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Abstract

We point out some pitfalls related to the concept of an oracle property as used in Fan

and Li (2001, 2002, 2004) which are reminiscent of the well-known pitfalls related to Hodges’

estimator. The oracle property is often a consequence of sparsity of an estimator. We show

that any estimator satisfying a sparsity property has maximal risk that converges to the

supremum of the loss function; in particular, the maximal risk diverges to infinity whenever

the loss function is unbounded. For ease of presentation the result is set in the framework of

a linear regression model, but generalizes far beyond that setting. In a Monte Carlo study

we also assess the extent of the problem in finite samples for the smoothly clipped absolute

deviation (SCAD) estimator introduced in Fan and Li (2001). We find that this estimator

can perform rather poorly in finite samples and that its worst-case performance relative to

maximum likelihood deteriorates with increasing sample size when the estimator is tuned

to sparsity.

AMS 2000 Subject Classifications: Primary 62J07, 62C99; secondary 62E20, 62F10,

62F12

Key words and phrases: oracle property, sparsity, penalized maximum likelihood, penal-

ized least squares, Hodges’ estimator, SCAD, Lasso, Bridge estimator, hard-thresholding,

maximal risk, maximal absolute bias, non-uniform limits
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1 Introduction

Recent years have seen an increased interest in penalized least squares and penalized maximum

likelihood estimation. Examples are the class of Bridge estimators introduced by Frank and

Friedman (1993), which includes Lasso-type estimators as a special case (Knight and Fu (2000)),

or the smoothly clipped absolute deviation (SCAD) estimator introduced in Fan and Li (2001)

and further discussed in Fan and Li (2002, 2004), Fan and Peng (2004), and Cai, Fan, Li, and

Zhou (2005). As shown in Fan and Li (2001), the SCAD estimator, with appropriate choice

of the regularization (tuning) parameter, possesses a sparsity property, i.e., it estimates zero

components of the true parameter vector exactly as zero with probability approaching one as

sample size increases while still being consistent for the non-zero components. An immediate

consequence of this sparsity property of the SCAD estimator is that the asymptotic distribution

of this estimator remains the same whether or not the correct zero restrictions are imposed in

the course of the SCAD estimation procedure. [This simple phenomenon is true more generally

as pointed out, e.g., in Pötscher (1991, Lemma 1).] In other words, with appropriate choice of

the regularization parameter, the asymptotic distribution of the SCAD estimator based on the

overall model and that of the SCAD estimator derived from the most parsimonious correct model

coincide. Fan and Li (2001) have dubbed this property the “oracle property” and have advertised

this property of their estimator.1 For appropriate choices of the regularization parameter, the

sparsity and the oracle property are also possessed by several – but not all – members of the

class of Bridge estimators (Knight and Fu (2000), p. 1361, Zou (2006)). Similarly, suitably

tuned thresholding procedures give rise to sparse estimators.2 Finally, we note that traditional

post-model-selection estimators (e.g., maximum likelihood estimators following model selection)

based on a consistent model selection procedure (for example, BIC or test procedures with

suitably chosen critical values) are another class of estimators that exhibit the sparsity and

oracle property; see Pötscher (1991) and Leeb and Pötscher (2005) for further discussion. In a

recent paper, Bunea (2004) uses such procedures in a semiparametric framework and emphasizes

the oracle property of the resulting estimator; see also Bunea and McKeague (2005).

At first sight, the oracle property appears to be a desirable property of an estimator as it

seems to guarantee that, without knowing which components of the true parameter are zero,

we can do (asymptotically) as well as if we knew the correct zero restrictions; that is, we can

“adapt” to the unknown zero restrictions without paying a price. This is too good to be true, and

1The oracle property in the sense of Fan and Li should not be confused with the notion of an oracle inequality

as frequently used elsewhere in the literature.
2These estimators do not satisfy the oracle property in case of non-orthogonal design.
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it is reminiscent of the “superefficiency” property of the Hodges’ estimator; and justly so, since

Hodges’ estimator in its simplest form is a hard-thresholding estimator exhibiting the sparsity

and oracle property. [Recall that in its simplest form Hodges’ estimator for the mean of an

N(µ, 1)-distribution is given by the arithmetic mean ȳ of the random sample of size n if |ȳ|
exceeds the threshold n−1/4, and is given by zero otherwise.] Now, as is well-known, e.g., from

Hodges’ example, the oracle property is an asymptotic feature that holds only pointwise in the

parameter space and gives a misleading picture of the actual finite-sample performance of the

estimator. In fact, the finite sample properties of an estimator enjoying the oracle property

are often markedly different from what the pointwise asymptotic theory predicts; e.g., the finite

sample distribution can be bimodal regardless of sample size, although the pointwise asymptotic

distribution is normal. This is again well-known for Hodges’ estimator. For a more general

class of post-model-selection estimators possessing the sparsity and the oracle property this is

discussed in detail in Leeb and Pötscher (2005), where it is, e.g., also shown that the finite

sample distribution can “escape to infinity” along appropriate local alternatives although the

pointwise asymptotic distribution is perfectly normal.3 See also Knight and Fu (2000, Section 3)

for related results for Bridge estimators. Furthermore, estimators possessing the oracle property

are certainly not exempt from the Hajek-LeCam local asymptotic minimax theorem, further

eroding support for the belief that these estimators are as good as the “oracle” itself (i.e., the

infeasible “estimator” that uses the information which components of the parameter are zero).

The above discussion shows that the reasoning underlying the oracle property is misguided.

Even worse, estimators possessing the sparsity property (which often entails the oracle property)

necessarily have dismal finite sample performance: It is well-known for Hodges’ estimator that

the maximal (scaled) mean squared error grows without bound as sample size increases (e.g.,

Lehmann and Casella (1998), p.442), whereas the standard maximum likelihood estimator has

constant finite quadratic risk. In this note we show that a similar unbounded risk result is in fact

true for any estimator possessing the sparsity property. This means that there is a substantial

price to be paid for sparsity even though the oracle property (misleadingly) seems to suggest

otherwise. As discussed in more detail below, the bad risk behavior is a “local” phenomenon

and furthermore occurs at points in the parameter space that are “sparse” in the sense that

some of their coordinates are equal to zero. For simplicity of presentation and for reasons

of comparability with the literature cited earlier, the result will be set in the framework of a

linear regression model, but inspection of the proof shows that it easily extends far beyond that

3That pointwise asymptotics can be misleading in the context of model selection has been noted earlier in

Hosoya (1984), Shibata (1986a), Pötscher (1991), and Kabaila (1995, 2002).
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framework. For related results in the context of traditional post-model-selection estimators see

Yang (2005) and Leeb and Pötscher (2005, Appendix C);4 cf. also the discussion on “partially”

sparse estimators towards the end of Section 2 below. The theoretical results in Section 2 are

rounded out by a Monte Carlo study in Section 3 that demonstrates the extent of the problem

in finite samples for the SCAD estimator of Fan and Li (2001). The reasons for concentrating

on the SCAD estimator in the Monte Carlo study are (i) that the finite-sample risk behavior

of traditional post-model-selection estimators is well-understood (Judge and Bock (1978), Leeb

and Pötscher (2005)) and (ii) that the SCAD estimator – especially when tuned to sparsity –

has been highly advertised as a superior procedure in Fan and Li (2001) and subsequent papers

mentioned above.

2 Bad Risk Behavior of Sparse Estimators

Consider the linear regression model

yt = x′
tθ + εt (1 ≤ t ≤ n) (1)

where the k × 1 nonstochastic regressors xt satisfy n−1
∑n

t=1
xtx

′
t → Q > 0 as n → ∞ and the

prime denotes transposition. The errors εt are assumed to be independent identically distributed

with mean zero and finite variance σ2. Without loss of generality we freeze the variance at

σ2 = 1.5 Furthermore, we assume that εt has a density f that possesses an absolutely continuous

derivative df/dx satisfying

0 <

∞
∫

−∞

((df(x)/dx)/f(x))
2
f(x)dx < ∞.

Note that the conditions on f guarantee that the information of f is finite and positive. These

conditions are obviously satisfied in the special case of normally distributed errors. Let Pn,θ

denote the distribution of the sample (y1, . . . , yn)′ and let En,θ denote the corresponding expec-

tation operator. For θ ∈ R
k, let r(θ) denote a k×1 vector with components ri(θ) where ri(θ) = 0

if θi = 0 and ri(θ) = 1 if θi 6= 0. An estimator θ̂ for θ based on the sample (y1, . . . , yn)′ is said

to satisfy the sparsity-type condition if for every θ ∈ R
k

Pn,θ

(

r(θ̂) ≤ r(θ)
)

→ 1 (2)

4The unboundedness of the maximal (scaled) mean squared error of estimators following BIC-type model

selection has also been noted in Hosoya (1984), Shibata (1986b), and Foster and George (1994).
5If the variance is not frozen at σ2 = 1, the results below obviously continue to hold for each fixed value of σ2,

and hence hold a fortiori if the supremum in (3)–(4) below is also taken over σ2.
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holds for n → ∞, where the inequality sign is to be interpreted componentwise. That is, the

estimator is guaranteed to find the zero components of θ with probability approaching one as

n → ∞. Clearly, any sparse estimator satisfies (2). In particular, the SCAD estimator as

well as certain members of the class of Bridge estimators satisfy (2) for suitable choices of the

regularization parameter as mentioned earlier. Also, any post-model-selection estimator based on

a consistent model selection procedure clearly satisfies (2). All these estimators are additionally

also consistent for θ, and hence in fact satisfy the stronger condition Pn,θ(r(θ̂) = r(θ)) → 1

for all θ ∈ R
k. [Condition (2) by itself is of course also satisfied by nonsensical estimators like

θ̂ ≡ 0, but is all that is needed to establish the subsequent result.] We now show that any

estimator satisfying the sparsity-type condition (2) has quite bad finite sample risk properties.

For purposes of comparison we note that the (scaled) mean squared error of the least squares

estimator θ̂LS satisfies

En,θ

[

n(θ̂LS − θ)′(θ̂LS − θ)
]

= trace





(

n−1

n
∑

t=1

xtx
′
t

)−1




which converges to trace(Q−1), and thus remains bounded as sample size increases.

Theorem 2.1 6Let θ̂ be an arbitrary estimator for θ that satisfies the sparsity-type condition

(2). Then the maximal (scaled) mean squared error of θ̂ diverges to infinity as n → ∞, i.e.,

sup
θ∈Rk

En,θ

[

n(θ̂ − θ)′(θ̂ − θ)
]

→ ∞ (3)

for n → ∞. More generally, let l : R
k → R be a nonnegative loss function. Then

sup
θ∈Rk

En,θl(n
1/2(θ̂ − θ)) → sup

s∈Rk

l(s) (4)

for n → ∞. In particular, if the loss function l is unbounded then the maximal risk associated

with l diverges to infinity as n → ∞.

The theorem says that, whatever the loss function, the maximal risk of a sparse estimator is

– in large samples – as bad as it possibly can be.

6Theorem 2.1 and the ensuing discussion continue to apply if the regressors xt as well as the errors εt are

allowed to depend on sample size n, at least if the errors are normally distributed. The proof is analogous, except

that one uses direct computation and LeCam’s first lemma (cf., e.g., Lemma A.1 in Leeb and Pötscher (2006))

instead of Koul and Wang (1984) to verify contiguity. Also, the results continue to hold if the design matrix

satisfies δ−1
n

Pn
t=1

xtx′

t → Q > 0 for some positive sequence δn other than n, provided that the scaling factor

n1/2 is replaced by δ
1/2

n throughout.
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Upon choosing l(s) = |si|, where si denotes the i-th coordinate of s, relation (4) shows that

also the maximal (scaled) absolute bias of each component θ̂i diverges to infinity.

Applying relation (4) to the loss function l∗(s) = l(c′s) shows that (4) holds mutatis mutandis

also for estimators c′θ̂ of arbitrary linear contrasts c′θ. In particular, using quadratic loss l∗(s) =

(c′s)2, it follows that also the maximal (scaled) mean squared error of the linear contrast c′θ̂

goes to infinity as sample size increases, provided c 6= 0.

Proof of Theorem 2.1: It suffices to prove (4).7 Now, with θn = −n−1/2s, s ∈ R
k arbitrary,

we have

sup
u∈Rk

l(u) ≥ sup
θ∈Rk

En,θl(n
1/2(θ̂ − θ)) ≥ En,θn l(n1/2(θ̂ − θn))

≥ En,θn [l(n1/2(θ̂ − θn))1(θ̂ = 0)] = l(−n1/2θn)Pn,θn(r(θ̂) = 0)

= l(s)Pn,θn(r(θ̂) = 0). (5)

By the sparsity-type condition we have that Pn,0(r(θ̂) = 0) → 1 as n → ∞. Since the model

is locally asymptotically normal under our assumptions (Koul and Wang (1984), Theorem 2.1

and Remark 1; Hajek and Sidak (1967), p.213), the sequence of probability measures Pn,θn is

contiguous w.r.t. the sequence Pn,0. Consequently, the far r.h.s. of (5) converges to l(s). Since

s ∈ R
k was arbitrary, the proof is complete. �

Inspection of the proof shows that Theorem 2.1 remains true if the supremum of the risk in

(4) is taken only over open balls of radius ρn centered at the origin as long as n1/2ρn → ∞.

Hence, the bad risk behavior is a local phenomenon that occurs in a part of the parameter space

where one perhaps would have expected the largest gain over the least squares estimator due

to the sparsity property. [If the supremum of the risk in (4) is taken over the open balls of

radius n−1/2ρ centered at the origin where ρ > 0 is now fixed, then the proof still shows that the

limit inferior of this supremum is not less than sup‖s‖<ρ l(s).] Furthermore, for quadratic loss

l(s) = s′s, a small variation of the proof shows that these “local” results continue to hold if the

open balls over which the supremum is taken are not centered at the origin, but at an arbitrary

θ, as long as θ possesses at least one zero component. [It is easy to see that this is more generally

true for any nonnegative loss function l satisfying, e.g., l(s) ≥ l(πi(s)) for every s ∈ R
k and an

index i with θi = 0, where πi represents the projection on the i-th coordinate axis.]

Inspection of the proof also shows that – at least in the case of quadratic loss – the element

s can be chosen to point in the direction of a standard basis vector. This then shows that the

bad risk behavior occurs at parameter values that themselves are “sparse” in the sense of having

7Note that the expectations in (3) and (4) are always well-defined.
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many zero coordinates.

If the quadratic loss n(θ̂ − θ)′(θ̂ − θ) in (3) is replaced by the weighted quadratic loss

(θ̂ − θ)′
∑n

t=1
xtx

′
t(θ̂ − θ), then the corresponding maximal risk again diverges to infinity. More

generally, let ln be a nonnegative loss function that may depend on sample size. Inspection of

the proof of Theorem 2.1 shows that

lim sup
n→∞

sup
u∈Rk

ln(u) ≥ lim sup
n→∞

sup
‖θ‖<n−1/2ρ

En,θln(n1/2(θ̂ − θ)) ≥ sup
‖u‖<ρ

lim sup
n→∞

ln(u), (6)

lim inf
n→∞

sup
u∈Rk

ln(u) ≥ lim inf
n→∞

sup
‖θ‖<n−1/2ρ

En,θln(n1/2(θ̂ − θ)) ≥ sup
‖u‖<ρ

lim inf
n→∞

ln(u) (7)

hold for any 0 < ρ ≤ ∞. [In case 0 < ρ < ∞, the lower bounds in (6)-(7) can even be improved to

lim supn→∞ sup‖u‖<ρ ln(u) and lim infn→∞ sup‖u‖<ρ ln(u), respectively.8 It then follows that in

case ρ = ∞ the lower bounds in (6)-(7) can be improved to sup0<τ<∞ lim supn→∞ sup‖u‖<τ ln(u)

and sup0<τ<∞ lim infn→∞ sup‖u‖<τ ln(u), respectively.]

Next we briefly discuss the case where an estimator θ̂ only has a “partial” sparsity property

(and consequently a commensurable oracle property) in the following sense: Suppose the param-

eter vector θ is partitioned as θ = (α′, β′)′ and the estimator θ̂ = (α̂′, β̂
′
)′ only finds the true

zero components in the subvector β with probability converging to one. E.g., θ̂ is a traditional

post-model-selection estimator based on a consistent model selection procedure that is designed

to only identify the zero components in β. A minor variation of the proof of Theorem 2.1 im-

mediately shows again that the maximal (scaled) mean squared error of β̂, and hence also of θ̂,

diverges to infinity, and the same is true for linear combinations d′β̂ as long as d 6= 0. [This

immediately extends to linear combinations c′θ̂, as long as c charges at least one coordinate of β̂

with a nonzero coefficient.]9 However, if the parameter of interest is α rather than β, Theorem

2.1 and its proof (or simple variations thereof) do not apply to the mean squared error of α̂ (or

its linear contrasts). Nevertheless, the maximal (scaled) mean squared error of α̂ can again be

shown to diverge to infinity, at least for traditional post-model-selection estimators θ̂ based on a

consistent model selection procedure; see Leeb and Pötscher (2005, Appendix C).

While the above results are set in the framework of a linear regression model with non-

stochastic regressors, it is obvious from the proof that they extend to much more general models

such as regression models with stochastic regressors, semiparametric models, nonlinear models,

8Note that the local asymptotic normality condition in Koul and Wang (1984) as well as the result in Lemma

A.1 in Leeb and Pötscher (2006) imply contiguity of Pn,θn and Pn,0 not only for θn = γ/n1/2 but more generally

for θn = γn/n1/2 with γn a bounded sequence.
9In fact, this variation of the proof of Theorem 2.1 shows that the supremum of En,θ l(n1/2(β̂ − β)), where l

is an arbitrary nonegative loss function, again converges to the supremum of the loss function.
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time series models, etc., as long as the contiguity property used in the proof is satisfied. This

is in particular the case whenever the model is locally asymptotically normal, which in turn is

typically the case under standard regularity conditions for maximum likelihood estimation.

3 Numerical Results on the Finite Sample Performance of

the SCAD Estimator

We replicate and extend Monte Carlo simulations of the performance of the SCAD estimator

given in Example 4.1 of Fan and Li (2001); we demonstrate that this estimator, when tuned to

enjoy a sparsity property and an oracle property, can perform quite unfavorably in finite samples.

Even when not tuned to sparsity, we show that the SCAD estimator can perform worse than the

least squares estimator in parts of the parameter space, something that is not brought out in the

simulation study in Fan and Li (2001) as they conducted their simulation only at a single point

in the parameter space (which happens to be favorable to their estimator).

Consider n independent observations from the linear model (1) with k = 8 regressors, where

the errors εt are standard normal and are distributed independently of the regressors. The

regressors xt are assumed to be multivariate normal with mean zero. The variance of each

component of xt is equal to 1 and the correlation between the i-th and the j-th component of

xt, i.e., xt,i and xt,j , is ρ|i−j| with ρ = 0.5. Fan and Li (2001) consider this model with n = 40,

n = 60, and with the true parameter equal to θ0 = (3, 1.5, 0, 0, 2, 0, 0, 0)′; cf. also Tibshirani

(1996, Section 7.2). We consider a whole range of true values for θ at various sample sizes,

namely θn = θ0 + (γ/
√

n) × η for some vector η and for a range of γ’s as described below. We

do this because (i) considering only one choice for the true parameter in a simulation may give

a wrong impression of the actual performance of the estimators considered, and (ii) because our

results in Section 2 suggest that the risk of sparse estimators can be large for parameter vectors

which have some of its components close to, but different from, zero.

The SCAD estimator is defined as a solution to the problem of minimizing the penalized least

squares objective function

1

2

n
∑

t=1

(yt − x′
tθ)

2 + n

k
∑

i=1

pλ(|θi|)

where the penalty function pλ is defined in Fan and Li (2001) and λ ≥ 0 is a tuning parameter.

The penalty function pλ contains also another tuning parameter a, which is set equal to 3.7 here,

resulting in a particular instance of the SCAD estimator which is denoted by SCAD2 in Example
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4.1 of Fan and Li (2001). According to Theorem 2 in Fan and Li (2001) the SCAD estimator is

guaranteed to satisfy the sparsity property if λ → 0 and
√

nλ → ∞ as samples size n goes to

infinity.

Using the MATLAB code provided to us by Runze Li, we have implemented the SCAD2

estimator in R. [The code is available from the first author on request.] Two types of performance

measures are considered: The ‘median relative model error’ studied by Fan and Li (2001), and

the relative mean squared error. The median relative model error is defined as follows: For an

estimator θ̂ for θ, define the model error ME(θ̂) by ME(θ̂) = (θ̂−θ)′Σ(θ̂−θ), where Σ denotes the

variance/covariance matrix of the regressors. Now define the relative model error of θ̂ (relative to

least squares) by ME(θ̂)/ME(θ̂LS), with θ̂LS denoting the least squares estimator based on the

overall model. The median relative model error is then given by the median of the relative model

error. The relative mean squared error of θ̂ is given by E[(θ̂−θ)′(θ̂−θ)]/E[(θ̂LS−θ)′(θ̂LS−θ)].10

Note that we have scaled the performance measures such that both of them are identical to unity

for θ̂ = θ̂LS .

Setup I: For SCAD2 the tuning parameter λ is chosen by generalized cross-validation (cf.

Section 4.2 of Fan and Li (2001)). In the original study in Fan and Li (2001), the range of λ’s

considered for generalized cross-validation at sample sizes n = 40 and n = 60 is {δ(σ̂/
√

n) :

δ = 0.9, 1.1, 1.3, . . . , 2}; here, σ̂2 denotes the usual unbiased variance estimator obtained from a

least-squares fit of the overall model. For the simulations under Setup I, we re-scale this range

of λ’s by log n/ log 60. With this, our results for γ = 0 replicate those in Fan and Li (2001)

for n = 60; for the other (larger) sample sizes that we consider, the re-scaling guarantees that

λ → 0 and
√

nλ → ∞ and hence, in view of Theorem 2 in Fan and Li (2001), guarantees that

the resulting estimator enjoys the sparsity condition. [For another choice of λ see Setup VI.]

We compute Monte Carlo estimates for both the median relative model error and the relative

mean squared error of the SCAD2 estimator for a range of true parameter values, namely θn =

θ0 + (γ/
√

n) × (0, 0, 1, 1, 0, 1, 1, 1)′ for 101 equidistant values of γ between 0 and 8, and for

sample sizes n = 60, 120, 240, 480, and 960, each based on 500 Monte Carlo replications (for

comparison, Fan and Li (2001) use 100 replications). Note that the performance measures are

symmetric about γ = 0, and hence are only reported for nonnegative values of γ. The results are

summarized in Figure 1 below. [For better readability, points in Figure 1 are joined by lines.]

10The mean squared error of θ̂LS is given by E trace((X′X)−1) which equals trace(Σ−1)/(n−9) = 38/(3n−27)

by von Rosen (1988, Theorem 3.1).
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Figure 1: Monte Carlo performance estimates under the true parameter θn = θ0 +(γ/
√

n)×

(0, 0, 1, 1, 0, 1, 1, 1)′ , as a function of γ. The left panel gives the estimated median relative

model error of SCAD2 for sample sizes n = 60, 120, 240, 480, 960. The right panel gives

the corresponding results for the estimated relative mean squared error of SCAD2. Larger

sample sizes correspond to larger maximal errors. For comparison, the gray line at one

indicates the performance of the ordinary least squares estimator.

In the Monte Carlo study of Fan and Li (2001), only the parameter value θ0 is considered.

This corresponds to the point γ = 0 in the panels of Figure 1. At that particular point in the

parameter space, SCAD2 compares quite favorably with least squares. However, Figure 1 shows

that there is a large range of parameters where the situation is reversed. In particular, we see that

SCAD2 can perform quite unfavorably when compared to least squares if the true parameter,

i.e., θn, is such that some of its components are close to, but different from, zero. In line with

Theorem 2.1, we also see that the worst-case performance of SCAD2 deteriorates with increasing

sample size: For n = 60, ordinary least squares beats SCAD2 in terms of worst-case performance

by a factor of about 2 in both panels of Figure 1; for n = 960, this factor has increased to about

3; and increasing n further makes this phenomenon even more pronounced. We also see that, for

increasing n, the location of the peak moves to the right in Figure 1, suggesting that the worst-

case performance of SCAD2 (among parameters of the form θn = (γ/
√

n)× (0, 0, 1, 1, 0, 1, 1, 1)′)

is attained at a value γn, which is such that γn → ∞ with n. In view of the proof of Theorem 2.1,

this is no surprise.11 [Of course, there may be other parameters at any given sample size for

11See Section 2.1 and Footnote 14 in Leeb and Pötscher (2005) for related discussion.
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which SCAD2 performs even worse.] Our simulations thus demonstrate: If each component of

the true parameter is either very close to zero or quite large (where the components’ size has

to be measured relative to sample size), then the SCAD estimator performs well. However, if

some component is in-between these two extremes, then the SCAD estimator performs poorly.

In particular, the estimator can perform poorly precisely in the important situation where it is

statistically difficult to decide whether some component of the true parameter is zero or not. Poor

performance is obtained in the worst case over a neighborhood of one of the lower-dimensional

models, where the ‘diameter’ of the neighborhood goes to zero slower than 1/
√

n.

We have also re-run our simulations for other experimental setups; the details are given below.

Since our findings for these other setups are essentially similar to those summarized in Figure 1,

we first give a brief overview of the other setups and summarize the results before proceeding

to the details. In Setups II and III we consider slices of the 8-dimensional performance measure

surfaces corresponding to directions other than the one used in Setup I: In Setup II the true

parameter is of the form θ0 +(γ/
√

n)× (0, 0, 1, 1, 0, 0, 0, 0)′, i.e., we consider the case where some

components are exactly zero, some are large, and others are in-between. In Setup III, we consider

a scenario in-between Setup I and Setup II, namely the case where the true parameter is of the

form θ0+(γ/
√

n)×(0, 0, 1, 1, 0, 1/10, 1/10, 1/10)′. The method for choosing λ in these two setups

is the same as in Setup I. The results in these additional setups are qualitatively similar to those

shown in Figure 1 but slightly less pronounced. In further setups we also consider various other

rates for the SCAD tuning parameter λ. By Theorem 2 of Fan and Li (2001), the SCAD estimator

is sparse if λ → 0 and
√

nλ → ∞; as noted before, for Figure 1, λ is chosen by generalized cross-

validation from the set Λn = {δ(σ̂/
√

n)(log(n)/ log(60)) : δ = 0.9, 1.1, 1.3, . . . , 2}; i.e., we have
√

nλ = Op(log(n)). The magnitude of λ has a strong impact on the performance of the estimator.

Smaller values result in ‘less sparse’ estimates, leading to less favorable performance relative to

least squares at γ = 0, but at the same time leading to less unfavorable worst-case performance;

the resulting performance curves are ‘flatter’ than those in Figure 1. Larger values of λ result

in ‘more sparse’ estimates, improved performance at γ = 0, and more unfavorable worst-case

performance; this leads to performance curves that are ‘more spiked’ than those in Figure 1. In

Setups IV and V we have re-run our simulations with γ chosen from a set Λn as above, but with

log(n)/ log(60) replaced by (n/60)1/10 as well as by (n/60)1/4, resulting in
√

nλ = Op(n
1/10) and

√
nλ = Op(n

1/4), respectively. In Setup IV, where
√

nλ = Op(n
1/10), we get results similar to,

but less pronounced than, Figure 1; this is because Setup IV leads to λ’s smaller than in Setup I.

In Setup V, where
√

nλ = Op(n
1/4), we get similar but more pronounced results when compared

to Figure 1; again, this is so because Setup V leads to larger λ’s than Setup I. A final setup
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(Setup VI) in which we do not enforce the conditions for sparsity is discussed below after the

details for Setups II-V are presented.

Setups II and III: In Setup II, we perform the same Monte Carlo study as in Setup I, the

only difference being that the range of θ’s is now θn = θ0 + (γ/
√

n)× (0, 0, 1, 1, 0, 0, 0, 0)′ for 101

equidistant values of γ between 0 and 8. The worst-case behavior in this setup is qualitatively

similar to the one in Setup I but slightly less pronounced; we do not report the results here for

brevity. In Setup III, we again perform the same Monte Carlo study as in Setup I, but now with

θn = θ0 + (γ/
√

n) × (0, 0, 1, 1, 0, 1/10, 1/10, 1/10)′ for 101 equidistant values of γ between 0 and

80. Note that here we consider a range for γ wider than that in Scenario I and II, where we had

0 ≤ γ ≤ 8. Figure 2 gives the results for Setup III.
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Median Relative Model Error of SCAD2

gamma

8 0 20 40 60 80
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2
3

4

Relative Mean Squared Error of SCAD2

gamma

8

Figure 2: Monte Carlo performance estimates under the true parameter θn = θ0 +(γ/
√

n)×

(0, 0, 1, 1, 0, 1/10, 1/10, 1/10)′, as a function of γ. See the legend of Figure 1 for a description

of the graphics.

The same considerations as given for Figure 1 also apply to Figure 2. The new feature in

Figure 2 is that the curves are bimodal. Apparently, this is because now there are two regions,

in the range of γ’s under consideration, for which some components of the underlying regression

parameter θn are neither very close to zero nor quite large (relative to sample size): Components

3 and 4 for γ around 5 (first peak), and components 6, 7, and 8 for γ around 40 (second peak).

Setups IV and V: Here we perform the same simulations as in Setup I, but now with the

range of λ’s considered for generalized cross-validation given by {δ(σ̂/
√

n)(n/60)1/10 : δ =

12



0.9, 1.1, 1.3, . . . , 2} for Setup IV, and by {δ(σ̂/
√

n)(n/60)1/4 : δ = 0.9, 1.1, 1.3, . . . , 2} for Setup V.

Setup IV gives ‘less sparse’ estimates while Setup V gives ‘more sparse’ estimates relative to

Setup I. The results are summarized in Figures 3 and 4 below. Choosing the SCAD tuning-

parameter λ so that the estimator is ‘more sparse’ clearly has a detrimental effect on the esti-

mator’s worst-case performance.
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Figure 3: Monte Carlo performance estimates under the true parameter θn = θ0 +(γ/
√

n)×

(0, 0, 1, 1, 0, 1, 1, 1)′ as a function of γ; the SCAD tuning parameter λ is chosen as described

in Setup IV.
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Figure 4: Monte Carlo performance estimates under the true parameter θn = θ0 +(γ/
√

n)×

(0, 0, 1, 1, 0, 1, 1, 1)′, as a function of γ; the SCAD tuning parameter λ is chosen as described

in Setup V.

In all setups considered so far we have enforced the conditions λ → 0 and
√

nλ → ∞ to

guarantee sparsity of the resulting SCAD estimator as risk properties of sparse estimators are

the topic of the paper. In response to a referee we further consider Setup VI which is identical

to Setup I, except that the range of λ’s over which generalized cross-validation is effected is

given by {δ(σ̂/
√

n) : δ = 0.9, 1.1, 1.3, . . . , 2}, which is precisely the range considered in Fan and

Li (2001). Note that the resulting λ does now not satisfy the conditions for sparsity given in

Theorem 2 of Fan and Li (2001). The results are shown in Figure 5 below. The findings are

similar to the results from Setup I, in that SCAD2 gains over the least squares estimator in a

neighborhood of θ0, but is worse by approximately a factor of 2 over considerable portions of the

range of γ, showing once more that the simulation study in Fan and Li (2001) does not tell the

entire truth. What is, however, different here from the results obtained under Setup I is that –

not surprisingly at all – the worst case behavior now does not get worse with increasing sample

size. [This is akin to the boundedness of the worst case risk of a post-model-selection estimator

based on a conservative model selection procedure like AIC or pre-testing with a sample-size

independent critical value.]
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Figure 5: Monte Carlo performance estimates under the true parameter θn = θ0 +(γ/
√

n)×

(0, 0, 1, 1, 0, 1, 1, 1)′, as a function of γ; the SCAD tuning parameter λ is chosen as described
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in Setup VI.

4 Conclusion

We have shown that sparsity of an estimator leads to undesirable risk properties of that estimator.

The result is set in a linear model framework, but easily extends to much more general parametric

and semiparametric models, including time series models. Sparsity is often connected to a

so-called “oracle property”. We point out that this latter property is highly misleading and

should not be relied on when judging performance of an estimator. Both observations are not

really new, but worth recalling: Hodges’ construction of an estimator exhibiting a deceiving

pointwise asymptotic behavior (i.e., the oracle property in today’s parlance) has led mathematical

statisticians to realize the importance uniformity has to play in asymptotic statistical results.

It is thus remarkable that today – more than 50 years later – we observe a return of Hodges’

estimator in the guise of newly proposed estimators (i.e., sparse estimators). What is even more

surprising is that the deceiving pointwise asymptotic properties of these estimators (i.e., the

oracle property) are now advertised as virtues of these methods. It is therefore perhaps fitting

to repeat Hajek’s (1971, p.153) warning:

“Especially misinformative can be those limit results that are not uniform. Then the limit

may exhibit some features that are not even approximately true for any finite n.”

The discussion in the present paper as well as in Leeb and Pötscher (2005) shows in particular that

distributional or risk behavior of consistent post-model-selection estimators is not as sometimes

believed, but is much worse.

The results of this paper should not be construed as a criticism of shrinkage-type estimators

including penalized least squares (maximum likelihood) estimators per se. Especially if the

dimension of the model is large relative to sample size, some sort of shrinkage will typically be

beneficial. However, achieving this shrinkage through sparsity is perhaps not such a good idea

(at least when estimator risk is of concern). It certainly cannot simply be justified through an

appeal to the oracle property.12

12In this context we note that “superefficiency” per se is not necessarily detrimental in higher dimensions

as witnessed by the Stein phenomenon. However, not all forms of “superefficiency” are created equal, and

“superefficiency” generated through sparsity of an estimator typically belongs to the undesirable variety as shown

in the paper.
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