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Abstract

In incomplete information environments with transferable utility, efficient outcomes are gen-

erally implementable unless interim or ex post participation constraints are imposed on the

problem. In this paper we show that linking a sufficiently large number of independent but

possibly unrelated social decisions, a slightly perturbed Groves mechanism can implement an

efficient outcome with probability arbitrarily close to one, while respecting all participation,

incentive and balanced budget constraints.
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1 Introduction

A common source of inefficiencies in collective decisions problems with privately informed agents

is the interaction between incentive constraints, participation constraints, and resource constraints.

In the absence of participation constraints, ex post efficiency is attainable in models with trans-

ferable utility and private values, since transfers can be set up so that all agents internalize their

externalities (Groves [13], d’Aspremont and Gerard-Varet [11] and Arrow [2]). In contrast, if par-

ticipation and resource constraints are both added to the problem, it is in general impossible to

achieve ex post efficient outcomes.1

In this paper we argue that a natural way to overcome these inefficiencies is to “link” unrelated

problems. The key effect of considering two problems at the same time is that, for each type-

vector realization of each agent, the mechanism designer needs only to be concerned about one

participation constraint, rather than one for each problem. Linking must therefore weakly improve

the allocation, because the set of feasible mechanisms is enlarged.

Our first result is that, in an economy with a sufficiently large number of unrelated decision

problems (that satisfy stochastic independence and some regularity conditions), we can construct

an ex ante budget-balancing Groves mechanism under which the failure of participation constraints

occur with vanishingly small probability. This is both intuitive and straightforward to show. The

key intuition is that, since Groves mechanisms are efficient, lump sum transfers can be constructed

that budget balances in expectation and all agents have a strict incentive to participate, if making

the decision behind a veil of ignorance. But, the average interim utility (where the averaging is over

the decision problems) converges in probability to the average ex ante expected utility. It follows

that violations of participation constraints become rare as the number of decision problems grow

large.

While rare, violations of the participation constraints do in general occur with positive proba-

bility regardless of how many problems are linked. We therefore also ask whether a nearly efficient

mechanism that always fulfill the participation constraints and budget balance can be constructed.

This analysis turns out to be more subtle than the rather direct law of large numbers style reasoning

used to argue that a Groves mechanism is “almost implementable”. The main difficulty is how to

rule out unravelling of the participation constraints. Specifically, to always satisfy the participation

constraints we need to allow agents to opt out of the Groves mechanism. But then, the incentives

1Cramton et al [9], Mailath and Postlewaite [15], and Myerson and Satterthwaite [17] are some well-known exam-

ples.
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to opt into the mechanism depends on which other types will do so. Hence, even if few types have

an incentive to opt out when assuming that all other agents will opt in, the types that opt out

may upset the participation constraints for other types. In general, it is possible that the types

with the most to gain from opting out are the types that contribute the most to social surplus,

implying that there could be negative selection of agents into the mechanism if allowing agents to

veto implementation.

The main result of this paper shows that a mechanism can be constructed so as to rule out

any unravelling of participation constraints. Specifically, we consider a slight perturbation of the

Groves mechanism, which satisfies all constraints — including the participation constraints — for

all type realizations. We show that this mechanism can implement the efficient outcome with a

probability arbitrarily close to one, provided that the number of unrelated decisions is sufficiently

large. The perturbed Groves mechanism has an sequential interpretation where in first stage, all

agents decide whether to agree to play a (particular) Groves mechanism. If some agent decides

to opt out of the mechanism then the status quo outcome that gives all agents their reservation

utility is implemented (i.e., all agents have veto power); if all agents agree to participate in the

Groves mechanism, truth-telling is a conditionally dominant strategy, thus the efficient outcome

is implemented. Interestingly, the use of a Groves mechanism (as opposed to an ex post budget

balanced mechanism) is crucial for our argument, despite the fact that our result “only” is a result

in terms of Bayesian implementability. The reason is that selection becomes irrelevant for behavior

in the “second stage”, which in turn gives a tractable characterization of the “veto game”.

Our paper is most closely related to a recent contribution by Jackson and Sonnenschein [14], who

show that inefficiencies due to incentive constraints can be overcome by linking a large number of

independent replicas of some underlying decision problems. In their mechanism, agents are required

to announce preference profiles such that the frequency of any particular type in the problem that

is replicated coincides with its underlying probability distribution. They show that if the social

choice function the planner seeks to implement is efficient, then a rationing mechanism can be

constructed under which agents try to be as truthful as they can, which in turn implies that with

a large number of independent replicas of the same decision problem, the frequency distribution

of announced preference types will be close to the true probability distribution. As a result, all

equilibria result in approximately efficient allocations with high probability when there are many

replicas.

There are some key differences between our paper and Jackson and Sonnenschein [14]. Most

2



importantly, they focus on non-transferable utility environments, while transferable utility is crucial

for our construction.2 In other words, their linking mechanism is primarily designed to overcome

the difficulties involved in creating incentives to reveal intensity of preferences, which is the main

concern in non-transferable utility models.3 In contrast, incentive constraints can be easily satis-

fied in our environment, and the role of linking is directly designed to overcome the participation

constraints. Moreover, while Jackson and Sonnenschein [14] impose few restrictions on their under-

lying social decision problem, it is crucial for their construction that they can link a large number

of identical replicas. In contrast, our results apply to arbitrary sequences of (transferable utility)

problems that satisfy some mild regularity conditions. As a result of these differences, we view our

contribution as complementary to Jackson and Sonnenschein [14].

There is also a connection between our paper and papers on bundling, as well as many other

papers that have noted the advantages of linking across problems in more specific environments.

Here it is very instructive to observe that our construction is a direct generalization of the con-

struction in Armstrong [1], who used a two-part tariff to allow a monopolist to almost fully extract

the surplus in a standard monopoly problem with a large number of commodities (similar construc-

tions are used by Bakos and Brynjolfson [3] and Bergstrom and Bergstrom [4] in the context of

excludable public goods). In contrast, the mechanism utilized by Jackson and Sonnenschein [14] is

more akin to various rationing schemes, such as a vote storage mechanism proposed in Casella [7], a

risk-sharing arrangement proposed by Townsend [19], which limits how often the risk averse agent

can claim a loss, and a compromising scheme proposed by Borgers and Postl [6].

2 Notation and Preliminaries

Consider an environment with � ≥ 2 agents and a set � of possible social decisions. Each

agent � ∈ � ≡ {1� 2� ���� �} is privately informed about a preference parameter �� ∈ Θ� and has a

quasi-linear von Neumann-Morgenstern utility function given by

��
¡
	� ��

¢− 
�� (1)

2An interpretation of Jackson and Sonnenscheins’ rationing mechanism is that it provides an ingenious way of

creating transferrable utility out of a non-transferrable utility environment by adding constraints on the available

announcements agents can make.
3They do also discuss how to deal with participation constraints.
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where 
� is interpreted as a transfer from agent � in terms of a numeraire good. Also assume

that implementing decision 	 ∈ � costs �(	) ∈ R units of the numeraire good. Moreover, let

Θ = ×�
�=1Θ

� denote the set of all possible type profiles, and denote a generic element of Θ by ��

By appeal to the revelation principle we restrict our attention to direct mechanisms. A pure

direct revelation mechanism (henceforth called mechanism) is a pair h�� 
i � where � : Θ → � is

the allocation rule and 
 : Θ → � is the cost sharing rule, where 
 (�) =
¡

1 (�) � 
2 (�) ���� 
� (�)

¢
�

We adopt the convention that a positive 
� (�) is a transfer from agent � when � is announced. We

say that a mechanism is incentive compatible if truth-telling is a Bayesian Nash equilibrium in the

incomplete information game induced by h�� 
i. Dominant strategy incentive compatibility will be
explicitly referred to as such.

Since utility function (1) is quasi-linear and the valuation function �� is one with private values

(that is, �� depends only on ��), many classical implementation results apply. In particular, as

long as neither ex post budget balance or participation constraints and ex ante budget balancing

constraints are simultaneously imposed, any efficient social decision rule can be implemented in

dominant strategies by a Groves mechanism. For easy reference, it will be useful to define this class

of mechanisms explicitly.

Definition 1 A mechanism h�� 
i is a Groves mechanism if for each �

� (�) ∈ argmax
�∈�

�X
�=1

��
¡
	� ��

¢−� (	) (2)

and, where for each � ∈ ��


� (�) = � (� (�))−
X
� 6=�

��
¡
� (�) � ��

¢
+ � �

¡
�−�
¢
� (3)

and � � : Θ−� → R may be arbitrarily chosen.

3 Problems with Many Independent Social Decisions

In this section we describe an economy with many independent social decisions. In doing this,

it is convenient to refer to the social decision in an economy with a single decision as an issue

and use the term social decision only when considering the fully linked problem. Formally, let

�� ≡
©
Θ�

�� �
�
�� �

�
�

®�
�=1

���� ��

ª
denote an economy with a single issue �� Here, Θ�

� denotes the

issue-� type-space for agent �. For each issue �� the types ��� ∈ Θ�
� are stochastically independent
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across agents, and � �
� is consequently both the prior probability distribution over Θ

�
� and the

percieved probability distribution over Θ�
� for all other agents. Preferences over different ways to

resolve issue � are described by the valution function ��� : Θ
�
� ×�� → R, where �� is the set of

possible alternatives for issue �. The von Neumann-Morgernstern utility for a type-��� agent � in

economy �� is given by

���
¡
���� 	�

¢− 
� (4)

for each 	� ∈ ��� where 
� is a transfer of the numeraire good. Finally, �� : �� → R describes the

cost of implementing each alternative 	� ∈ �� in terms of the numeraire good.

Let E� = {��}��=1 denote an economy with � social issues indexed by � ∈ {1� �����} � A social
decision in economy E� corresponds with a resolution for each issue and a transfer scheme. We let

D� = ×�
�=1�� denote the set of social decisions in the �−issue economy . For each 	 ∈ D� � the

cost of implementing 	 is,

C� (	) ≡
�X
�=1

�� (	�) � (5)

The type-space for agent � in economy E� is given by Θ� (�) = ×�
�=1Θ

�
�� and we write Θ (�) ≡

×�
�=1Θ

� (�) � and Θ−� (�) ≡ ×� 6=�Θ� (�) � The von Neumann-Morgernstern utility function for a

agent � of type �� ∈ Θ� (�) is of the form in (1), with �� being replaced by � �
� : Θ

� (�)×D� → R

given by

� �
�

¡
	� ��

¢
=

�X
�=1

���
¡
	�� �

�
�

¢
� (6)

Next, we assume that the issue-specific types of each agent are independently distributed across

issues. That is, for each �� ∈ Θ� (�) � the cumulative distribution function is given by

F �
�

¡
��
¢
= ×�

�=1�
�
�

¡
���
¢

(7)

To sum up we can describe the primitives of an economy E� in terms of the components {��}��=1
as follows:

E� =


*
×�

�=1Θ
�
�| {z }

Θ�(�)

�
�X
�=1

���| {z }
� �
�

�×�
�=1�

�
�| {z }

F�
�

+�

�=1

�×�
�=1��| {z }
D�

�
�X
�=1

��| {z }
C�


� (8)

To deal with participation constraints at a reasonable level of generality, we postulate that for

each issue � there is a “status quo outcome” 	0� ∈ �� such that ��

¡
	0�
¢
= 0� We let ���

¡
���
¢ ≡
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���
¡
	0�� �

�
�

¢
denote agent �0� “reservation utility” on issue � and for each �� ∈ Θ� (�) � let

�
�

¡
��
¢
=

�X
�=1

���
¡
���
¢

(9)

denote agent �0� reservation utility in a �-issue economy E� �
For notational convenience we let �� =

¡
�1�� ���� �

�
�

¢ ∈ ×�
�=1Θ

�
� denote an issue-� type profile. Let

�∗� (��) denote an efficient social decision rule and �� (��) the associated maximized value of the

social surplus in this economy with a single issue �� that is

�∗� (��) ∈ arg max
��∈��

�X
�=1

���
¡
���� 	�

¢−�� (	�) (10)

�� (��) = max
��∈��

�X
�=1

���
¡
���� 	�

¢−�� (	�) �

where we assume that appropriate continuity and compactness assumptions are satisfied to make

the optimization problem in (10) well defined. It follows by definition that �� (��) ≥
P�

�=1 �
�
�

¡
���
¢

for every �� ∈ ×�
�=1Θ

�
�� However, to avoid trivialities we restrict attention to the case where the

expected social surplus from each issue is uniformly bounded away from the reservation utilities.

Moreover, we also require that the social surplus associated with each issue be bounded from above

and below. Together, we refer to these restrictions as regularity conditions. Formally,

Definition 2 We say that {��}∞�=1 is a regular sequence of single-issue economies if

R1 [Non-vanishing Gains from Trade]. There exists some � � 0 such that

E [�� (��)] ≥ E
"

�X
�=1

���
¡
���
¢#
+ �� for all �;

R2 [Uniform Bounds on Surplus]. There exist some � � �̄ such that � � �� (��) � �̄ for all

�� ∈ ×�
�=1Θ and for all �;

4

R3 [Uniform Bounds on Reservation Utilities]. There exist some � � �̄ such that � � ���
¡
���
¢
�

�̄ for all �, all ��� ∈ Θ�
�� and all ��

4We can, without loss of generality, assume that �̄ � 0� If �̄ � 0 we can always add a constant larger than |�̄| �� to
all utility functions. Since the reservation utilities are defined in terms of the default outcomes this does not change

the problem.
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3.1 Remarks about the Environment

1. We kept the set of agents the same and finite for all problems. Since we can allow agents

with trivial roles for any issue �� the restriction can be rephrased as saying that the union of

the set of agents over all issues is finite.

2. Throughout the model we made many strong separability assumptions. For example, payoffs

and costs are assumed to be additively separable across different issues; and for each agent

the list of issue-specific types are stochastically independent. Moreover, the type parameter

��� is assumed to affect how agent � evaluates issue � and no other issues. These separable

assumptions are weaker than it appears. If any of these assumptions fail for a pair of issues,

we can always bunch these two issues into a single issue. We can do this because we do not

impose any dimensionality restrictions on either the issue specific set of alternatives or type

spaces. As it will become clear later, our results hinge on the existence of a sufficiently large

number of truly independent and separate problems for our results, but do not require that

all problems be independent and separate.

3. Our model also assumes that, for each issue, agents’ types are stochastically independent.

This assumption is maintained because, if types were correlated across agents, then it is

usually possible to construct efficient mechanisms similar to that of Cremer and McLean [10]

that respects both participation and resource constraints, without any role for linking the

issues.

4. Our environment is general enough to incorporate both public goods and private goods prob-

lems. For example, Armstrong’s [1] non-linear pricing problem with many products fits nicely

in this framework. Consider each issue � as corresponding to a product. The set of alter-

natives for issue �� ∈ R� will then correspond to a quantity choice for product � for each

consumer. Agent �0� valuation function ��� depends on the quantity choice for �� i.e. �-th com-

ponent of 	� (see Section 5.1 for more discussion). Myerson and Satterswaite’s [17] bilateral

bargaining problem also fits in as an issue � in our setup. A bilateral bargaining problem can

be represented by an action space �� = [0� 1], denoting the probability that agent 1 will ob-

tain the good. Besides agents 1 and 2 — the two agents in the bargaining situation — all other

agents’ preferences on this issue are simply independent of 	�� Mailath and Postlewaite’s [15]

many-agent bargaining problem with public goods can similarly be incorporated as an issue

in our setup.

7



4 The Implementation Problem

The goal of the mechanism designer is to implement an efficient allocation, subject to incen-

tive compatibility, individual rationality and resource constraints. We write h�� (·) � 
� (·)i for a
mechanism in economy E� where �� : Θ (�) → D� is the allocation rule and 
� ≡

¡

1� � ���� 


�
�

¢
:

Θ (�)→ R� is the transfer rule. We can now express the incentive compatibility constraint as

E−�
£
� �
�

¡
�� (�) � �

�
¢− 
�� (�)¤ ≥ E−�

£
� �
�

¡
��
¡
�0�� �−�

¢
� ��
¢− 
�� ¡�0�� �¢¤ (11)

∀� ∈ �� ��� �
0
� ∈ Θ� (�) �

We impose participation constraints in the interim state as

E−�
£
� �
�

¡
�� (�) � �

�
¢− 
� (�)¤ ≥ �

�

¡
��
¢ ∀� ∈ �� �� ∈ Θ� (�) � (12)

where �
�

¡
��
¢
is defined in (9). Finally, the resource constraint is imposed in the ex ante form,

E [C� (�� (�))] = E
"

�X
�=1


�� (�)

#
� (13)

A seemingly more stringent way to impose the resource constraint would be to require that the

resources balance for each realized type profile, that is

C� (�� (�)) =
�X

�=1


�� (�) ∀� ∈ Θ (�) � (14)

When types are correlated or when stronger notions of incentive compatibility are considered,

results sometimes depend on the form of the budget balance constraint. However, for the setup we

consider in this paper (13) and (14) are equivalent:

Proposition 1 (Borgers and Norman [5]) Suppose that each agent has a utility function of

the form �� (	� �)− 
� and that there exists a pair of agents (�� �) such that �� and �� are stochasti-
cally independent. Then, for every mechanism satisfying (13) there is a mechanism with the same

allocation rule � that satisfies (14) and generates the same interim expected payments for all agents

as the original mechanism.

By Proposition 1 we note that if, as we assume, types are stochastically independent, then for

any h�� 
i that is (Bayesian) incentive compatible, individually rational and ex ante budget balanced
we can find transfers such that the same social decision rule satisfies ex post budget balance and

all other constraints.5

5Applied to a Groves mechanism, this is the well-known AGV implementation result due to d’Aspremont and

Gerard-Varet [11].
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5 The Groves Mechanism Almost Works when Many Problems

Are Linked

We now consider a sequence of economies {E�}∞�=1 and examine the results when � is suffi-

ciently large. Let

�∗� (�) ∈ arg max
�∈D�

�X
�=1

� �
�

¡
	� ��

¢− C� (	) � (15)

�� (�) = max
�∈D�

�X
�=1

� �
�

¡
	� ��

¢− C� (	) (16)

where � �
�

¡
	� ��

¢
is defined in (6) and C� (	) in (5). Consider a Groves mechanism

�∗� � 
	
� ≡
¡

1	
� � ���� 


�
	
�

¢®
� (17)

where �∗� is given by (15) and for each � the transfer 
�	
� is given by


�	
� (�) = � �
�

¡
�∗� (�) � �

�
¢− �� (�) (18)

+
(�− 1)

�
E [�� (�)]− E

£
�

�

¡
��
¢¤
+
1

�
E

 �X
�=1

�
�

¡
��
¢

| {z }
lump sum transfer independent of �0s announcement

Clearly truth-telling is a dominant strategy, implying that incentive constraints (11) are satisfied.

Moreover, routine calculations show that the ex ante balanced budget constraint (13) holds. The

only issue is thus the participation constraints (12). We denote the interim expected payoff for

agent � with type �� in economy E� under the proposed Groves mechanism h�∗� � 
	
�i � when other
agents report truthfully, by � �

�

¡
��
¢
. It is given by

� �
�

¡
��
¢
= E−� [�� (�)]− �− 1

�
E [�� (�)] + E

£
�

�

¡
��
¢¤− 1

�
E

 �X
�=1

�
�

¡
��
¢ � (19)

Since the maximum of a sum can be obtained by maximizing each component, we note that

�� (�) =
�X
�=1

�� (��) � (20)

where �� (��) is defined in (10). The additive form of (20) and stochastic independence across issues

suggests that �� (�) �� should converge in probability to its expectation as � goes to infinity,

implying that E−� [�� (�)] �� should be close to the unconditional expectation. Similarly, �
�

¡
��
¢

9



is a sum of single-issue reservation utilities, so �
�

¡
��
¢
�� should converge in probability to its

expectation. But, inspecting the expressions in (19), this suggests that the interim expected payoff

should be close to its expectation, which is the difference between social surplus and the reservation

utilities summed over all agents. Hence, it seems quite plausible that almost all participation

constraints will be satisfied under some appropriate regularity conditions. Indeed, the proposition

below establishes that this is the case for a sequence of economies consisting of regular issues:

Proposition 2 Suppose that {E�}∞�=1 is sequence of economies consisting of stochastically inde-
pendent regular issues (in the sense of Definition 2). Moreover, for each �� let (�∗� � 
	
�) be the

Groves mechanism as specified in (17). Then, for every � � 0 there exists some finite �∗ (�) such

that

Pr
£
� �
�

¡
��
¢−�

�

¡
��
¢ ≥ 0¤ ≥ 1− � (21)

for every � and every � ≥ �∗ (�) �

The interpretation of the result is that the probability that all participation constraints in (12)

are satisfied (i.e., (1− �)�) can be made arbitrarily close to one when we link a sufficiently large
number of independent social decisions using a standard Groves mechanism with appropriately

chosen lump sum transfers.

Proof. Since �� (�) =
P�

�=1 �� (��) and 
�
�

¡
��
¢
=
P�

�=1 �
�
�

¡
���
¢
� we may express (19) as

� �
�

¡
��
¢
=

�X
�=1

E−� [�� (��)]− �− 1
�

E [�� (��)] + E
£
���
¡
���
¢¤− 1

�
E

 �X
�=1

���

³
���

´ (22)

For notational brevity, define  ��
¡
���
¢ ≡ E−� [�� (��)]− ��� ¡���¢. This allows us to express � �

�

¡
��
¢−

�
�

¡
��
¢
as

� �
�

¡
��
¢−�

�

¡
��
¢
=

�X
�=1

 �� ¡���¢− E £ �� ¡���¢¤+ 1

�

E [�� (��)]− E
 �X
�=1

���

³
���

´ � (23)

By assumption all issues in economy E� are regular, thus by (R1), we have:

E�

£
� �
�

¡
��
¢−�

�

¡
��
¢¤
=
1

�

�X
�=1

E [�� (��)]− E
 �X
�=1

���
¡
��
¢ ≥ �

�
�� (24)

Moreover, since the issues are stochastically independent,
©
���
ª�
�=1

is a sequence of stochastically

independent variables, thus
©
 ��
¡
���
¢ª�

�=1
is a sequence of independent variables. Finally, since all
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issues are regular,  ��
¡
���
¢
is bounded from above and below by (R2) and (R3), thus there exists

some !2 such that Var
£
 ��
¡
���
¢¤ ≤ !2 for every � and every �� From the above observations, we

have

Pr
�
� �

�

�
��
�
−	�

�

�
��
�
� 0

�
(23)
= Pr

�
��

�=1

�

�
�

�
���

�
− E

�

�
�

�
���

���
� − 1

�

��
�=1

�
E [�� (��)]− E

�
��

�=1

���

�
���

��	�

/By inequality in (24)/ ≤ Pr

�
��

�=1

�

�
�

�
���

�
− E

�

�
�

�
���

���
� −�

�

�

≤ Pr

�





��

�=1

�

�
�

�
���

�
− E

�

�
�

�
���

���




 � �

�

�

/Chebyshev’s inequality/ ≤
�
1
��
�

	2

Var

�
��

�=1


�
�

�
���

��
≤ �2�2

2�
(25)

Since �2�2

�2�
→ 0 as � →∞, we conclude that for every � � 0� there exists some finite integer �∗

� (�)

such that (21) is satisfied for agent �� Since � is finite we then just let �∗ (�) = max�∈ �∗
� (�) and

the result follows.

5.1 Application: Armstrong’s [1] Multiproduct Monopolist Problem

While Proposition 2 is about “almost implementing” efficient allocations, the logic in the proof

of Proposition 2 can be used to understand Armstrong’s [1] analysis of a multiproduct monopolist

with � private goods. Armstrong assumes that each good � is produced at constant unit cost

"�� Efficiency is trivially implementable in this environment by marginal cost pricing, but profit

maximization will lead to inefficiencies due to informational rents for the consumers. His main result

is that when � is sufficiently large, a cost-based two-part tariff can be almost profit maximizing in

the sense that the monopolist extracts almost all consumer surplus.

Due to the constant unit cost assumption, each consumer can be treated separately, so there is

no loss in assuming that there is a single consumer. We therefore drop the index � and write

��(	� �) =
�X
�=1

��(	�� ��)

for the utility function of the consumer, where 	� is now is to be interpreted as the quantity of good

� consumed. It can be seen from (15) and (18) that the Groves mechanism in this environment
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reduces to marginal cost pricing together with a lump sum transfer where

�∗�(�) = arg max
�∈��

+

"
�X
�=1

��(	�� ��)−
�X
�=1

"�	�

#
(26)


	
�(�) =
�X
�=1

"��
∗
�(�) + #� (27)

where # is a lump sum transfer that does not depend on �� Thus mechanism (17) reduces to a two-

part tariff in this case, where the consumer pays a fixed fee of # for the right to purchase goods at

marginal costs. While the budget-balanced Groves mechanism will imply # = 0 (obvious from (15)

by setting � = 1)� the approximately profit maximizing two-part tariff is to set # = (1− �)E [�� (�)]
where �� (�) =

hP�
�=1 ��(�

∗
� (�) � ��)−

P�
�=1 "��

∗
� (�)

i
and � � 0 can be made arbitrarily small. A

straightforward application of law of large numbers imply that such a two-part tariff satisfies the

consumer’s participation constraint almost always, and, since the problem can be solved separately

for each consumer the mechanism becomes exactly incentive feasible if types that are not willing

to pay # are allowed to opt out. This is exactly the construction Armstrong [1] uses to establish

that the monopolist can extract almost the full surplus if there are many goods.

6 An Asymptotically Efficient Perturbation of the Groves Mech-

anism

While Proposition 2 is suggestive, it does not directly provide a solution to the implementation

problem stated in Section 4. The reason is as follows. Even though the probability of the violation

of participation constraints can be made arbitrary small by linking sufficiently many problems, for

any finite � the probability of a violation will in general be strictly positive.

An obvious remedy for this is to revert to the status quo outcome whenever a participation

constraint is violated, which, since the failures are rare when � is large, would create a mechanism

that is almost efficient. The problem with this idea, however, is that the agents that opt out change

the interim expected payoff from participation for the agents that opt in.6 It is therefore not obvious

6This issue is not relevant for private goods problems such as Armstrong [1] where the efficient outcome for agent

� does not depend on others’ types. Similarly, in the analysis of excludable public goods (Bakos and Brynjofson [3],

Bergstrom and Bergstrom [4] and Fang and Norman [12]) the reservation utility for a consumer can be attained by

simply excluding the consumer from usage. As a result, approximate efficiency can be attained by a slight modification

of the Groves mechanism in Section 5.
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whether such a mechanism can be constructed in a way that guarantees that the participation

constraints hold for all types, and, at the same time, the Groves mechanism is implemented for

almost all type profiles. More precisely, we have to deal with the following issue. When some agents

opt out of the mechanism, this may diminish the value of playing the Groves mechanism for the

remaining agents. In fact, the types that opt out may actually be the types that contribute the

most to the social surplus, if these types have reservation utilities that are high enough. Hence,

if types with interim payoffs in the Groves mechanism below the reservation utilities opt out, the

best response for the remaining types may be that some additional types should opt out. The set

of types that agree to play the Groves mechanism must therefore somehow be determined through

a “fixed point” argument, and a priori it is unclear how to rule out that the only “fixed point”

implements the status quo for sure, even when the probability that the original Groves mechanism

violates a participation constraint is small.

6.1 A Perturbed Groves Mechanism

Constructing a sequence of almost efficient mechanisms satisfying the constraints (11), (12), and

(13) for all type realizations is complicated by the fixed point problem discussed above. We choose

to deal with this by constructing a mechanism where the message space is enlarged to include a

choice on whether or not to play the Groves mechanism. This construction has the advantage that

the mechanism is easy to describe, and that we can “solve” the fixed point problem by appealing

to an off-the-shelf existence result from Milgrom and Weber [16].7

Formally, we add a message $� ∈ {0� 1} to the message space, so that each agent reports a pair¡
$�� ��

¢
� The extra message$� is interpreted as the decision on whether or not to accept to play the

Groves mechanism. Specifically, we assume that if each agents report$� = 1� then the Groves mech-

anism is implemented, whereas it any agent � chooses$� = 0� the default outcome 	0 is implemented

and all transfers are zero. That is, we consider a sequence of mechanisms
nb�� (·) �c
� (·)o∞

�=1
, where

for each �

b� (��$) =

 �∗� (�) if $ = (1� 1� ���� 1)

	0 =
¡
	01� ����� 	

0
�

¢
otherwise

(28)

b
�� (��$) =

 
�	
� (�) +
��
4� if $ = (1� 1� ���� 1)

0 otherwise,

7 In contrast, constructing sequences of direct revelation mechanisms generates a fixed point problem in the set of

“participating types”, which is harder to deal with and makes the mechanism awkward to describe.
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where 
�	
� (�) is given by the Groves transfer scheme in (18), and � is the lower bound on the per

issue gains from trade defined in (R1). One may think of (28) as a sequential mechanism, where in

stage 1 each agent announces whether or not to opt in. If any agents opt out, then the game is over

and the status quo outcome is implemented. If, instead, all agents opt in, then the game proceeds

into the second stage, where Groves mechanism with almost the same transfers as in Section 5 is

implemented.

The reason for the added term ��
4� in the transfer scheme is to ensure that

E [C� (b� (��$))] � E" �X
�=1

b
�� (��$)
#
� (29)

when � is sufficiently large, which ensures existence of a transfer that balances the budget exactly

(see the discussion following Proposition 3).

6.2 The Approximate Efficiency Result

Our main result of the paper establishes that, if the underlying sequence of single-issue economies

is regular, then mechanism (28) has equilibria that implement the efficient outcome with probability

arbitrarily close to one, provided that sufficiently many issues are linked. Formally,

Proposition 3 Suppose that {E�}∞�=1 is sequence of economies consisting of stochastically inde-
pendent regular issues (in the sense of Definition 2). Then, for every � � 0 there exists some finite

�∗ (�) such that, for every economy E� with � ≥ �∗ (�) � there exists an equilibrium in the game

induced by mechanism (28) where the efficient outcome is implemented with probability at least

1− �, and where (29) is satisfied.

Notice that the participation constraints are trivially satisfied by mechanism (28) since every

agent can guarantee her reservation utility by announcing $� = 0� Since any (expected) budget

surplus can be repaid to the agents in a lump-sum fashion without upsetting any incentive or

participation constraints, this ensures existence of a mechanism that satisfies the ex ante budget

balance constraint (13), and, by appeal to Proposition 1 this in turns implies the existence of

a mechanism that satisfies the ex post budget balance constraint (14). Hence, all the constraints

discussed in Section 4 can be satisfied by an approximately optimal mechanism if � is large enough.

Intuitively, the explanation for Proposition 3 is that truth-telling is a dominant strategy, con-

ditional on opting in. Moreover, when opting out, the reported type is irrelevant. Together, this

implies that assuming truth-telling of the type message is without loss of generality, and the only
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issue is whether to opt in or out. Assuming that almost all types of the other agents decide to opt in,

the situation is not all that different from the regular Groves mechanism. Indeed, the formal proof

shows that, if the number of issues is large enough, then there is a set of types with probability

measure close to unity, such that all these types want to opt in if they believe that other agents of

these types also opt in. This argument is for arbitrary behavioral strategies for types outside the

set. Hence, it only remains to show that there are some equilibrium strategies for the remaining

types, which can be done by appealing to a standard existence argument.

6.3 The Proof

Truth-telling is dominant “in the second stage” if all players opt in, and there is nothing to

loose from truth-telling if opting out. This is true regardless of whether or not other players report

truthfully. However, to reduce the need for additional notation we will only show this assuming

truth-telling by all other agents.8

Allowing randomizations over $� we let %�
� : Θ

� (�)→ [0� 1] � where %�
�

¡
��
¢
is the probability

that type �� chooses $� = 1� Following standard conventions we let %� =
¡
%1� � ���� %

�
�

¢
and %−�� =¡

%1� � ��� %
�−1
� � %�+1

� � ���� %�
�

¢
� We let b� �

¡
$�� %

−�
� � ��

¢
denote the interim expected payoff for type ��

from announcement
¡
$�� ��

¢
under the assumption that all other agents report type truthfully and

choose to opt in according to an arbitrary %−�� : Θ−� (�)→ [0� 1]�−1 � For notational brevity, let

Ψ−��

¡
�−�
¢ ≡ Y

� 6=�

%�
�

¡
��
¢

(30)

�−��

¡
�−�
¢
=

Y
� 6=�

� �
�

¡
��
¢

and express the interim expected payoff (conditional on truth-telling) for player � as

�� �
�
��� �

−�
� � ��

�
=

��
� ��

�� (�) + � �
�

�
Ψ−�

�

�
�−�

�
+	�

�

�
��
� �
1−Ψ−�

�

�
�−�

���
��−�

�

�
�−�

�
if �� = 1

	�
�

�
��
�

if �� = 0
� (31)

where �� (�) is the surplus and

# �
� ≡ −

�− 1
�

E [�� (�)] + E
£
�

�

¡
��
¢¤− 1

�
E

 �X
�=1

�
�

¡
��
¢− ��

4�
(32)

8 In the end, the extra “bite” that comes from the dominance of truth-telling will not be of any help, since agents

need to make probabilistic assessments when deciding on the choice of ���
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is the (negative of the) “conditional lump-sum” part of the transfer in (28). A best response where

agent � always tells the truth can then be characterized in terms of the interim expected payoff

function as follows:

Lemma 1 Suppose that each agent � 6= � reports type truthfully and chooses $� in accordance to

rule %�
� : Θ

� (�)→ [0� 1]. Then, it is a best response for agent � to always report truthfully and to

follow the rule e%�

� � where;

1. e%�

�

¡
��
¢
= 1 whenever b� �

¡
$�� %

−�
� � ��

¢
� �

�

¡
��
¢

2. e%�

�

¡
��
¢
= 0 whenever b� �

¡
$�� %

−�
� � ��

¢
� �

�

¡
��
¢

Lemma 1 is a more or less direct consequence of truth-telling being dominant in the Groves

mechanism, but a proof is in the appendix for completeness.

Define the set,

Θ
�
(�) =

½
�� ∈ Θ� (�) |� �

�

¡
��
¢−�

�

¡
��
¢ ≥ ��

2�

¾
� (33)

where the interim utility function � �
�

¡
��
¢
is defined in (19), using the Groves mechanism in the

previous section. To interpret Θ
�
(�), recall that ���� is a lower bound for the expected value for

� �
�

¡
��
¢−�

�

¡
��
¢
� so Θ

�
(�) is a set of agent �’s types for which her interim expected surplus is at

least 1�2 of this lower bound. The reason why this set is useful is that, just like the set of agents for

which the participation constraints are fulfilled under the Groves mechanism, the probability that ��

belongs to (33) can be made arbitrarily close to one by considering a sufficiently large �� However,

since the types in the set (33) have a strict incentive to participate in the Groves mechanism, there

is now some room to consider small deviations from the Groves mechanism without upsetting their

participation constraints.

It will be convenient to introduce some notation for sets of type profiles where all agents have

types in this set, so we let

Θ (�) =
n
� ∈ Θ (�) |�� ∈ Θ�

(�) for each �
o
� (34)

and

Θ
−�
(�) =

n
�−� ∈ Θ−� (�) |�� ∈ Θ�

(�) for each � 6= �
o
� (35)

Using an argument which is very similar to the proof of Proposition 2 we first establish that for

large �� the probability that �−� belongs to Θ−� (�) is near one:
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Lemma 2 Suppose that {E�}∞�=1 is sequence of economies consisting of stochastically independent
regular issues. Then, for every � � 0 there exists finite � 0 (�) such that Pr

h
Θ
−�
(�)

i
≥ 1− � for

all � ≥ � 0 (�) �

Define E−�

£
�� (�) |Θ−� (�)

¤
as the interim expectation of the social surplus under an efficient

social decision rule for agent � conditional on his own type �� and conditional on the types of the

other agents being in the set Θ−� (�) � Intuitively, this conditional expectation E−�

£
�� (�) |Θ−� (�)

¤
should be near the unconditional expectation of the social surplus E−� [�� (�)] in the Groves mecha-

nism when� is large. That is, since the probability that �−� lies in Θ−� (�) can be made arbitrarily

close to one by linking sufficiently many problems, the regular conditional expectation is almost

exclusively taken over Θ−� (�) � Using the regularity assumptions (R2) and (R3) we show that:

Lemma 3 Suppose that {E�}∞�=1 is sequence of economies consisting of stochastically independent
regular issues. Then, for every � � 0 there exists finite � 00 (�) such that for all � ≥ � 00 (�) �

E−�

£
�� (�) |Θ−� (�)

¤
�

≥ E−� [�� (�)]
�

− �� for all �� ∈ Θ� (�) �

In the next step, we combine Lemma 2 with Lemma 3, and use the uniform bounds on the

per-issue surplus and reservation utilities (R2 and R3) to show that, when � is sufficiently large, it

is a best response for agent � with types in Θ
�
(�) defined in (33) to play the Groves mechanism if

all other agents with types in the set Θ
−�
(�) defined in (35) decide to do so. In essence, the logic

is that since all agents opt in with a probability close to one, it doesn’t matter what the remaining

agents do.

Lemma 4 Suppose that {E�}∞�=1 is sequence of economies consisting of stochastically independent
regular issues. Then, there exists finite �∗such that, for all � ≥ �∗� if %�

�

¡
��
¢
= 1 for each type

�� ∈ Θ�
(�) � � 6= �� then it is a best response for agent � to set %�

�

¡
��
¢
= 1 for each �� ∈ Θ�

(�).

Lemma 4 is the crucial step in the argument since it establishes that for � large enough each

agent � and every type �� ∈ Θ�
(�) has an incentive to opt in to play the Groves mechanism,

provided they expect every type �� ∈ Θ�
(�) to do so for every other agent ��

Lemma 5 Suppose that {E�}∞�=1 is sequence of economies consisting of stochastically independent
regular issues and that, for every �, %�

�

¡
��
¢
= 1 for each �� ∈ Θ�

(�). Then, there exists finite

�∗∗such that (29) is satisfied for all � ≥ �∗∗.
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This is more or less obvious since Pr
£
Θ (�)

¤
converges in probability to unity and since the

mechanism would run a budget surplus of ��
4 if all agents would agree to play the Groves mechanism

for sure. A proof is in the appendix for completeness.

We have already established that the probability that �� belongs to Θ
�
(�) approaches one as �

goes about of bounds, so the only remaining step is to argue that we can find equilibrium strategies

for the remaining types:

Proof of Proposition 3. Consider a (fictitious) game where$� = 1 is the only available action for

types inΘ
�
(�) and where types inΘ� (�) \Θ�

(�)may choose$� ∈ {0� 1}, and the interim expected
payoffs are given by (31)� The action space is finite for each player, so payoffs are equicontinuous

in the sense of Milgrom and Weber [16] (see Proposition 1 in Milgrom and Weber [16]). Moreover,

stochastic independence implies that the information structure is absolutely continuous (Proposition

3 in Milgrom and Weber [16]). Applying Theorem 1 in Milgrom and Weber the game has an

equilibrium in distributional strategies. Since the action space is finite, we can represent this

equilibrium as a behavioral strategy %∗� : Θ (�) → [0� 1]� � where by construction %�∗
�

¡
��
¢
= 1

whenever �� ∈ Θ�
(�) � But, applying Lemma 4 it follows that that there exists �∗ � ∞ such

that %∗� is an equilibrium also when types in Θ
�
(�) have the option to freely pick $� ∈ {0� 1} �

which by use of Lemma 5 implies that (29) is satisfied for � ≥ max {�∗��∗∗} � Moreover, for any
� � 0 Lemma 2 assures that we may pick � 0 (�) such that such that Pr

h
Θ

�
(�)

i
≥ 1− � for each

� � �
0
(�). Finally, Lemma 1 guarantees that truth-telling is optimal provided that each agent

announce $� in accordance with %�∗
� � The result follows by letting �

∗ (�) = max {�∗��∗∗�� 0 (�)} �

7 Discussion

7.1 Weak versus Strong Implementation

The approximate efficiency result in Proposition 3 is in terms of Bayesian implementation,

whereas the “almost incentive feasible” Groves mechanism (17) obviously implements the efficient

outcome in dominant strategies. Also notice that there are always an equilibria of the perturbed

Groves mechanism (28) where the status quo outcome is implemented for sure. If one agent opts

out regardless of realized type it is a best response for all other agents to do so as well. We don’t

think that there is any way to resolve this indeterminacy through additional non-type messages.
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7.2 Governments as Linking Mechanisms

Real world government institutions usually fulfil many and arguably quite unrelated functions,

and the results in this paper can be seen as a simple theory explaining this, as far as we know, previ-

ously unexplained fact. The existing theory of public finance has identified many potential sources

of market failure, and interpreted these as a rationale for “government intervention.” However, the

existing theory only explains that it may be beneficial to set up some institution to deal with each

particular market failure, but does not provide a foundation for why a single government institution

should be responsible for dealing with all these problem. For example, we understand that there are

externalities involved in garbage collection, that public parks would be under-provided by voluntary

provisions, and that for-profit policing may be a bad idea, but it seems hard to argue that there

are any technological reasons for why these services should be provided jointly as part of a local

government bundle, as they tend to be. The results in this paper suggest a possible explanation

that linking all these seemingly unrelated social decisions via a single government institution helps

achieve efficiency by alleviating citizens’ participation constraints.

7.3 Vetoing versus Exclusions

Applied to an economy with � public goods, mechanism (28) does not distinguish between

excludable and non-excludable public goods. Either all agents opt in and consume all the public

goods that are produced, or a veto is cast, in which case none of the public goods is provided. Since

the probability of a veto goes to zero as � goes out of bounds, use exclusions are not needed for

asymptotic efficiency.

This “asymptotic irrelevance of exclusions” depends crucially on the fact that we keep the

number of agents � fixed. In contrast, Norman [18] and Fang and Norman [12] demonstrate that

the exclusion instrument is a crucial feature of the constrained optimal mechanism when � is fixed

(to 1 and 2 respectively) and � is large.

It should be clear that our proofs don’t apply to sequences where both � and � tend to

infinity. We don’t have a proof, but we conjecture that in the case of non-excludable public goods,

asymptotic efficiency is impossible if� and � go out of bounds at the same rate. On the other hand,

if goods are excludable, there is no need to equip agents with veto power; reservation utilities can

be attained by the “milder” exclusion instrument. As a result, asymptotic efficiency is attainable

in this case (regardless of the asymptotic behavior of ���). Indeed, since the efficient provision for

good � converges either to “always provide” or “never provide” as � tends to infinity approximate
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efficiency can be implemented with a mechanism where the provision decisions are done ex ante and

a fixed price is charged for access to all public goods, much in the same spirit as Armstrong’s [1]

two-part tariff scheme.
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A Appendix

A.1 Proof of Lemma 1

Proof. Assuming that all other agents announce truthfully and that$ = (1� ���� 1) = 1 is announced,

the ex post payoff for agent � of type �� from announcement b�� is
&�
³b���1� �´ = � �

�

³
�∗�
³b��� �−�´ � ��´+X

� 6=�

� �
�

³
�∗�
³b��� �−�´ � ��´+ # �

� �

where # �
� is defined in (32). By construction, �∗� (·) is maximized at b�� = ��� resulting in ex post

payoff &�
¡
���1� �

¢
= �� (�) − # �

� � For $ 6= 1 we have that &�
³b���$� �´ = �

�

¡
��
¢
for any b���

Taking expectations over �−� gives the result.
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A.2 Proof of Lemma 2

Proof. Using the expression for � �
�

¡
��
¢ − �

�

¡
��
¢
in equation (23), we can proceed just like in

that proof, with the only difference being that now the calculation is for a bound on the probability
that the payoff is less than half of the lower bound on the expected value of the payoff. That is,

1− Pr
�
Θ

�
(�)

�
= Pr

�
� �

�

�
��
�
−	�

�

�
��
�
�

�

2�

�

= Pr

�� ��
�=1

��
�
�

�
���

�
− E

�

�
�

�
���

��
+
E [�� (��)]− E

���

�=1 �
�
�

�
��
��

�

�� �
�

2�

��
/By inequality in (24)/ ≤ Pr

�
��

�=1

�

�
�

�
���

�
− E

�

�
�

�
���

���
� −�

2�

�

≤ Pr

�





��

�=1

�

�
�

�
���

�
− E

�

�
�

�
���

���




 � �

2�

�

/Chebyshev’s inequality/ ≤
�
1
��
2�

	2

Var

�
��

�=1


�
�

�
���

��
≤ 4�2�2

2�

Since �2�2

�2�
→ 0 as � →∞, we conclude that, for every � � 0� there exists some finite integer � 0
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A.3 Proof of Lemma 3
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Combining (A1) and (A2) we obtain

b� �
¡
1� %−�� ��

¢ ≥ Pr
h
Θ
−�
(�)

i³
E−�

h
�� (�) |Θ−� (�)

i
+ # �

�

´
+
³
1− Pr

h
Θ
−�
(�)

i´
�

µ
�+ �− �̄− �

4�

¶
�

23
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By assumption, Ψ� (�) = 1 when � ∈ Θ (�) � so the budget surplus/deficit satisfies
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