G; it follows that

�̂2G =
1

N�1
G

P
j2G
(ĥj (1)� 1)2 !p 0; as T !1; (27)

which provides a mechanism for studying convergence characteristics of subgroups of economies.

Under more speci�c conditions that are discussed in Appendix B, we may assess the evi-

dence in support of a transition to convergence by regression methods. In particular, de�ning

HG
t = N

�1
G

P
j2G

�
ĥGjt � 1

�2
; (28)

for t = [Tr] for some r > 0; we have the regression equation

logHG
t = logA� 2� log t+ uGt ; (29)

whose error uGt is shown in the Appendix to be asymptotically equivalent to a zero mean,

weakly dependent time series whose explicit expression in terms of model components is given

in (51).

Equation (29) is a logarithmic regression corresponding to a decay model for the sample

variance of the relative transition that has the explicit parametric form HG
t � A=t2� in the

limit as t!1: In this formulation, the parameter � governs the rate at which the cross section
variation over the transitions decays to zero over time. Appendix B investigates some stochastic

models for which the transitions are of this type and for which the �log t�regression equation

(29) may be derived with an error of op (1) for large T andNG: Conditions under which (29) may

be validly �tted by least squares regression and appropriate procedures for the construction of

standard errors and regression tests in this model are also discussed in this Appendix. Least

squares regression on (29) is shown to produce
p
TNG consistent estimates of the parameter �;

autocorrelation robust standard errors may be calculated using conventional procedures and

formula (62) based on the limit theory for the regression coe¢ cient and econometric tests of

hypotheses about � may be implemented from this regression.

The form of (29) suggests a simple regression test of the hypothesis of convergence. When

� > 0; logHG
t and hence HG

t decreases with t and (27) is satis�ed in the limit as t ! 1:
Conversely, when � = 0; HG

t does not converge to zero and so there is no convergence in the

subgroup G. More speci�cally, we may test H0 : � = 0 against the alternative H1 : � > 0 in

a least squares regression of (29) using observations t = [Tr] ; [Tr] + 1; :::; T for some r > 0:

The regression may employ either hGit computed directly from log yit as in (28) or, as discussed

above, use the �ltered data ĥGit based on the �tted values \log yit from a coordinate trend

regression or smoothing �lter. The growth convergence hypothesis (27) corresponds to the

alternative H1: So, rejecting H0 provides empirical evidence in favor of convergence among the

economies in subgroup G and the value of � is a measure of the rate of convergence. Further
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details of the construction of this test and its asymptotic properties under the null and local

alternatives are provided in Appendix B. The test is consistent and has non trivial power in

local neighborhoods of width O
�
1=
p
TNG

�
: The use of this test is illustated in the simulations

and the empirical applications that follow.

5.4 Transitioning between Subgroups and Subsample Convergence Testing

Suppose there are N economies overall in the cross section and that these economies are divided

into G subgroups, each of sizeNG; so thatN = GNG: Fig. 1 illustrates such a collection of G = 5
subgroups of national economies ordered according to income and traces the evolution of these

subgroups over the period 1960-1996. The historical experience shown in Fig. 1 indicates that

there is some transitioning over time between these economic subgroups in which the upper

members of one subgroup can catch up with a higher subgroup. To consider such transitioning

we develop the following subsample version of the log t test.

Suppose that the G subgroups are ordered from the richest to the poorest groups accord-

ing to income. If the speed of technological creation and learning is di¤erent across these

subgroups, some transitional divergence can be expected between the richest and some of the

other subgroups as indicated in the stylized paths of Fig. 5 and the empirical time forms

shown in Fig. 1. On the other hand, when the speed of technological creation and learning

is comparable across subgroups, we would not expect to see transitional divergence of this

type. To �nd empirical evidence of these e¤ects, we may cross-fertilize the original groups

by dropping the �rst ` richest countries from the top subgroup and forming G � 1 new sub-
groups based on income ordering in the same way with each group having the same number of

economies, NG; as before. By repeating this exercise, we e¤ectively subsample the full-group

and thereby obtain evidence on linkage performance over time among the original subgroups.

This information sheds light on whether there is transitional divergence or catching up between

groups of countries. More speci�cally, the new subgroups overlap the �joints� in the original

subgroups and provide a natural way of focusing attention on transitioning between subgroups.

In particular, performing a log t test on the new subgroups provides a direct test of whether

one group of economies is catching up to the next group.

Subsampling along these lines also helps to reduce size distortion (that is, a tendency to

reject the null H0 of divergence even when there is no convergence) in the log t test that shows

up in simulations of the �nite sample performance of this test. The reason for this improvement

is that subsampling raises the hurdle for rejecting the null hypothesis and rejection ofH0 occurs

only when the evidence is convincing across the various subgroups that there is convergence.

More details of the way the procedure is implemented is provided in Appendix D. As in other

subsampling procedures, we have to choose the number ` that determines how many economies

to discard in reforming the subgroups. In simulations, we have found ` = NG=2 to work well.
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6 Empirical Illustrations of Transition

As suggested in the stylized examples considered earlier, diverse patterns of economic transition

are possible when we allow for cross sectional and time series heterogeneity in the parameters

of a neoclassical growth model. This potential for diversity in transition is illustrated in the

following empirical examples involving regional and national economic growth. Similar panel

data sets to those used here have been analyzed in the growth convergence literature in the

past, but our application focuses attention on the phenomenon of economic transition as part

of the larger empirical story about convergence and divergence issues. We start by providing

some graphical illustrations of the various phases of transition in the empirical data and then

proceed to conduct some formal statistical tests using log t regressions.

6.1 Transitional Divergence: Graphical Illustrations

The �rst illustration is based on regional economic growth among the 48 contiguous U.S.

states11. In this example, there is reasonable prior support for a common rate of technological

progress and ultimate growth convergence but we may well expect appreciable heterogeneity

across states in the transition paths. Fig. 7 displays the relative transition parameters cal-

culated for log per capita income in the 48 states over the period from 1929 to 1998 after

eliminating business cycle components. Evidently, there is heterogeneity across states, but

also a marked reduction in dispersion of the transition curves over this period together with

some clear evidence that the relative transition curves narrow towards unity, as indicated in

the convergence criterion (22).

Fig. 8 shows the cross-sectional average of the �tted transition curves over 9 separate

geographical regions for the contiguous U.S. States data. The shapes of these regional transition

curves are similar to those for the full 48 States shown in Fig. 7, but in the new �gure it is easier

to distinguish the regional transition patterns. The Mid-Atlantic, New England and Paci�c

regions start the period above average and transition in a downward direction, whereas the

South Altantic, West South Central and East South Central start the period below average

and transition upwards. The time pro�le of these cross sectional averages shows that the

transition curves have been steadily converging toward unity over the last 70 years, as indicated

in criterion (22). Interestingly, the regional convergence does not seem to be completed yet

and there is remaining regional inequality, although there is also evidence of some subgroup

convergence of the form (23).

The second illustration involves a panel of real per capita income for 18 OECD countries

taken from the OECD historical data set. Fig. 9 displays the relative transition parameters for

log per capita income in these 18 OECD countries between 1929 and 2001. The countries were

11The data source for U.S. state per capita real income is the Bureau of Economic Analysis.
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Figure 7: Transition Paths for the 48 Contiguous US States.

Figure 8: Transition Paths for Regional Groups of the Contiguous US States
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Figure 9: OECD Transition Paths: 18 Western OECD countries from 1929-2001
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Figure 10: Evidence of Phase B & C Transitions in Historical OECD Data

selected on the basis of data availability and are listed in the Data Appendix. The observed

time pro�les of transition for these OECD nations are quite di¤erent from those of Fig. 7, even

though the time frame is similar. For the OECD nations, the relative transition parameters

initially seem to display no coherent pattern and, in some cases, even to diverge before World

War II. After around 1950, however, the pattern of transition seems similar to that of Fig.

7. Over the latter part of the period, there is a noticeable narrowing in the transition curves

towards unity, indicating a clear tendency to converge towards the end of the period.

Fig. 10 shows the relative transition parameters for certain subgroups of countries against

the benchmark of the U.S. . We have created �ve economic subgroups in this exercise. Except

for the former U.K. colonies, all subgroups show clear evidence of some transitional divergence

with a turn-around by the end of WWII. After that, all of these subgroups reveal a strong ten-

dency towards convergence with the U.S.. Evidently, Fig. 10 provides an empirical illustration

of the stylized patterns of economic performance characterized as phases B and C of Fig. 6.

Extending the panel back to 1870 and through to 1930, Fig. 11 shows transition curves that

are similar in form to phase A (transitional divergence) in the stylized patterns of Fig. 6, with

evidence of the phase B turn-around coming towards the end of the period.

The �nal illustration is based on log per capita income in 88 PWT countries in the world

economy over the period 1960 to 1996. The country selection is mainly based on data avail-
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Figure 11: Evidence of Phase A and B Transitions in Historical OECD Data

Figure 12: Examples of Phase B Transitions among the World Economies
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Figure 13: Examples of Phase C Transitions among the World Economies

Figure 14: Examples of Phase A Transitions among the World Economies
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ability. Given the large number of countries and the wide variation in the data, it is helpful

to take subgroup averages to reduce the number of transition curves, which we show against

the benchmark of the 18 OECD countries. The subgroups are based on total population and

geographical region. Phase A transitions are found in two of these subgroups �the countries

of Sub-Saharan Africa, and the Latin American & Carribean economies (Fig. 14). Phase B

transitions occur in three subgroups �India, China and the Eastern Asian countries (Fig. 12).

Finally, phase C transitions are evident in two subgroups �the Asian dragons and the newly

industrialized economies (NIEs) shown in Fig. 13. From these �ndings about the present

standing of these economic groups and assuming that the world economies are in transition to

ultimate convergence on a path that is related to long run historical OECD growth, then we

can expect that China, India and the Eastern Asian countries will continue to grow faster over

the next decade than the OECD nations as they move into phase C transition; and, soon or

later, we can expect to witness the Sub-Saharan and Latin American countries entering phase

B transition where they begin to turn around economic performance and start to catch up

with the 18 OECD countries. However, from the evidence to date in these �gures, we cannot

yet distinguish, especially for the Sub-Saharan Africa and Latin American countries, whether

or when such changes will occur. We now provide a formal statistical test of this issue.

6.2 Testing Growth Convergence

We perform the log t regression test based on (29) with three panel data sets �the 48 contiguous

United States, 18 OECD countries and 88 PWT countries. The results are shown in Table

4. With the full-group test, we reject the null of no convergence among the 48 contiguous

United States and the 18 OECD countries. However, we cannot reject the null for the 88 PWT

countries. In fact, in the latter case the �tted coe¢ cient �̂ is positive and signi�cant.

As shown in the simulations reported in Appendix D, the log t test may not perform well

in terms of the accuracy of its nominal size when there are a large number of heterogeneous

cross sectional units, as in the case of the 88 PWT nations. In particular, the test shows

a tendency to overreject in such situations. We therefore perform additional tests using the

subsampling approach described in section 5.4 to improve size and provide more information

about transitioning to convergence. In the �rst step, we create 4 subgroups based on a panel

ordering with respect to last period income, with subgroup A having the highest last period

income, subgroup B the next highest, and so on. Table 2 shows the results of these tests. For

each subgroup (A through D), the null hypothesis of no convergence is rejected at the 5% level.

Importantly, this rejection of the null does not mean that all countries in the 88 PWT panel

are converging over the sample period, but it does imply evidence of subgroup convergence.

Next, we proceed with the second step test, forming three subgroups from the original

groupings. Subgroup E comprises the lower 11 income countries from original subgroup A and
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the higher 11 income countries from original subgroup B. Similar constructions apply to give

new subgroups F and G. The outcome of the log t test applied to these new subgroups can

be interpreted in the following way. In view of the overlapping nature of the data (relative to

the original subgroups), rejection of the null hypothesis of no convergence for a new subgroup

provides evidence in favor of catch-up growth performance between the original subgroups.

In e¤ect, the top income countries in the lower group are catching up with the lower income

countries in the upper group. As seen in the �nal panel of Table 2, the log t test rejects the null

decisively for each of the subgroups E, F and G. The rejection of the null for subgroup E (which

comprises countries from both subgroup A and subgroup B) therefore suggests convergence

amongst these countries, so that the upper income countries in subgroup B are catching up

with subgroup A. The same conclusion holds for subgroups G and H. This �nding supports

the catch-up hypothesis across the original subgroups and thereby indicates some evidence in

favor of these countries being on a transitional path towards ultimate convergence, akin to

that of the long run historical trajectory of the OECD countries over the past �ve centuries.

Table 2: Empirical Evidence for Transitional Divergence

Regression: logHG
t = logA� 2� log t+ uGt

Cases Sample Period �̂ t ratio
log t Test within a panel

48 United States 1929-1998 1.174 94.4

18 OECD 1870-2001 0.643 5.29

88 PWT 1960-1996 -0.200 -22.49

Sub group log t Test for 88 PWT : Step 1
Sub A: 22 Highest 1960-1996 1.318 16.36

Sub B: 22 High 1960-1996 0.822 36.52

Sub C: 22 Poor 1960-1996 1.041 11.22

Sub D: 22 Poorest 1960-1996 0.136 2.85

Sub group log t Test for 88 PWT : Step 2
Sub E: 22 countries linking A and B 1960-1996 0.882 15.01

Sub G: 22 countries linking B and C 1960-1996 1.126 14.60

Sub H: 22 countries linking C and D 1960-1996 0.316 9.31

The same regression tests (both all-group and subgroup tests) were run with the 127 country

OECD historical data covering the longer time period 1950-2001. These regressions gave very

similar results to those reported in Table 2 for the PWT data, so they are not repeated here.
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Figure 15: Four subgroups and convergence within each group. (88 PWT countries, NG = 22;

G=4)

6.3 Transitioning in Sample Variation

Fig. 15 shows the time path of the sample variance HG
t for 4 subgroups of the 88 PWT

countries, so that NG = 22: The groups are arranged in descending order of income with group

1 having the highest income countries and group 4 those with the lowest income. Evidently,

there is some strong evidence favorable to convergence within each group, although HG
t turns

upward for group 4 towards the end of the sample and appears to �atten out for group 2. Fig.

16 shows HG
t for 3 mixed subgroups obtained by taking the intermediate country groupings

after discarding the 11 highest income countries and the 11 poorest countries. For each of

these new subgroups, the total number of countries included is again 22. Apparently, there is

evidence of transitioning to convergence within each group. The results imply that group 4

is catching up with group 3, which in turn is catching up with group 2, and so on. In other

words, overall there is some evidence of a transitioning towards long run convergence among

the 88 PWT countries. This is so, even though a full-group test rejects convergence, indicating

that the process of transition is more complex than what can be captured in a single test.

7 Conclusion

As authors such as Durlauf and Quah (1999) have noted, the study of cross country economic

growth often reveals more about heterogeneity in economic performance than it does about
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Figure 16: The second subgrouping. Group 1+2 consist of 11 low income in group 1 and 11

high income in group 2, and so on.

convergence. Indeed, just as the distribution of income within nations displays inequality that

evolves over time, the distribution of income across nations moves over time, often in ways that

cannot be anticipated. Nonetheless, it is also evident that the bene�ts of modern technology

are spreading across national borders and in�uencing economic performance. Of course, this

di¤usion occurs more quickly in some cases and for some countries than it does for others.

Thus, while there are good reasons to expect some convergence in economic performance,

especially with the growth of regional economic unions, there are also reasons to expect that

the paths of transition in economic performance may be very di¤erent across nations. Indeed,

in the process of observing nations over time, we observe many di¤erent forms of transitional

behavior. Some groups of countries or economic regions behave in a similar way over time

and appear to moving on a path towards some steady state growth pattern. Others appear to

diverge over certain periods of time, fall behind and then turn around and show evidence of

catching up.

This paper seeks to provide some mechanisms for thinking about such transitions, modeling

them in a manner that is compatible with a neoclassical framework, and measuring them

econometrically. To do so, we focus not on economic growth but on economic growth relative

to the average performance in a subgroup of economies or an individual benchmark like that of

the US economy. This process enables us to identify the relative transitions that occur within

these subgroups and to measure these transitions against the correlative of a common growth

trend. Thus, in measuring a country�s economic transition curve, we are able to assess its path
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over time relative to a useful benchmark. In this approach, the transition curve of an economy

is an individual characteristic, allowing for many ways in which a neoclassical steady state can

be approached, but also including the possibility of transitional divergence from that state.

The reality of economic transition raises questions about the relevant factors that in�uence

transition. Just as a host of variables have been considered in analyzing the determinants

of growth (Barro, 1997; Sala-i-Martin, 1997), there are similarly a large number of factors

potentially in�uencing transition. These factors range over the many economic, social, cultural

and political facets that characterise individual countries. In other work (Phillips and Sul,

2005), the authors are using the methods of this paper to explore the manner in which such

factors may in�uence economic transition. Just as there is transition in economic growth

performance over time, we may also expect transition behavior (relative to some benchmark)

in many of the factors that in�uence growth, such as human capital and educational attainment.

Linkages between these two forms of transitional behavior contribute to our undertanding of

the time-forms of long run economic performance and the various transitions that individual

economies experience. The methodology of the present paper is intended to advance this

fundamental enquiry.
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Technical Appendix

Appendix A: Standardizing the Growth Components

This Appendix provides an analysis of how the growth components in (11), i.e., the elements

in the decomposition

log yit = ait + xitt =

�
ait + xitt

�t

�
�t = bit�t;

may be standardized to yield the transition and growth curves. We let t!1 and characterize

the limiting behavior of the components bit and �t:

We �rst proceed as if the growth components were nonstochastic. Suppose xitt = fi (t) is

regularly varying at in�nity with power exponent 
i (e.g. Seneta, 1976) so that

fi (t) = t

iWi (t) ; (30)

where Wi (t) is slowly varying at in�nity, viz. Wi (�t) =Wi (t) ! 1 as t ! 1 for all � > 0:

Similarly, let �t be regularly varying at in�nity with power exponent 
 > 0 so that

�t = t

Z (t) (31)

for some slowly varying function Z (t) : The regular variation requirement means that fi (t)

and �t both behave asymptotically like power functions for large t: In the simplest case where

the common growth component is a linear drift (i.e., �t = t) and xit ! x for all i as t ! 1;
there is growth convergence and we have 
i = 
 = 1 and Wi (t) = Z (t) = 1: Conditions (30)

and (31) allow for a much wider variety of asymptotic behavior, including the possibility that

individual i economy�s growth may deviate from the common path (when 
i 6= 
):
Set t = [Tr] for some r > 0 representing the fraction of the overall sample T corresponding

to observation t: Then under (30)

T�
ixitt = T
�
i [Tr]
i

Wi (Tr)

Wi (T )
Wi (T ) � r
iWi (T ) ; (32)

and

T�
�t = T
�
 [Tr]


Z (Tr)

Z (T )
Z (T ) � r
Z (T ) :

We deduce from this asymptotic behavior and (11) that

T�
i log yit =
ait + xitt

T 
i
=
ait
T 
i

+
xitt

T 
i
� r
iWi (T ) ;

T�
�t � r
Z (T ) = � (r)Z (T ) :

where � (r) = r
 :
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Writing, as in (11), �
ait + xitt

�t

�
�t = bit�t;

we then have

1

T 
i

�
ait + xitt

�t

�
�t =

ait
T 
i

+
xitt

T 
i

T 


�t

� �t
T 


�
= o (1) +

xitt

T 
i

T 


�t

� �t
T 


�
�

�
r
i�
Ji (T )

	
fr
Z (T )g

= bJiT (r)�
Z
T (r) ;

where Ji (T ) = Wi (T ) =Z (T ) is slowly varying at in�nity. Thus, the functions bJiT (r) and

�ZT (r) are regularly varying and behave asympotically like the power functions r

i�
 and r
 ;

at least up to slowly varying factors.

Next set diT = T 
iJi (T )Z (T ) = T 
iWi (T ) ; so that the slowly varying components are

factored into the standardization. Then, for t = [Tr] ; we have

1

diT
log yit =

1

T 
iJi (T )Z (T )

�
ait + xitt

�t

�
�t

=
ait

T 
iWi (T )
+

xitt

T 
iWi (T )

T 
Z (T )

�t

�
�t

T 
Z (T )

�
= o (1) +

�
xitt

T 
iWi (T )

T 
Z (T )

�t

��
�t

T 
Z (T )

�
= o (1) + biT

�
t

T

�
�T

�
t

T

�
(33)

� biT (r)�T (r) : (34)

In (33) we de�ne

�T

�
t

T

�
=

�t
T 
Z (T )

=
�t

t
Z (t)

t
Z (t)

T 
Z (T )
=

�
t

T

�
 Z � tT T �
Z (T )

; (35)

and in a similar manner

biT

�
t

T

�
=

�
t

T

�
i�
 Wi

�
t
T T
�
Z (T )

Wi (T )Z
�
t
T T
� : (36)

Then, for t = [Tr] we have

biT (r)! bi (r) = r

i�
 ; (37)

and

�T (r)! � (r) = r
 : (38)
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Relations (34) to (38) lead to a nonstochastic version of the stated result (18). For a stochastic

version, we may continue to assume that the standardized representation (34) applies with an

op (1) error uniformly in t � T and require that

biT (r) ! p bi (r) = r

i�
 ;

�T (r) ! p � (r) = r

 ;

uniformly in r 2 [0; 1] ; so that the limit transition function bi (r) and growth curve � (r) are
non random functions.

More generally, the limit functions bi (r) and � (r) may themselves be stochastic processes.

For example, if the common growth component �t in log yit is a unit root stochastic trend,

then by standard functional limit theory on a suitably de�ned probability space

T�1=2�[Tr] = �T (r)!p B (r) ; (39)

for some Brownian motion B (r) : In place of (30), suppose that fi (t) = xitt=�t is stochastically

regularly varying at in�nity in the sense that fi (t) continues to follow (30) for some power

exponent 
i but with Wi (t) stochastically slowly varying at in�nity, i.e., Wi (�t) =Wi (t)!p 1

as t!1 for all � > 0: Then, in place of (32) we have

1

T 
i

xitt

�t
=
[Tr]
i

T 
i

Wi (Tr)

Wi (T )
Wi (T ) � r
iWi (T ) :

Then, setting diT = T 
i+1=2Wi (T ) ; t = [Tr] and working in the same probability space where

(39) holds, we have

d�1iT log yit =
ait

T 
i+1=2Wi (T )
+

�
1

T 
iWi (T )

xitt

�t

��
�tp
T

�
= op (1) + biT (r)�T (r)!p bi (r)B (r) ;

with bi (r) = r
i : In this case the limiting common trend function is the stochastic process

� (r) = B (r) and the transition function is the non random function bi (r) = r
i :

Appendix B: Transition Curve Regression and Convergence Testing

A general theory for the calculation of asymptotic standard errors of �tted curves of the

type ĥi (r) that allow for deterministic and stochastic trend components of unknown form is

presently not available in the literature and is beyond the scope of the present paper. Instead,

we will con�ne ourselves to the important special case where the trend function involves a

stochastic trend with linear drift and we focus attention in this Appendix on the development

of a test of subgroup convergence.
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We start by considering a model in which the common trend component �t has the form

of a stochastic trend with drift. More speci�cally, let �t = at +
Pt
j=0 "j for some constant

a > 0 and where "t is a zero mean weakly dependent sequence for which the functional law

T�1=2
P[Tr]
j=0 "j ) B" (r) holds as T ! 1; where B is Brownian motion with variance !2"; the

long run variance of "t: We further suppose that (15) holds with the common standardization

dT = T so that

T�1 log yit = bit�T

�
t

T

�
; with �T

�
t

T

�
= a

t

T
+
1

T

tX
s=0

"s; (40)

and that bit = bi + b0it !p bi as t ! 1 for some constants bi > 0: In what follows, we assume

that the b0it are independent across i and may be written in the form b0it = �t�it; where �t ! 0

as t!1 and �it is a zero mean, variance unity, weakly dependent time series for each i: The

limit theory that follows makes use of the mean zero sequence

�jt =
�
�2jt � 1

�
� 2�b�jt;

and it is convenient to assume that �jt satis�es the functional law

T�1=2
[Tr]X
t=1

�jt ) Bj (r) ; (41)

for some Brownian motions Bj with variances !2j = lrvar
�
�jt
�
: Primitive conditions under

which (41) holds are quite general and may be derived in terms of linear process models as in

Phillips and Solo (1992). Clearly, !2j depends on fourth moments of the original sequence �jt:
The variates �jt; like �jt; are independent across j, so that the limit Brownian motions Bj are

also independent across j.

We also make use of the rate condition

1

T
+

1

NG
+
T

NG
! 0;

so that both T and NG pass to in�nity and T = o (NG) :

According to this formulation, in the long run as t ! 1; economy i shares in common
growth �t up to the proportionality factor bi (c.f. (45) below). Since �t ! 0 as t ! 1;
the component b0it = �t�it in bit decays in importance as t increases. In what follows, it is

convenient to employ the following parametric formulation

�t =
�b
t�
; for some �b; � � 0; (42)

which is a form of evaporating trend or decay model (when � > 0) of the type studied in Phillips

(2000). As shown below, this parametric form is helpful in the development of convergence

tests and a suitable limit theory that can be used in practical work.
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Proceeding with this set up, we have the explicit standardized form

T�1 log yit = (bi + �t�it)

 
a
t

T
+
1

T

tX
s=0

"s

!

= abi
t

T
+ �ta

t

T
�it +

bip
T

1p
T

tX
s=0

"s +
�tp
T
�it

1p
T

tX
s=0

"s; (43)

so that for t = [Tr] with r > 0

T�1 log yi[Tr] = abi
[Tr]

T
+ �[Tr]�i[Tr]a

[Tr]

T
+

0@ bip
T

1p
T

[Tr]X
s=0

"s

1A+ op� 1p
T

�
(44)

! p abir; (45)

giving economy i�s share in the common growth limit function ar: Note that (45) becomes abr

under the hypothesis of growth convergence, where bi = b for all i and � > 0:

Averaging (43) and setting �bG = N�1
G

P
j2G bj ; qNt = N�1

G

P
j2G �jt and ~qit = �it �

N�1
G

P
j2G �jt; we have

N�1
G

P
j2G

�
T�1 log yjt

�
= a�bG

t

T
+ �ta

t

T

 
N�1
G

P
j2G

�jt

!
+
�bGp
T

1p
T

tX
s=0

"s

+
�tp
T

 
N�1
G

P
j2G

�it

! 
1p
T

tX
s=0

"s

!

= a�bG
t

T
+ �ta

t

T
qNt +

�bGp
T

1p
T

tX
s=0

"s +
�tp
T
qNt

 
1p
T

tX
s=0

"s

!
;

and then

T�1 log yit �N�1
G

P
j2G

�
T�1 log yit

�
= a

�
bi � �bG

� t
T
+

�
bi � �bG
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p
T

1p
T

tX
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T
~qit +
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1p
T

tX
s=0

"s:

It follows that for large t and NG we have

hGit � 1 =
T�1 log yit �N�1

G

P
j2G

�
T�1 log yit

�
N�1
G

P
j2G (T

�1 log yit)

=
bi � �bG + �t

�
�it �N�1

G

P
j2G �jt

�
�bG + �t

�
N�1
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P
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�
bi � �bG

�
�bG

+
�t
�bG
�it +Op

����bi � �bG��+ �t	 1p
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�
(46)
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The factors
��bi � �bG�� and �t are retained in the error term because the error magnitude in (46)

is in�uenced by whether there is group homogeneity in the bi; in which case bi � �bG = 0; and
by the value of � in the decay model (42) for �t:

Squaring (46), we have

�
hGit � 1

�2
=

�
bi � �bG

�2
+ �2t ~q

2
it + 2�t

�
bi � �bG

�
~qit�

�bG + �tqNt
	2 (47)

Setting

~bj = bj � �bG; �2�G = lim
NG!1

N�1
G

P
j2G

E�2jt = 1; �
2
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NG!1
N�1
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P
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P
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E
�
�jt
�
~bj ; H

G
t = N

�1
G

P
j2G

�
hGjt � 1

�2
;

and summing (47) leads to
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(48)

as NG !1:
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When bj = b = �bG for all j 2 G; we have �2bG = �b�G = 0 and (48) then becomes

HG
t = �2b

�2�G +
h
N�1
G

P
j2G

�
�2jt � �2�G

�i
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=
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+Op
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(49)

where

A =
�2b�

2
�G

b2
=
�2b
b2
;

since �2�G = 1:

Taking logarithms of (49) gives

logHG
t = logA� 2� log t+ uGt ; (50)

where

uGt = log

(
1 +

1

�2�G

(
N�1
G

P
j2G

�
�2jt � �2�G

�)
� 2�b
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qNt +Op
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(
N�1
G

P
j2G

�
�2jt � 1

�)
� 2�b

t�
qNt +Op

�
1

NG

�
(51)

giving equation (29) in the text.

As indicated in the text, we may test the null hypothesis H0 : � = 0 against the alternative

H1 : � > 0 by means of a least squares regression of (50) using observations t = [Tr] ; [Tr] +

1; :::; T for some r > 0: The alternative H1 therefore corresponds to the case of subgroup G

growth convergence under the maintained hypothesis bj = b for all j 2 G: We now proceed to
develop the limit theory for this regression.

Write (50) as

zt = f + d log t+ u
G
t = fT + d log

�
t

T

�
+ uGt (52)

where fT = f + d log T = logA� 2� log T: De�ne

� t = log
t

T
� log t

T
:

where log t
T =

1
T�[Tr]

PT
t=[Tr] log

t
T : Then regression over t = [Tr] ; [Tr]+1; :::; T for some r > 0
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yields

d̂� d =

PT
t=[Tr] � tu

G
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2
t

=
N�1
G

P
j2G

PT
t=[Tr] � t

�
�2jt � 1

�PT
t=[Tr] �

2
t

�2
�b

�
N�1
G

P
j2G

PT
t=[Tr] � t

�jt
t�

�
PT
t=[Tr] �

2
t

+Op

�
1

NG

�
; (53)

Next observe that
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by Euler summation and direct evaluation of the integralZ 1

r
log2 sds� 1

1� r

�Z 1

r
log pdp

�2
= (1� r)�

�
r

1� r

�
log2 r:

Scaling (53) by
p
TNG we have
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Under the null hypothesis where � = 0; this expression becomes

p
TNG
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(56)

where �jt =
�
�2jt � 1

�
� 2�b�jt is a zero mean time series satisfying the functional law (41). It

follows that
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�
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��
; (57)
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by standard weak convergence arguments: The Brownian motions Bj (r) are independent across

j in view of the independence of the �jt: Note that the limit (57) is well de�ned for all r 2 [0; 1):
Using independence across j and applying sequential limits in which T ! 1; followed by

NG !1; we obtain

N
�1=2
G

P
j2G

T�1=2
TX

t=[Tr]

� t�jt

� N
�1=2
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P
j2G

�Z 1

r

�
log s� 1

1� r

Z 1

r
log pdp

�
dBj (s)

�

� N

 
0;

 
N�1
G

P
j2G

!2j

!�
(1� r)�

�
r

1� r

�
log2 r

�!
: (58)

It now follows from (56) and (58) that

p
TNG

�
d̂� d

�
=

N
�1=2
G

P
j2G

n
T�1=2

PT
t=[Tr] � t�jt

o
T�1
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+Op

 r
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) N

0@0; !2Gn
(1� r)�

�
r
1�r

�
log2 r

o
1A : (59)

in sequential limits as T ! 1, followed by NG ! 1; where !2G = limNG!1N
�1
G

P
j2G !

2
j :

Using the methods of Phillips and Moon (1999) and some additional regularity conditions, this

result can presumably be extended to hold under joint limiting arguments where T and NG
may pass to in�nity jointly.

Using the original parameterization of (50), we have d = �2� and it follows from (59) thatp
TNG (�̂� �)) N (0; V (r)) ; (60)

where the limiting variance

V (r) =
!2G

4
n
(1� r)�

�
r
1�r

�
log2 r

o (61)

is graphed as a function of r in Fig. 17 for !2G=4 = 1: V (r) increases monotonically with r and

is unbounded as r ! 1 because in that event the regression uses less than O (T ) time series

observations and the rate of convergence is correspondingly slower than
p
TNG.

Inference can be conducted using (60), the expression (61) and an estimate of !2G; which
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Figure 17: Limiting Variance V (r) of
p
T (�̂� �) for !2" = 1

involves the average long run variance !2G of �jt: In view of (51) we have
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under the null hypothesis with � = 0: Since the �jt are independent across j; direct calculation

gives
1X

h=�1
E
�
uGt u

G
t+h

�
= N�2

G

P
j2G

 1X
h=�1

E
�
�jt�jt+h
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so that

NG

1X
h=�1

E
�
uGt u

G
t+h

�
= N�1

G

P
j2G

!2j ! !2G;

as NG ! 1: It follows that NG times the long run variance of uGt is a consistent estimate of
!2G: Hence, !

2
G may be consistently estimated by computing a conventional long run variance

estimate !̂2
ûGt
from the residuals, ûGt ; of the regression (50) and scaling this estimate by NG;

giving !̂2G = NG!̂
2
ûGt
.

Thus, to test the null hypothesis H0 : � = 0 of no convergence we �t the regression model

48



(50) over t = [Tr] ; :::; T and compute the t- statistic tGr = �̂
s�̂
;where

s2�̂ =
1

NGT
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o : (62)

If the e¤ective sample size, T � [Tr] ; were used in computing the standard error, we would
have
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We reject H0 in favor of H1 : � > 0 for a one-sided signi�cant statistic tGr:

The power of this test can be derived using (55). From this equation, we have
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since
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where T�1=2
P[Tr]
t=1 �jt ) B�j (r) ; for some Brownian motion B�j and where the integral in (64)

is �nite for all r > 0 and � > 0: We deduce from (63) that for all � > 0p
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follows that for � > 0 we have
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and the test is consistent. Some further calculations reveal that the test is powerful against

local alternatives of the form � = cp
TNg

for some constant c > 0: In this case, we �nd that
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� t
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�
�jt +Op

�
log Tp
TNG

��
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so that (56) continues to hold, as in the null � = 0 case. It follows that the localizing sequence

� = cp
TNg

provides a shift in the location of the limit distribution so that
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which gives the local asymptotic power function of the log t test.

Appendix C: Transitioning and Subsample Convergence Testing

We propose the following two-step approach to subsample testing of transitioning to conver-

gence, where members of one economic subgroup catch up to members of a higher income

subgroup.

Step 1 For each group G 2 G; run the log t regression and obtain the t-ratio, tG; of the
coe¢ cient of log t: Under the null hypothesis of no convergence, as T ! 1; all the tG
statistics have a limiting standard normal distribution as derived in Appendix B. For

�nite T; the distribution of the tG will be much more complex. Take the maximum value

of the statistic across groups, viz. tMAX
G = maxG2G tG:Under the null hypothesis of no

convergence (that is the full-group of economies do not converge), then we will accept

H0 if tMAX
G exceeds the left tail critical value (e.g. tMAX

G > �1:65 in the case of a 5%
test). In this event, some groups may have regression coe¢ cients in log t regression

ln�2Gt = aG + bG ln t+ �Gt for t = t0; :::; T and G 2 G = N=NG: (65)

that are signi�cantly negative by the usual criterion but others are not signi�cant. We

therefore �accept�the null of no convergence over the full set of economies in this case.

Simulations indicate that in �nite samples the probability of rejecting the null of no
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convergence for all groups, i.e. P
�
tMAX
G < �1:65

�
in the nominal 5% case, is often too

large, giving upwards size distortion or distortion towards acceptance of convergence. In

view of this bias towards rejection of the null, we suggest a second step to reduce the

size distortion, which is based on a subsampling - search procedure to see if there is more

evidence in favor of the null hypothesis.

Step 2 If tMAX
G < �1:65 in step 1, form new subgroups (overlapping the original subgroups)

by eliminating ` = NG=2 economies from the highest income group and adding ` countries

from the second highest income group to form a new subgroup with the same number

of economies as before. Repeat this procedure with the remaining economies to form

G � 1 new subgroups in total. With this new collection of economies, repeat Step 1. We
reject H0 only when the evidence is convincing that across all these subgroups there is

rejection of the null. This subsampling modi�cation sets a higher hurdle for rejection of

the null or acceptance of convergence and thereby helps to control size distortion. As

discussed in the body of the paper, this second step test also provides information about

transitional e¤ects between the original subgroups.

Appendix D: Some Simulations of Transition and Convergence

As is apparent from the above discussion, many di¤erent data generating mechanisms are

compatible with the transition and growth curve formulations. These include models where

there is growth convergence as well as models where there is growth divergence and various

forms of transitional divergence combined with ultimate convergence. This section provides

some brief simulation evidence based on panel data generating processes (dgp�s) that include

some of these possibilities. These speci�c models also allow us to develop an asymptotic theory

for the log t regression discussed in the last section and to evaluate the statistical performance

of the proposed methods in �nite samples of panel data.

We consider the following two panel dgp�s. The �rst involves a nonlinear panel speci�cation

which allows for convergence and divergence, while the second dgp is a simple panel of unit

root processes with drift.

DGP 1: Nonlinear Panel Model with Common Growth

The following model is a nonlinear panel growth model with factor structure that involves a

common trend component �t (comprising a random walk with drift) and a loading parameter

(bit) that is time varying and whose variance (�2t ) may be subject to decay over time depending

on whether the convergence parameter � > 0: Convergence occurs when bi = bj for all i 6= j
and � > 0: The model has the form
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ln yit = bit�t; �t = a+ �t�1 + et

bit = bi + b
�
it; b�it = �ib

�
it�1 + �it

�it � iid N
�
0; �2t

�
; �2t = �

2
b=t

2�

�i � U [0:5; 0:95] ; et � N (0; 1) ; a = 0:04:

Under the null hypothesis of no convergence, we set bi � iid N
�
1; !2b

�
with !b 2 (0:1; 0:2; 0:3)

while under the alternative of convergence bi = 1 for all i and � > 0:With HP �ltered data, we

found a range of empirical values for �b around 0.05 along with various values of !b under the

null hypothesis of no convergence. Four di¤erent speeds of convergence are considered by tak-

ing � 2 f1; 0:5; 0:3; 0:0g : As � decreases, ultimate convergence takes longer, thereby allowing
for the possibility of transitionally divergent behavior for �nite T . By contrast, as � increases,

some evidence of transitionally convergent behavior is possible for �nite T even under the null

of no convergence where bi 6= bj for i 6= j: Hence as � increases (decreases), this leads us to

expect that there may be some upwards size distortion in the log t test for this model under

the null of no convergence. When � = 0 but bi = 1; then ln yit does not converge since the

error variance �2t does not tend to zero.

DGP 2: Panel Random Walks with Drift

The following model is a panel of unit root processes driven by autoregressions with some

panel cross section dependence structure delivered by a simple factor model with common

shocks �t over time and idiosyncratic loadings �i for each economy.

ln yit = ai + ln yit�1 + uit

uit = �iuit�1 + �it

�it = �i�t + eit

The parameters for this dgp are set by taking estimates from empirical growth regressions with

88 PWT countries. From these estimates we calculate an empirically plausible range of values

for the parameters and then draw the parameter settings randomly from uniform distributions

set with these limits. Accordingly, we set ai � iid U (0:001; 0:061) ; �i � iid U (1; 4) ; �t �
iidN(0; 1); uit � iid N(0; 1) and eit � iid N

�
0; �2ei

�
with �ei � iid U (0:00; 0:064) : With HP

�ltered data, we found a range of empirical values for �i in the interval (0:94; 1:05) ; while with

the raw data we found values of �i in the much wider interval (�0:50; 0:65) ; in both cases
making no adjustments for small sample autoregressive bias. Accordingly, for the simulations

we excluded negative �i values and considered the following four cases: Case I: �i 2 (0; 0:1) ;
Case II: �i 2 (0; 0:3) ; Case III: �i 2 (0; 0:5) ; Case IV: �i 2 (0; 0:7) and Case V: �i 2 (0; 0:9) :
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Results

The results are reported in Appendix Tables A1 and A2, which show performance for both

dgp�s and both the all-group log t test and the sequential subgroup tests outlined above.

We consider the results for DGP 1 �rst. Here, the log t test applied to all countries in a

single group shows size distortion, with actual size in the range (0:33; 0:62) for a nominal 5%

test. However, in the case where � = 0 and bi = 1; for which the test is speci�cally designed,

actual size is much better and is 0.12 for the all-group test. The sequential subgroup tests are

conservatively sized without showing any serious lowering of power (only in the case � = 0:3

does power drop below unity).

Under DGP 2, the actual size of the test is lower in cases where there are more large �i in

the panel. In such (near unit root) cases, we can reasonably expect the divergence behavior

to be more marked in the panel, so that there is less size distortion in consequence. Note that

under DGP 2, as equation (75) shows, when there are large numbers of economies HG
t may

appear to decrease over time (although not to zero), and this reduction results in some size

distortion in the test. Again, the subgroup tests help to reduce this size distortion.

Table A1: Rejection Rate for DGP 1: Nonlinear Panel Speci�cation.
(Nominal 5% Test), N=88, T=36. First 6 observations discarded (r = 1=6).

!b � = 0:5 � = 0:3

Step 1 Step 2 log t Step 1 Step 2 log t

0.0 1.000 1.000 1.000 0.924 0.903 1.000

0.1 0.331 0.276 0.623 0.333 0.281 0.592

0.2 0.115 0.040 0.438 0.112 0.055 0.400

0.3 0.048 0.004 0.367 0.052 0.009 0.332

� = 0; !b = 0

Step1 Step2 log t

0.006 0.003 0.124

Table A2: Rejection Rate for DGP 2: Random Walks with Drift.
(Nominal 5% Test), N=88, T=36. First 6 observations discarded (r = 1=6).

Case Step1 Step2 log t

1 0.238 0.155 0.373

2 0.240 0.152 0.370

3 0.220 0.134 0.337

4 0.188 0.098 0.282

5 0.171 0.077 0.313
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Appendix E: Limit Behavior of the Transition Parameter under Divergence

The ultimate requirement for convergence in a neoclassical framework that allows for transition

is that xit ! x: Then, log per capita real income follows a linear trend (stationary process) in

the steady state. During transition, however, the behavior could be stochastically nonstation-

ary depending on the manner in which xit and �it evolve over time. For instance, xit might

follow a martingale that converged almost surely to a constant value x:

There are even more ways of characterizing divergent behavior. A simple mechanism that

�ts in with research by Bernard and Durlauf (1995, 1996) is to allow for log per capita real

income to follow individual random walks with drift, as in

log yit = �it; �it = ci + �it�1 + "it; (66)

where ci is an idiosyncratic drift parameter and the shocks "it are zero mean, stationary and

ergodic time series with �nite variance �2" over t: The "it may well be correlated across i

provided the unit root processes have full rank N and there is no cointegration between �it
and �jt for i 6= j. Each log yit has stochastic trend behavior and and there is growth divergence
between log yit and log yjt for all i 6= j. As in (11, we can write (66) in the form12

log yit = cit+ ai +
tP
s=1

"is =

�
ci +

ai
t
+
1

t

tP
s=1

"is

�
t = bit�t; (67)

where ai involves initial conditions, which we take to be Op (1) for all i; where �t = t is the

common trend growth, and where

bit = ci +
ai
t
+
1

t

tP
s=1

"is !a:s: ci as t!1; (68)

by ergodicity. For any economies i and j with ci 6= cj ; log yit � log yjt is clearly divergent as
t!1; even though there may be subperiods of time when their growth paths may be close �for
instance, if the partial sum process

Pt
s=1 ("is � "js) crosses the trend line (ci � cj) t+(ai � aj) :

In such a case, log yit and log yjt might seem to converge as the economies evolve towards such

a crossing time but they will diverge subsequently.

Under growth divergence, limt!1 bit = ci; with ci 6= cj for i 6= j. De�ne

�cN =
1

N

NX
i=1

ci; c2N =
1

N

NX
i=1

c2i :

12We can also standardize log yit and write (67) in the form

T�1 log yit = T
�1
�
cit+ ai +

tP
s=1

"is

�
=

�
ci +

ai
t
+
1

t

tP
s=1

"is

�
t

T
= bit�

�
t

T

�
with �

�
t
T

�
= t

T
in a format analogous to (15).
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Then, with N �xed, we have hitN = bit=
1
N

PN
j=1 bjt !a:s: ci=�cN as t ! 1; and, setting

HtN = N
�1PN

i=1 (hitN � 1)
2 to be the sample mean squared error of hitN about unity, we get

HtN !a:s:
1

N

NP
i=1
(
ci
�cN
� 1)2 = c2N � �c2N

�c2N
= dN > 0:

The nonzero limit dN represents the heterogeneity in the coe¢ cients ci which, in turn, re�ects

heterogeneity in the fundamental parameters �it and xit:

Next, we consider the properties of hitN for �xed (large) t and asymptotically large N;

corresponding to a full population of economies. We allow "is to be cross sectionally correlated

but it is useful to require laws of large numbers to apply as N ! 1 in order to study limit

behavior. In particular, we require that the moments �cN ; c2N have �nite limits, viz.,

�cN ! �c; c2N ! c2 as N !1; (69)

and assume that as N !1

1

N

NP
i=1
"is;

1

N

NP
i=1
ci"is;

1

N

NP
i=1
ai"is !a:s: 0;

1

N

NP
i=1
"is"is+h !a:s: 
 (h) (70)

and that as t!1
t�1P

h=�t+1

 (h)!

1P
h=�1


 (h) = !2 > 0: (71)

Then,

1

N

NP
i=1

�
1

t

tP
s=1

"is

�2
=

1

t2

tP
s;p=1

1

N

NP
i=1
"is"ip !a:s:

1

t2

tP
s;p=1


 (p� s)

=
1

t

t�1P
h=�t+1

�
1� jhj

t

�

 (h) =

!2

t
[1 + o (1)] ;

as t ! 1: Primitive conditions under which sequential limits such as (70) - (71) hold are
provided in Phillips and Moon (1999). Under (69) - (71), we deduce that as N ! 1 and for

large t

1

N

NX
i=1

b2it ! a:s: c2 +
!2

t
+ o

�
1

t

�
; (72)

1

N

NX
i=1

h2itN ! a:s:
c2 + !2

t

�c2
+ o

�
1

t

�
; (73)

1

N

NP
i=1
(hitN � 1)2 ! a:s:

c2 � �c2 + !2

t

�c2
+ o

�
1

t

�
: (74)

We may use the last property to compare the sample mean squared error, �2tN , of hitN for

large N at two points in time T1 = [Tr1] and T2 = [Tr2] with r2 > r1. Result (74) leads to the
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approximate relation

HT2N
HT1N

'
c2 � �c2 + !2

T2
�c2

c2 � �c2 + !2

T1
�c2
< 1; for T2 > T1; (75)

suggesting that for large N the sample mean squared error HtN may appear to decrease as t

increases, but not to zero, when there is growth divergence.

Data Appendix

Three panel data sets of log per capita real income are used in the paper. The �rst panel (A)

relates to the 48 contiguous United States from 1929 to 1998 (Source: Bureau of Economic

Analysis). The second panel (B) consists of 127 countries from 1950 to 2001. (Source: OECD

The World economy: historical statistics). From the same OECD data source we also collected

the long historical data set for 18 Western OECD countries covering the period from 1500 to

2001. The third panel (C) includes 88 countries (Source: PWT 6.1). The remaining three

subsections of this Appendix show how subgroups for these panels were created based on

regional location and geographical distance.

Panel Data Set A: Regional US State Classi�cations

Mid-Altantic: Delaware, Maryland, New Jersey, New York, Pennsylvania

New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont

Great Lakes: Illinois, Indiana, Michigan, Ohio, Wisconsin

Mountain: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming

Paci�c: California, Oregon, Washington

Plain States: Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakoda, South Dakoda

South Atlantic: Florida, Georgia, North Carolina, South Carolina, Virginia, West Virginia

West South Central: Arkansas, Louisiana, Oklahoma, Texas

East South Central: Alabama, Kentucky, Mississippi, Tennesse
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Panel Data Set B: OECD The world economy �historical statistics.

We form the following subgroups based on geographical location and population.

Regional Subgrouping of 127 World Economies

Western
OECD (18)

India China Japan

Middle
East (12)

Eastern
Asia (11)

NICs
(4)

Asian
Dragons (4)

Carribean
(18)

Africa
(50)

Latin
America (8)

18 Western OECD Countries: Austria, Belgium, Denmark, Finland, France, Germany, Italy,
Netherlands, Norway, Sweden, Switzerand, United Kingdom, Portugal, Spain, Australia, New Zealand,

Canada, United States

8 Latin American Countries: Argentina, Brazil, Chile, Colombia, Mexico, Peru, Uruguay,
Venezuela

15 Carribean Countries: Bolivia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Sal-
vador, Guatemala, Haïti, Honduras, Jamaica, Nicaragua, Panama, Paraguay, Puerto Rico, Trinidad

and Tobago

China, India, Japan
3 Newly Industrialized Countries (NICs): Indonesia, Thailand, Malaysia
11 Eastern Asian Countries: Bangladesh, Burma, Nepal, Pakistan, Sri Lanka, Afghanistan,

Cambodia, Laos, Mongolia, Philippines, Vietnam

4 Asian Dragons: Hong Kong, Singapore, South Korea, Taiwan
12 Middle East: Bahrain, Iran, Iraq, Israel, Jordan, Lebanon, Oman, South Arabia, Syria,

Turkey, Yemen, Palestine and Gaza,

50 African Countries: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon,
Cape Verde, Central African Republic, Chad, Comoro Islands, Congo, Côte d�Ivoire, Djibouti, Egypt,

Eritrea and Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea, Bissau, Kenya, Lesotho, Liberia, Mada-

gascar, Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Reunion,

Rwanda, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, Sudan, Swaziland, Tanzania, Togo,

Tunisia, Uganda, Zaire, Zambia, Zimbabwe.
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127 World Economies: Includes all countries in the above 11 subgroups plus Albania,
Greece and Ireland.

Panel Data Set C: 88 PWT Version 6.1 Countries

We form the following subgroups, again based on geographical location and population.

Regional Subgrouping of 88 PWT Countries

OECD (18)

India China

Middle
East + North
Africa (7)

Eastern
Asia (7)

NICs
(3)

Asian
Dragons
(4)

Sub-Saharan
Africa
(20)

Carribean
+ Latin
America
(22)

7 Middle East and North African Countries: Algeria, Cyprus, Egypt, Iran, Israel,

Jordan, Syria

20 Sub-Saharan Africa Countries: Benin, Botswana, Cameroon, Central African Rep.,

Congo (D.R.), Gambia, Ghana, Lesotho, Malawi, Mali, Mauritius, Mozambique, Niger, Rwanda, Sene-

gal, South Africa, Togo, Uganda, Zambia, Zimbabwe

22 Latin American and Carribean Countries: Argentina, Barbados, Bolivia, Brazil,

Chile, Colombia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Guatemala, Guyana, Hon-

duras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Trinidad &Tobago, Uruguay, Venezuela

India, China,
7 Eastern Asian Countries: Bangladesh, Fiji, Nepal, Pakistan, Papua New Guinea, Philip-

pines, Sri Lanka

18 OECD Countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Italy,
Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom,

USA

4 Dragons: Hong Kong, South Korea, Singapore, Taiwan
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3 NICs: Indonesia, Malaysia, Thailand
88 World Economies: The dataset includes all countries in the above 7 subgroups plus Roma-

nia, Greece, Iceland, Ireland and Turkey.

5 Subgroups in Figure 1 (Initial Income Ordering)

The country ordering is based on initial income in year 1960. Malawi was the poorest country, while

Swizterland was the richest in 1960.

Subgroup 1 (Poorest): Malawi, Uganda, Pakistan, China, Lesotho, Nepal, Rwanda, India,
Indonesia, Ghana, Gambia, Botswana, Mali, Congo, Dem. Rep., Togo, Romania, Benin

Subgroup 2 (Poor): Bangladesh, Thailand, Zimbabwe, Zambia, Sri Lanka, Taiwan, South

Korea, Egypt, Syria, Cameroon, Honduras, Dominican Rep., Mozambique, Niger, Senegal, Ecuador,

Guyana

Subgroup 3 (Middle Income): Philippines, Malaysia, Central African Rep., Guatemala,

Paraguay, Brazil, Bolivia, Algeria, Jordan, Singapore, Panama, Papua New Guinea, Colombia, Fiji,

Iran, Turkey, Jamaica

Subgroup 4 (Rich): Hong Kong, Cyprus, Nicaragua, Barbados, Costa Rica, Peru, El Salvador,
Portugal, Mauritius, Chile, Mexico, Greece, Trinidad &Tobago, Japan, South Africa, Spain, Ireland

Subgroup 5 (Richest): Israel, Uruguay, Italy, Argentina, Austria, Finland, Belgium, France,
Iceland, Norway, Venezuela, Netherlands, United Kingdom, Canada, Sweden, Australia, Denmark, New

Zealand, USA, Switzerland

4 Subgroups in Log t tests (Last Income Ordering)

The ordering for the countries is based on the �nal income year 1996. Congo (D.R.) was the poorest

country in 1996, while the U.S.A. was the richest in 1996.

Subgroup 1: Congo (D.R), Malawi, Mali, Uganda, Rwanda, Niger, Mozambique, Zambia,

Togo, Central African Rep., Benin, Gambia, Ghana, Nepal, Lesotho, Senegal, Bangladesh, Nicaragua,

Cameroon, Pakistan, India, Honduras

Subgroup 2: Guyana, Bolivia, Zimbabwe, China, Philippines, Sri Lanka, Papua New Guinea,
Jordan, Dominican Rep., Guatemala, Syria, Egypt, Indonesia, Ecuador, Jamaica, El Salvador, Peru,

Iran, Algeria, Romania, Costa Rica, Fiji

Subgroup 3: Paraguay, Colombia, Panama, Turkey, Botswana, Brazil, Venezuela, Thailand,

South Africa, Mexico, Chile, Malaysia, Uruguay, Trinidad &Tobago, Argentina, Mauritius, Greece,

Portugal, South Korea, Barbados, Spain, Taiwan

Subgroup 4: Israel, Cyprus, New Zealand, Ireland, Finland, United Kingdom, France, Italy,

Sweden, Netherlands, Belgium, Iceland, Austria, Australia, Canada, Denmark, Singapore, Norway,

Japan, Switzerland, Hong Kong, USA.
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