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Abstract

This paper shows that linking a su�ciently large number of independent but unrelated social

decisions can achieve approximate e�ciency. We provide regularity conditions under which a

Groves mechanism amended with a veto game implements an e�cient outcome with probability

arbitrarily close to one, and satis�es interim participation, incentive and resource constraints.
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1 Introduction

Collective decision making is often a process in which many issues are resolved jointly. An

example is the \Uruguay Round" WTO trade agreement of 1994, which is a staggeringly complex

agreement, loaded with special provisions. This complexity has been noted in the literature on

international trade, where linking of tari� concessions with other issues, such as labor standards,

environmental issues, investment liberalization, and human rights codes, has been discussed ex-

tensively in recent years. However, no consensus has emerged. Some, like Bagwell and Staiger [4]

argue that giving individual countries more sovereignty over \domestic issues" (e.g., to make it

harder to link certain issues) would improve bargaining outcomes. Others, such as Copeland and

Taylor [12], and Hortsmann et al. [19], and Maskus [23] argue that linking may be bene�cial.

Another extreme example of linking a large number of separate issues is federal spending on

highway projects: the Transportations Act of 2005, includes more than 3000 earmarks for speci�c

\pet projects" such as new bridges, bike-paths, ramps, parking lots, landscaping enhancements

among speci�c highways etc. While, in principle, the situation is similar to trade negotiations,

such bills are overwhelmingly interpreted as the result of log-rolling, and associated with ine�cient

pork-barrel spending (see Battaglini and Coate [6] and the references therein).

In general, government institutions at all levels ful�ll many arguable unrelated functions. For

example, local governments provide libraries, museums, public parks, public schools, police, �re

protection, and many other goods and services to all tax-paying residents of the community. By

contrast, the traditional public �nance view is that each problem needs a separate remedy. Fire

safety and provision of local library services are thought of as two distinct problems that need two

separate solutions. In principle, we understand that income e�ects and complementarities could

rationalize a joint treatment, but how is unclear, so this possibility is usually ignored.

However, an emerging literature is identifying asymmetric information as an explanation for why

it may be bene�cial to link various problems. An early example is Armstrong [1], who considers

a multiproduct monopoly problem. He demonstrates that by charging a �xed fee for the right

to purchase any good at marginal cost, the monopolist can extract almost the full surplus if the

number of goods is large. The ine�ciency associated with monopoly pricing is thereby virtually

eliminated by linking sales of many goods, with all gains going to the seller.1 In the context of

(excludable) public goods, several papers have shown that bundling (the practice of selling several

1Palfrey [27] reaches a di�erent conclusion. The reason is that he considers a setup with the monopolist selling a

given number of objects using a Vickrey auction.
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goods as a package) can be a useful instrument both for a pro�t maximizing monopolist (see

Bakos and Brynjolfsson [5] and Geng et al [17]) and a welfare maximizing planner (see Bergstrom

and Bergstrom [7] and Fang and Norman [15]). In the political economy literature, Casella [10]

shows that a voting scheme where votes can be stored allows agents to concentrate their votes where

preferences are more intense, which typically leads to ex ante welfare gains. Other examples include

a risk-sharing agreement proposed by Townsend [29] and a mechanism for partnership dissolution

proposed in McAfee [21].

The applications mentioned in the previous paragraph have one property in common: the

underlying ine�ciency is generated by informational asymmetries. One may therefore ask whether

there is some general principle involved. Recently, Jackson and Sonnenschein [20] answered this

question a�rmatively. They �x an arbitrary underlying social choice problem, and show that �rst

best e�ciency is approximately attainable if a su�ciently large number of independent replicas of

the underlying problem is available. Their mechanism constrains agents to report preference pro�les

where the frequency of any particular \base-problem type" coincides with the true probability

distribution. They show that agents seek to be as \truthful as possible" if the social choice function

is e�cient. With many independent replicas, the realized frequencies are likely to be near the true

probabilities. As a result, all equilibria result in approximately e�cient allocations with high

probability.

A limitation of Jackson and Sonnenschein [20] is that it they can only deal with identical

replicas. In this paper, we circumvent this shortcoming by considering problems with transferable

utility. This rules out some applications, such as standard voting problems, but leaves many

common applications, such as bilateral bargaining, partnership dissolution, multiproduct monopoly

provision, and public good problems. The analytical advantage is that we are able to obtain results

for arbitrary sequences of underlying choice problems: public good, congestion, and bargaining

problems may be linked into a \grand design problem".

If common value aspects are ruled out (as we do), ex post e�ciency is attainable if either interim

participation or self-�nancing constraints are absent, since transfers making agents internalize their

externalities exist (Groves [18], d'Aspremont and Gerard-Varet [14] and Arrow [2]). Participation

constraints are thus the ultimate source of the ine�ciency in our environment.

Our paper contains two results. Proposition 1 establishes that a standard Groves mechanism

\almost works", in the sense that violations of the participation constraints are unlikely if many

problems are linked. Proposition 2, which is the main contribution of the paper, shows that a
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Groves mechanism amended with a veto game satis�es all constraints and generates approximate

e�ciency if many problems are linked.

More precisely, Proposition 1 states that there is an ex ante budget balancing Groves mechanism

for which the probability that a participation constraint fails approaches zero as the number of

problems goes out of bounds. The key intuition is that, since Groves mechanisms are e�cient,

there exist ex ante budget balancing lump sum transfers that give all agents a strict incentive

to participate ex ante. When problems are linked, the participation constraint can be thought

of as stating that the average interim expected utility must exceed the average reservation utility.

Standard arguments establish that the average interim utility converges in probability to the average

ex ante expected utility. Violations of participation constraints are therefore rare if the number of

decision problems is large.

While rare, participation constraints will in general fail with positive probability, regardless

of how many issues are linked. We therefore ask whether a nearly e�cient budget balancing

mechanism that always ful�lls the participation constraints exists. The subtlety in eliminating

the positive, albeit small, probability of the failure of participation constraints under the standard

Groves mechanism lies in the possibility of unravelling. More speci�cally, to always satisfy the

participation constraints we must allow agents to opt out.2 But, in general incentives to opt into

the mechanism depend on what other players do. Hence, the types that do opt out may upset

the participation constraints for other types, which potentially could make the mechanism unravel.

Indeed in Section 6.4 we provide an explicit example of such unraveling, where as the number of

issues goes to in�nity the probability that a participation constraint is violated converges to zero

under the standard Groves mechanism, but once we allow for opting out the probability of a veto

goes to one.

The key result of our paper is Proposition 2, where we establish appropriate regularity conditions

under which a mechanism can be constructed so as to rule out unravelling of the participation

constraints. Speci�cally, we amend the Groves mechanism with a veto game, which guarantees

that all constraints { including the participation constraints { are satis�ed for all type realizations.

If our regularity conditions hold, the ex post e�cient outcome is implemented with probability

near one if the number of linked problems is large. In essence these regularity conditions impose

uniform bounds on the surpluses related to each issue.

2To accomodate pure public goods problems we must equip agents with veto power. In many more speci�c models,

\opting out" could be less extreme measures, such as excluding individuals from usage.
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The perturbed mechanism has a sequential interpretation, where in stage one all agents decide

whether to cast a veto. In stage two, either a Groves mechanism or a status quo outcome is

implemented, depending on whether any agent vetoed the mechanism in stage one. Truth-telling

is a conditionally dominant strategy in the second stage, implying that the outcome is e�cient if

and only if no agent vetoes the mechanism. Interestingly, the use of a Groves mechanism in the

second stage (as opposed to a mechanism with Bayesian incentive compatibility) is important for

our argument, despite the fact that our result is on weak implementation. The reason is that the

conditional dominance makes selection irrelevant for incentive compatibility in the second stage,

which in turn gives a tractable characterization of the veto game.

Besides showing the bene�ts from linking across di�erent problems, our paper also contributes

to the understanding of the fundamental source of the bene�ts from linking simply by using a more

standard mechanism than Jackson and Sonnenschein [20]. That is, the primary construction in

Jackson and Sonnenschein [20] is a rationing scheme for messages, which is designed speci�cally

to overcome the problem to obtain information about intensity of preferences.3 In transferable

utility environments, the ultimate source of any e�ciency is the interaction between participation,

feasibility, and incentive constraints, and there is simply no need to ration any messages. Instead,

a variation of a standard pivot mechanism is su�cient. Hence, Jackson and Sonnenschein's [20]

mechanism can be seen as a generalization of various rationing schemes, such as a vote storage

mechanism proposed in Casella [10], a risk-sharing arrangement proposed by Townsend [29], which

limits how often the risk averse agent can claim a loss, and a compromising scheme proposed

by Borgers and Postl [9]. In contrast, our mechanism may be thought of as a generalization of

mechanisms discussed in Armstrong [1], Bergstrom and Bergstrom [7], and Fang and Norman [15].

In terms of applications, international trade negotiations �t rather nicely into our framework,

provided that one takes the view that informational asymmetries are important. In particular,

the participation constraints may then be interpreted as national sovereignty, which seems to be

a highly relevant consideration in multinational agreements. The obvious limitation is that we

abstract from \fundamental" linkages between various issues, such as the fact that incentives for

technical barriers of trade obviously hinge on the freedom to set tari�s unilaterally. However, there

seems to be no reason that the underlying logic for our argument should disappear in a more realistic

3One may indeed interpret Jackson and Sonnenschein [20]'s rationing mechanism as an ingenious way of creating

transferrable utility out of a non-transferrable utility environment by adding constraints on the available announce-

ments agents can make.
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setup, so we believe that our analysis highlights a potentially important fundamental source for

gains from highly multidimensional agreements.

2 Groves Mechanisms

Consider an environment with n � 2 agents and a set D of possible social decisions, where

implementing social decision d 2 D costs C(d) 2 R units of a numeraire good. Each agent i 2 I �
f1; 2; :::; ng is privately informed about a preference parameter �i 2 �i and has a quasi-linear von
Neumann-Morgenstern utility function given by vi

�
d; �i

�
� ti; where ti is interpreted as a transfer

from agent i in terms of the numeraire good. Let � = �ni=1�i denote the set of all possible type
pro�les, and denote a generic element of � by �. A pure direct revelation mechanism (henceforth

mechanism) is a pair hx; ti ; where x : � ! D is the allocation rule and t : � ! Rn is the cost

sharing rule, where t (�) =
�
t1 (�) ; t2 (�) :::; tn (�)

�
, and ti (�) is a transfer from agent i when � is

announced.

Many classical implementation results apply in this setup with transferable utility and private

values. In particular, absent either ex post budget balance or the combination of interim participa-

tion and ex ante budget balancing constraints, any e�cient allocation rule can be implemented in

dominant strategies by a Groves mechanism. For easy reference, we de�ne this class of mechanisms

explicitly.

De�nition 1 A mechanism hx; ti is a Groves mechanism if for each �

x (�) 2 argmax
d2D

nX
i=1

vi
�
d; �i

�
� C (d) (1)

and, where for each i 2 I;

ti (�) = C (x (�))�
X
j 6=i

vj
�
x (�) ; �j

�
+ � i

�
��i
�
; (2)

and � i : ��i ! R may be arbitrarily chosen.

3 Problems with Many Independent Social Decisions

In this section we describe an economy with many independent social decisions. Our design

problem consists of components that in themselves are design problems, and we will refer to these as

single issue economies. Below, we detail how we generate many issue economies from an underlying

sequence of single issue economies..
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3.1 Single-Issue Economies

Let ek �
�

�ik; F

i
k; v

i
k

�n
i=1

; Dk; Ck
	
denote an economy with a single issue k: Here, �ik denotes

the issue-k type-space for agent i; and a generic element is denoted �ik. We assume that types

are stochastically independent across agents, implying that the prior distribution over �ik can be

represented by a cumulative distribution F ik , which also is the belief over �
i
k for other agents and a

�ctitious planner. Preferences over di�erent ways to resolve issue k are described by the valuation

function vik : �
i
k�Dk ! R, where Dk is the set of possible alternatives for issue k. A type-�ik agent

i has a von Neumann-Morgernstern expected utility function with utility index

vik
�
�ik; dk

�
� ti (3)

for each dk 2 Dk; where ti is a transfer of the numeraire good. Finally, Ck : Dk ! R describes the

cost of implementing each alternative dk 2 Dk in terms of the numeraire.

3.2 Many-Issue Economies

Let EK denote an economy consisting of issues 1; :::;K: A social decision is a resolution of

each issue, and the set of feasible social decisions is denoted DK = �Kk=1Dk. A type realization

for individual i is a vector of realized types in single-issue economies e1; ::; eK ; and we denote the

type space for agent i by �i (K) = �Kk=1�ik: Adopting standard conventions, we write � (K) �
�ni=1�i (K) for the space of type pro�les, and ��i (K) � �j 6=i�j (K) for the space of possible
type realizations among all agents except for i: To conserve space we suppress K when it cannot

cause confusion, and write �i, �, and ��i for a generic elements of �i (K), � (K) ; and ��i (K)

respectively. The revelation principle is applicable, so it is without loss of generality to consider

direct mechanisms.4 A direct mechanism in economy EK is a pair hxK ; tKi ; where xK : � (K)! DK
is the allocation rule and tK �

�
t1K ; :::; t

n
K

�
: � (K)! Rn is the transfer rule.

For each d 2 DK ; the cost of implementing d is the sum of the costs of implementing its

components,

CK (d) �
KX
k=1

Ck (dk) : (4)

The von Neumann-Morgernstern utility function for agent i of type �i 2 �i (K) is on the same
form as (3), but with vi being replaced by the valuation function V iK : �

i (K) � DK ! R de�ned

4We will, however, add non-type messages in Section 6 for expositional reasons.
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as the sum of the single issue valuation functions

V iK
�
d; �i

�
=

KX
k=1

vik
�
dk; �

i
k

�
: (5)

Next, we assume that the issue-speci�c types of each agent are independently distributed across

issues. That is, for each �i 2 �i (K) ; the cumulative distribution function is given by

F iK
�
�i
�
= �Kk=1F ik

�
�ik
�
: (6)

To sum up, the primitives of an economy EK in terms of the components fekgKk=1 are

EK =
(*

�i (K) = �K1 �ik; V iK =
KX
k=1

vik;F iK = �K1 F ik

+n
i=1

;DK = �K1 Dk; CK =
KX
k=1

Ck

)
: (7)

3.3 Reservation Utilities

For each issue k we assume that there is a \status quo outcome" d0k 2 Dk such that Ck
�
d0k
�
= 0:

We let rik
�
�ik
�
� vik

�
d0k; �

i
k

�
denote agent i0s reservation utility in the economy with the single issue

k: For each �i 2 �i (K) ; the reservation utility in economy EK ; denoted by RiK
�
�i
�
; is taken to be

the utility for agent i in case the status quo outcome is implemented for each issue 1; :::;K

RiK
�
�i
�
=

KX
k=1

rik
�
�ik
�
: (8)

3.4 Regularity

Let �k =
�
�1k; :::; �

n
k

�
2 �ni=1�ik denote an issue-k type pro�le. In an economy with single issue

k; denote by x�k (�k) an e�cient social decision rule, and by sk (�k) the associated maximized value

of surplus. That is,

x�k (�k) 2 arg max
dk2Dk

nX
i=1

vik
�
�ik; dk

�
� Ck (dk) (9)

sk (�k) = max
dk2Dk

nX
i=1

vik
�
�ik; dk

�
� Ck (dk) ;

where we assume that appropriate continuity and compactness assumptions hold for the opti-

mization problem in (9) to be well de�ned. By de�nition, sk (�k) �
Pn
i=1 r

i
k

�
�ik
�
holds for every

�k 2 �ni=1�ik: However, for our results we need a bit more, namely that the expected maximized
surplus from issue k is uniformly bounded away from the sum of issue-k reservation utilities. We

also require the social surplus associated with each issue to be bounded from above and below.

Together, we refer to these restrictions as regularity. Formally,
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De�nition 2 We say that fekg1k=1 is a regular sequence of single-issue economies if

R1 [Non-vanishing Gains from Trade]. There exists some � > 0 such that

E [sk (�k)] � E
"
nX
i=1

rik
�
�ik
�#
+ �; for all k;

R2 [Uniform Bounds on Surplus]. There exist some a < �a such that a < sk (�k) < �a for all

�k 2 �ni=1� and for all k;

R3 [Uniform Bounds on Reservation Utilities]. There exist some b < �b such that b < rik
�
�ik
�
<

�b for all i, all �ik 2 �ik; and all k:

3.5 Some Remarks about the Environment

1. We kept the set of agents the same and �nite for all problems. Since we can allow agents

with trivial roles for any issue k; the restriction can be rephrased as saying that the union of

the set of agents over all issues is �nite.

2. Throughout the model we made several separability assumptions. Payo�s and costs are

additively separable across issues, and, for each agent, the list of issue-speci�c types are

stochastically independent. Moreover, the type parameter �ik is assumed to a�ect how agent i

evaluates issue k; but no other issue. But, if any of these assumptions fail for a pair of issues,

we can always bunch these two issues into a single issue. This is possible because there are

no dimensionality restrictions on either the issue speci�c set of alternatives or type spaces.

Hence, our results hinge on the existence of a su�ciently large number of truly independent

and separate problems, but not on the absence of any non-separabilities.

3. Our model also assumes that types are stochastically independent across agents. If types are

correlated across agents it is usually possible to construct e�cient mechanisms (similar to

that of Cremer and McLean [13]) that respect both participation and resource constraints,

with no role for linking the issues.

4. Our environment is general enough to incorporate both private goods, public goods and other

types of externalities. For example, Armstrong's [1] non-linear pricing problem with many

products �ts nicely in this framework. Consider each issue k as corresponding to a product.

The set of alternatives for issue Dk 2 Rn will then correspond to a quantity choice for product
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k for each consumer. Agent i's valuation function vik depends on the quantity choice for i; i.e.

ith component of dk (see Section 5.1 for more discussion). Myerson and Satterswaite's [25]

bilateral bargaining problem also �ts in as an issue k in our setup. A bilateral bargaining

problem can be represented by an action space Dk = [0; 1], denoting the probability that

agent 1 will obtain the good. Besides agents 1 and 2 { the two agents in the bargaining

situation { all other agents' preferences on this issue are simply independent of dk: Mailath

and Postlewaite's [22] many-agent bargaining problem with public goods can similarly be

incorporated as an issue in our setup.

5. The setup is related, but distinct from, dynamic mechanism design problems, such as Athey

and Segal [3]. The crucial di�erence is that agents in our setup know the whole type vector

at once, as opposed to drawing new realizations sequentially.

4 The Implementation Problem

A mechanism designer seeks to implement an e�cient allocation, subject to incentive compati-

bility, participation and resource constraints. A mechanism is incentive compatible if truth-telling

is a Bayesian Nash equilibrium in the incomplete information game induced by hxK ; tKi ; that is,
when

E�i
�
V iK
�
xK (�) ; �

i
�
� tiK (�)

�
� E�i

�
V iK
�
xK
�
�0i; ��i

�
; �i
�
� tiK

�
�0i; �

��
(10)

8i 2 I; �i; �
0
i 2 �i (K) :

We impose participation constraints in the interim stage as

E�i
�
V iK
�
xK (�) ; �

i
�
� tiK (�)

�
� RiK

�
�i
�

8i 2 I; �i 2 �i (K) ; (11)

where RiK
�
�i
�
is de�ned in (8). Finally, the resource constraint is imposed in the ex ante form,

E [CK (xK (�))] = E
"
nX
i=1

tiK (�)

#
: (12)

A seemingly more stringent condition is to require that the resources balance for every type pro�le,

but, for the setup in this paper, ex ante and ex post resource constraints are equivalent.5

5This is because of the assumed independence across types and our focus on Bayesian implementation. See B�orgers

and Norman [8] for details. Applied to a Groves mechanism, this is the well-known AGV implementation result due

to d'Aspremont and Gerard-Varet [14].
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5 The Groves Mechanism Almost Works

In this section we consider the performance of a traditional Groves mechanism, with a lump

sum transfer set to guarantee that all agents would be willing to participate if the participation

decision is made behind a veil of ignorance.

Let

x�K (�) 2 arg max
d2DK

nX
i=1

V iK
�
d; �i

�
� CK (d) ; (13)

SK (�) = max
d2DK

nX
i=1

V iK
�
d; �i

�
� CK (d) (14)

where V iK
�
d; �i

�
is de�ned in (5) and CK (d) in (4). Consider a Groves mechanism


x�K ; tG;K �
�
t1G;K ; :::; t

n
G;K

��
; (15)

where x�K is given by (13) and for each i the transfer tiG;K is given by

tiG;K (�) = V iK
�
x�K (�) ; �

i
�
� SK (�) (16)

+
(n� 1)
n

E [SK (�)]� E
�
RiK

�
�i
��
+
1

n
E

"
nP
j=1

RjK
�
�j
�#

| {z }
lump sum transfer independent of i0s announcement

All incentive constraints (10) hold since truth-telling is a dominant strategy, and a routine cal-

culation shows that the resource constraint (12) holds. The only issue is thus the participa-

tion constraints (11). Let U iK
�
�i
�
denote the interim expected utility for agent i given mecha-

nism hx�K ; tG;Ki ; which allows us to express the participation constraints in (11) compactly as
U iK

�
�i
�
� RiK

�
�i
�
. We can now show:

Proposition 1 Suppose that fEKg1K=1 is sequence of economies consisting of stochastically inde-
pendent regular issues (in the sense of De�nition 2). Moreover, for each K; let (x�K ; tG;K) be the

Groves mechanism as speci�ed in (15). Then, for every " > 0 there exists some �nite K� (") such

that Pr
�
U iK

�
�i
�
�RiK

�
�i
�
� 0
�
� 1� " for every i and every K � K� (") :

The interpretation of the result is that the probability that all participation constraints in (11)

are satis�ed (i.e., (1� ")n) can be made arbitrarily close to one when we link a su�ciently large
number of independent social decisions using a standard Groves mechanism with appropriately

chosen lump sum transfers.
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A proof of Proposition 1 is in the appendix, but, to �x ideas, an informal argument is instructive.

Substituting (16) into the payo� function and taking expectations over ��i we may express the

interim expected utility as

U iK
�
�i
�
= E�i [SK (�)]�

n� 1
n

E [SK (�)] + E
�
RiK

�
�i
��
� 1

n
E

"
nP
j=1

RjK
�
�j
�#
; (17)

The objective function in (13) is additively separable across issues, so that

SK (�) =
KX
k=1

sk (�k) ; (18)

where sk (�k) is the maximized issue k surplus de�ned in (9). By de�nition R
i
K

�
�i
�
=
PK
i=1 r

i
k

�
�ik
�
;

so, substituting and rearranging (17), we have that

Pr
h
U i
K

�
�i
�
�RiK

�
�i
�
� 0
i

(19)

= Pr

266664E�i
�
KP
k=1

sk (�k)

K

�
� E

�
KP
k=1

sk (�k)

K

�
| {z }

A

+ E

"
KP
k=1

rik
�
�ik
�

K

#
�

KP
k=1

rik
�
�ik
�

K| {z }
B

+
1

n
E

"
SK (�)�

Pn
1 R

j
K

�
�j
�

K

#
| {z }

C

� 0

377775

Inspecting the three terms we observe that;

Term A: Regularity condition [R2] bounds the variance of sk (�k) : Together with stochastic

independence across issues this implies that
PK
k=1

sk(�k)
K ; and therefore also E�i

hPK
k=1

sk(�k)
K

i
; is

close to its expectation with high probability when K is large. Term A in expression (19) is thus

close to zero with high probability, provided that K is large.

Term B: Regularity condition [R3] bounds the variance of rik
�
�ik
�
: Together with stochastic

independence of the reservation utilities across issues this guarantees that
PK
k=1

rik(�
i
k)

K is close

to its expectation with high probability, implying that term B in (19) is close to zero with high

probability when K is large.

Term C: Finally regularity condition [R1] implies that term C in (19) is strictly positive.

Together, the behavior of these three terms imply that the probability of a participation con-

straint being violated converges to zero as K goes out of bounds.

As is clear from its formal proof, Proposition 1 actually holds under weaker regularity conditions

(with no change in the proof); namely regularity conditions [R2] and [R3] can be weakened to require

only a uniform bound on the variance of sk (�k). However the stronger regularity conditions are

needed for our main result Proposition 2.
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5.1 Application: Armstrong's [1] Multiproduct Monopolist Problem

Despite the di�erence in focus, Proposition 1 can be used to understand Armstrong's [1] analysis

of a multiproduct monopolist with K private goods. Armstrong assumes that each good k is

produced at constant unit cost ck: Marginal cost pricing trivially implements the e�cient outcome,

but monopoly pricing leads to ine�ciencies due to informational rents for the consumers. However,

when K is large, Armstrong shows that a two-part tari� gives approximate e�ciency, with the

monopolist extracting almost all consumer surplus.

Due to the constant unit cost assumption, each consumer can be treated separately, so there is

no loss in assuming that there is a single consumer. We therefore drop the index i and write

VK(d; �) =

KX
k=1

vk(dk; �k)

for the utility function of the consumer, where dk is now is to be interpreted as the quantity of good

k consumed. It can be seen from (13) and (16) that the Groves mechanism in this environment

reduces to marginal cost pricing together with a lump sum transfer where

x�K(�) = arg max
d2RK+

"
KX
k=1

vk(dk; �k)�
KX
k=1

ckdk

#
(20)

tG;K(�) =
KX
k=1

ckx
�
k(�) + T; (21)

where T is a lump sum transfer that does not depend on �: Thus, mechanism (15) reduces to a two-

part tari�, where the consumer pays a �xed fee of T for the right to purchase goods at marginal

costs. While the budget-balanced Groves mechanism will imply T = 0 (obvious from (13) by

setting n = 1); the approximately pro�t maximizing two-part tari� is to set T = (1� ") E [SK (�)]
where SK (�) =

hPK
k=1 vk(x

�
k (�) ; �k)�

PK
k=1 ckx

�
k (�)

i
and " > 0 can be made arbitrarily small. A

straightforward application of law of large numbers implies that such a two-part tari� satis�es the

consumer's participation constraint almost always, and, since the problem can be solved separately

for each consumer the mechanism becomes exactly incentive feasible if types that are not willing

to pay T are allowed to opt out. This is exactly the construction Armstrong [1] uses to establish

that the monopolist can extract almost the full surplus if there are many goods.

5.2 An Example where Participation Constraints Fail with High Probability

Now we demonstrate the role of the regularity conditions for Proposition 1. We provide examples

that do not satisfy the regularity conditions, and show that participation constraints continue to

12



fail with high probability under the standard Groves mechanism even when large number of issues

are linked.

To demonstrate the role of regularity condition [R1] { the assumption that the gains from trade

are bounded away from zero, we can simply consider an in�nite sequence of identical problems

with a static ine�ciency, and assume that payo�s are discounted. If the discount factor is small

enough, only the �rst (or the earliest) problem matters, so participation constraints fail whenever

participation constraints are violated in single issue economy 1:

In this section we will consider a somewhat more subtle example, where [R1] (non-vanishing

gains from trade) and [R3] (uniform bounds on reservation utilities) in De�nition 2 hold, but where

[R2] (uniform bounds on surplus) is violated. In essence, the example consists of a sequence of

public goods problems, where the probability of implementing an outcome di�erent from the status

quo converges to zero, but where the associated surplus conditional on implementation goes to

in�nity at a rate that keeps the ex ante surplus to 1 for each problem in the sequence.

Consider a sequence of issues in a 2-person economy where �ik = fl; hg and Dk = f0; 1g for
each k: Let

Ck (dk) =

8<: 0 if dk = 0

(k + 1)2 if dk = 0
: (22)

Let � 2
�
0; 12
�
and assume that vik

�
�ik; 0

�
= 0 for �ik = l; h; whereas

vik
�
�ik; 1

�
=

8<:
(k+1)2

2 �
�
1
2 � �

�
(k + 1)4 for �ki = l

(k + 1)2
�
1 +

�
1
2 � �

�
k (k + 2)

�
for �ki = h

: (23)

We specify that the reservation payo�s are given by rik
�
�ik
�
= 0 for �ik = l; h (thus regularity

condition [R3] is satis�ed). It is then immediate that the e�cient mechanism is x�k (ll) = 0 and

x�k (�k) = 1 for �k 2 flh; hl; hhg : Some algebra shows that the associated maximized surplus is
given by

sk (�k) =

8>>><>>>:
0 if �k = ll

� (k + 1)2 if �k 2 flh; hlg
(k + 1)4

h
1� 2�k(k+2)

(k+1)2

i
if �k = hh

:

Note that sk (�k) as speci�ed above violates [R2] because it goes to in�nity for all �k 6= ll: From

this point on, all the analysis can be done in terms of the maximized surplus function (the reason

for specifying (22) and (23) is that transferable utility and private values impose some restrictions

13



on the surplus function: not every sk such that sk (�k) � r1k
�
�1k
�
+r2k

�
�2k
�
is consistent with surplus

maximization).

Assuming that Pr
�
�ik = h

�
= 1

(k+1)2
the unconditional expected maximized surplus is

E [sk (�k)] = 2
1

(k + 1)2

�
1� 1

(k + 1)2

�
� (k + 1)2 +

�
1

(k + 1)2

�2
(k + 1)4

�
1� 2�k (k + 2)

(k + 1)2

�
= 2�

�
1� 1

(k + 1)2

�
+

�
1� 2�k (k + 2)

(k + 1)2

�
= 1 + 2�

�
1� 1 + k

2 + 2k

(k + 1)2

�
= 1:

Thus regularity condition [R1] is also satis�ed. Moreover,

E
�
sk (�k) j�ik = l

�
=

1

(k + 1)2
� (k + 1)2 = �:

Hence, the interim expected payo� for type l = (l; ::::; l)| {z }
K

in the Groves mechanism with transfer

(16) is

U i (l) =

KX
k=1

E
�
sk (�k) j�ik = l

�
� 1
2

KX
k=1

E [sk (�k)] = �K � 1
2
K < 0;

since � < 1
2 : It is easy to check that Pr

�
�i = l

�
=
QK
k=1

k(k+2)

(k+1)2
= K+2

2(K+1) >
1
2 ; implying that the

participation constraint is violated with a probability exceeding 1
2 for each player no matter how

many problems are linked.

6 Asymptotic E�ciency

Proposition 1 does not solve the implementation problem as stated in Section 4. Although

participation constraints are unlikely to fail if K is large, the probability is in general strictly

positive. A natural idea to remedy this problem is to revert to the status quo outcome when a

participation constraint is violated. Since failures are rare when K is large, this may appear to

create an almost e�cient incentive feasible mechanism.

The problem with this idea is that the agents that \opt out" change the interim expected

payo� from participation for the agents that \opt in".6 Hence, if types with interim payo�s below

the reservation utilities opt out, this may diminish the value of playing the Groves mechanism

for the remaining types, and the best response may be that some additional types opt out due

to a negative selection e�ect. The set of types that agree to play the Groves mechanism must

6This issue is not relevant for private goods problems such as Armstrong [1] where the e�cient outcome for agent

i does not depend on others' types.
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therefore be determined through an equilibrium argument. This makes the existence of a nearly

e�cient equilibrium non-obvious, as the participation constraints can unravel when agents have veto

power, even if the probability of a participation constraint being violated, if all types were assumed

to participate, converges to zero. Indeed, in Section 6.4 we provide an explicit example (which

violates the regularity conditions of our main result Proposition 2) where the probability that, as

K tends to in�nity, a participation constraint is violated converges to zero under the standard

Groves mechanism, but where the mechanism is nevertheless vetoed with probability near unity

when K is large:

Our main result, Proposition 2, shows that the regularity conditions in De�nition 2 are su�cient

to rule out such unraveling. Under these conditions, there exists a mechanism satisfying constraints

(10), (11), and (12) that is almost e�cient when the number of independent issues is su�ciently

large.

An analytical di�culty in establishing this result is the �xed point problem discussed above:

constructing sequences of direct revelation mechanisms generates a �xed point problem in the set of

\non-vetoing types", making direct mechanism hard to work with. Instead, we consider an indirect

mechanism that speci�es an explicit choice as to whether to veto the Groves mechanism in addition

to the type message.

6.1 An Augmented Groves Mechanism

We add the non-type message mi 2 f0; 1g to the message space, so that each agent reports
a pair

�
mi; �i

�
: If all agents report mi = 1; then a Groves mechanism is implemented, whereas

if any agent chooses mi = 0; the default outcome d0 is implemented and all transfers are zero.

Hence, all agents have veto power. Notice here the di�erence with Jackson and Sonnenschein [20].

Our vetoes are cast before agents know the types of the other agents, whereas they assume that

the vetoing procedure is ex post, implying that their mechanism satis�es ex post participation

constraints. While ex post participation sometimes is a desirable feature, it is di�cult to deal with

in our model due to our (possibly) continuous social decisions and type spaces. This is because

the conditional dominance solvability of the revelation game breaks down when vetoes are cast

ex post. Concretely, the agents would need to form beliefs over the outcomes in the ex post veto

game, and the equilibrium veto strategies would a�ect incentives to report types truthfully. As a

result, exact e�ciency with high probability will be impossible to guarantee. We conjecture that a

slightly weaker version of a result would continue to hold with ex post participation constraints,
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but a proof would involve additional layers of approximations compared with the current proof.

We consider a sequence of mechanisms
�bxK ;btK	1K=1, where for each K

bxK (�;m) =

8<: x�K (�) if m = (1; 1; :::; 1)

d0 =
�
d01; ::::; d

0
K

�
otherwise

(24)

btiK (�;m) =

8<: tiG;K (�) +
�K
4n if m = (1; 1; :::; 1)

0 otherwise,
:

The term tiG;K (�) in the transfer scheme is given by the Groves transfer scheme in (16), and � is

the lower bound on the per issue gains from trade de�ned in [R1].

While not explicitly written as such, (24) is equivalent to a sequential mechanism, where in

stage 1 the agents play a veto game. If any agent casts a veto, then the game is over, while if no

veto is cast the agents play a Groves mechanism with almost the same transfers as in Section 5.

The only di�erence is that the term �K
4n has been added to the transfer scheme, which is to avoid

budget de�cits. In fact, we will show that

E [CK (bxK (�;m))] < E" nX
i=1

btiK (�;m)
#
; (25)

holds when K is large. A strict budget surplus is obviously ine�cient, but, since it can be rebated

lump sum (which means that also to types that veto the mechanism get the rebate) without

upsetting either participation or incentive constraints, this in turn guarantees existence of a transfer

that balances the resource constraint (12) exactly (see Corollary 1 following Proposition 2).

6.2 The Approximate E�ciency Result

We now state our main result, which says that, if the underlying sequence of single-issue

economies is regular, then mechanism (24) has equilibria that implement the e�cient outcome with

probability arbitrarily close to one, provided that su�ciently many issues are linked. Formally,

Proposition 2 Suppose that fEKg1K=1 is sequence of economies consisting of stochastically inde-
pendent regular issues (in the sense of De�nition 2). Then, for every " > 0 there exists a �nite

K� (") such that, for every economy EK with K � K� (") ; there exists an equilibrium in the game

induced by mechanism (24) where an e�cient outcome is implemented with probability at least 1�",
and where (25) is satis�ed.
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If � is large, then the budget surplus generated by (24) is large, which means that the mechanism

is far from e�cient. However, this ine�ciency is trivial to eliminate by a lump sum rebate of the

expected budget surplus:

Corollary 1 For every " > 0 and K � K� (") there exists a direct mechanism satisfying (10), (11)

and (12), where an e�cient outcome is implemented with probability at least 1� ":

The key di�erence with Proposition 2 is that the (potentially large) ine�ciency that comes from

the strict budget surplus (25) is eliminated by making the mechanism exactly budget balanced (ex

ante).7

Proof. By the revelation principle, there exists a direct revelation mechanism with an equilibrium

that implements the same outcome as mechanism (24) for every K: Hence, (10) is satis�ed and (11)

holds since each agent has an action (mi = 0) that guarantees the reservation utility. Finally, since

(25) is satis�ed there exists a lump-sum rebate (where also types that veto the decision receive the

rebate) such that (12) is satis�ed. This rebate leaves the incentives constraints (10) una�ected,

and increases the interim expected utility from participation, implying that every constraint (11)

continues to hold.

6.3 The Proof of Proposition 2

An important object in our proof is a set of types, �
i
(K) ; who are at least �K2n better o� from

participating in the Groves mechanism than from the status quo outcome. Formally,

�
i
(K) =

�
�i 2 �i (K) jU iK

�
�i
�
�RiK

�
�i
�
� �K

2n

�
; (26)

where the interim utility function U iK
�
�i
�
is de�ned in (17), using the Groves mechanism in the

previous section. To interpret �
i
(K), recall that �K=n is a lower bound for the expected value for

U iK
�
�i
�
�RiK

�
�i
�
; so �

i
(K) is a set of agent i's types for which her interim expected surplus is at

least 1=2 of this lower bound. This set is useful because the probability that �i belongs to �
i
(K) is

close to one when K is large, and, because types in �
i
(K) have a per-issue ex ante expected payo�

of at least �=2n, there is room to consider small deviations from the Groves mechanism without

upsetting their participation constraints.

7Ex post budget balance can also be guaranteed by a single additional step. See B�orgers and Norman [8].
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It is convenient to introduce the notation

� (K) =
n
� 2 �(K) j�i 2 �i (K) for each i

o
(27)

�
�i
(K) =

n
��i 2 ��i (K) j�j 2 �j (K) for each j 6= i

o
: (28)

Using roughly the same style of argument as in the proof of Proposition 1, we begin by establishing

that for large K; the probability that ��i belongs to �
�i
(K) is near one. This is fairly obvious,

since the lump sum transfers from our Groves mechanism are constructed so that

E
�
U iK

�
�i
�
�RiK

�
�i
��
=
1

n

8<:E [SK (�)]� E
24 nX
j=1

RjK
�
�j
�359=; � �K

n
; (29)

by the assumption that the per-issue gains from trade are bounded below by � in (R1).

Lemma 1 Suppose that fEKg1K=1 is sequence of economies consisting of stochastically independent
regular issues. Then, for every " > 0 there exists �nite K 0 (") such that Pr

h
�
�i
(K)

i
� 1 � " for

all K � K 0 (") :

De�ne E�i
�
SK (�) j��i (K)

�
as the interim expectation of the social surplus under an e�cient

social decision rule for agent i conditional on �i and conditional on the types of the other agents

being in the set ��i (K) : Using the regularity assumptions (R2) and (R3) we show that:

Lemma 2 Suppose that fEKg1K=1 is sequence of economies consisting of stochastically independent
regular issues. Then, for every " > 0 there exists �nite K 00 (") such that for all K � K 00 (") ;

E�i
�
SK (�) j��i (K)

�
K

� E�i [SK (�)]

K
� "; for all �i 2 �i (K) :

Intuitively, the idea is that, since the probability that ��i lies in ��i (K) can be made arbitrarily

close to one by linking su�ciently many problems, the conditional expectation is almost exclusively

taken over ��i (K).

Next, we start to characterize equilibrium play in the mechanism. Since the \second stage

mechanism" is a Groves mechanism, truth-telling is dominant conditional on no veto being cast.

Neither is there any bene�t from lying if a veto is cast. There are thus never any gains from

misrepresenting the type pro�le. In terms of the decision when to veto the Groves mechanism, it

is therefore just to evaluate the interim expected payo� from not vetoing, which is a computation

where selection e�ects matter for the probabilities, but not for behavior in the second stage, and

compare this with the reservation utility.
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To state this formally we need to introduce notation for the veto rules. Later, we need to allow

randomizations to ensure existence of equilibria, so let a veto rule in economy EK be a map  iK :

�i (K)! [0; 1] ; where  iK
�
�i
�
is interpreted as the probability that type �i chooses mi = 1, a vote

to play the Groves mechanism. Following standard conventions, let  K =
�
 1K ; :::;  

n
K

�
and  �iK =�

 1K ; ::;  
i�1
K ;  i+1K ; :::;  nK

�
: Also, let bU i �mi;  

�i
K ; �

i
�
denote the interim expected payo� for type

�i from announcement
�
mi; �i

�
under the assumption that all other agents report type truthfully

and follow an arbitrary veto rule  �iK : ��i (K) ! [0; 1]n�1 :8 For brevity, we let 	�iK
�
��i
�
�Q

j 6=i  
j
K

�
�j
�
and F�iK

�
��i
�
=
Q
j 6=i F

j
K

�
�j
�
: Given that all agents report their type parameters

truth-fully, the interim expected payo� for player i is bU i �0;  �iK ; �i� = RiK
�
�i
�
if i vetoes the

mechanism and

bU i �1;  �iK ; �i� = Z ��SK (�) + T iK�	�iK ���i�+RiK ��i� �1�	�iK ���i��� dF�iK �
��i
�

(30)

if i votes in favor, where SK (�) is the surplus de�ned in (18) and

T iK � �
n� 1
n

E [SK (�)] + E
�
RiK

�
�i
��
� 1

n
E

24 nX
j=1

RjK
�
�j
�35� �K

4n
(31)

is the (negative of the) \conditional lump-sum" part of the transfer in (24). It follows that:

Lemma 3 Suppose that each agent j 6= i reports type truthfully and chooses mj in accordance to

rule  jK : �
j (K)! [0; 1]. Then, it is a best response for agent i to always report truthfully and to

follow the rule e iK ; where;
e iK ��i� =

8<: 1 if bU i �1;  �iK ; �i� > RiK
�
�i
�

0 if bU i �1;  �iK ; �i� < RiK
�
�i
�

We now proceed to the key lemma in the proof, which characterizes the best responses in the

veto game.9 It says that, if K is large enough and if, for all i and j 6= i; agent i believes that no type

in the set �
j
(K) will veto the mechanism, then all types �i in �

i
(K) have a strict incentive not

to veto the mechanism. This is true regardless of the behavior of types outside of the set �
j
(K) :

8At the cost of more complicated notation, we could allow for non-truthful announcements. In the end, this extra

\bite" is useless since there is no hope to get dominance in the veto rules.

9The reader may note that using a Groves mechanism conditional on no veto, rather than a mechanism with

Bayesian incentive compatibility, is crucial for our ability to collapse the problem into a single veto game. That is,

the payo� calculation in (30) rests crucially on the second stage being dominance solvable. If this would not be the

case, selection in the veto game would a�ect beliefs, making the problem intractable.
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In other words, eventually, incentives are dominated by best responding to ��i (K) and when K

is large this rationalizes voting to go ahead with the Groves mechanism for types in �
i
(K).10

Lemma 4 Suppose that fEKg1K=1 is sequence of economies consisting of stochastically independent
regular issues. Then, there exists �nite K�such that, for all K � K�; if  jK

�
�j
�
= 1 for each type

�j 2 �j (K) ; j 6= i; then it is a best response for agent i to set  iK
�
�i
�
= 1 for each �i 2 �i (K).

Recall that the whole exercise would be useless unless we can verify that the mechanism balances

the budget. Again, we can only guarantee this if K is large enough. If K is too small the probability

that the mechanism is vetoed is non-negligible, and it may be that the types that stay out are

those that generate the most revenue for the mechanism designer. However, when K is large the

probability of a veto is small and the extra lump sum revenue from the term �K
4n in (24) eventually

su�ces for a budget surplus.

Lemma 5 Suppose that fEKg1K=1 is sequence of economies consisting of stochastically independent
regular issues and that, for every K,  iK

�
�i
�
= 1 for each �i 2 �i (K). Then, there exists �nite

K��such that (25) is satis�ed for all K � K��.

The idea is that Pr
�
�(K)

�
converges in probability to unity and so that the mechanism runs

a budget surplus that approaches �K4 when K is large.

To complete the proof we now combine the �ve Lemmas above and argue that an equilibrium

exists where the e�cient outcome is implemented with high probability and the budget is balanced.

Proof of Proposition 2. Consider a game where mi = 1 is the only available action for types in

�
i
(K) and where types in �i (K) n�i (K) may choosemi 2 f0; 1g, and the interim expected payo�s

are given by (30): The action space is �nite for each player, so payo�s are equicontinuous in the sense

of Milgrom and Weber [24] (see Proposition 1 in Milgrom and Weber [24]). Moreover, stochastic

independence implies that the information structure is absolutely continuous (Proposition 3 in

Milgrom and Weber [24]). Applying Theorem 1 in Milgrom and Weber the game has an equilibrium

in distributional strategies. Since the action space is �nite, we can represent this equilibrium

as a behavioral strategy  �K : � (K) ! [0; 1]n ; where by construction  i�K
�
�i
�
= 1 whenever

�i 2 �i (K) : But, applying Lemma 4 it follows that that there exists K� <1 such that  �K is an

equilibrium also when types in �
i
(K) have the option to freely pick mi 2 f0; 1g ; which by use of

Lemma 5 implies that (25) is satis�ed for K � max fK�;K��g : Moreover, for any " > 0 Lemma

10Trivially, there will always be equilibria where the Groves mechanism is vetoed with probability 1.
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1 assures that we may pick K 0 (") such that such that Pr
h
�
i
(K)

i
� 1 � " for each K > K

0
(").

Finally, Lemma 3 guarantees that truth-telling is optimal provided that each agent announce mi

in accordance with  i�K : The result follows by letting K
� (") = max fK�;K��;K 0 (")g :

6.4 An Example where the Participation Constraints Unravel

Let n = 2 and assume that, for each k and i = 1; 2; the issue k type space is given by

�ik = fl;m; hg ; and Dk =
�
d0k; d

l
k; d

m
k ; d

h
k

	
: In terms of interpretation it is useful to think of

d0k as the \status quo" outcome, whereas d
l
k; d

m
k and dhk are surplus maximizing alternatives for

type pro�les ll;mm and hh respectively. Suppose that the cost function is given by,

Ck (dk) =

8>>>>><>>>>>:
0 if dk = d0k

(k+1)2

k if dk = dlk
k(k+1)2

2 if dk = dmk

2 (k + 1)3 if dk = dhk :

Assume that the valuation functions for the three types are given by;

vik (dk; l) =

8>>>>><>>>>>:
0 if dk = d0k

1
2
(k+1)2

k if dk = dlk

0 if dk = dmk
(k+1)2

4

�
k � 1

k

�
if dk = dhk

vik (dk;m) =

8>>>>><>>>>>:
0 if dk = d0k

3
4
(k+1)2

k + " (k + 1) if dk = dlk
k(k+1)2

2 � 2"k (k + 1) (k + 2) if dk = dmk
k(k+1)2

4 � 3 (k + 1)3 if dk = dhk

vik (dk; h) =

8>>>>><>>>>>:
0 if dk = d0k

�" (k + 1) if dk = dlk

�k(k+1)2

2 if dk = dmk

3 (k + 1)3 � k(k+1)2

4 if dk = dhk ;

where " > 0: Further restrictions on " will be derived below. Since Ck
�
d0k
�
= 0 we take d0k as the

status quo outcome, implying that rik
�
�ik
�
= vik

�
d0k; �

i
k

�
= 0 for all �ik:

One may interpret the example as one where there are two public goods and two types of high

valuation agents, who mutually dislike the public good preferred by the other high type.
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It is easy, but somewhat tedious (see Fang and Norman [16] for the details), to check that if

" � 1
24 and k � 2; then an optimal social decision rule is:

11

x�k (�k) =

8>>>>><>>>>>:
d0k if �k 2 fmh; hmg
dlk if �k 2 fll; lm;mlg
dmk if �k = mm

dhk if �k 2 flh; hl; hhg

: (32)

When k = 1, dlk is the optimal social decision for pro�le mm. This does not a�ect anything

qualitatively, but derivations are less transparent if this is carried around. We will therefore simply

consider a sequence of issues indexed by fkg1k=2 : For every k � 2; the maximized social surplus is

sk (�k) =

8>>>>>>>><>>>>>>>>:

0 if �k 2 fll;mh; hmg
1
4
(k+1)2

k + " (k + 1) �k 2 flm;mlg
k(k+1)2

2 � 4"k (k + 1) (k + 2) if �k = mm

(k + 1)2
h
4k(k+1)�1

4k

i
if �k 2 flh; hlg�

4 (k + 1)� k
2

�
(k + 1)2 if �k = hh

: (33)

Obviously the issues in this example violate regularity condition [R2]. The key asymmetry between

m and h is that the surplus when the issue k type pro�le is lm or ml is of order k; while lh or hl

generates a surplus of order k3: This allows us to make m the \lowest" type in an interim sense,

while at the same time making sure that m does contribute su�ciently to the interim expected

surplus conditional on �ik = l for it to a�ect the participation decision for l (even as the probability

of �ik = m converges rapidly to zero).

Assuming that the probability distribution over �ik is given by�
Pr
�
�i = l

�
;Pr

�
�i = m

�
;Pr

�
�i = h

��
=

�
k (k + 2)

(k + 1)2
;

1

2 (k + 1)2
;

1

2 (k + 1)2

�
; (34)

the relevant expected values of the maximized issue k surplus are

E [sk (�k)j l] =
k + 1

2
+

"

2 (k + 1)
(35)

E [sk (�k)jm] =
k + 1

2
� "k � "k

(k + 1)
(36)

E [sk (�k)jh] = (k + 1)3 +
(k + 1)

2
(37)

E [sk (�k)] = k + 1 (38)

11Both d0k and d
l
k are optimal when the type pro�le is ll:We could adjust the costs and preferences slightly to make

the optimal rule unique (without a�ecting the surplus).
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Since n = 2 and RiK
�
�i
�
= 0 for all �i the interim expected payo� from participating in the

Groves mechanism with transfers (16), (17), simpli�es to

U iK
�
�i
�
= E�i [SK (�)]�

1

2
E [SK (�)] =

KX
k=2

E�i [sk (�k)]�
1

2

KX
k=2

E [sk (�k)] (39)

Consider a type of the form (m; ::;m; l; :::l) : Speci�cally, assume that �ik = m for k = 2; :::;K� and

�ik = l for k = K� + 1; :::;K: For brevity, denote such a type by (mK� ; lK�K�) : Substituting (35),

(36) and (38) into (39) and simplifying the result, the interim expected payo� for such a type is

U iK (mK� ; lK�K�) = "

"
K�X
k=2

�
�k � k

k + 1

�
+
1

2

KX
k=K�+1

1

k + 1

#
(40)

De�ne

H (K�;K) �
K�X
k=2

�
�k � k

k + 1

�
+
1

2

KX
k=K�+1

1

k + 1
(41)

We note that: i) H is strictly decreasing in K�, and; ii) H (1;K) = 1
2

PK
k=2

1
k+1 > 0, and; iii)PK

k=2

�
k + k

k+1

�
< 0: Hence, there exists a unique integer K� (K) such that H (K� (K) ;K) � 0

and H (K� (K) + 1;K) < 0: The signi�cance of K� (K) is that U iK (mK� ; lK�K�) � 0 (< 0) for

K� � K� (K) (K� > K� (K)). We observe that the positive term in (41) is divergent, that is

KX
k=K�+1

1

k + 1
=

KX
k=K�+1

Z k+2

k+1

1

k + 1
dz >

KX
k=K�+1

Z k+2

k+1

1

z
dz =

Z K+2

K�+2

1

z
dz = ln (K + 2)�ln (K� + 2) :

(42)

It follows that K� (K) goes (slowly) to in�nity as K goes to in�nity. To see this, assume for

contradiction that there exists some K such that K� (K) < K � 1 for all K: Then,

H (K� (K) + 1;K) � H
�
K;K

�
=

KX
k=2

�
�k � k

k + 1

�
+
1

2

KX
k=K+1

1

k + 1
(43)

/using (42)/ >
KX
k=2

�
�k � k

k + 1

�
+
ln (K + 2)� ln

�
K + 2

�
2

:

ln (K + 2) ! 1 as K ! 1 and the other two terms in (43) are �nite, so H (K� (K) + 1;K) > 0

if K is large enough, which contradicts the de�nition of K� (K) :

Next, consider a type on form
�
�i2; :::; �

i
K�(K); l; ::::; l

�
; where the signals for problems 2; :::;K� (K)

are arbitrary, and �ik = l for k = K� (K) ; ::;K: For brevity, denote such a type by
�
�iK�(K); lK�K�(K)

�
:
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Because E [sk (�k)jm] � E
�
sk (�k)j �ik

�
for all �ik 2 fl;m; hg and every k it follows that

U i
�
�iK�(K); lK�K�(K)

�
=

K�(K)X
k=2

E
�
sk (�k)j �ik

�
�

KX
k=K�(K)+1

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)]

�
K�(K)X
k=2

E [sk (�k)jm]�
KX

k=K�(K)+1

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)] = "H (K� (K) ;K) > 0 (44)

We conclude that the participation constraint holds for any such type. Since,

Pr
h�
�iK�(K)+1; :::; �

i
K

�
= (l; ::::; l)

i
=

KY
k=K�(K)+1

k (k + 2)

(k + 1)2
=
(K� (K) + 1) (K + 2)

(K� (K) + 2) (K + 1)
! 1 (45)

as K !1 it follows that the probability that �i is on the form
�
�iK�(K); lK�K�(K)

�
tends to unity

as K goes out of bounds. We conclude;

Claim 1 The probability that all participation constraints hold converges to 1 as K !1 .

That is, the su�cient conditions used to prove Proposition 1 are not satis�ed, but the conclusion

in Proposition 1 is nevertheless valid: the Groves mechanism with transfers (16) is almost incentive

feasible.

Next, consider type �i where all coordinates are l except for �ik� = m: Denote this type �i =�
lj�ik� = m

�
and substitute from (35), (36), and (38) to get

U
�
lj�ik� = m

�
=

KX
k 6=k�

k + 1

2
+

"

2 (k + 1)
+
k� + 1

2
� "k� � "k�

k� + 1
� 1
2

KX
k=2

k + 1 (46)

= "

"
1

2

KX
k=2

1

k + 1
� k� � k�

k� + 1
� 1

2 (k� + 1)

#
< "

"
1

2

KX
k=2

1

k + 1
� k�

#

A calculation symmetric to (42) shows that

KX
k=2

1

k + 1
=

KX
k=2

�Z k+1

k

1

k + 1
dz

�
<

KX
k=2

�Z k+1

k

1

z
dz

�
=

Z K+1

2

1

z
dz = ln

�
K + 1

2

�
(47)

Hence,

U
�
lj�ik� = m

�
< "

�
1

2
ln

�
K + 1

2

�
� k�

�
(48)

De�ne ek (K) as the integer part of 12 ln �K+12 �
+ 1: For k� � ek (K) the right hand side of (48) is

negative, implying that type
�
lj�ik� = m

�
is worse o� from participating in the Groves mechanism
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than from the status quo outcome d0 =
�
d02; ::::; d

K
K

�
: For brevity, denote this subset of types with

a strict incentive to veto the Groves mechanism by �iV : That is

�iV =
n
�ij�ik = m for some k� � ek (K) and �ik = l for all k 6= k�

o
We note that, for any k� � ek (K)

Pr
�
�i 2 �iV j�ik� = m

�
=

Y
k 6=k�

Pr
�
�ik = l

�
> Pr

�
�i = l

�
=

KY
k=2

Pr
�
�ik = l

�
(49)

=
KY
k=2

k (k + 2)

(k + 1)2
=
2

3

�
K + 2

K + 1

�
>
2

3

In words, conditional on �ik� = m, the probability that all the other coordinates are ls is (slightly)

larger than the unconditional probability that type (l; :::; l) is realized, which is at least 2=3 for

every K: For k � ek (K) the expected surplus conditional on �ik = l and conditional on agent i being

aware that any type �i 2 �iV will veto the mechanism is

E
�
sk (�k) jl; veto by �iV

�
= E [sk (�k) jl]� Pr

�
�ik = m

�
Pr
�
�i 2 �iV j�ik = m

�
sk (lm) : (50)

Substituting E [sk (�k) jl] from (35) and sk (lm) from (33) into (50) and using (49) we get

E
�
sk (�k) jl; veto by �iV

�
<

k + 1

2
+

"

2 (k + 1)| {z }
=E[sk(�k)jl]

� 1

2 (k + 1)2| {z }
=Pr[�ik=m]

2

3|{z}
(49)

"
1

4

(k + 1)2

k
+ " (k + 1)

#
| {z }

=sk(lm)

=
k + 1

2
+

"

6 (k + 1)
� 1

12k
: (51)

The interim expected payo� of type l =(l; :::; l) conditional on vetoes from types in �iV is thus

U iK
�
ljveto by �iV

�
=

ek(K)�1X
k=2

E [sk (�k)j l] +
KX

k=ek(K)
E
�
sk (�k) jl; veto by �i 2 �iV

�
� 1
2

KX
k=2

E [sk (�k)]

/using (51)/ <
"

2

24ek(K)�1X
k=2

1

k + 1

35+ "

6

KX
k=ek(K)

1

k + 1
� 1

12

KX
k=ek(K)

1

k
(52)

From (47) we have that
Pek(K)�1
2

1
k+1 < ln

�ek(K)
2

�
: Similarly,

KX
ek(K)

1

k + 1
=

KX
k=ek(K)

Z k+1

k

1

1 + k
dz <

Z K+1

ek(K)
1

z
dz| {z }

=ln
�
K+1ek(K)

�
=

KX
k=ek(K)

Z k+1

k

1

z
dz <

KX
k=ek(K)

Z k+1

k

1

k
dz =

KX
k=ek(K)

1

k
dz;

(53)
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and substituting these three bounds into (52) we �nd that

U iK
�
ljveto by �iV

�
<
"

2
ln

 ek (K)
2

!
� (1� 2")

12
ln

 
K + 1ek (K)

!
(54)

But, ek (K) � ln(K+1)�ln 2
2 + 1; so

ln

 
K + 1ek (K)

!
= ln (K + 1)� ln

�ek (K)� � 2ek (K)� 2 + ln 2� ln�ek (K)� (55)

Since limx!1
lnx
x = 0 and since limK!1 ek (K) = 1 it follows that the term ln

�
K+1ek(K)

�
even-

tually dominates in expression (54). Consequently, whenever " < 1
2 there exists K such that

U i
�
ljveto by �iV

�
< 0 for any K � K: Hence:

Claim 2 There exists K < 1 such that type l and any type in �iV vetoes the Groves mechanism

in any equilibrium for any K � K.

Now, de�ne the set �iW =
�
�ij�ik 2 fl;mg for every k

	
. By virtue of Claim 2 types in �iV and

type l will use their veto power, which, for k < ek (K), implies that
E
�
sk (�k) jm; veto by l and �iV

�
< E [sk (�k) jm] < E [sk (�k) jl] = E

�
sk (�k) jl; veto by �iV

�
: (56)

For k � ek (K) we �rst note that
E
�
sk (�k) jm; veto by l and �iV

�
< Pr

�
�ik = l

� �
1� Pr

�
�i = lj�ik = l

��| {z }
< 1
3

sk (ml) (57)

+Pr
�
�ik = m

� �
1� Pr

�
�iV j�ik = m

��| {z }
< 1
3

sk (mm) <
1

3
E [sk (�k) jm] ;

and that,

E
�
sk (�k) jl; veto by �iV

�
(58)

= E [sk (�k) jl]� Pr
�
�ik = m

� �
Pr
�
�iV j�ik = m

��| {z }
<1

sk (lm) > E [sk (�k) jl]� Pr
�
�ik = m

�
sk (lm)

=
k + 1

2
+

"

2 (k + 1)
� 1

2 (k + 1)2

"
1

4

(k + 1)2

k
+ " (k + 1)

#
=
k + 1

2
� 1

8k

>
1

3

k + 1

2
>
1

3
E [sk (�k) jm] > E

�
sk (�k) jm; veto by l and �iV

�
Combining (56) and (58) we have that E

�
sk (�k) jm; veto by l and �iV

�
< E

�
sk (�k) jl; veto by �iV

�
for any k; which implies that U iK

�
�ijveto by �iV and l

�
< U iK

�
ljveto by �iV

�
for any type �i such

that �ik 2 fl;mg for every k :
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Claim 3 There exists some K such that every type �i 2 �iW vetoes the Groves mechanism in any

equilibrium for any K � K:

For the �nal step in the argument consider a type with �ik = h for k = 2; ::; bK � 1 and �ik = l

for k = bK; ::;K and denote such a type by
�
h bK�1; lK� bK

�
: It is immediate that

E
�
sk (�k) jh; veto by �i 2 �iW

�
< E [sk (�k) jh] = (k + 1)3 +

(k + 1)

2
:

Moreover, since Pr
�
�i 2 �iW j�ik = m

�
> 2

3 we can repeat the exact same steps as in calculation

(51) to conclude that, for any k � 2;12

E
�
sk (�k) jl; veto by �iW

�
= Pr

�
�ik = m

� �
1� Pr

�
�i 2 �iW j�ik = m

��
sk (lm) + Pr

�
�ik = h

�
sk (lh)

/same steps as in (51)/ <
k + 1

2
+

"

6 (k + 1)
� 1

12k
:

Hence,

U iK

�
h bK�1; lK� bK jveto by �iW

�
(59)

<

bK�1X
k=2

�
(k + 1)3 +

(k + 1)

2

�
+

KX
k= bK+1

�
k + 1

2
+

"

6 (k + 1)
� 1

12k

�
�

KX
k=2

k + 1

2

=

bK�1X
k=2

(k + 1)3 +
KX
k= bK

�
"

6 (k + 1)
� 1

12k
:

�

But, by the calculations in (53) we know that
PK
k= bK 1

k+1 < ln
�
K+1bK

�
<
PK
k= bK 1

k , which implies

that

U iK

�
h bK�1; lK� bK jveto by �i 2 �iV

�
<

bK�1X
k=2

(k + 1)3 � 1� 2"
12

ln

�
K + 1bK

�
� G

� bK;K� (60)

It is easy to check that: i) G is strictly increasing in bK; and; ii) G (2;K) < 1 (assuming that

" < 1
2 , which we do), and; iii) G (K + 1;K) > 0: This implies that there exists a unique integerbK (K) such that G� bK;K� < 0 for everyK � bK (K) and G� bK;K� � 0 forK > bK (K) :Moreover,bK (K)!1 asK !1 since otherwise there exists someK such that G

�
K;K

�
� 0 for allK; which

cannot be the case, since limK!1G
�
K;K

�
= �1 for any �xed K: To complete the argument

we observe that if
�
�ibK(K)�1; lK� bK(K)

�
is any type pro�le such that �ik = l for k = bK (K) ; :::;K;

12The di�erence is that (51) is only applicable for k � ek (K) :
27



then the right hand side of (60) is an upper bound for the interim expected payo� also for type�
�ibK(K)�1; lK� bK(K)

�
conditional on types in �iW vetoing the mechanism, implying that

U iK

�
�ibK(K)�1; lK� bK(K)jveto by �i 2 �iV

�
< G

� bK (K) ;K� � 0:
Since bK (K) ! 1, calculation (45) implies that Pr

h�
�ibK(K); :::; �iK

�
= l

K� bK(K)
i
! 1 as K ! 1:

We can thus conclude that:

Claim 4 The probability that a veto is cast approaches 1 as K !1:

7 Discussion

7.1 Linking in Trade Negotiations

Trade treaties are in some ways a perfect application for our result, provided that one believes

that informational asymmetries regarding the relative valuation between, say, a given tari� reduc-

tion and improved intellectual property rights is an important consideration. The self-�nancing

constraint (12) then simply says that there is no outside source of resources, and the participation

constraint (11) is just national sovereignty, which seems to be an appropriate assumption.

The obvious limitation of our model is that many issues in a trade treaty are fundamentally

interrelated. For example, technical barriers of trade become an important issue only after tari�s

have been reduced to a level which is below the unilaterally most preferred tari�, providing a direct

rationale for linking tari� negotiations with rules governing non-tari� barriers of trade. While this

is indeed a shortcoming, we do not think that our result is irrelevant for thinking about real world

trade agreements. Instead, we think that our result highlights a fundamental force that works in

favor of highly multidimensional agreements that is absent in the previous literature on the topic,

which deals exclusively with complete information environments. At present we do not know how

generalizable the approximate e�ciency result is to more realistic models, but the basic point that

one participation constraint is easier to satisfy than many suggests that there should be a role for

linking more generally. Our logic then suggests that it may be a mistake to negotiate a treaty

for reducing greenhouse gas emissions in separation, since linking with other issues, such as trade

concessions, would make a veto more costly.

Unlike our paper, papers in the international trade literature on issue-linking in trade nego-

tiations, such as Bagwell and Staiger [4], Conconi and Perotti [11], Horstmann et al [19], and

Spagnolo [28], rely on a given bargaining protocol. The pros and cons of linking in these papers are

28



therefore largely derived from strategic e�ects. Since such e�ects usually depend on details of the

bargaining protocol, it is not that surprising that results are mixed. In contrast, the mechanism

design methodology used in this paper has the advantage of ruling out results that are driven by

particularities in a non-cooperative bargaining game.

7.2 Governments as Linking Mechanisms

Real world government institutions usually ful�l many and arguably quite unrelated functions,

and the results in this paper can be seen as a simple theory explaining this, as far as we know, previ-

ously unexplained fact. The existing theory of public �nance has identi�ed many potential sources

of market failure, and interpreted these as a rationale for \government intervention." However, the

existing theory only explains that it may be bene�cial to set up some institution to deal with each

particular market failure, but does not provide a foundation for why a single government institution

should be responsible for dealing with all these problem. For example, we understand that there

are externalities involved in garbage collection, that public parks would be under-provided by vol-

untary provisions, and that for-pro�t policing may be a bad idea, but it seems hard to argue that

there are technological reasons for why these services should be provided jointly as part of a local

government bundle, as they tend to be. Our results suggest a possible explanation: linking all these

seemingly unrelated social decisions via a single government institution helps achieve e�ciency by

alleviating citizens' participation constraints.

The reader may complain that our mechanism is an unrealistic description of what real world

governments do. In particular, it may be argued that a single citizen usually does not have veto

power at the local government level, which is the level of government where participation constraints

seem the most realistic. We agree, but we also note that most goods and services provided at the

local government level are such that use exclusion is possible. Veto power is needed for our formal

result in order to accommodate pure public goods problems. However, if it is possible to realize

the reservation utility for an agent by excluding the agent from usage, then the veto game may

be replaced by a game where agents independently choose between opting in and opting out, and

where the e�cient outcome conditional on whatever agents are opting in is implemented in the

second stage. Such a \voting with your feet" participation constraint does not seem unrealistic.
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7.3 Excludable versus Non-Excludable Public Goods

The distinction between vetoing and use exclusions is the most transparent in the contexts of an

economy with K public goods. Since mechanism (24) rests on veto power, it does not distinguish

between excludable and non-excludable public goods. Either all agents opt in and consume all

the public goods that are produced, or a veto is cast, in which case none of the public goods is

provided. Since the probability of a veto goes to zero as K goes out of bounds, use exclusions are

not needed for asymptotic e�ciency. This \asymptotic irrelevance of exclusions" depends crucially

on the fact that we keep the number of agents n �xed. In contrast, Norman [26] and Fang and

Norman [15] demonstrate that the exclusion instrument is a crucial feature of the constrained

optimal mechanism when K is �xed (to 1 and 2 respectively) and n is large.

Our proof does not apply to sequences where both K and n tend to in�nity. We conjecture that

in the case of non-excludable public goods, asymptotic e�ciency is impossible if K and n go out

of bounds at the same rate. On the other hand, if goods are excludable, there is no need to equip

agents with veto power; reservation utilities can be attained by the \milder" exclusion instrument.

As a result, asymptotic e�ciency is attainable in this case (regardless of the asymptotic behavior

of K=n). Indeed, since the e�cient provision for good k converges either to \always provide" or

\never provide" as n tends to in�nity approximate e�ciency can be implemented with a mechanism

where the provision decisions are made ex ante and a �xed price is charged for access to all public

goods, much in the same spirit as Armstrong's [1] two-part tari� scheme.
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A Appendix

A.1 Proof of Proposition 1

Proof. Since SK (�) =
PK
k=1 sk (�k) and R

i
K

�
�i
�
=
PK
k=1 r

i
k

�
�ik
�
; we may express (17) as

U iK
�
�i
�
=

KX
k=1

8<:E�i [sk (�k)]� n� 1
n

E [sk (�k)] + E
�
rik
�
�ik
��
� 1

n
E

24 nX
j=1

rjk

�
�jk

�359=; (A1)

De�ne �ik
�
�ik
�
� E�i [sk (�k)]� rik

�
�ik
�
. This allows us to express U iK

�
�i
�
�RiK

�
�i
�
as

U iK
�
�i
�
�RiK

�
�i
�
=

KX
k=1

8<:�ik ��ik�� E ��ik ��ik��+ 1

n

0@E [sk (�k)]� E
24 nX
j=1

rjk

�
�jk

�351A9=; : (A2)

By assumption all issues in economy EK are regular, thus by (R1), we have:

Ei
�
U iK

�
�i
�
�RiK

�
�i
��
=
1

n

KX
k=1

8<:E [sk (�k)]� E
24 nX
j=1

rjk
�
�j
�359=; � K

n
�: (A3)

Moreover, since the issues are stochastically independent,
�
�ik
	K
k=1

is a sequence of stochastically

independent variables, thus
�
�ik
�
�ik
�	K
k=1

is a sequence of independent variables. Finally, since all

issues are regular, �ik
�
�ik
�
is bounded from above and below by (R2) and (R3). Hence, there exists

�2 such that Var
�
�ik
�
�ik
��
� �2 for every i and every k, so

Pr
h
U i
K

�
�i
�
�RiK

�
�i
�
< 0
i

(A2)
= Pr
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�ik
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�ik
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�i�
< � 1

n

KX
k=1
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�
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/By inequality in (A3)/ � Pr
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�ik

�
�ik
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< ��K
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� Pr

"�����
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�
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�
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�
� E

h
�ik

�
�ik

�i������ > �K
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/Chebyshev's inequality/ �
 
1
�K
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KX
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�ik

�
�ik

�#
� n2�2

�2K
(A4)

Since n
2�2

�2K
! 0 as K !1, we conclude that for every " > 0; there exists some �nite integer K�

i (")

such that (??) holds for agent i: Let K� (") = maxi2I K
�
i (") and the result follows.
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A.2 Proof of Lemma 3

Proof. Assuming that all other agents announce truthfully and thatm = (1; :::; 1) = 1 is announced,

the ex post payo� for agent i of type �i from announcement b�i is
ui
�b�i;1; �� = V iK

�
x�K

�b�i; ��i� ; �i�+X
j 6=i

V jK

�
x�K

�b�i; ��i� ; �j�+ T iK ;
where T iK is de�ned in (31). By construction, x�K (�) is maximized at b�i = �i; resulting in ex post

payo� ui
�
�i;1; �

�
= SK (�) � T iK : For m 6= 1 we have that ui

�b�i;m; �� = RiK
�
�i
�
for any b�i:

Taking expectations over ��i gives the result.

A.3 Proof of Lemma 1

Proof. Using the expression for U jK
�
�j
�
� RjK

�
�j
�
in equation (A2), we can proceed just like in

that proof, with the only di�erence being that now the calculation is for a bound on the probability

that the payo� is less than half of the lower bound on the expected value of the payo�. That is,

1� Pr
h
�
j
(K)

i
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h
U j
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�j
�
�RjK
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�j
�
<
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Since n
2�2

�2K
! 0 as K !1, we conclude that, for every " > 0; there exists some �nite integer K 0

j (")

such that for every K � K 0
j (") ;

1� Pr
h
�
j
(K; �)

i
� 1� (1� ")

1
n�1 :

Hence, by letting K 0 (") = maxj 6=iK
0
j (") and using stochastic independence we have that
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�
�i
(K)

i
= �j 6=i Pr

h
�
j
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for every K � K 0 (") :
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A.4 Proof of Lemma 2

Proof. By regularity assumption (R2), there is a uniform bound �a > 0 so that sk (�k) � �a for every
�k; which in turn implies that SK (�) =K � �a for every K and � 2 �(K) : Thus

E�i [SK (�)]

K
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h
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which gives the result for K 00 (") = K 0 � "
�a

�
:

A.5 Proof of Lemma 4

Proof. Assuming that  jK
�
�j
�
= 1 for all j 6= i and all �j 2 �j (K) ; the interim expected payo�

for agent i from setting mi = 1 as de�ned in (30) can be written as

bU i
�
1;  �iK ; �i

�
=

Z
��i

�h
SK (�) + T iK

i
	�iK

�
��i
�
+RiK

�
�i
� h
1�	�iK

�
��i
�i�

dF�i
K

�
��i
�

= Pr
h
�
�i
(K)

i �
E�i

h
SK (�) j�

�i
(K)

i
+ T iK

�
(A5)

+

Z
��i2��i(K)n��i(K)

�h
SK (�) + T iK

i
	�iK

�
��i
�
+RiK

�
�i
� h
1�	�iK

�
��i
�i�

dF�i
K

�
��i
�
:

Since sk (�k) is uniformly bounded above by �a (by R2) and r
i
k

�
�ik
�
is uniformly bounded below by

b (by R3), we can bound T iK as de�ned in (31) as follows:

T iK � �n� 1
n

E [SK (�)] + E
�
RiK

�
�i
��
� 1

n
E

24 nX
j=1

RjK
�
�j
�35� �K

4n,
SK (�) �

nX
j=1

RjK
�
�j
�,

� �E [SK (�)] + E
�
RiK

�
�i
��
� �K

4n
�
�
b� �a� �

4n

�
K:

Moreover sk (�k) is uniformly bounded below by a (by R2), so SK (�) � aK: We conclude that
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where the strict inequality follows since a < �a: Hence,Z
��i2��i(K)n��i(K)
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Combining (A5) and (A6) we obtain
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By Lemma 2, there exists K1 so that for each K � K1;
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where � > 0 is the uniform bound of the di�erence between the maximized expected surplus and

the sum of the participation utilities (see De�nition 2). Hence,
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for every K � K1: By (17), we know that E�i [SK (�)] + T
i
K +

�
4n is the interim expected payo� for

type �i in the Groves mechanism. Since �i 2 �i (K) it follows from de�nition (26) that E�i [SK (�)]+
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The right hand side converges to �= (8n) as Pr
h
�
�i
(K)

i
approaches one, so there exists "2 > 0

such that bU i(1;  �i; �i)�RiK ��i� � 0 if Pr h��i (K)i � 1� "2. Lemma 1 assures that there exists
K2 such that Pr

h
�
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� 1� "2 for every K � K2: For K
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A.6 Proof of Lemma 5

Let 	K (�) �
Qn
i=1  

i
K

�
�i
�
denote the probability that m = (1; ::::; 1) given type pro�le � 2

�(K) : The expected budget tax revenues can then be expressed as
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R
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R
�=2�(K) SK (�) dF (�) ; so we may rearrange the expression

above as
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where the inequality follows since E [SK (�)] +
�K
4 > aK, SK (�) > aK; and E [SK (�)] < aK by

assumption [R2]. Since Pr
�
�(K)

�
! 1 as K !1 it follows that there exists some �nite K�� such

that the expected surplus is positive for any K � K��:
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1 Primitives

The reader may note that there are many sets of primitives that generate the same maximized surplus

function. The primitives below are picked mainly to make the calculations convenient. The reader may

also take note that once the maximized surplus function has been derived, there is no need to return to

the primitives, since interim expected payo�s from participation in the mechanisms depend only on the

maximized surplus function. However, it is still important to specify some underlying primitives: not every

surplus function sk : �k ! R and reservation payo� rk : �k ! Rn are consistent with surplus maximization,

so we need to demonstrate existence of primitives generating the surplus function and reservation payo�

function in the example.

1.1 Costs and Utility Functions

Let n = 2 and assume that, for each k and i = 1; 2; the single issue k type space is given by �i = fl;m; hg.
Assume that the set of alternative resolutions of issue k are Dk =

�
d0k; d

l
k; d

m
k ; d

h
k

	
: In terms of interpretation

it is useful to think of d0k as the \status quo" outcome, whereas d
l
k; d

m
k and dhk are surplus maximizing

alternatives for type pro�les ll;mm and hh respectively.

The cost function is given by

Ck (dk) =

8>>>>><>>>>>:
0 if dk = d

0
k

(k+1)2

k if dk = d
l
k

k(k+1)2

2 if dk = d
m
k

2 (k + 1)
3

if dk = d
h
k

;

Assume that the valuation functions for the three types are given by;

vik (dk; l) =

8>>>>><>>>>>:
0 if dk = d

0
k

1
2
(k+1)2

k if dk = d
l
k

0 if dk = d
m
k

(k+1)2

4

�
k � 1

k

�
if dk = d

h
k

for �ik = l;

vik (dk;m) =

8>>>>><>>>>>:
0 if dk = d

0
k

3
4
(k+1)2

k + " (k + 1) if dk = d
l
k

k(k+1)2

2 � 2"k (k + 1) (k + 2) if dk = d
m
k

k(k+1)2

4 � 3 (k + 1)3 if dk = d
h
k

for �ik = m; and

vik (dk; h) =

8>>>>><>>>>>:
0 if dk = d

0
k

�" (k + 1) if dk = d
l
k

�k(k+1)2

2 if dk = d
m
k

3 (k + 1)
3 � k(k+1)2

4 if dk = d
h
k
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for �ik = h; where " > 0: Further restrictions on " will be derived below.

1.2 Reservation Payo�s

Since Ck
�
d0k
�
= 0 we take d0k as the status quo outcome. Hence, r

i
k

�
�ik
�
= vik

�
d0k; �

i
k

�
= 0 for all �ik:

2 The Surplus Maximizing Rule

The primitives in the example have been constructed to make sure that: i) dlk is optimal given type pro�les

lm and ml (which generates surplus of order k); and; ii) dmk is optimal given type pro�le mm (surplus of

order k3), and; iii) that dhk is optimal for pro�les lh; hl and hh (surplus of order k
3; and, which is of some

importance, that the surplus from hh is substantially larger than that from mm). As will be seen below,

this will make it possible for us to construct sequences where there is a signi�cant e�ect on interim expected

payo�s when types that are realized with an arbitrarily small probability opt out from the mechanism.

Below, we provide the details of the derivation of the maximized surplus function.

2.1 Type Pro�le ll

It is immediate that v1k
�
d0k; l

�
+ v2k

�
d0k; l

�
� Ck

�
d0k
�
= 0: If instead dk = d

l
k we have that

v1k
�
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�
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�
dlk; l

�
� Ck

�
dlk
�
= 2

"
1

2

(k + 1)
2

k

#
� (k + 1)

2

k
= 0;

whereas, if dk = d
m
k ;

v1k (d
m
k ; l) + v

2
k (d

m
k ; l)� Ck (dmk ) = �

k (k + 1)
2

2
< 0

and, �nally, if dk = d
h
k

v1k
�
dhk ; l

�
+ v2k

�
dhk ; l

�
� Ck

�
dhk
�
= 2

(k + 1)
2

4

�
k � 1

k

�
� 2 (k + 1)3 = (k + 1)2

�
k

2
� 1

2k
� k � 2

�
< 0

We conclude that an e�cient decision is x�k (ll) = dlk (or d
0
k); which generates a maximized surplus of

sk (ll) = 0:

2.2 Type Pro�les lm and ml

Again it follows trivially that v1k
�
d0k; l

�
+v2k

�
d0k;m

�
�Ck

�
d0k
�
= 0; whereas the surplus generated by dk = d

l
k

is

v1k
�
dlk; l

�
+ v2k

�
dlk;m

�
� Ck

�
dlk
�
=
1

2

(k + 1)
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k
+
3
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(k + 1)
2

k
+ " (k + 1)� (k + 1)

2

k
=
1

4

(k + 1)
2

k
+ " (k + 1) :
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If dk = d
m
k is chosen

v1k (d
m
k ; l) + v

2
k (d

m
k ;m)� Ck (dmk ) = 0 +

k (k + 1)
2

2
� 2"k (k + 1) (k + 2)� k (k + 1)

2

2

= �2"k (k + 1) (k + 2) < 0;

and, for dk = d
h
k

v1k
�
dhk ; l

�
+ v2k

�
dhk ;m

�
� Ck

�
dhk
�
=

(k + 1)
2

4

�
k � 1

k

�
+
k (k + 1)

2

4
� 3 (k + 1)3 � 2 (k + 1)3

= (k + 1)
2

�
k

2
� 1

4k
� 5k � 5

�
< 0

Using symmetry, we conclude that the e�cient decision is x�k (lm) = x
� (ml) = dlk and that the associated

maximized surplus is

sk (lm) = sk (ml) =
1

4

(k + 1)
2

k
+ " (k + 1)

2.3 Type Pro�le mm

Trivially, v1k
�
d0k;m

�
+ v2k

�
d0k;m

�
� Ck

�
d0k
�
= 0: If instead dk = d

l
k we have that

v1k
�
dlk;m

�
+ v2k

�
dlk;m

�
� Ck

�
dlk
�
= 2

"
3

4

(k + 1)
2

k
+ " (k + 1)

#
� (k + 1)

2

k
=
1

2

(k + 1)
2

k
+ 2" (k + 1) > 0

and if dk = d
m
k

v1k (d
m
k ;m) + v

2
k (d

m
k ;m)� Ck (dmk ) = 2

"
k (k + 1)

2

2
� 2"k (k + 1) (k + 2)

#
� k (k + 1)

2

2

=
k (k + 1)

2

2
� 4"k (k + 1) (k + 2) ;

while if dk = d
h
k we have that

v1k
�
dhk ;m

�
+ v2k

�
dhk ;m

�
� Ck

�
dhk
�
= 2

"
k (k + 1)

2

4
� 3 (k + 1)3

#
� 2 (k + 1)3 = (k + 1)2

�
k

2
� 8k � 8

�
< 0

We conclude that dlk and d
m
k are the only remaining candidates that could maximize the social surplus.

De�ne

� (k) =
k (k + 1)

2

2
� 4"k (k + 1) (k + 2)� 1

2

(k + 1)
2

k
� 2" (k + 1) :

If � (k) is strictly positive dmk is the surplus maximizing decision, whereas if � (k) is strictly negative, then

dlk is the unique maximizer.

Claim 1 Suppose that " � 1
24 ; then �(�) is strictly increasing in k on the interval [1;1)

4



Proof. Rearrange to get

� (k) =
k (k + 1)

2

2
� 4"k (k + 1) (k + 2)� 1

2

(k + 1)
2

k
� 2" (k + 1)

=
1

2
(k + 1)

2

�
k � 1

k

�
� 4"k (k + 1) (k + 2)� 2" (k + 1) :

Di�erentiation yields,

�0 (k) = (k + 1)

�
k � 1

k

�
+
1

2
(k + 1)

2

�
1 +

1

k2

�
� 4" [(k + 1) (k + 2) + k (k + 2) + k (k + 1)]� 2":

Simplify the bracketed expression to get

(k + 1) (k + 2) + k (k + 2) + k (k + 1) = (k + 1)
2
+ (k + 1)| {z }

=(k+1)(k+2)

+ k (k + 1) + k| {z }
=k(k+2)

+ k (k + 1)

= (k + 1)
2
+ (k + 1) + k (k + 1) + (k + 1)� 1 + k (k + 1) = (k + 1)2 + 2 (k + 1) + 2k (k + 1)� 1

= 3 (k + 1)
2 � 1:

Hence

�0 (k) = (k + 1)

�
k � 1

k

�
+
1

2
(k + 1)

2

�
1 +

1

k2

�
� 4"

h
3 (k + 1)

2 � 1
i
� 2"

= (k + 1)

�
k � 1

k

�
+
1

2
(k + 1)

2

�
1 +

1

k2
� 24"

�
+ 2":

The claim follows since all terms are strictly positive given that k � 1 and " � 1
24 :

Evaluating we have that

� (1) = 2� 24"� 2� 4" = �28" < 0

for any " > 0: We conclude that (somewhat unfortunately since it is an additional complication for the

example) dl1 is the surplus maximizing decision for k = 1: However

� (2) = 9� 96"� 9
4
� 6"

Clearly, for " small enough (the exact bound is " < 27
408 ; where it may be noted that

1
24 =

27
648 <

27
408 ) we have

that � (2) is strictly positive. Combining with the fact that � (k) is monotonically increasing in k under the

condition that " � 1
24 we conclude;

Claim 2 Suppose that " � 1
24 : Then x

�
1 (mm) = dl1 and x

�
k (mm) = dmk for every k � 2: The associated

social surplus is

s1 (mm) =
1

2

(k + 1)
2

k
+ 2" (k + 1)

sk (mm) =
k (k + 1)

2

2
� 4"k (k + 1) (k + 2) for k � 2

5



2.4 Type Pro�les lh and hl

As for any other type pro�le v1k
�
d0k; l

�
+ v2k

�
d0k; h

�
� Ck

�
d0k
�
= 0: For the non-trivial alternatives we have

that

v1k
�
dlk; l

�
+ v2k

�
dlk; h

�
� Ck

�
dlk
�
=
1

2

(k + 1)
2

k
� " (k + 1)� (k + 1)

2

k
= �1

2

(k + 1)
2

k
� " (k + 1) < 0;

and

v1k (d
m
k ; l) + v

2
k (d

m
k ; h)� Ck (dmk ) = 0�

k (k + 1)
2

2
� k (k + 1)

2

2
= �k (k + 1)2 < 0;

and

v1k
�
dhk ; l

�
+ v2k

�
dhk ; h

�
� Ck (dmk ) =

(k + 1)
2

4

�
k � 1

k

�
+ 3 (k + 1)

3 � k (k + 1)
2

4
� 2 (k + 1)3

=
(k + 1)

2

4k
+ (k + 1)

3
= (k + 1)

2

�
4k (k + 1)� 1

4k

�
Hence, again using symmetry, x�k (lh) = x

�
k (hl) = d

h
k and the resulting maximized surplus is

sk (lh) = sk (hl) = (k + 1)
2

�
4k (k + 1)� 1

4k

�

2.5 Type Pro�les mh and hm

Obviously, v1k
�
d0k;m

�
+ v2k

�
d0k; h

�
� Ck

�
d0k
�
= 0: If instead dk = d

l
k

v1k
�
dlk;m

�
+ v2k

�
dlk; h

�
� Ck

�
dlk
�
=
3

4

(k + 1)
2

k
+ " (k + 1)� " (k + 1)� (k + 1)

2

k
= �1

4

(k + 1)
2

k
< 0;

and if dk = d
m
k ;

v1k (d
m
k ;m) + v

2
k (d

m
k ; h)� Ck (dmk ) =

k (k + 1)
2

2
� 2"k (k + 1) (k + 2)� k (k + 1)

2

2
� k (k + 1)

2

2

= �2"k (k + 1) (k + 2)� k (k + 1)
2

2
< 0;

whereas if dk = d
h
k ; we get that

v1k
�
dhk ;m

�
+ v2k

�
dhk ; h

�
� Ck

�
dhk
�
=

k (k + 1)
2

4
� 3 (k + 1)3 + 3 (k + 1)3 � k (k + 1)

2

4
� 2 (k + 1)3

= �2 (k + 1)2 < 0

Hence, x�k (mh) = x
�
k (hm) = d

0
k, and the maximized surplus is sk (mh) = sk (hm) = 0

2.6 Type Pro�le hh

Again, v1k
�
d0k; h

�
+ v2k

�
d0k; h

�
� Ck

�
d0k
�
= 0, and

v1k
�
dlk; h

�
+ v2k

�
dlk; h

�
� Ck

�
dlk
�
= �2" (k + 1)� (k + 1)

2

k
< 0

6



and

v1k (d
m
k ; h) + v

2
k (d

m
k ; h)� Ck (dmk ) = �2

"
k (k + 1)

2

2

#
� k (k + 1)

2

2
= �3k (k + 1)

2

2
< 0

and

v1k
�
dhk ; h

�
+ v2k

�
dhk ; h

�
� Ck

�
dhk
�
= 2

"
3 (k + 1)

3 � k (k + 1)
2

4

#
� 2 (k + 1)3 = 4 (k + 1)3 � k (k + 1)

2

2
> 0

Hence, x�k (hh) = d
h
k and

sk (hh) = 4 (k + 1)
3 � (k + 1)

2

2k
=

�
4 (k + 1)� k

2

�
(k + 1)

2

2.7 Summary: An Optimal Decision Rule and the Maximized Surplus

Combining all the cases above and ignoring k = 1 we have that an optimal social decision rule is12

x�k (�k) =

8>>>>><>>>>>:
d0k if �k 2 fll;mh; hmg
dlk if �k 2 flm;mlg
dmk if �k = mm

dhk if �k 2 flh; hl; hhg

; (1)

and the maximized surplus (given k � 2) is

sk (�k) =

8>>>>>>>><>>>>>>>>:

0 if �k 2 fll;mh; hmg
1
4
(k+1)2

k + " (k + 1) �k 2 flm;mlg
k(k+1)2

2 � 4"k (k + 1) (k + 2) if �k = mm

(k + 1)
2
h
4k(k+1)�1

4k

i
if �k 2 flh; hlg�

4 (k + 1)� k
2

�
(k + 1)

2
if �k = hh

: (2)

2.8 Interim Expected Payo�s from Participation in the Groves Mechanism

For k = 2; 3::: we assume that the probability distribution over �ik be given by

�
Pr
�
�i = l

�
;Pr

�
�i = m

�
;Pr

�
�i = h

��
=

 
k (k + 2)

(k + 1)
2 ;

1

2 (k + 1)
2 ;

1

2 (k + 1)
2

!
: (3)

1There is multiplicity for type pro�le ll: We could easily get rid of this without a�ecting the maximized social surplus by

adjusting the costs and preferences slightly. This would add some extra terms for the calculations, and, ultimately, only the

maximized surplus is relevant, so we have opted to go with the simpler primitives.

2Hence, we will start our sequence at k = 2: Obviously, we could replace every k with k+1 and start the sequence at k = 1;

but the formulas get somewhat less transparent, which is why we stick with the current formulation.
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With probability distribution (3), the interim expected value of the maximized issue k surplus is

E [sk (�k) jl] = Pr
�
�i = l

�
sk (ll) + Pr

�
�i = m

�
sk (lm) + Pr

�
�i = h

�
sk (lh) (4)

=
1

2 (k + 1)
2

"
1

4

(k + 1)
2

k
+ " (k + 1)

#
+

1

2 (k + 1)
2

�
(k + 1)

2

�
4k (k + 1)� 1

4k

��

=
1

2 (k + 1)
2

"
1

4

(k + 1)
2

k
+ " (k + 1) + (k + 1)

2

�
4k (k + 1)� 1

4k

�#

=
1

2

�
1

4k
+

"

(k + 1)
+
4k (k + 1)� 1

4k

�
=

1

2

�
1

4k
+

"

(k + 1)
+ (k + 1)� 1

4k

�
=
1

2

�
"

(k + 1)
+ (k + 1)

�
=
k + 1

2
+

"

2 (k + 1)

for �i = l: For �i = m we have that

E [sk (�k) jm] = Pr
�
�i = l

�
sk (ml) + Pr

�
�i = m

�
sk (mm) + Pr

�
�i = h

�
sk (mh) (5)

=
k (k + 2)

(k + 1)
2

"
1

4

(k + 1)
2

k
+ " (k + 1)

#
+

1

2 (k + 1)
2

"
k (k + 1)

2

2
� 4"k (k + 1) (k + 2)

#

=
k + 2

4
+
"k (k + 2)

(k + 1)
+
k

4
� 2"k (k + 2)

k + 1
=
k + 1

2
� "k (k + 2)

(k + 1)

=
k + 1

2
� " [k (k + 1) + k]

(k + 1)
=
k + 1

2
� "k � "k

k + 1

Finally, for �i = h; we have that

E [sk (�k) jh] = Pr
�
�i = l

�
sk (hl) + Pr

�
�i = m

�
sk (hm) + Pr

�
�i = h

�
sk (hh) (6)

=
k (k + 2)

(k + 1)
2

�
(k + 1)

2

�
4k (k + 1)� 1

4k

��
+

1

2 (k + 1)
2

�
4 (k + 1)� k

2

�
(k + 1)

2

= k (k + 2)

�
4k (k + 1)� 1

4k

�
+

�
2 (k + 1)� k

4

�
= k (k + 1) (k + 2) + 2 (k + 1)� k + 2

4
� k
4
= k (k + 1) (k + 2) + 2 (k + 1)� k + 1

2

= (k + 1)
�
k2 + 2k + 1 + 1

�
� k + 1

2
= (k + 1)

3
+ (k + 1)� k + 1

2
= (k + 1)

3
+
(k + 1)

2

The ex ante expected surplus is thus

E [sk (�k)] =
k (k + 2)

(k + 1)
2

�
k + 1

2
+

"

2 (k + 1)

�
+

1

2 (k + 1)
2

�
k + 1

2
� "k (k + 2)

(k + 1)

�
(7)

+
1

2 (k + 1)
2

�
(k + 1)

3
+
(k + 1)

2

�
=

k (k + 2)

2 (k + 1)
+ "

"
k (k + 2)

2 (k + 1)
3

#
+

1

4 (k + 1)
� "

"
"k (k + 2)

2 (k + 1)
3

#
+
k + 1

2
+

1

4 (k + 1)

=
k (k + 2)

2 (k + 1)
+

1

2 (k + 1)
+
k + 1

2
=
k2 + 2k + 1

2 (k + 1)
+
k + 1

2
=
(k + 1)

2

2 (k + 1)
+
k + 1

2
= k + 1

8



2.9 Summary of the Expected Surplus Calculations

We have shown that

E [sk (�k)j l] =
k + 1

2
+

"

2 (k + 1)
(8)

E [sk (�k)jm] =
k + 1

2
� "k � "k

(k + 1)
(9)

E [sk (�k)jh] = (k + 1)
3
+
(k + 1)

2
(10)

E [sk (�k)] = k + 1 (11)

3 The Probability that a Participation Constraint is Violated Con-

verges to zero as K !1:

Since RiK
�
�i
�
= 0 for all �i; the interim expected payo� from participation in the Groves mechanism under

consideration simpli�es to

U iK
�
�i
�
= E�i [SK (�)]�

1

2
E [SK (�)] =

KX
k=2

E�i [sk (�k)]�
1

2

KX
k=2

E [sk (�k)] (12)

Consider a type on the form (m; ::::;m; l; ::::; l): Speci�cally, assume that �ik = m for k = 2; :::;K� and

�ik = l for k = K
� +1; :::;K and denote this type by (mK� ; lK��K) : Substituting (8), (9) and (11) into (12)

we have that type (mK� ; lK��K) earns an interim expected payo� of

U iK (mK� ; lK��K) =
K�X
k=2

E [sk (�k)jm] +
KX

k=K�+1

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)] (13)

=
K�X
k=2

�
k + 1

2
� "k � "k

(k + 1)

�
+

KX
k=K�+1

k + 1

2
+

"

2 (k + 1)
� 1
2

KX
k=2

(k + 1)

= "

"
K�X
k=2

�
�k � k

k + 1

�
+
1

2

KX
k=K�+1

�
1

k + 1

�#

De�ne

H (K�;K) =

K�X
k=2

�
�k � k

k + 1

�
+
1

2

KX
k=K�+1

1

k + 1
(14)

We note that;

1. H (K�;K) is strictly decreasing in K�

2. H (1;K) = "
2

PK
k=2

1
(k+1) > 0

3. H (K;K) = �"
PK

k=2

h
k + k

(k+1)

i
< 0

9



These three properties imply that for every K � 2 there exists a unique integer K� (K) 2 f1; :::;Kg such
that

H (K� (K) ;K) > 0 (15)

H (K� (K) + 1;K) < 0

Moreover, K� (K) is monotonically increasing and goes (slowly) to in�nity as K goes to in�nity. To see this,

we �rst observe that, for K� �xed, the positive term in (14) is divergent. That is,

KX
k=K�+1

1

k + 1
=

KX
k=K�+1

"Z k+2

k+1

1

k + 1
dz

#
>

KX
k=K�+1

"Z k+2

k+1

1

z
dz

#
(16)

=

Z K+2

K�+2

1

z
dz = ln (K + 2)� ln (K� + 2) :

For contradiction, assume that there exists some K such that K� (K) < K � 1 for all K: Then, for any K
we have that

H (K� (K) + 1;K) > H
�
K;K

�
= �

KX
k=2

�
k +

k

k + 1

�
+
1

2

KX
k=K+1

�
1

k + 1

�
(17)

/ using (16)/ >

KX
k=2

�
�k � k

k + 1

�
+
ln (K + 2)� ln

�
K + 2

�
2

:

Since ln (K + 2)!1 as K !1 and the other two terms are �nite we conclude that H (K� (K) + 1;K) > 0

for K su�ciently large, which contradicts the de�nition of K� (K) :

Next, consider a type on form
�
�i2; :::; �

i
K�(K); l; ::::; l

�
; where the signals for problems 2; :::;K� (K)

are arbitrary, and �ik = l for k = K� (K) + 1; ::;K: We denote such a type
�
�iK�(K); lK��K(K)

�
. Since

E [sk (�k)jm] � E
�
sk (�k)j �ik

�
for all �ik 2 fl;m; hg and every k it follows that

U iK

�
�iK�(K); lK��K(K)

�
=

K�(K)X
k=2

E
�
sk (�k)j �ik

�
�

KX
k=K(K)�+1

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)] (18)

�
K�(K)X
k=2

E [sk (�k)jm]�
KX

k=K(K)�+1

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)]

= "H (K� (K) ;K) > 0:

We conclude that the participation constraint holds for any such type. Since,

Pr
h�
�iK�(K)+1; :::; �

i
K

�
= (l; ::::; l)

i
=

KY
k=K�(K)+1

k (k + 2)

(k + 1)
2 =

(K� (K) + 1) (K + 2)

(K� (K) + 2) (K + 1)
! 1 (19)

as K ! 1 it follows that the probability that �i is on the form
�
�iK�(K); lK��K(K)

�
tends to unity as K

goes out of bounds. We conclude;

Claim 3 The probability that all participation constraints hold converges to 1 as K tends to in�nity.

Hence, the Groves mechanism is almost incentive feasible in this example.

10



4 Unraveling when the Veto Game is Introduced

Note that for type l = (l; ::::; l)

U iK (l) =
KX
k=2

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)] =
KX
k=2

�
k + 1

2
+

"

2 (k + 1)
� k + 1

2

�
=
"

2

KX
k=2

1

(k + 1)
(20)

where
KX
k=2

1

k + 1
=

KX
k=2

"Z k+1

k

1

k + 1
dz

#
<

KX
k=2

"Z k+1

k

1

z
dz

#
=

Z K+1

2

1

z
dz = ln

�
K + 1

2

�
: (21)

Hence,

U iK (l) <
"

2
ln

�
K + 1

2

�
: (22)

However, consider type �i where all coordinates are l except for �ik� = m: Denote this type �
i = lj�ik� = m

and note that

U
�
lj�ik� = m

�
=

KX
k 6=k�

E [sk (�k)j l] + E [sk� (�k�)jm]�
1

2

KX
k=2

E [sk (�k)] (23)

=

KX
k=2

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)]| {z }
=Ui(l)

+ E [sk� (�k�)jm]� E [sk� (�k�)j l]

/using (22)/ � "

2
ln

�
K + 1

2

�
+
k� + 1

2
� "k� � "k�

(k� + 1)
�
�
k� + 1

2
+

"

2 (k� + 1)

�
= "

�
1

2
ln

�
K + 1

2

�
� k� � k�

(k� + 1)
� 1

2 (k� + 1)

�
< "

�
1

2
ln

�
K + 1

2

�
� k�

�
De�ne ek (K) as the integer part of 12 ln �K+12 �

+ 1: Since 1
2 ln

�
K+1
2

�
� k� is negative for k� � ek (K) this

implies that type lj�ik� = m is worse o� from participating in the Groves mechanism than from the status

quo outcome d0 =
�
d02; ::::; d

K
K

�
for every k� � ek (K) : For brevity, denote this subset of types with a strict

incentive to veto the Groves mechanism by �iV : That is

�iV =
�
�ij�ik� = m for some k� � k� (K) and �ik = l for all k 6= k�

	
(24)

We note that, for any k� � k� (K)

Pr
�
�i 2 �iV j�ik� = m

�
=

Y
k 6=k�

Pr
�
�ik = l

�
> Pr

�
�i = l

�
=

KY
k=2

Pr
�
�ik = l

�
=

KY
k=2

k (k + 2)

(k + 1)
2 (25)

=

�
2� 4
32

�
�
�
3� 5
42

�
� :::� (K � 1) (K + 1)

K2
� K (K + 2)

(K + 1)
2

=
2

3

�
K + 2

K + 1

�
>
2

3

In words, conditional on �ik� = m, the probability that all other coordinates are ls is obviously (slightly)

larger than the unconditional probability that the type l is realized. For k � ek (K) we can therefore calculate
11



an upper bound on the expected surplus conditional on �ik = l and conditional on that agent i is aware that

any agent �i 2 �iV will veto the mechanism.

E
�
sk (�k) jl; veto by �i 2 �iV

�
= Pr

�
�ik = m

� �
1� Pr

�
�i 2 �iV j�ik = m

��
sk (lm) + Pr

�
�ik = h

�
sk (lh) (26)

= E [sk (�k) jl]� Pr
�
�ik = m

�
Pr
�
�i 2 �iV j�ik = m

�
sk (lm)

=
k + 1

2
+

"

2 (k + 1)| {z }
=E[sk(�k)jl] by (8)

� 1

2 (k + 1)
2| {z }

=Pr[�ik=m]

Pr
�
�i 2 �iV j�ik = m

� "1
4

(k + 1)
2

k
+ " (k + 1)

#
| {z }

=sk(lm) by (2)

/(25)/ <
k + 1

2
+

"

2 (k + 1)
� 1

2 (k + 1)
2

2

3

"
1

4

(k + 1)
2

k
+ " (k + 1)

#

=
k + 1

2
+

"

2 (k + 1)
� 1

12k
� "

3 (k + 1)
=
k + 1

2
+

"

6 (k + 1)
� 1

12k

The interim expected payo� of type l =(l; :::; l) conditional on vetoes from types in �iV is thus

U iK
�
ljveto by �i 2 �iV

�
=

Iek(K)�1X
k=2

E [sk (�k)j l] +
KX

k=ek(K)
E
�
sk (�k) jl; veto by �i 2 �iV

�
� 1
2

KX
k=2

E [sk (�k)](27)

=
"

2

Iek(K)�1X
k=2

1

k + 1
+
"

6

KX
k=ek(K)

1

k + 1
� 1

12

KX
k=ek(K)

1

k

where,

Iek(K)�1X
k=2

1

k + 1
=

Iek(K)�1X
k=2

"Z k+1

k

1

k + 1
dz

#
<

Iek(K)�1X
k=2

"Z k+1

k

1

z
dz

#
=

Z Iek(K)
2

1

z
dz = ln

 
Iek (K)
2

!

I
KX

k=ek(K)
1

k + 1
=

KX
k=ek(K)

"Z k+1

k

1

k + 1
dz

#
<

KX
k=ek(K)

"Z k+1

k

1

z
dz

#
=

Z IK+1

ek(K)
1

z
dz = ln

 
IK + 1ek (K)

!
KX

k=ek(K)
1

k
=

KX
k=ek(K)

"Z k+1

k

1

k
dz

#
>

KX
k=ek(K)

"Z k+1

k

1

z
dz

#
= ln

 
IK + 1ek (K)

!
(28)

Hence,

U iK
�
ljveto by �i 2 �iV

�
=

"

2

Iek(K)�1X
k=2

1

k + 1
+
"

6

KX
k=ek(K)

1

k + 1
� 1

12

KX
k=ek(K)

1

k
(29)

<
"

2
ln

 
Iek (K)
2

!
� 1� 2"

6
ln

 
IK + 1ek (K)

!

= lnek (K) �1 + "
6

�
� "

2
ln 2� ln (K + 1)

�
1� 2"
6

�
(30)

But, ek (K) � 1
2 ln

�
K+1
2

�
+ 1, so

ln (K + 1) � 2ek (K) + ln 2� 2
12



Since limx!1
ln x
x = 0 and since limK!1 ek (K) =1 it follows that the term with ln (K + 1) eventually dom-

inates in expression (29). Consequently, whenever " < 1
2 there exists K such that U i

�
ljveto by �i 2 �iV

�
< 0

for any K � K:3 In (25) we calculated the probability that �i = l to be

Pr
�
�i = l

�
=
2

3

�
K + 2

K + 1

�
:

We conclude that;

Claim 4 Suppose that type l =(l; ::::l) expects that all types in �iV will veto play of the Groves mechanism.

Then, there exists some K such that type l =(l; ::::l) will have a strict incentive to veto the Groves mechanism

given any economy K � K: Hence, the mechanism is vetoed by each agent with a probability of at least 23 for

every K � K:

The only di�erence between the Groves mechanism amended with a veto game and the mechanism

actually considered in the proof of Proposition 2 is that the latter mechanism has a slightly (on a per

problem basis) larger lump sum payment than the underlying budget balancing Groves mechanism. It

follows that the conclusion immediately extends to the mechanism under consideration.

The reader may note that any type such that �ik 2 fl;mg for all k will have an incentive to cast a veto.
The probability that there is one k such that �ik 2 fm;hg is less than 1

3 ; and, conditional on this event

occuring, the probability that the �rst such draw is m is 12 : Moreover, conditional on the �rst draw di�erent

from l being m; the probability that the rest of the sequence is all l is 23 ; so we can immediately add
1
3
1
2
2
3 =

1
9

to the lower bound on the probability for a veto.

Obviously we can do even better by taking into consideration that the larger k is for the �rst draw of

m; the larger is the probability that the remaining sequence contain only ls. However, qualitatiely, the

point with the example is that an outcome that is highly ine�cient occurs when the possibility of a veto is

introduced, and for that it is su�cient to observe that the (high probability) type l will cast a veto.

3We already have the restriction " � 1
24
in order for the surplus in (2) to be valid for every k � 2:
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