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ABSTRACT

Employing power kernels suggested in earlier work by the authors (2003), this paper

shows how to re�ne methods of robust inference on the mean in a time series that rely on

families of untruncated kernel estimates of the long-run parameters. The new methods

improve the size properties of heteroskedastic and autocorrelation robust (HAR) tests in

comparison with conventional methods that employ consistent HAC estimates, and they

raise test power in comparison with other tests that are based on untruncated kernel esti-

mates. Large power parameter (�) asymptotic expansions of the nonstandard limit theory

are developed in terms of the usual limiting chi-squared distribution, and corresponding

large sample size and large � asymptotic expansions of the �nite sample distribution of

Wald tests are developed to justify the new approach. Exact �nite sample distributions

are given using operational techniques. The paper further shows that the optimal � that

minimizes a weighted sum of type I and II errors has an expansion rate of at most O
�
T 1=2

�
and can even be O (1) for certain loss functions, and is therefore slower than the O

�
T 2=3

�
rate which minimizes the asymptotic mean squared error of the corresponding long run

variance estimator. A new plug-in procedure for implementing the optimal � is suggested.

Simulations show that the new plug-in procedure works well in �nite samples.

JEL Classi�cation: C13; C14; C22; C51

Keywords: Asymptotic expansion, consistent HAC estimation, data-determined kernel

estimation, exact distribution, HAR inference, large � asymptotics, long run variance,

loss function, power parameter, sharp origin kernel.



1 Introduction

Seeking to robustify inference, many practical methods in econometrics now make use

of heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimates.

Most commonly used HAC estimates are formulated using conventional kernel smoothing

techniques (for an overview, see den Haan and Levin (1997)), although quite di¤erent

approaches like wavelets (Hong and Lee (2001)) and direct regression methods (Phillips

(2004)) have recently been explored. While appealing in terms of their asymptotic proper-

ties, consistent HAC estimates provide only asymptotic robustness in econometric testing

and �nite sample performance is known to be unsatisfactory in many cases, but espe-

cially when there is strong autocorrelation in the data. HAC estimates are then biased

downwards and the associated tests are liberal-biased. These size distortions in testing

are often substantial and have been discussed extensively in recent work (e.g., Kiefer and

Vogelsang (2003) and Sul, Phillips and Choi (2003)).

Robusti�cation in regression testing is achieved by the use of a test statistic that is

asymptotically pivotal under a general maintained hypothesis for the regression compo-

nents. Consistent HAC estimation is not necessary for this purpose and, indeed, any

procedure that scales out the e¤ects of the nuisance parameters in the test statistics will

work. Kiefer, Vogelsang and Bunzel (2000, hereafter KVB) suggested the use of untrun-

cated, inconsistent kernel estimates in the construction of test statistics and showed that

the limit theory is nuisance parameter free but no longer standard normal or chi-squared.

Work on related procedures has been done by Vogelsang (2003), Kiefer and Vogelsang

(2002a, 2002b, 2003; hereafter KV) and by the present authors (2003a & 2003b; hereafter

PSJa & PSJb). These techniques may be grouped with conventional HAC procedures

as having the same goals of robust inference and the term heteroskedastic and autocor-

relation robust (HAR) methods has been used to collectively describe them (Phillips,

2004).

Inconsistent covariance matrix estimates play an interesting role in improving the size

properties of tests, essentially because they preserve in the limit theory the �nite sample

randomness of the denominator in the conventional t-ratio. In this respect, these tests

behave in large samples more like their �nite sample analogues than the conventional

asymptotic normal and chi-squared tests, for which the denominator is non-random. In
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the case of the Gaussian location model, Jansson (2004) showed that the KVB test sta-

tistic is closer to its limit distribution in the precise sense that the error in the rejection

probability (ERP) is of order O
�
T�1 log T

�
for sample size T under the null, whereas

the corresponding ERP for a test based on a conventional consistent HAC estimate is

at most of order O(T�1=2); as shown in Velasco and Robinson (2001). While tests such

as KVB typically have better size than those that use HAC estimators, there is also a

clear and compensating reduction in power. The challenge is to develop test procedures

with size improvements like those of KVB, while retaining the good power properties of

conventional tests based on HAC estimators.

The present paper confronts this challenge by developing a procedure that combines

the use of untruncated kernels, as in KVB, with a re�nement that enables the use of

critical values that appropriately correct those of the limit theory for conventional tests

based on consistent HAC estimators, while at the same time enhancing the test power of

the KVB test. The class of HAR tests considered here involve the use of a power kernel

suggested by the authors in other work (2003a) and this class includes both consistent

and inconsistent HAC estimates, depending on whether the power parameter, �; is �xed

or passes to in�nity as T ! 1: When � ! 1; the �rst order limit theory corresponds
to that of a test based on conventional consistent HAC estimation, whereas for � �xed,

the limit theory is nonstandard, as in the case of the KVB test. The mechanism for

making improvements in both size (compared with asymptotic normal tests) and power

(compared with the KVB test) is to use a test statistic for a moderate value of � for which

the critical values can be obtained from the appropriate nonstandard limit distribution,

which is nuisance parameter free. It is shown here how these critical values may be

very well approximated using an asymptotic expansion of the limit distribution about its

limiting chi-squared distribution. This version of the procedure has the advantage of being

easily implemented and does not require the use of tables of nonstandard distributions.

This re�nement improves test size in the same manner as the KVB test, and is justi�ed

in the present paper by asymptotic expansions of both the non-standard limit distribution

as �!1 and the �nite sample distribution as T !1 and �!1: The �rst expansion
can be regarded as a high order expansion under the sequential limit in which T !1 �rst

followed by �!1: The second expansion is a high order expansion under the joint limit
in which T ! 1 and � ! 1 simultaneously. Corresponding asymptotic expansions of
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the power functions indicate that for typical economic time series test power increases as

� increases. Finite sample improvements in test power over other tests with untruncated

kernels like the KVB test have been noted in simulations reported in other work by the

authors (2003a, 2003b) and in independent work by Ravikumar, Ray and Savin (2004)

using the methods of PSJb. The asymptotic expansions given in the present paper help

to explain these power improvements.

A further contribution of the present paper is to use these asymptotic expansions

to suggest a practical procedure for test implementation which optimally balances the

type I and type II errors. The type I error is measured by using the �rst correction

term in the asymptotic expansion of the �nite sample distribution of the test statistic

about its nonstandard limit distribution. This term is of order O (�=T ) and it increases

in magnitude as � increases for any given T . Similarly, the expansions under the local

alternative reveal that in general the type II error decreases as � increases. Thus, to this

order in the asymptotic expansion, increasing � reduces the type II error but also increases

the type I error. Since the desirable e¤ects on the two types of errors generally work in

opposing directions, we construct a loss function criterion by taking a weighted sum of

the two types of errors and show how � may be selected in such a way as to optimize the

criterion. This approach gives an optimal � which generally has an expansion rate of at

most �opt = O
�
T 1=2

�
and which can even be O (1) for certain loss functions. This rate is

less than the optimal rate of O
�
T 2=3

�
that applies when minimizing the asymptotic mean

squared error of the corresponding HAC variance estimate (c.f., PSJa). Thus, optimal

values of � for HAC standard error estimation are larger as T !1 than those which are

most suited for statistical testing. The �xed � rule is obtained by attaching substantially

higher weight to the type I error in the construction of the loss function. This theory

therefore provides some insight into the type of loss function for which there is a decision

theoretic justi�cation for the use of �xed � rules in econometric testing. These conclusions

are also relevant to the use of untruncated kernel estimates in econometric testing of the

type suggested in KV (2003).

The plan of the paper is as follows. Section 2 overviews the class of power kernels that

will be used in the present paper�s development and reviews some �rst order limit theory

for Wald type tests as T !1 with the power parameter � �xed and as �!1. Section
3 derives an exact distribution theory using operational techniques. Section 4 develops
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an asymptotic expansion of the non-standard limit distribution under the null hypothesis

as the power parameter � ! 1 about the usual limiting chi-squared distribution. The

second order term in this asymptotic expansion delivers a correction term that can be

used to adjust the critical values in the usual chi-squared test. An asymptotic expansion

of the local power function is also given. Section 5 develops comparable expansions of the

�nite sample distribution of the statistic as T ! 1 for a �xed � and as both T ! 1
and �!1. This expansion validates the use of the corrected critical values in practical
work. Section 6 proposes a selection rule for � that is suitable for implementation in

semiparametric testing. This criterion optimizes a loss function that is constructed to

balance higher order approximations to the type I and type II errors. Section 7 reports

some simulation evidence on the performance of the new procedures. Section 8 concludes

and discusses the implications of the results for applied work. Proofs and additional

technical results are in the Appendix.

2 HAR Inference for the Mean

Throughout the paper, we focus on the inference about � in the location model:

yt = � + ut; t = 1; 2; :::; T; (1)

where ut is zero mean process with a nonparametric autocorrelation structure. The non-

standard limiting distribution in this section and its asymptotic expansion in Section 4

apply to general regression models under certain conditions on the regressors, see PSJa:

However, the asymptotic expansion of the �nite sample distribution in Section 5 applies

only to the location model. A possible extension is discussed in Section 8.

The OLS estimation of � gives

�̂ = �Y =
1

T

TX
t=1

yt

and the scaled estimation error is

p
T (�̂ � �) = 1p

T
ST ; (2)

where St =
Pt
�=1 u� : Let û� = y� � �̂ be the demeaned time series and Ŝt =

Pt
�=1 û� be

the corresponding partial sum process.
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The following condition is commonly used to facilitate the limit theory (e.g., KVB,

PSJa; and Jansson, 2004).

Assumption 1 S[Tr] satis�es the functional law

T�1=2S[Tr] ) !W (r); r 2 [0; 1]

where !2 is the long run variance of ut and W (r) is the standard Brownian motion.

Under Assumption 1,

T�1=2Ŝ[Tr] ) !V (r); r 2 [0; 1] ; (3)

where V is a standard Brownian bridge process, and

p
T (�̂ � �)) !W (1) = N(0; !2); (4)

which provides the usual basis for robust testing about �: It is the standard practice to

estimate !2 using kernel-based nonparametric HAC estimators that involve smoothing

and truncation lag covariances. When ut is stationary with spectral density fuu (�) ; the

long run variance (LRV) of ut is

!2 = 0 + 2

1X
j=1

(j) = 2�fuu (0) ; (5)

where (j) = E(utut�j): HAC estimates of !2 typically have the following form

!̂2(M) =

T�1X
j=�T+1

k(
j

M
)̂(j); ̂(j) =

8<: 1
T

PT�j
t=1 ut+jut for j � 0

1
T

PT
t=�j+1 ut+jut for j < 0

(6)

involving the sample covariances ̂(j): In (6), k(�) is some kernel function, M is a band-

width parameter, and consistency of !̂2(M) requires M ! 1 and M=T ! 0 as T ! 1
(e.g. Andrews (1991), Andrews and Monahan (1992), Hansen (1992), Newey and West

(1987,1994), de Jong and Davidson (2000)). Jansson (2002) provides a recent overview

and weak conditions for consistency of such estimates.

To test the null H0 : � = �0 against H1 : � 6= �0; the standard approach relies on a
t-ratio statistic of the form

t!̂(M) = T
1=2(�̂ � �0)=!̂(M) (7)
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which is asymptotically N(0; 1). Use of t!̂(M) is convenient empirically and therefore wide-

spread in practical work, in spite of well-known problems of size distortion in inference.

In a series of papers, KVB and KV propose the use of kernel-based estimators of

!2 in which M is set equal to the sample size T or proportional to T . These estimates

are inconsistent and tend to random quantities instead of !2; so the limit distribution

of (7) is no longer standard normal. Nonetheless, use of these estimates results in valid

asymptotically similar tests.

In related work, PSJa and PSJb propose the use of estimates of !2 based on power

kernels without truncation, so that M = T again. For instance, in PSJa a class of sharp

origin kernels were constructed in this way by taking an arbitrary power � � 1 of the

usual Bartlett kernel, giving

k�(x) =

8<: (1� jxj)�; jxj � 1
0; jxj > 1

for � 2 Z+: (8)

We will focus on the sharp origin kernels in the rest of the paper. Using k� in (6) and

letting M = T gives HAC estimates of the form

!̂2� =

T�1X
j=�T+1

k�

�
j

T

�
̂(j): (9)

Under Assumption 1, !̂2� ) !2��; where �� =
R 1
0

R 1
0 k�(r � s)dV (r)dV (s).

The associated t statistic is given by

t� (!̂�) = T
1=2(�̂ � �0)=!̂�: (10)

When the power parameter � is �xed as T !1; PSJa showed that under Assumption 1
the t�-statistic has the nonstandard limit distribution:

t� (!̂�))W (1)��1=2� (11)

under the null and

t� (!̂�)) (� +W (1)) ��1=2� ; (12)

under the local alternative H1 : � = �0 + cT�1=2; where � = c=!:

When � is sample size dependent and satis�es 1=� + (� log T ) =T ! 0, PSJa showed

that !̂� is consistent. In this case, the t�-statistic has conventional normal limits: under

the null t� (!̂�))W (1) =d N(0; 1); and under the local alternative t� (!̂�)) � +W (1):
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Thus, the t�-statistic has nonstandard limit distributions arising from the random limit

of the HAC estimate !̂� when � is �xed as T ! 1; just as the KVB and KV tests do.

However, as � increases, the e¤ect of this randomness diminishes, and when � ! 1 the

limit distributions approach those of conventional regression tests with consistent HAC

estimates.

The mechanism we develop for making improvements in size without sacri�cing much

power, is to use a test statistic constructed with !̂� based on a moderate value of �: The

critical values of this test can be obtained from the �xed � limit theory given above.

Alternatively, they can be based on an accurate but simple asymptotic expansion of that

distribution about its limiting chi-squared distribution that applies as � ! 1. This

expansion is developed in Section 4.

3 Probability Densities of the Nonstandard Limit Distrib-

ution and the Finite Sample Distribution

This section develops some useful formulae for the probability densities of the �xed � limit

theory and the exact distribution of the test statistic.

First note that in the limit theory of the t-ratio test, W (1) is independent of ��, so

the conditional distribution ofW (1)��1=2� given �� is normal with zero mean and variance

��1� : We can write �� = �� (V) where the process V has probability measure P (V) : The
pdf of t =W (1)��1=2� can then be written in the mixed normal form as

pt (z) =

Z
��(V)>0

N
�
0;��1�

�
dP (V) : (13)

For the �nite sample distribution of tT = t�(!̂�), we assume that ut is a Gaussian

process. Since ut is in general autocorrelated,
p
T (�̂��) and !̂ are statistically dependent.

To �nd the exact �nite sample distribution of the t-statistic, we decompose �̂ and !̂ into

statistically independent components. Let u = (�1; :::uT )0; y = (y1; :::; yT ); lT = (1; :::; 1)T

and 
T = var(u): Then the GLS estimator of � is ~� =
�
l0T


�1
T lT

��1
l0T


�1
T y and

�̂ � � = ~� � � +
�
l0T lT

��1
l0T ~u (14)

where ~u = (I � lT
�
l0T


�1
T lT

��1
l0T


�1
T )u; which is statistically independent of

~� � �:
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Therefore the t-statistic can be written as

tT =

p
T ( ~� � �)
!̂�(û)

+
l0T ~up
T !̂�(~u)

(15)

It is easy to see that û =
�
I � lT (l0T lT )�1l0T

�
u =

�
I � lT (l0T lT )�1l0T

�
~u: As consequence,

the conditional distribution of tT given ~u is

N

 
l0T ~up
T !̂�(~u)

;
T
�
l0T


�1
T lT

��1
(!̂�(~u))2

!
: (16)

Letting P (~u) be the probability measure of ~u; we deduce that the probability density of

tT is

ptT (z) =

Z
N

 
l0T ~up
T !̂�(~u)

;
T
�
l0T


�1
T lT

��1
(!̂�(~u))

2

!
dP (~u)

= E

(
N

 
l0T ~up
T !̂�(~u)

;
T
�
l0T


�1
T lT

��1
(!̂�(~u))

2

!)
; (17)

which is a mean and variance mixture of normal distributions.

Using ~u s N
�
0;
T � lT

�
l0T


�1
T lT

��1
l0T

�
and employing operational techniques along

the lines developed in Phillips (1993), we can write expression (17) in the form

ptT (z) =

"
N

 
l0T@qp
T !̂�(@q)

;
T
�
l0T


�1
T lT

��1
(!̂�(@q))

2

!Z
ez

0~udP (~u)

#
q=0

(18)

=

"
N

 
l0T@qp
T !̂�(@q)

;
T
�
l0T


�1
T lT

��1
(!̂�(@q))

2

!
e
q0
n

T�lT (l0T


�1
T lT )

�1
l0T

o
q

#
q=0

:

This provides a general expression for the �nite sample distribution of the test statistic

tT under Gaussianity.

4 Expansion of the Nonstandard Limit Theory

This section develops asymptotic expansions of the limit distributions given in (11) and

(12) as the power parameter � ! 1: These expansions can be taken about the relevant
central and noncentral chi-squared limit distributions that apply when � ! 1; corre-
sponding to the null and alternative hypotheses.

The expansions of the nonstandard limit distributions are of some independent inter-

est. For instance, they can be used to deliver correction terms to the limit distributions
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under the null, thereby providing a mechanism for adjusting the nominal critical values

provided by the usual chi-squared distribution. The latter correspond to the critical val-

ues that would be used for tests based on conventional consistent HAC estimates. As

we shall see, when the O (1=�) correction on the nominal chi-squared asymptotic critical

value is implemented using this asymptotic expansion, the resulting expression provides

an asymptotic justi�cation for the continued fraction approximation suggested in PSJa

for practical testing situations.

Let D(�) be the cdf of a �21 variate, then

P
n���W (1)��1=2�

��� � zo = P �W 2(1) � z2��
	
= E

�
D(z2��)

	
: (19)

Observe that �� is a quadratic functional of a Gaussian process whose moments exist to

all orders. It follows that we may develop an expansion of E
�
D(z2��)

	
in terms of the

moments of ����� where �� = E (��) = �=(�+2); and �2� = var (��) : In particular, we
have

ED(z2��) = D(��z
2) +

1

2
D00(��z

2)z4E (�� � ��)2 +O
�
E(�� � ��)3

�
(20)

as �!1; where the O (�) term holds uniformly for any z 2 [Ml;Mu] � R+ and Ml and

Mu may be chosen arbitrarily small and large, respectively. As shown in Lemma 7 in the

appendix, E(�� � ��)j = O(1=�j�1) as � ! 1; so that (20) gives an asymptotic series
representation in increasing powers of ��1 of the limit distribution (19).

In fact, as shown in PSJa, �� =
R 1
0

R 1
0 k

�
�(r; s)dW (r)dW (s); where k

�
�(r; s) is de�ned

by

k��(r; s) = k�(r � s)�
Z 1

0
k�(r � t)dt�

Z 1

0
k�(� � s)d� +

Z 1

0

Z 1

0
k�(t� �)dtd�:

The function k�(z) is continuous, symmetric and positive semi-de�nite, which guarantees

the positive semi-de�niteness of kernel HAC estimators de�ned as in (9), c.f. Newey and

West (1987), Andrews (1991). The positive semi-de�niteness of k�(z) inherits from that of

k(z); see Sun (2004) for a proof. The positive semi-de�niteness enables the use of Mercer�s

theorem (e.g., see Shorack and Wellner (1986)) so that k�(r � s) can be represented as
k�(r� s) =

P1
n=1 �nfn(r)fn(s); where �n > 0 are the eigenvalues of the kernel and fn(x)

are the corresponding eigenfunctions, i.e. �nfn(s) =
R 1
0 k(r � s)fn(r)dr:

Now with �n > 0; k��(r; s) is also positive semi-de�nite. This is because k
�
�(r; s) can

9



be written as

k��(r; s) =
1X
n=1

�ngn(r)gn(s) for any (r; s) 2 [0; 1]� [0; 1]: (21)

where gn(r) = fn(r)�
R 1
0 fn(�)d�; and �n and fn(�) are eigenvalues and eigenfunctions of

k�(r � s): As a consequence, for any function q(x) 2 L2[0; 1]; we haveZ 1

0

Z 1

0
q(r)k�(r; s)q(s)drds =

1X
n=1

�n

�Z 1

0
gn(r)q(r)dr

�2
� 0: (22)

Thus, by Mercer�s theorem, k��(r; s) has the representation k��(r; s) =
P1
n=1 �

�
nf

�
n(r)f

�
n(s)

in terms of ��n > 0; the eigenvalues of k��(r; s); and f
�
n(x); the corresponding eigen-

functions. Using this representation, we can easily show that �� =
P1
n=1 �

�
nZ

2
n; where

Zn s iidN(0; 1) for n � 1. Therefore, the characteristic function of �� � �� is given by

� (t) = E
n
eit(�����)

o
= e�it���1n=1 f1� 2i��ntg

�1=2 : (23)

Let �1; �2; �3, ... be the cumulants of �� � ��: Then

�1 = 0 and �m = 2m�1(m� 1)!
1X
n=1

(��n)
m for m � 2: (24)

Some algebraic manipulations show that for m � 2

�m = 2
m�1(m� 1)!

Z 1

0
:::

Z 1

0

0@ mY
j=1

k��(�j ; �j+1)

1A d�1 � � � d�m; (25)

where �1 = �m+1:

With these preliminaries, we are able to develop an asymptotic expansion of

P
n���W (1)��1=2�

��� < zo as the power parameter � ! 1: In fact, a full series expansion
is possible using this method, but our purpose here requires only the leading term in the

expansion.

Theorem 1 The nonstandard limiting distribution under the null hypothesis satis�es

F (z) = P
n���W (1)��1=2�

��� < zo = D(z2) + �D00(z2)z4 � 2D0(z2)z2� =�+O �1=�2� (26)

as �!1; where the O
�
1=�2

�
term holds uniformly for any z 2 [Ml;Mu] with 0 < Ml <

Mu <1:
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For any � 2 (0; 1); let z2� 2 R+; z2�;� 2 R+ such that D(z2�) = 1�� and F (z�;�) = 1��:
Then, using a power series expansion, we have

z2�;� = z
2
� +

1

2�
(5z2� + z

4
�) +O

�
1=�2

�
(27)

and

F

�
z2� +

1

2�
(5z2� + z

4
�)

�
= �+O

�
1=�2

�
; (28)

which we formalize in the following corollary.

Corollary 2 Second order corrected critical values based on the expansion (26) are as

follows:

z2�;� = z
2
� +

1

2�
(5z2� + z

4
�) +O

�
1=�2

�
; (29)

and

z�;� = z� +
1

4�
(5z� + z

3
�) +O

�
1=�2

�
; (30)

for asymptotic chi-square and normal tests, respectively, where z� is the nominal critical

value from the standard normal distribution.

Consider as an example the case where � = 0:05; z� = 1:96 and P (W 2(1) � (1:96)2) =
0:95: Thus, for a two-sided t� (!̂�) test, the corrected critical value to the order O

�
��1
�

at the 5% level is

z�;� = 1:96 +
1

4�
(5� 1:96 + 1:963) = 1:96 + 4:3325

�
: (31)

This is also the critical value for the one-sided test (>) at the 2.5% level.

In PSJa, the critical values for the one-sided test were represented in terms of a

hyperbola taking the following form: z�;� = c + b=(� + a); where c is the critical value

from the standard normal and a and b are constants that were computed by simulation

in PSJa: For the 2.5% level one-sided test, the �tted curve had the form

z�;� = 1:96 +
4:329

�+ 0:469
= 1:96 +

4:329

�
+O

�
1=�2

�
; (32)

upon expansion. Clearly, (32) is remarkably close to the asymptotic expansion (31). Some

calculations show that correspondingly close results hold for other signi�cance levels.

Higher order continued fraction approximants may also be obtained in a similar way.

Calculations indicate that expressions (29) and (30) are quite accurate for moderate values

11



of � (� � 5; say). Since the limiting distributions (11) and (12) are valid for general

regression models under certain conditions on the regressors (see PSJa); the corrected

critical values z�;� and z2�;� may be used for hypothesis testing in a general regression

framework.

We now develop a local asymptotic power analysis using the nonstandard limit theory.

Under the local alternative H1 : � = �0 + cT
�1=2; the limiting distribution of the test

statistic tT = t� (!̂�) for �xed � is (� +W (1)) �
�1=2
� . Let G� = G(�;�2) be the cdf of

a non-central �21(�
2) variate with noncentrality parameter �2; then we can measure the

local asymptotic power by Pf(� +W (1))2 > z2�;���g = 1 � EG�(z2�;���) and develop an
asymptotic approximation to this quantity. Using a Taylor series expansion similar to

(20), we can prove the following theorem.

Theorem 3 The nonstandard limiting distribution under the local alternative hypothesis

H1 : � = �0 + cT
�1=2 satis�es

P
n���(� +W (1)) ��1=2�

��� > z�;�o = 1�G�(z2�)� z4�K� �z2�� =�+O(1=�2); (33)

as �!1 where

K� (z) =
1X
j=0

�
�2=2

�j
j!

e��
2=2 zj�1=2e�z=2

�(j + 1=2)2j+1=2
j

z
(34)

is positive for all all z� and �:

According to Theorem 3, asymptotic test power, as measured by Pf(� +W (1))2 >
z2��g; increases monotonically with � when � is large. Fig. 1 graphs the function

f(z�; �) = z4�K�
�
z2�
�
for di¤erent values of z� and �: For a given critical value, f(z�; �)

achieves its maximum around � = 2, implying that the power increase from choosing a

large � is greatest when the local alternative is in an intermediate neighborhood of the

null hypothesis. For any given local alternative hypothesis, the function is monotonically

increasing in z�: Therefore, the power improvement due to the choice of a large � increases

with the con�dence level 1� �:

5 Expansions of the Finite Sample Distribution

This section develops a �nite sample expansion for the simple location model (c.f., Jansson,

2004). This development, like that of Section 3 and Jansson (2004), relies on Gaussianity,

12
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Figure 1: The graph of f(z�; �) = z4�K�
�
z2�
�
as a function of z� and �.

which facilitates the derivations. The assumption could be relaxed by taking distribu-

tions based (for example) on Gram-Charlier expansions, but at the cost of much greater

complexity (see, for example, Phillips (1980), Taniguchi and Puri (1996), Velasco and

Robinson (2001)).

The following assumption on ut facilitates the development of the higher order expan-

sion.

Assumption 2 ut is a mean zero stationary Gaussian process with

1X
h=�1

h2 j (h)j <1; (35)

where  (h) = Eutut�h:

We consider the asymptotic expansion of Pf
���pT (�̂ � �0)=!̂��� � zg for !̂ = !̂� and

� = �0 + c=
p
T : Depending on whether c is zero or not, such an expansion can be used

13



to approximate the size and power of the t-test.

Recall that T�1=2l0T ~u =
p
T (�̂ � �)�

p
T ( ~� � �). But

!2T := var
�p
T (�̂ � �)

�
= T�1l0T
T lT = !

2 +O
�
T�1

�
and it follows from Grenander and Rosenblatt (1957) that

~!2T := var
�p
T ( ~� � �)

�
= T

�
l0T


�1
T lT

��1
= !2 +O

�
T�1

�
:

Therefore T�1=2l0T ~u = N(0; O(1=T )). Combining this and independence between ~� and

~u, we have

P
np
T
�
�̂ � �0

�
=!̂ � z

o
= P

np
T
�
~� � �

�
=!̂ +

p
T (� � �0) =!̂ + T�1=2l0T ~u=!̂ � z

o
= P

np
T
�
~� � �

�
=~!T + c=~!T � z!̂=~!T � T�1=2l0T ~u=~!T

o
= E�

�
z!̂=~!T � c=~!T � T�1=2l0T ~u=~!T

�
= E� (z!̂=~!T � c=~!T )� T�1=2E' (z!̂=~!T � c=~!T ) l0T ~u=~!T +O (1=T )

= P
np

T
�
~� � �

�
=~!T + c=~!T � z!̂=~!T

o
+O (1=T ) ; (36)

where � and ' are the cdf and pdf of the standard normal distribution, respectively. The

second to last equality follows because !̂2 is quadratic in ~u and thus E' (z!̂=~!T � c=~!T ) l0T ~u =
0. In a similar fashion we �nd that

P
np

T
�
�̂ � �0

�
=!̂ � �z

o
= P

np
T
�
~� � �

�
=~!T + c=~!T � �z!̂=~!T

o
+O (1=T ) :

Therefore

FT (z) := P
n���pT ��̂ � �0� =!̂��� � zo

= P

�hp
T
�
~� � �

�
=~!T + c=~!T

i2
� z2!̂2=~!2T

�
+O (1=T )

= E
�
G�(z

2!̂2=~!2T )
	
= E

�
G�(z

2&�T )
	
+O (1=T ) ; (37)

where &�T := (!̂=!T )
2 converges weakly to ��.

Since !̂2 = T�1û0W�û = T
�1u0ATW�ATu; where W� is T � T with (j; s)-th element

k�((j � s)=T ) and AT = IT � lT l0T =T , &�T is a quadratic form in a Gaussian vector. To

14



evaluate E
�
G�(z

2&�T )
	
; we proceed to compute the cumulants of &�T � ��T for ��T :=

E&�T . It is easy to show that the characteristic function of &�T � ��T is given by

��T (t) =

����I � 2it
TATW�AT
T!2T

�����1=2 exp f�it��T g ;
where 
T = E(uu0) and the cumulant generating function is

ln (��T (t)) = �
1

2
log det

�
I � 2it
TATW�AT

T!2T

�
� it��T :=

1X
m=1

�m;T
(it)m

m!
; (38)

where the �m;T are the cumulants of &�T � ��T : It follows from (38) that �1;T = 0 and

�m;T = 2
m�1(m� 1)!T�m

�
!2T
��m

Trace [(
TATW�AT )
m] for m � 2: (39)

By proving �m;T is close to �m in the precise sense given in Lemma 8 in the appendix,

we can establish the following theorem, which gives the order of magnitude of the error

in the nonstandard limit distribution of tT as T ! 1 with �xed �: The requirement

� � 16z2 on � that appears in the statement of the result is a technical condition in the
proof that facilitates the use of a power series expansion. The requirement can be relaxed

but at the cost of more tedious calculations.

Theorem 4 Let Assumption 2 hold. If � � 16z2; then

FT (z) = P
n���(W (1) + �) ��1=2�

��� � zo+O (1=T ) ; (40)

when T !1 with �xed �:

Under the null hypothesis H0 : � = �0, we have � = 0: In this case, Theorem 4 is

comparable to that of Jansson (2004), which was also obtained for the Gaussian loca-

tion model and for kernels related to the Bartlett kernel (� = 1) but with an error of

O (log T=T ). Theorem 4 indicates that the error in the rejection probability for tests

with � �xed and using critical values obtained from the nonstandard limit distribution

of W (1)��1=2� is O
�
T�1

�
: As in Jansson (2004), this represents an improvement over

conventional tests based on consistent HAC estimates. Under the alternative hypothesis,

1�FT (z) gives the power of the test. Theorem 4 shows that the power of the test can be

approximated by P
n���(� +W (1)) ��1=2�

��� > zo with an error of order O(1=T ):
15



Combined with Theorems 1 and 3, Theorem 4 characterizes the size and power prop-

erties of the test under the sequential limit in which T goes to in�nity �rst for a �xed �

and then � goes to in�nity. Under the sequential limit theory, the size distortion of the

t-test based on the corrected critical values is

P
n���pT ��̂ � �0� =!̂��� � z�;�o� � = O �1=�2 + 1=T �

and the corresponding local asymptotic power is

P
n���pT ��̂ � �0� =!̂��� > z�;�o = 1�G�(z2�)� z4�K� �z2�� =�+O �1=�2 + 1=T � :

To evaluate the order of size distortion, we have to compare the orders of magnitude

of 1=�2 and 1=T: Such a comparison jeopardizes the sequential nature of the limiting

directions and calls for higher order approximation that allows T ! 1 and � ! 1
simultaneously.

The next theorem gives a higher order expansion of the �nite sample distribution for

the case where T ! 1 and � ! 1 at the same time. This expansion validates the use

of the corrected critical values given in the previous section which were derived there on

the basis of an expansion of the (nonstandard) limit distribution.

Theorem 5 Let Assumption 2 hold. If 1=�+ �=T ! 0 as T !1; then

FT (z) = G�(z
2)+

�
G00� (z

2)z4 � 2G0�(z2)z2
� 1
�
�dTG0�(z2)z2

�

T
+O

�
1

T
+
�2

T 2
+
1

�2

�
; (41)

where dT = !
�2
T

PT�1
h=�T+1 jhj (h).

As shown in PSJa; the bias in the HAC estimate !̂2 is of order O (�=T ) when 1=� +

� log T=T ! 0 as T !1, and this bias depends on the coe¢ cient !(1) =
P1
h=�1 jhj (h);

which is the limit of
PT�1
h=�T+1 jhj (h). As is apparent from (41), the bias in estimating

!2 manifests itself in the limiting distribution of the test statistic under both the null and

local alternative hypotheses.

Under the null hypothesis, � = 0 and G�(�) = D(�); so

FT (z) = D(z
2) +

�
D00(z2)z4 � 2D0(z2)z2

� 1
�
� dTD0(z2)z2

�

T
+O

�
1

T
+
�2

T 2
+
1

�2

�
(42)

Note that the leading two terms (up to order O (1=�)) in this expansion are the same as

those in the corresponding expansion of the limit distribution F (z) given in (26) above.
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Thus, use of the corrected critical values given in (29) and (30), which take account of

terms up to order O (1=�) ; should lead to size improvements when �2=T ! 0; in a similar

way to those attained by a KVB type test with �xed �, as shown in Theorem 4 above and

Jansson (2004).

The third term in the expansion (42) is O
�
T�1

�
when � is �xed. When � increases

with T; this term provides an asymptotic measure of the size distortion in tests based on

the use of the �rst two terms of (42), or equivalently those based on the nonstandard limit

theory, at least to order O
�
��1
�
. Thus, the third term of (42) approximately measures

how satisfactory the corrected critical values given by (29) and (30) are for any given

values of � and T .

Under the local alternative hypothesis, the power of the test based on the corrected

critical value is 1� FT (z�;�): Theorem 5 shows that FT (z�;�) can be approximated by

G�(z
2
�;�) +

�
G00� (z

2
�;�)z

4
�;� � 2G0�(z2�;�)z4�;�

� 1
�
� dTG0�(z2�;�)z2�;�

�

T

with an approximation error of order O
�
1=T + �2=T 2 + 1=�2

�
:

We formalize the results on the size distortion and local power expansion in the fol-

lowing corollary.

Corollary 6 Let Assumption 2 hold. If 1=�+ �=T ! 0 as T !1, then
(a) the size distortion of the t-test based on the second order corrected critical values

is

(1� FT (z�;�))� � = dTD0(z2)z2
�

T
+O

�
1

T
+
�2

T 2
+
1

�2

�
: (43)

(b) under the local alternative H1 : � = �0 + c=
p
T , the power of the t-test based on

the second order corrected critical values is

P
����pT (�̂ � �0)=!̂��� � z�;��
= 1�G�(z2�)� z4�K�

�
z2�
� 1
�
+ dTG

0
�(z

2
�)z

2
�

�

T
+O

�
1

T
+
�2

T 2
+
1

�2

�
: (44)

It is clear from the proof of the theorem that the size distortion of the t-test based

on the nonstandard limiting theory can also be approximated by dTD0(z2)z2�=T with

an approximation error of order O
�
1=T + �2=T 2 + 1=�2

�
: Therefore, the critical values

from the nonstandard limiting distribution provide a second order correction on the crit-

ical values from the standard normal distribution. By mimicking the randomness of the
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denominator of the t-statistic, the nonstandard limit theory provides a more accurate

approximation to the �nite sample distribution. However, just as with the standard limit

theory, the nonstandard limit theory does not deal with the bias problem of long run

variance estimation.

Comparing (44) with (33), we get an additional term which arises from the asymptotic

bias of the long run variance estimator. For economic time series, it is typical that dT > 0;

as discussed below. So this additional term also increases monotonically with �; thereby

increasing power. Of course, size distortion also tends to increase with � as is apparent

in (43), so we now need �nd a value of � to balance size distortion with increasing power.

Practical suggestions for choosing � are given in the next section.

6 Optimal Choice of �

When estimating the long run variance, PSJa show there is an optimal choice of � which

minimizes the asymptotic mean squared error of the estimate and gives an optimal ex-

pansion rate of O
�
T 2=3

�
for � in terms of the sample size T: Developing an optimal choice

of � for semiparametric testing is not as straightforward. In what follows we provide one

possible approach to constructing an optimizing criterion that is based on balancing the

type I and type II errors induced by various choices of �:

Using the expansion (43), the type I error for a nominal size � test can be expressed

as

1� FT (z�;�) = �+ dTD0(z2�)z2�
�

T
+ o

�
1

�
+
�

T

�
; (45)

Similarly, from (44), the type II error has the form

G�(z
2
�) + z

4
�K�(z

2
�)
1

�
� dTG0�(z2�)z2�

�

T
+ o

�
1

�
+
�

T

�
: (46)

A loss function for the test may be constructed based on the following three factors: (i)

The magnitude of the type I error, as measured by the second term of (45); (ii) The

magnitude of the type II error, as measured by the O (1=�) and O(�=T ) terms in (46);

and (iii) the relative importance of type I and type II errors. These two types of errors

are related to the size and power of the test and we use both sets of terminology which

shall not cause any confusion.
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For most economic time series we can expect that dT > 0 and then both dTD0(z2�)z
2
� >

0 and dTG0�(z
2
�)z

2
� > 0: Hence, the �=T term in (45) typically leads to upward size dis-

tortion (large type I error) in testing, as found in simulations by PSJa and this upward

distortion corresponds to that found in work by KV and others on the use of conven-

tional HAC estimates in testing. On the other hand, the �=T term in (46) indicates

that there is a corresponding increase in power of a similar magnitude by virtue of the

third term of (46) as the type II error is correspondingly reduced. Indeed, for � > 0 this

power increase will generally exceed the upward size distortion from dTD0(z2�)z
2
� because

G0�(z
2
�) > D

0(z2�) for � 2 (0; 7:5) and z� = 1:645; 1:960 or 2:580. Fig. 2 graphs the ratio
G0�(z

2)=D0(z2) against � for di¤erent values of z; illustrating the relative magnitude of

G0�(z
2
�) and D

0(z2�): The situation is further complicated by the fact that there is an

additional term in the type II error of O (1=�) that a¤ects power. As we have seen earlier,

K�(z
2
�) > 0 so that the second term of (46) leads to an increase in power (or a reduction

in the type II error) as � increases. Thus, power generally increases with � for two reasons

�one from the nonstandard limit theory and the other from the (typical) downward bias

in estimating the long run variance.

The case of dT < 0 usually arises where there is negative serial correlation in the

errors and so tends to be less typical for economic time series. In such a case, (45) shows

that type I error is capped at the nominal level �; at least up to an error of o (�=T ) :

Test size is then conservative and the goal in selection of � is to cap the type I error

while attempting to reduce the type II error as much as possible. In this case, we have

dT
�
D0(z2�)�G0�(z2�)

	
> 0 provided that � is not too large (Fig. 2).

These considerations suggest that a loss function may be constructed by taking a

suitable weighted average of the type I and type II errors given in (45) and (46). The loss

function below distinguishes the two cases where dT > 0 and dT < 0 in terms of the

weights employed. We de�ne

L (�; �; T; z�)

= AIT

�
�+ dTD

0(z2�)z
2
�

�

T

�
+AIIT

�
G�(z

2
�) +

1

�
z4�K�(z

2
�)�

�

T
dTG

0
�(z

2
�)z

2
�

�

=

8<: dT
�
AITD

0(z2�)�AIIT G0�(z2�)
	
z2�

�
T +A

II
T z

4
�K�(z

2
�)
1
� + C

+
T , dT > 0

dT
�
D0(z2�)�G0�(z2�)

	
z2�

�
T + z

4
�K�(z

2
�)
1
� + C

�; dT < 0
(47)

where C+T = A
I
T�+A

II
T G�(z

2
�) and C

� = �+G�(z
2
�) do not depend on �; and A

I
T and A

II
T
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Figure 2: The graph of G0�(z
2)=D0�(z

2) as a function of � for di¤erent values of z

are weights on the type I and II errors that are permitted to be functions of the sample

size T: Obviously, the loss L (�; �; T; z�) is speci�ed for a particular value of � and this

function could be adjusted in a simple way so that the type II error is averaged over a

range of values of � with respect to some (prior) distribution over alternatives.

The idea behind the form of the loss function (47) is that priority may be placed on

capping size in testing, so that when the type I error is distorted toward over-rejection

(as it is when dT > 0) weights are introduced to amplify the loss from the type I error

relative to the loss from the type II error, leading to the inequality AIT > AIIT . When

AITD
0(z2�) � AIIT G0�(z2�) > 0; the loss function L (�; �; T; z�) is then minimized for the

following choice of �

�opt =

8>>>><>>>>:

"�
AIIT z

2
�K�(z

2
�)

dTfAITD0(z2�)�AIIT G0�(z2�)g

�1=2
T 1=2

#
1 fdT > 0g ;"�

z2�K�(z
2
�)

dTfD0(z2�)�G0�(z2�)g

�1=2
T 1=2

#
1 fdT < 0g ;

(48)

where 1 f�g is the indicator function. Since dT = d(1 + O(1=T )) where
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d :=
P1
h=�1 jhj (h)=!2; d approximately measures the e¤ects of the bias in long

run variance estimation on the size and power of the t-test. As a result, dT in (48) can

be replaced by d when d is available.

If the relative weight satis�es

aT =
AIT
AIIT

!1 as T !1; (49)

we then have

�opt =

�
z2�K�(z

2
�)

dTD0(z2�)

�1=2�
T

aT

�1=2
[1 + o (1)] ; for dT > 0: (50)

Fixed � rules may then be interpreted as assigning relative weight aT = O (T ) in the loss

function so that the emphasis in tests based on such rules is size accuracy, at least when

we expect the size distortion to be toward over-rejection. This gives us an interpretation

of �xed � rules in terms of the loss perceived by the econometrician in this case. Similar

considerations would apply in a development along these lines for the �xed bandwidth

rules suggested in KV for untruncated conventional kernel estimates.

Otherwise, when aT is large enough to ensure AITD
0(z2�)�AIIT G0�(z2�) > 0; (50) leads to

the expansion rate �opt = O
�
T 1=2

�
: Fig. 2 shows that when aT � 14 and the signi�cance

level is less than 1%; AITD
0(z2�) � AIIT G0�(z2�) is positive for a broad range of values of

�: Within this general framework, � may be �xed or expand with T up to an O
�
T 1=2

�
rate corresponding to the relative importance that is placed in the loss function on size

and power. Also, according to formula (48) for the case dT > 0; �opt decreases as

size distortion (measured by dT z2�D
0(z2�) or the parameter dT ) increases. So, again,

a smaller � is preferred when size distortion becomes more important given the speci�c

autocorrelation structure measured via its e¤ect on dT :

Observe that when � = O (T=aT )
1=2, size distortion is of order O (TaT )

�1=2 rather

than O
�
T�1

�
; as it is when � is �xed. Thus, the use of � = �opt for a �nite aT involves

some compromise by allowing the error order in the rejection probability to be somewhat

larger in order to achieve higher power. Such compromise is an inevitable consequence of

balancing the two elements in the loss function (47).

In cases where size is expected to be conservatively biased (i.e., when dT < 0), the

rule in (48) balances size distortion and power reduction with the same weights in the

loss function. That is, AIT = A
II
T = 1 in this case. This weighting might be justi�ed by
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the argument that in the case of a conservative bias, test size is e¤ectively capped and so

additional weighting on size distortion is not required. In this case, it seems worthwhile

to take advantage of the extra gains in power from increasing �: Correspondingly, the

expansion rate for �opt in (48) in this case turns out to be O
�
T 1=2

�
:

The formula for �opt involves the unknown parameter d ; which can be estimated

nonparametrically or by a standard plug-in procedure based on a simple model like an

AR(1). Both methods achieve a valid order of magnitude and the procedure is obviously

analogous to conventional data-driven methods for HAC estimation.

To sum up, the value of � which minimizes size distortion in conjunction with rais-

ing power as much as possible has an expansion rate of O (T=aT )
1=2 ; which is at most

O
�
T 1=2

�
This rate may be compared with the optimal rate of O

�
T 2=3

�
which applies when

minimizing the mean squared error of estimation of the corresponding HAC estimate, !̂2;

itself (PSJa). Thus, the MSE optimal values of � for HAC estimation are much larger

as T ! 1 than those which are most suited for statistical testing. In e¤ect, optimal

HAC estimation tolerates more bias in estimation in order to reduce variance in estima-

tion. In contrast, optimal � selection in HAR testing undersmooths the long run variance

estimate to reduce bias and allows for greater variance in long run variance estimation

through higher order adjustments to the nominal asymptotic critical values or by direct

use of the nonstandard limit distribution.

7 Simulation Evidence

In this section, we �rst provide some simulation evidence on the accuracy of the size

approximation given in Corollary 6 and then investigate the performance of the t-test

based on the plug-in procedure that optimizes the loss function constructed in the previous

section.

7.1 Estimation of the ERP

We consider the simple location model yt = �0+ut as the data generating process, where

�0 is set to be zero without the loss of generality and ut follows the Gaussian ARMA(1,1)

process

ut = �ut�1 + "t + �"t�1; "t s iidN(0; �2): (51)
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In the simulations, we take processes corresponding to all possible combinations of the

following parameter choices:

� = 0:9; 0:6; 0:3; 0;�0:3;�0:6;�0:9 and

� = 0:9; 0:6; 0:3; 0;�0:3;�0:6;�0:9

We consider the sample sizes T = 50; 100; 200 and 50; 000 replications are used in all

cases. We compute the ERP or size distortion (empirical size � nominal size) of the

t�-test for testing the null hypothesis that � = 0 against the alternative that � 6= 0. To
illustrate how well the asymptotic theory works as the power parameter � varies in this

�nite sample, we compute the size distortion for � = 1; 2; :::; 50: We set the asymptotic

signi�cance level to 10%; and compute the critical values using our hyperbola formula

obtained in PSJa

z�;� = 1:645 +
3:127

�+ 0:457
: (52)

Using the critical value

z�;� = 1:645 +
3:169

�

as given by Corollary 2 produces essentially the same result.

To compare the results of our t�-test with those of the conventional t-test, we also

compute the size distortion for the conventional t-test constructed using sharp origin

kernels. In this case, we use the usual standard normal critical value of 1:645 for all

values of �. Note that we use the same statistic for the t�-test and t-test. The only

di¤erence is that the t�-test uses critical values from the preceding hyperbola formula

while the t-test uses critical values from the standard normal.

We report only the results for sample size T = 50 as the results for other sample sizes

are qualitatively similar. The results are displayed in Figs. 3�7, which graph the size

distortion against the power parameter �: We present only a few cases for illustration.

There are several noticeable patterns. First, the size distortion curve for the t-test is

always above that for the t�-test. As a result, when the size distortion for the t�-

test is positive, the new �xed-� asymptotics provides a better approximation to the null

distribution than the conventional large-� asymptotics. When the size distortion for the

t�-test is negative, the �xed-� asymptotics continue to give a better approximation when �

is small but its performance is slightly worse than the large-� asymptotics when � is large.
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This �nding con�rms the implication of Theorem 4. Second, Corollary 6 provides very

good approximations to the �nite sample size distortions. For the ARMA(1; 1) process

(51), we have
1X

h=�1
jhj (h) = 2(1 + ��)(�+ �)

(1� �)3(1 + �) �
2;

and !2 = (1 + �)2 (1� �)�2 �2: Thus, according to Corollary 6, size distortion is approx-
imated by

2(1 + ��)(�+ �)

(1� �2) (1 + �)2
D0(z2)z2

�

T
+O

�
1

T
+
�2

T 2
+
1

�2

�
: (53)

When � = 0; the coe¢ cient for D0(z2)z2�=T becomes 2�=(1 � �2); indicating that the
direction of the size distortion depends on the sign of � and its absolute value grows

dramatically with j�j : Similarly, when � = 0; the direction of the size distortion depends
on the sign of � and its absolute value grows with j�j : These theoretical predictions are
supported by the simulation results.

In view of the form of (53), for given T size distortion can be approximated to the

�rst order as a linear function of the power parameter � of the form

erp = c0 + �c1;

which is conformable with Corollary 6. Table 1 gives OLS estimates of c0 and c1, the

standard error and the R2 of the linear approximation. Apparently, the linear function

�ts the size distortion quite well, even for persistent error processes. Note that the ERP

has a lower bound �0:10. For AR and MA processes with large negative AR or MA

parameters and some ARMA processes, the ERP reaches the lower bound for large values

of �: Simulation results show that for these cases the ERP curve is approximately linear

for small � and then becomes �at for large �: This nonlinear feature renders linear �tting

less satisfactory.

Table 1 and Fig. 4 reveal that for an AR(1) process with a large absolute AR parameter

there is more curvature in the �nite sample size distortion as � increases. This is because

higher order terms in (53) become more important in such cases. As is clear from Corollary

6, the error in the size distortion formula (53) involves additional terms of order O
�
1=�2

�
and O

�
�2=T 2

�
. The latter terms become important for large values of �; indicating

that the approximation suggested by (43) is most likely to be appropriate when � is
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moderately valued. Calculations reveal that when � = O
�p
T
�
, the formula 2(1+��)(�+

�)
��
1� �2

�
(1 + �)2

��1
D0(z2)z2=T provides a good approximation of the slope.

Table 1: OLS Estimation of the Linear Function erp = c0 + �c1

for ARMA(1,1) Processes with AR parameter � and MA parameter �

(�; �) (0:9; 0) (0:6; 0) (0:3; 0) (�0:3; 0) (�0:6; 0) (�0:9; 0)
c0 0:2516 0:0502 0:0157 �0:0178 �0:0439 �0:0859
c1 0:0067 0:0037 0:0015 �0:0008 �0:0011 �0:0004
s:e: 0:0309 0:0070 0:0024 0:0020 0:0053 0:0037

R2 0:91 0:98 0:99 0:98 0:90 0:66

(�; �) (0; 0:9) (0; 0:6) (0; 0:3) (�0:3; 0) (�0:6; 0) (�0:9; 0)
c0 0:0108 0:0105 0:0077 �0:0303 �0:0841 �0:1000
c1 0:0015 0:0013 0:0009 �0:0009 �0:0004 0:0000

s:e: 0:0011 0:0012 0:0010 0:0034 0:0040 0:0000

R2 1:00 1:00 0:99 0:93 0:68 1:00

(�; �) (�0:6; 0:3) (0:3;�0:6) (0:3; 0:3) (0; 0) (0:6;�0:3) (�0:3; 0:6)
c0 �0:0125 �0:0568 0:0207 �0:0010 0:0411 0:0042

c1 �0:0008 �0:0007 0:0021 0:0001 0:0026 0:0006

s:e: 0:0002 0:0041 0:0028 0:0004 0:0068 0:0006

R2 0:98 0:87 0:99 0:85 0:97 1:00

7.2 Performance of the Plug-in Procedure

We provide some brief illustrations on the new plug-in procedure for selecting � in practical

work. We employ the AR(1) plug-in procedure, which for the process vt = �vt�1 + et;

leads to d = !�2
P+1
h=�1 jhj (h) = 2�=(1��2) as shown in (53). We consider the simple

local model with Gaussian ARMA(1,1) errors:

y = � + c=
p
T + ut

where c = 0 or 4:1075 and

ut = �ut�1 + "t + �"t�1; "t s iidN(0; 1): (54)
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Figure 3: Size distortion for ARMA(1,1) Errors with (�; �) = (0:6; 0) and T = 50
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Figure 4: Size distortion for ARMA(1,1) Errors with (�; �) = (0:9; 0) and T = 50
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Figure 5: Size distortion for ARMA(1,1) Errors with (�; �) = (�0:6; 0) and T = 50
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Figure 6: Size distortion for ARMA(1,1) Errors with (�; �) = (0:0; 0:6) and T = 50
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Figure 7: Size distortion for ARMA(1,1) Errors with (�; �) = (0:6;�0:3) and T = 50

Under the null c = 0 and under the local alternative c = 4:1075: The latter value of c is

chosen such that when � = 0:6 and � = 0; the local asymptotic power of the t-test is 50%:

In other words, c = 4:1075 solves P fj(c(1� �) +W (1))j � 1:645g = 50% for � = 0:6: As

before, we consider three sample sizes T = 50; 100 and 200:

For each data generating process, we obtain an estimate �̂ of the AR coe¢ cient by

�tting an AR(1) model to the demeaned time series. Given the estimate �̂; dT can be

estimated by d̂ =
�
2�̂
�
=(1 � �̂2): As suggested in Section 6, we use symmetric weights

AIT = A
II
T = 1 when d̂ < 0 and use asymmetric weights AIT = 10; 20; or T and A

II
T = 1

when d̂ > 0: We set the signi�cance level to be � = 10% and the corresponding nominal

critical value for the two sided test is z� = 1:645: For all DGPs, we let � = 2 in computing

the optimal power parameter. More speci�cally,

�̂opt =

8>>>><>>>>:

"�
(1��̂2)
(2�̂)

z2�K�(z
2
�)

faTD0(z2�)�G0�(z2�)g

�1=2
T 1=2

#
1
n
d̂ > 0

o
;"�

(1��̂2)
(2�̂)

z2�K�(z
2
�)

fD0(z2�)�G0�(z2�)g

�1=2
T 1=2

#
1
n
d̂ < 0

o
;

(55)

for z� = 1:645; � = 2; aT = 10; 20; or T . For each choice of aT ; we obtain �̂opt and use it to
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construct the LRV estimate and corresponding t�-statistic. We reject the null hypothesis

if

jt�j � 1:645 + 3:169=�̂opt;

the corrected critical value from Corollary 2. We may use the critical value from the

hyperbola formula as given in (52) but the results are essentially the same. Using 50000

replications, we computed the empirical type I errors (when c = 0) and type II errors

(when c = 4:1075). Depending on whether the true d is positive or not, we calculate

the empirical loss by taking a weighted average of the type I and type II errors. When

d > 0; the weights associated with the type I and II errors are aT =(1+aT ) and 1=(1+aT );

respectively. When d > 0; we use equal weights so that the weights are 50% for both

types of errors.

For comparative purposes, we also compute the empirical loss function when the power

parameter is the �optimal�one that minimizes the asymptotic mean squared errors of the

LRV estimator. The formula for this power parameter is given in PSJa and a plug-in

version is

�̂MSE =

24 (1� �̂2)2
4�̂2

!1=3
T 2=3

35 :
Table 2 reports the empirical loss only for the sample size T = 100; as it is representa-

tive of other sample sizes. It is clear that the new plug-in procedure incurs a signi�cantly

smaller loss than the conventional plug-in procedure when d > 0; which is typical for

economic time series. This is true for all values of aT and parameter combinations con-

sidered. Simulation results not reported show that the superior performance of the new

procedure also holds for smaller values of aT such as aT = 2; although the advantage

of the new procedure is reduced. When d < 0; the new plug-in procedure is slightly

outperformed by the conventional plug-in procedure. In this case, the reduction in the

type II error from choosing a large value of � outweighs the increase in the type I error,

as the type I error is capped by the nominal size.

In sum, the simulation results in this and previous subsections show that the size and

power (or type I and type II errors) expansions given in Corollary 6 provide satisfactory

approximations to the �nite sample size and power. The simulation results also reveal

that the new plug-in procedure works well in terms of incurring a smaller loss than the

conventional plug-in procedure.
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Table 2: Empirical Loss Using Di¤erent Plug-in ��s for

ARMA(1,1) Processes with AR parameter � and MA parameter �

aT = 10 aT = 20 aT = T

(�; �) �̂opt �̂MSE �̂opt �̂MSE �̂opt �̂MSE

(0:9; 0) 0:2515 0:3900 0:2069 0:3789 0:1363 0:3691

(0:6; 0) 0:1815 0:2450 0:1448 0:2251 0:0994 0:2078

(0:3; 0) 0:1546 0:1864 0:1288 0:1709 0:0953 0:1575

(�0:3; 0) 0:1490 0:1421 0:1491 0:1421 0:1491 0:1421

(�0:6; 0) 0:0885 0:0852 0:0885 0:0852 0:0885 0:0852

(�0:9; 0) 0:0693 0:0584 0:0693 0:0584 0:0693 0:0584

(0; 0:9) 0:1593 0:1953 0:1280 0:1737 0:0851 0:1550

(0; 0:6) 0:1539 0:1863 0:1256 0:1677 0:0858 0:1514

(0; 0:3) 0:1451 0:1686 0:1224 0:1538 0:0925 0:1409

(0;�0:3) 0:1225 0:1178 0:1225 0:1178 0:1225 0:1178

(0;�0:6) 0:0155 0:0156 0:0155 0:0156 0:0155 0:0156

(0;�0:9) 0:0001 0:0000 0:0001 0:0000 0:0001 0:0000

(�0:6; 0:3) 0:1661 0:1584 0:1661 0:1584 0:1662 0:1584

(0:3;�0:6) 0:0831 0:0804 0:0830 0:0804 0:0829 0:0804

(0:3; 0:3) 0:1626 0:2061 0:1313 0:1865 0:0888 0:1694

(0; 0) 0:2389 0:2276 0:2419 0:2276 0:2509 0:2276

(0:6;�0:3) 0:1756 0:2296 0:1451 0:2141 0:1059 0:2007

(�0:3; 0:6) 0:1396 0:1573 0:1192 0:1429 0:0919 0:1303

8 Conclusion and Extensions

The size distortion that arises in nonparametrically studentized testing where consistent

HAC estimates are used is now well documented. Reductions in this size distortion may

be achieved by the use of inconsistent untruncated HAC estimates in the construction of

these tests which in turn rely on nonstandard limit distributions for the critical values.
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However, these improvements in size typically come at the cost of substantial reductions

in test power.

The solution to this problem that is suggested in this paper involves a compromise,

whereby untruncated kernels are still employed but the exponent in the power kernel

is chosen so as to control size distortion and to maintain power. The criterion func-

tion used here is based on asymptotic expansions of the distribution of the test under

both the null and alternative hypotheses. The rule for selecting the optimal exponent in

the power kernel generally has an expansion rate of O
�
T 1=2

�
or less, and is slower than

the rate O
�
T 2=3

�
for optimizing the asymptotic mean squared error in HAC estimation.

Thus, optimal exponent selection (or, in the terminology of conventional HAC estimation,

bandwidth selection) to improve test size and power in HAR inference is di¤erent from

optimal exponent selection for HAC estimation. HAR testing along these lines actually

undersmooths the long run variance estimate to reduce bias and allows for greater vari-

ance in long run variance estimation as it is manifested in the test statistic by means of

higher order adjustments to the nominal asymptotic critical values or by direct use of the

nonstandard limit distribution.

The asymptotic expansions of the �nite sample distribution of �̂ could be extended

to the regression model of the form: yt = � + x0t + ut where xt is a strongly exoge-

nous mean zero vector process. In this case, the OLS and GLS estimators of � satisfy

var
�p
T (�̂ � �)�

p
T ( ~� � �)

�
= O(1=T ) and

p
T (�̂� �)�

p
T ( ~�� �) is independent of

p
T ( ~� � �). These properties ensure that FT (z) = E

�
G�(z

2&�T )
	
+ O (1=T ) ; a crucial

step in establishing the asymptotic expansions. Replacing u by u� = (I�X(X 0X)�1X 0)u

for X = (x1; :::; xT )
0 in Assumption 2 and using the same proofs, we can easily establish

the asymptotic expansions in Section 5 conditioning on X.

The analysis here could be extended to apply to robust tests where other (positive)

kernels are used as the mother kernel prior to exponentiation (PSJb), or where existing

HAC estimation procedures are employed with bandwidth proportional to the sample size

(KV). While higher order expansions in those cases will be needed to extend the theory,

we conjecture that the formulae will end up being very similar to those given here. In

particular, we anticipate that the size distortion in testing will depend on the bias in HAC

estimation, for which formulae have already been derived for steep origin kernels in PSJb

and are well known in the spectral analysis literature (e.g. Hannan, 1970) for estimates
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based on conventional truncated kernels. Expressions for power reductions will be easy

to obtain for di¤erent mother kernels using the methods of Section 5. These extensions

of the present theory will be reported and evaluated elsewhere.

9 Appendix

9.1 Technical Lemmas and Supplements

Lemma 7 The cumulants of �� � �� satisfy

j�mj � 2m�1(m� 1)!
�

4

�+ 1

�m�1
(56)

and the moments �m = E (�� � ��)m satisfy

j�mj � 22m�2(m� 1)!
�

4

�+ 1

�m�1
: (57)

Proof of Lemma 7. Note that������
Z 1

0
:::

Z 1

0

0@ mY
j=1

k��(�j ; �j+1)

1A d�1 � � � d�m
������

�
Z 1

0
:::

Z 1

0

��k��(�1; �2)k��(�2; �3) � � � k��(�m�1; �m)�� ��k��(�m; �1)�� d�1 � � � d�m
�
Z 1

0
:::

Z 1

0

��k��(�1; �2)k��(�2; �3) � � � k��(�m�1; �m)�� d�1 � � � d�m
� sup

�2

Z 1

0

��k��(�1; �2)�� d�1 Z 1

0

��k��(�2; �3)k��(�3; �4) � � � k��(�m�1; �m)�� d�2 � � � d�m
� sup

�2

Z 1

0

��k��(�1; �2)�� d�1 sup
�3

Z 1

0

��k��(�2; �3)�� d�2::: sup
�m

Z 1

0

�
k��(�m�1; �m)

�
d�m�1

=

�
sup
s

Z 1

0

��k��(r; s)�� dr�m�1 : (58)

But

sup
s2[0;1]

Z 1

0

��k��(r; s)�� dr
= sup
s2[0;1]

Z 1

0

����k�(r � s)� Z 1

0
k�(r � p)dp�

Z 1

0
k�(s� q)dq +

Z 1

0

Z 1

0
k�(p� q)dpdq

���� dr
= sup
s2[0;1]

Z 1

0

�����k�(r � s)� 2� r1+� � (1� r)1+��+ 1
� 2� s

1+� � (1� s)1+�

�+ 1
+

2

�+ 2

����� dr
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� sup
s2[0;1]

�Z 1

0
k�(r � s)dr+Z 1

0

 
4� r1+� � (1� r)1+� � s1+� � (1� s)1+�

�+ 1
� 2

�+ 2

!
dr

)

= sup
s2[0;1]

2
2� s1+� � (1� s)1+�

�+ 1
� 4

�+ 1
; (59)

using the fact that Z 1

0

Z 1

0
(1� jr � pj)� dpdr = 2

�+ 2
: (60)

Therefore ������
Z 1

0
:::

Z 1

0

0@ mY
j=1

k��(�j ; �j+1)

1A d�1 � � � d�m
������ �

�
4

�+ 1

�m�1
; (61)

and

j�mj � 2m�1(m� 1)!
�

4

�+ 1

�m�1
: (62)

Note that the moments f�jg and cumulants f�jg satisfy the following recursive relation-
ship:

�1 = �1; �m =

m�1X
j=0

�
m� 1
j

�
�j�m�j : (63)

It follows easily by induction from (62), (63) and the identity

m�1X
j=0

�
m� 1
j

�
= 2m�1; (64)

that

j�mj � 22m�2(m� 1)!
�

4

�+ 1

�m�1
: (65)

Lemma 8 Let Assumption 2 hold. When T !1 with � �xed; we have

(a)

��T = �� +O

�
1

T

�
: (66)

(b)

�m;T = �m +O

(
m!2m�1

T 2

�
4

�+ 1

�m�2)
(67)

uniformly over m � 1:
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(c)

�m;T = E (&�T � ��T )m = �m +O
(
22m�1m!

T 2

�
4

�+ 1

�m�2)
(68)

uniformly over m � 1:

Proof of Lemma 8. We �rst calculate ��T =
�
T!2T

��1Trace(
TATW�AT ) : Let W �
� =

ATW�AT ; then the (i,j)-th element of W �
� is
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So
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where C(h1) is a function of h1 satisfying jC(h1)j � h1: Similarly,
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Therefore, Trace(
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where we have used the second order Taylor expansion:
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A similar result is given and proved in (95) below.
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uniformly over m:
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m�1(m� 1)!T�m

�
!2T
��m

Trace [(
TATW�AT )
m]

= 2m�1(m� 1)!
(
T�m

X
r

~k�

�r2j
T
;
r2j+2
T

�
+O

"
m

T 2

�
4

�+ 1

�m�2#)

= 2m�1(m� 1)!

8<:
Z mY

j=1

Z 1

0
k��(�j ; �j+1)d�jd�j+1 +O

"
m

T 2

�
4

�+ 1

�m�2#9=;
= �m +O

(
m!2m�1

T 2

�
4

�+ 1

�m�2)
; (85)

uniformly over m:
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Following the same procedure, we can show that

I2 =
T�1X
h1=1

TX
r2=1

0X
h2=1�T

TX
r4=1

n
~k�

�r2
T
;
r4
T

�
~k�

�r4
T
;
r2
T

�o
(h1)(h2) +O (T ) ;

I3 =

0X
h1=1�T

TX
r2=1

TX
r2=1

TX
r4=1

n
~k�

�r2
T
;
r4
T

�
~k�

�r4
T
;
r2
T

�o
(h1)(h2) +O (T ) ;

and

I4 =
0X

h1=1�T

TX
r2=1

0X
h2=1�T

TX
r4=1

n
~k�

�r2
T
;
r4
T

�
~k�

�r4
T
;
r2
T

�o
(h1)(h2) +O (T ) :

As a consequence,

Trace
h
(
TATW�AT )

2
i

=
X
r2;r4

n
~k�

�r2
T
;
r4
T

�o2 T�1X
h=1�T

(h1)

!2
+O (T ) ; (97)

and

�2;T = 2T
�2 �!�4T �Trace h(
TATW�AT )

2
i

= 2

Z 1

0

�
k��(r; s)

�2
drds+O

�
1

T

�
=

2

�+ 1
+O

�
1

T

�
: (98)

The proof for �3;T is essentially the same except that we use Lemma 7 to obtain the �rst

term O
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: Details are omitted.

9.2 Proofs of the Main Results

Proof of Theorem 1. Using the formula from (25), we obtain
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Combining (20), (99), (100) and �� = �=(�+ 2) yields
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where the O (�) term holds uniformly for any z 2 [Ml;Mu] where 0 < Ml < Mu <1:
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from which we get
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as stated.

Proof of Theorem 3. A Taylor series expansion gives
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as � ! 1, where the last equality follows from the same proof as Theorem 1. Since
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Note that
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and
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completing the proof of the theorem.

Proof of Theorem 4. First, since G�(�) is a bounded function, we can rewrite (20) as
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where the last line follows because the in�nite sum
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provided that �+1 > 16z2: As a consequence, the limit limB!1 can be moved inside the

summation sign in (115), giving
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when �+ 1 > 16z2:

Second, it follows from (37) that
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when �+ 1 > 16z2: Therefore
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where the second equality holds because G
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follows from (120). This completes the proof of Theorem 4.

Proof of Theorem 5. It follows from Lemma 9 that when �!1,
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so
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as desired.

Proof of Corollary 6. Part (a). Using Theorem 5, we have, as 1=�+ 1=T + �=T ! 0
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Part (b). Plugging z2�;� into (41) yields
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where the last equality follows from the same proof as Theorem 3.
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