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Abstract

We study a winner-take-all R&D race where firms are privately informed about the uncertain
arrival rate of the invention. Due to the interdependent-value nature of the problem, the equi-
librium displays a strong herding effect that distinguishes our framework from war-of-attrition
models. Nonetheless, equilibrium expenditure in R&D is sub-optimal when the planner is suffi-
ciently impatient. Pessimistic firms prematurely exit the race, so that the expected discounted
amount of R&D activity is inefficiently low. This result stands in contrast to the overinvest-
ment in research that is typical of winner-take-all R&D races without private information. We
conclude that secrecy in R&D inefficiently slows down the pace of innovation.
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1. Introduction

Research and Development activities produce information −about the promise, feasibility and in-
terim experimental results of a project− that is private to the researcher. There are no incentives to
disclose such information, but rather to carefully protect it from industrial espionage.1 This paper

investigates the positive and normative effects of private information on R&D activities. Our main

result is that if the social planner is sufficiently impatient, a failure of information aggregation

makes aggregate equilibrium expenditure in R&D on average too low with respect to the social

optimum. Hence, we conclude that secrecy inefficiently slows down the pace of innovation.

The intuition for this result is simple. Different research centers may have different information

or beliefs about the feasibility or “promise” of the same lines of research, and may achieve more or

less favorable preliminary results. Positive information tends to be concealed, because disclosing

it would lure into the race competitors, and possibly imitators. Because “pessimistic” researchers

cannot access the private information of more optimistic agents, they give up early in the race or

even fail to join it. From the standpoint of a full-informed observer, the more pessimistic firms

exit the race too early. Due to borrowing or talent constraints, the more optimistic firms may be

limited in the amount of resources they can devote to the project. Thus, the resulting aggregate

level of experimentation is too low and research activity is inefficiently postponed.

To the best of our knowledge, these normative results are novel in the theoretical R&D liter-

ature. This literature has emphasized different sources of distortions in R&D investment, but its

conclusions do not seem to uniformly support the widely held belief that, left to market forces

alone, equilibrium investment in R&D would be socially inadequate. As long as innovators can

gain full ownership of the social value of their own inventions, the analysis systematically comes to

the conclusion that equilibrium R&D investment is socially excessive. This is due to duplication

costs: in equilibrium each firm over experiments in the attempt of beating competitors, and fails to

internalize the negative externality imposed on the losing competitors. This literature has largely

developed around the workhorse Poisson model of inventions originally proposed by Reinganum

1When private corporations sponsor university research, as a norm they require the faculty and graduate students
involved to sign non-disclosure and exclusive-licensing agreements. Cohen et al. (2000) conduct a survey questionnaire
administered to 1478 R&D labs in the U.S. manufacturing sector in 1994. They find that firms typically protect the
profits due to invention with secrecy and lead time advantages.
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(1981, 1982), which we shall also employ in this paper.2

The main sources of R&D under-investment previously identified in the literature can be traced

back to the hypothesis that innovators cannot fully claim the social value of their inventions.3 For

example, there may be large technological spillovers when one discloses an innovation. Furthermore,

patent protection of innovations is often ineffective: Innovations can often be legally imitated or

reverse-engineered. Among others, Aghion and Howitt (1992) underline that in a patent system,

an innovator can at best gain monopoly profits from her invention, which is less than the whole

social surplus, and that she does not internalize the impact of her contribution on future research

(see also Horstmann, MacDonald and Slivinski (1985)). Indeed, Mansfield et al. (1977) estimated

that the social return of innovations may be twice as large as the private return to the innovator.

Our analysis identifies in secrecy a novel force that may generate equilibrium underinvestment

in R&D. This force is present even under the hypothesis that innovators are compensated with

the full social value of their innovations. Hence, our work suggests that policies supporting R&D

should be adopted even when patent protection is fully effective.

To illustrate these points formally and to explore the role of private information in R&D races,

we lay out a simple analytical framework. Two firms challenge each other in a research race with

fixed experimentation intensity and winner-take-all termination. The prize can arrive independently

to each player still in the race, with identical negatively-exponential arrival processes of underlying

unknown parameter (the “promise” of the project). At the beginning of the race, a private signal

informs each player of the project’s promise.4 Because of the winner-take-all assumption, the two

2In the strategic multi-armed bandit literature (Bolton and Harris 1999, Keller, Rady and Cripps (2004)), equi-
librium experimentation is sub-optimal because players cannot conceal their findings from each other. Essentially,
under-experimentation consists of the underprovision of a public good. In contrast, we study R&D races where
private information is carefully protected. Among other continuous-time models of multi-agent Bayesian learning,
see also Bergemann and Valimaki (1997, 2000), and Keller and Rady (2003).

3An exception is the analysis of Bergeman and Hege (2001). They study contracts that govern the financing
of a research project by an investor. Because the innovator is limitedly liable, and she may diverts the investor’s
funds, they find that equilibrium funding is inefficiently low. This agency effect is unrelated to the reasons for R&D
underinvestment that we identify in this paper.

4As an example of how large corporations go about scouting promising projects, Pfizer, currently the largest
pharmaceutical company in the world after recently absorbing Warner-Lambert/Parke-Davis, invested in 2002 $5.3
billion in R&D through its specialized arm Pfizer Global Research and Development, which employs 12,500 scientists.
In addition to this massive structure, quoting from the company official website, “250 partners in academia and
industry strengthen our position on the cutting edge of science and biotechnology by providing access to novel R&D
tools and to key data on emerging trends.”
In Section 6, we show how to allow also for gradually accumulating private information about the interim results

of the research project. Because the results of the analysis are qualitatively the same, we focus the exposition on the
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firms are unwilling to share their private information. Over time, each firm decides whether to stay

in the race, paying a flow cost, or whether to quit. Once a firm has quit, prohibitive sunk costs

make re-entry economically infeasible.5 A technically related model is studied by Keller, Rady and

Cripps (2004). However, they do not consider private information.

As time goes by, and the innovation does not arrive, players become pessimistic about the inno-

vation’s arrival rate, and eventually quit the race. In the unique symmetric monotonic equilibrium

of this game, each firm selects a stopping time increasing in her own private signal, and conditional

on whether the opponent is still in the race or not. Due to the interdependent-value nature of

the game, the equilibrium displays a rather extreme “winner’s curse” property, or more precisely

a “survivor’s curse”. Specifically, if the two private signals are sufficiently close, the firms herd

on each other’s participation in the race, rationally presuming that the opponents’ signal is larger

than it actually is. Because of equilibrium monotonicity of stopping times in signals, when a firm

quits, the “survivor” discovers the quitter’s actual signal and discontinuously revises her beliefs

downwards. If the two private signals are sufficiently similar, this negative surprise will make the

survivor immediately quit and regret not having quit the race earlier. This “curse” is more extreme

than in standard or all-pay interdependent-value auctions and than in wars of attrition models (see

Krishna and Morgan (1997)). This fact underlines a key predictive distinction between our R&D

game and wars of attrition. Contrary to prior claims that R&D races can be generally represented

as wars of attrition, our results show that this is not the case when considering private information

and interdependent values.

Our welfare analysis compares the aggregate discounted experimentation costs in equilibrium

and in the efficient cooperative solution, where the two firms are joined in a single team and share

their private information. The optimal team policy is to run both firms’ facilities in parallel, and

then to stop them simultaneously when the joint flow cost for experimenting equals the expected

joint marginal benefit. In equilibrium, a firm prematurely drops out of the race when her private

signal is sufficiently unfavorable relative to joint aggregate information. The survivor then acts

simpler case where private information accrues before starting the race.
5 In this model, we interpret quitting the R&D race as publicly abandoning a line of research, hence dismissing

project-specific facilities and research teams. A temporary suspension is unlikely to be observed by competitors.
Although irreversible exit is a strong simplifying assumption, it appears more natural in this context than the
opposite assumption of costless re-entry. Indeed, R&D firms are seldom observed re-entering a line of research after
dismissing it, possibly because of the large costs involved.
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fully informed and remains in the race longer. But the equilibrium discounted expenditure in R&D

will be too low with respect to the social optimum, because some experimentation is inefficiently

postponed to the future. If instead the firms’ signal are very close, then the “survivor’s curse”

implies that both firms will suboptimally delay their exit from the race, and equilibrium over-

experimentation takes place. When averaging out over instances of under-experimentation and

over-experimentation, the postponement effect dominates the delayed exit effect as long as the

discount rate is sufficiently large, and the equilibrium features suboptimal R&D investment.

For the sake of clarity, we choose to illustrate these points in the simplest possible setup. Our

key normative finding seems to be robust to a number of extensions of the model. We allow for

private information to accumulate gradually over time as research results accrue, and we consider

the possibility that the prize arrival to a player induces a positive or negative externality (e.g.

technology spillovers, increased competition) on the other player. Section 2 reviews the related

theoretical literature, Section 3 lays out the model, Section 4 the unique symmetric monotonic

equilibrium, Section 5 illustrates its normative properties, Section 6 illustrates various extensions

of the model, Section 7 concludes, an Appendix contains the proofs.

2. Related Literature

Our work is related to several strands of literature, but presents important conceptual differences

with respect to each of them.

The key benchmark are continuous-time R&D races modeled either as differential or stopping

games. The differential game approach is put forth in Reinganum (1981, 1982). At each moment

in time, each player selects an experimentation intensity that affects linearly the arrival rate of

the invention, paying a quadratic cost. The simpler approach where each player experiments with

fixed intensity until it quits the race can be understood as a stopping game. Choi (1985) adopts

this approach to study the case of uncertain λ with commonly known prior. This work is further

extended by Malueg and Tsutsui (1999) in a full-fledged differential game à la Reinganum. In

these models with symmetric information, equilibrium R&D investment is socially excessive, due

to duplication costs.6 We adopt the stopping game approach to address the effects of private

6An alternative approach to modeling R&D competition is the “tug-of-war”: firms take turns in making costly
steps towards a “finish line.” In the absence of uncertainty, these games predict a dramatic preemption effect. Once
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information.7 We find that ex-ante equilibrium R&D investment is inefficiently low.

Our study of private information in R&D races adapts and extends solution techniques from

auction theory. But, while our game shares many elements of an all-pay ascending auction, or

equivalently of a war of attrition with interdependent values, the models are significantly different.

To see this, consider as a benchmark the standard two-player common-value ascending second-price

auctions (Milgrom (1981)). In the symmetric monotonic equilibrium, a player with private signal

x quits the game at the time τ(x) when her bid (i.e. the cost) equals the expected value of winning

the auctioned good (the benefit) conditional on both players holding signal x. In the equilibrium

of a common-value war of attrition or all-pay auction, each player leaves the race much earlier

than this time τ(x), unless x is very large.8 Suppose by contradiction that the opponent adopts

strategy τ in equilibrium. As the stopping time τ(x) approaches, the player increasingly believes

that the opponent’s signal is larger than x, and hence that the race is lost. As the expected benefit

of staying in the race vanishes, the player anticipates exit to avoid paying the cost of attrition.

In our game, the random prize arrivals are independent across players. Hence the information

that the opponent’s signal is larger than x does not imply that the player will lose the race, it

only conveys good news on the player’s prize arrival rate. As a result, in the monotonic symmetric

equilibrium of our game, each player with signal x postpones exit after the time when her flow

cost equals the expected flow benefit conditional on both players holding signal x. In a sense, the

informational spillover that derives from common value and independent arrivals places our game

on the opposite side of common-value wars of attritions, with common-value standard auctions in

between.9

a firm is known to be ahead in the race, the opponents drop out of the race (Harris and Vickers (1985)). But this
preemption effect vanishes if one introduces uncertainty in the duration of each step (Harris and Vickers (1987)).

7Lambrecht and Perraudin (2003) and Decamps and Mariotti (2003) study continuous-time stopping games where
private information is only of private value. In our game it has interdependent value: Each player’s signal is infor-
mative on the promise of the project which concerns the R&D race.

8Krishna and Morgan (1997) find that the monotonic symmetric equilibrium bidding strategy b(·) of a 2-player
war of attrition is such that:

b (x) =

] x

−∞
v (y, y)λ (y|y) dy,

where v (y, y) is the expected value of the auctioned good conditional on both players’ signals being equal to y, and
λ (y|y) is the hazard rate that the opponent’s signal equals y given that the player’s signal is y. Unless x is large,
λ (y|y) is small enough that this integral is smaller than v (x, x) , the expected value of the good conditional on both
players holding signal x.

9Coincidentally, however, Bulow, Huang and Klemperer (1999) show that bidders postpone their quitting time

5



Our work is also related to the literature on information aggregation in timing games. Chamley

and Gale (1994) [CG] study a model where each players is privately informed on the “state of

the economy” and may irreversibly exercise an investment opportunity at any period. Two key

differences distinguish our analysis from CG. First, in CG players face a coordination problem,

where either all should invest or none. If they could share their private information, they would do

so. In our R&D race, the winner-take-all assumption induces strong incentives to conceal private

information.10 Second, from a substantive viewpoint, in the CG model herding delays investment,

as each player would like to wait and see how many opponents choose to invest. But this incentive

to wait and see is naturally counteracted in the context of R&D, by the incentive to ‘be the first

to enter the race’ so as to gain some advantage over the opponents. Our model is appropriate

to study environments where herding extends experimentation durations and works in favor of

overinvestment, so that underinvestment arises from other sources.11

More distantly related, Aoki and Reitman (1992) study a two-stage model where firms first

may invest to reduce their private-information production cost, and then compete a-la Cournot. In

equilibrium, the high-cost firm may choose not to invest and pretend to be a low-cost firm. Unlike

them, we study a R&D race with marketable innovations. Firms cannot turn an innovation into

profit if the innovation has not even been developed in the first place. Hence there is no reason for

bluffing the ownership of inexistent innovations. Indeed, our main result is exactly the opposite:

research centers keep high-promise projects secret and this slows down technological progress.

3. The Model

Two players, A and B, play the following stopping game. A prize b > 0 arrives to player i = A,B

at a random time ti ≥ 0, according to a negative exponential process of constant hazard rate λ ≥ 0,
c.d.f. F (ti|λ) = 1 − e−λti and density f(ti|λ) = λe−λti . Conditional on the common λ, the two

beyond τ (x) as in our game, also when they are endowed with a share of the good auctioned off.
10 Jansen (2004) studies the relation between the degree of appropriability of innovation returns and equilibrium

information disclosure. He finds that full appropriability results in secrecy, and that full disclosure takes place only
for extreme spillovers.
11Gul and Lundholm (1995) study a continuous-time coordination timing game that shares many similarities with

CG. Again, players would like to exchange information if they were allowed to, and the herding effect goes in the
direction of delaying an irreversible decision with random consequences (i.e. delaying investment in CG’s terminology).
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arrival times tA, tB are independent.12 In order to know ti and receive the prize, player i must

keep paying a flow cost c > 0. Stopping payments of such costs implies that the prize is abandoned

irreversibly and that ti will never be learned. We make a winner-take-all assumption: the first

player to receive the prize ends the game. Costs and prizes are discounted at rate r.

The common hazard rate of arrival of either prize, λ ≥ 0, is drawn by Nature, unobserved by
the players, from a distribution Gamma (α,β):

π (λ) =
αβ

Γ(β)
e−αλλβ−1, for α > 0,β > 0.

Before starting to pay costs, each player i observes a private signal zi ≤ 0 distributed according to
a negative exponential distribution: for every Z ≤ 0 and z = zi,

H(Z|λ) = Pr(z ≤ Z|λ) = eλZ with density H �(Z|λ) = h(Z|λ) = λeλZ .

The two private signals zA, zB are independent, conditionally on λ.

We will refer to a “project” as the possibility of paying c to activate the arrival of a prize. In

our model each player has a “project”; based on the realization of the private signal, she decides

whether to pursue it or not and, if so, when to stop it irreversibly. The canonical application of

the model is as follows. Each of two firms might start an R&D project of the same nature. Before

starting the project, each firm observes a private signal on its “promise” λ. This key parameter

is common to both projects, because they revolve around the same question, device etc.; but,

conditional on the promise, the actual winner is determined by luck and by willingness to continue

investing resources in research.

Before beginning the formal study of our model, we single out some properties of belief updating

that will be repeatedly used in the analysis.

Belief Updating. Two posterior beliefs play a key role in our analysis. We consider player A’s

updating, player B’s being symmetric. First, suppose that player A is fully informed about the

realizations of both players’ signals, zA = x, zB = y, and that project A has not delivered a prize
12Our model is easily extended to allow for interdependent values or partially public values, instead of pure common

value. For example, by letting the arrival rate of invention i = A,B be λi = λ + εi, where λ ∼ Gamma(α,β) and
εi ∼ Gamma(α,βi), with εA and εB independent: λ measures the “promise” of the project, and the idiosyncratic
components εi measure the specific promise of player i’s approach. The analysis develops similarly, so we focus on
the simplest case just for clarity.
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by time t and project B by time t�. Conditional on this information, the posterior belief density

on λ is

π
�
λ|zA = x, zB = y, tA ≥ t, tB ≥ t�

�
=

π (λ)h (x|λ)h (y|λ) [1− F (t|λ)] [1− F (t�|λ)]U
Λ π

�
λ�
�
h
�
x|λ��h �y|λ�� �1− F �t|λ��� �1− F �t�|λ��� dλ�

(3.1)

which is shown in the Appendix to be a distribution Gamma(α− x− y+ t+ t�,β + 2). We denote
this density by πt,t�(λ|x, y) and its c.d.f. by Πt,t�(λ|x, y).

Second, suppose that player A is fully informed, as before, about her own private signal real-

ization zA = x, and knows that project A has not delivered a prize by time t and project B by

time t�. But, now, player A only knows about her opponent’s signal zB that it is not smaller than

y. Conditional on this information, the posterior belief density on λ is:

π
�
λ|zA = x, zB ≥ y, tA ≥ t, tB ≥ t�

�
=

π (λ)h (x|λ) [1−H(y|λ)] [1− F (t|λ)] [1− F (t�|λ)]U
Λ π

�
λ�
�
h
�
x|λ�� �1−H(y|λ�)� �1− F �t|λ��� �1− F �t�|λ��� dλ�

(3.2)

whose closed-form expression in terms of x, y, t, t� is derived in the Appendix. We denote this

density by πt,t�(λ|x, y+) and its c.d.f. by Πt,t�(λ|x, y+).
We will show that the key statistic to determine optimal stopping in the model is the expected

hazard rate of prize arrival. Conditional on “complete” information (x, y, t, t�) , using the properties

of the Gamma distribution, this is:

Et,t� [λ|x, y] =
]
Λ
λπt,t�(λ|x, y)dλ = β + 2

α− x− y + t+ t�

clearly increasing in x and y and decreasing in t, t�. Conditional on the partial information that

the opponent signal is above y, using the expression for πt,t�(λ|x, y+) derived in the Appendix:

Et,t� [λ|x, y+] =
]
Λ
λπt,t�(λ|x, y+)dλ = (β + 1) (α+ t+ t

� − x)−β−2 − (α+ t+ t� − x− y)−β−2
(α+ t+ t� − x)−β−1 − (α+ t+ t� − x− y)−β−1 .

Lemma 1. The posterior expected hazard rates of arrival of the prize Et,t� [λ|x, y] , Et,t� [λ|x, y+] ,
conditional on no prize A arrival by time t, no prize B arrival by time t�, the realization of the

signal zA = x, and the realization of signal zB being (respectively) exactly equal to or weakly larger

than y, are both strictly decreasing in t and in t�, vanish as t grows unbounded, and are strictly

increasing in x and in y.
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Finally, knowing that the opponent’s private signal realization equals y for sure is bad news

compared to knowing only that it is larger than y.

Lemma 2. For any t, t�, x, and y < 0, Πt,t�(λ|x, y) ≺FSD Πt,t�(λ|x, y+) ≺FSD Πt,t�(λ|x, 0),

Et,t� [λ|x, y] < Et,t� [λ|x, y+] < Et,t� [λ|x, 0] .

4. Equilibrium Analysis

4.1. Definition

Each player’s strategy depends only on her own private signal and on whether her opponent is still

in the race. For each player i = A,B, a pure strategy in this game is a pair of functions (σ1,σ2),

describing stopping behavior. The stopping time function given one’s own private signal and that

the opponent is still in the race, is denoted by σ1 : R− → R+. For any signal x, the strategy σ1

prescribes that the player stays in the race until time σ1 (x) unless observing that the opponent

has left the race at any time τ < σ1 (x) . The choice of the extended positive real numbers R+ as

the range of σ1 is made to allow for the possibility that a player may decide to stay in the game

and wait for the prize forever, given some signal realization x, and given that the opponent is not

leaving the game either. Note that the stopping time σ1 (x) = 0 prescribes that the player should

not enter the race at all.13 The stopping strategy as “quitter no. 2”, given own private signal

and that the opponent has already left the game, is denoted by σ2 : [x
∗, 0] × R+ → R+. Here

σ2 (x, τ) ≥ τ describes the player’s stopping time when holding signal x and after the opponent has

quit at time τ .14

We focus on symmetric andmonotonic equilibria, and denote equilibrium strategies as (σ∗1,σ∗2).15

Our monotonicity requirement is that there exist x∗, x̄∗ ≤ 0 such that σ∗1(x) = 0 if x ≤ x∗, σ∗1(x)
13An alternative interpretation of this model is that each player is initially uninformed, and optimally chooses to

enter the race and gather information, which comes in an instantaneous single signal x for simplicity. Given x, she
then decides whether to leave the race or continue.
14When σ2 (x, τ) = τ , the player leaves the race immediately after seeing that the opponent left at τ . For-

mally, this continuous stopping time is derived from a finite-time approximation where each period lasts ∆, and
lim∆→0+ σ2 (x, τ) = τ+. Metaphorically, in the moment that a player leaves the race, the clock is ‘stopped for an in-
stant’ and the remaining player is left to choose whether to continue or follow suit. For a general treatment on how to
construct stopping time strategies in continuuos time games and on their interpretation, see Simon and Stinchcombe
(1989).
15As will become evident, the restriction to symmetric equilibria is made mostly for computational ease, and our

main welfare prediction of under-experimentation when signals disagree sufficiently holds a fortiori in asymmetric
equilibria, were they to exist.
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is positive and strictly increasing if x∗ < x ≤ x̄∗, and σ∗1(x) =∞ if x > x̄∗. If x̄∗ ≤ 0, then σ∗1 (x) is

finite for any x in the support. We denote by g∗ the inverse function of σ∗1 on the domain [x∗, x̄∗].

We calculate equilibrium strategies by proceeding by backward induction. Starting the analysis

from the equilibrium strategy σ∗2 of a player given that the opponent has left the race.

4.2. Equilibrium Play After the Opponent Quits

Suppose that a player (say player B) observes signal y, enters the game at time 0, and then quits

first according to the equilibrium strategy σ∗1 at time τ = σ∗1(y) > 0. In a monotonic equilibrium,

the remaining player perfectly infers her opponent’s private signal y = g∗(τ), and from that moment

acts fully informed. We now calculate her expected value of planning to stop at any given time τ2.

At time t, conditional on a true value of the prize hazard rate λ, unknown the player, and on

the fact that no prize has arrived to date, the expected value of planning to stop a single project

at some future date τ2 ≥ t equals

U2,t (τ2|λ) =
] τ2

t

f (s|λ)
1− F (t|λ)

�] s

t
(−c) e−r(v−t)dv + e−r(s−t)b

�
ds+

1− F (τ2|λ)
1− F (t|λ)

] τ2

t
(−c) e−r(v−t)dv

The first term is the expected discounted return in case the prize arrives before the project is

stopped. Here f (s|λ) / [1− F (t|λ)] = λe−λ(s−t) is the density of the prize arrival time, conditioned

on no prize having arrived so far. The second term is the expected discounted return in case the

prize does not arrive by the planned quitting time τ2, premultiplied by the chance that this happens

[1− F (τ2|λ)] / [1− F (t|λ)] = e−λ(τ2−t). The opponent left at time τ ; at a subsequent time t ≥ τ ,

the ‘survivor’ plans to quit at a time τ∗2,t(x, g∗(τ)) ≥ t such that

τ∗2,t(x, g
∗(τ)) = argmax

τ2≥t

�
V2,t(τ2|x, g∗(τ), τ) =

]
Λ
U2,t (τ2|λ)πt,τ (λ|x, g∗(τ))dλ

�
.

Recall that πt,τ (λ|x, g∗(τ)) denotes the density of posterior beliefs conditional on the signal real-
izations x, on g∗(τ) being known exactly, and on the facts that neither prize had arrived by time

τ , when the first project was stopped, and that the second project running alone did not arrive in

(τ , t] either. By inspection, we see that V2,t(τ2|x, g∗(τ), τ) is C2 in τ2 for every τ2 ≥ t and every
x, τ , t. Hence, the derivation of the optimal stopping time τ∗2,t can be approached by deriving first

and second order conditions, differentiating V2,t(τ2|x, g∗(τ), τ) with respect to τ2.16 Since this type
16Alternatively, one may differentiate the value V2,t(τ2|x, g∗(τ), τ) with respect to current time t and obtain a

differential equation for the value, which is the continuous-time Hamilton-Jacobi-Bellman equation for this problem.
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of manipulations will be used repeatedly in later omitted proofs, it is instructive to go through

them at least once:

dV2,t (τ2|x, g∗ (τ) , τ)
dτ2

=

]
Λ

d

dτ2
U2,t (τ2|λ)πt,τ (λ|x, g∗ (τ))dλ (4.1)

=

]
Λ

�
f (τ2|λ)
1− F (t|λ)

�] τ2

t
(−c) e−r(v−t)dv + e−r(τ2−t)b

�
− f (τ2|λ)
1− F (t|λ)

] τ2

t
(−c) e−r(v−t)dv

+
1− F (τ2|λ)
1− F (t|λ) (−c) e

−r(τ2−t)
�

π (λ)h (x|λ)h(g∗ (τ) |λ) [1− F (t|λ)] [1− F (τ |λ)]U
Λ π

�
λ�
�
h
�
x|λ��h(g∗ (τ) |λ�) �1− F �t|λ��� �1− F �τ |λ��� dλ�dλ

∝
]
Λ

�
f (τ2|λ)

1− F (τ2|λ)b− c
�

π (λ)h (x|λ)h(g∗ (τ) |λ) [1− F (τ2|λ)] [1− F (τ |λ)]U
Λ π

�
λ�
�
h
�
x|λ��h(g∗ (τ) |λ�) �1− F �τ2|λ��� �1− F �τ |λ��� dλ�dλ

= bEτ2,τ

�
f (τ2|λ)

1− F (τ2|λ)
����x, g∗ (τ)�− c = bEτ2,τ [λ|x, g∗ (τ)]− c = b

β + 2

α− x− g∗ (τ) + τ2 + τ
− c.

where in the second line we simplify the first and third terms and we use the expression for

πt,τ (λ|x, g∗ (τ)) from (3.1), in the fourth line we multiply and divide the integrand by [1−F (τ2|λ)]
and the whole expression by a positive renormalizing factor independent of λ, that we omit. There-

fore, the first-order condition simply equates the posterior expected hazard rate of prize arrival to

the cost/benefit ratio:

bEτ2,τ [λ|x, g∗ (τ)] = b
β + 2

α− x− g∗ (τ) + τ2 + τ
= c. (4.2)

Intuitively, the marginal cost c of proceeding an extra instant must equal the marginal benefit,

which consists of the prize b multiplied by its expected hazard rate conditional on all available

information. Due to exponential discounting, this condition is independent of the planning time t.

Using the explicit expression for Eτ2,τ [λ|x, g∗ (τ)] with respect to the Gamma distribution derived
in the Appendix, and rearranging terms, the first-order condition (4.2) yields the following result.

The verification of the second-order condition is immediate from equation (4.1).

Proposition 1. (Equilibrium Play after the Opponent Quits) In any symmetric monotonic

equilibrium, for any τ > 0, the optimal stopping time of a player with signal x, after the opponent

quits at time τ and reveals her private information g∗(τ), equals

σ∗2(x, τ) = max{τ ,
b

c
(β + 2) + x+ g∗(τ)− α− τ}.

The quitting time σ∗2(x, τ) increases in the signals x and g∗ (τ) , in the benefit/cost ratio b/c and

decreases in the time τ the opponent stayed in the race without receiving the prize. Furthermore,
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it increases in the mean (β/α) and variance
�
β/α2

�
of the prior distribution of λ: the higher the

promise of the prize the longer the player is willing to stay in the race, and the higher the variance,

the higher is the option value for experimenting.

If a player with signal z fails to join the game, then the remaining player cannot perfectly

infer the opponent’s signal realization y, because the equilibrium strategy τ∗1 is not invertible for

y ≤ x∗ ≡ g∗ (0), but only learns that y ≤ x∗. Calculations analogous the previous ones yield the
following result.

Proposition 2. (Equilibrium Play after the Opponent Fails to Join the Game) In any

symmetric monotonic equilibrium, if the opponent fails to join the game, a player with private

signal realization x optimally stops at time

σ∗2(x, 0−) = max{0,
b

c
(β + 1) + x+ x∗ − α}.

Since entering the game for an arbitrarily small length of time, and then quitting, perfectly

reveals own private information y, while not joining the game at all only reveals an upper bound

x∗ to y, there is a natural discontinuity in the equilibrium strategy as a second quitter σ∗2(x, τ) at

τ = 0. In fact, for any x > α− (β + 2) b/c−x∗, so that entering the game for some time is optimal,

lim
τ↓0

σ∗2(x, τ) =
b

c
(β + 2) + x+ x∗ − α > max

�
0,
b

c
(β + 1) + x+ x∗ − α

�
= σ∗2(x, 0−).

For future reference, we let x∗∗ ≡ inf{x : σ∗2(x, 0) > 0}, the lowest signal for which a player is
willing to stay in the race, upon seeing that the opponent did not enter the game. To summarize:

if x > x∗∗ then the player enters and stays in for some time no matter what the opponent does; if

x∗ ≤ x ≤ x∗∗ then the player enters and quits right away if the opponent failed to join; if x∗ < x
then the player does not enter at all.

4.3. Equilibrium Play Before the Opponent Quits

The most complex part of the equilibrium characterization concerns the earlier phase of the game,

when both players are still in the game. Each player must plan an optimal stopping time based

on the hypothesis that the opponent will quit later, and on the resulting information about the

opponent’s private information.
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The Value Function. We first determine the value function of a player at any time t > 0 for

quitting at time τ1 ≥ t, conditional on the facts that opponent has not quit yet at time τ1 and is
adopting a monotonic strategy σ∗1, with associated inverse g∗. We consider the problem of player

A, the other player’s calculations being symmetric. The expected value at time t for planning at

time t to stop at some time τ1 > t, conditional on λ, equals to:

U1,t (τ1|λ) =
] τ1

t

f (s|λ)
1− F (t|λ)

1− F (s|λ)
1− F (t|λ)

1−H(g∗ (s) |λ)
1−H(g∗ (t) |λ)

�] s

t
−ce−r(v−t)dv + e−r(s−t)b

�
ds

+

] τ1

t

f (s|λ)
1− F (t|λ)

1− F (s|λ)
1− F (t|λ)

1−H(g∗ (s) |λ)
1−H(g∗ (t) |λ)

�] s

t
−ce−r(v−t)dv

�
ds

+

] τ1

t

�
1− F (s|λ)
1− F (t|λ)

�2 h(g∗ (s) |λ)dg∗ (s) /ds
1−H(g∗ (t) |λ)

] s

t

k
−ce−r(v−t)dv + e−r(s−t)V2,s(σ∗2(x, s)|x, g∗(s))

l
ds

+

�
1− F (τ1|λ)
1− F (t|λ)

�2 1−H(g∗ (τ1) |λ)
1−H(g∗ (t) |λ)

] τ1

t
−ce−r(v−t)dv. (4.3)

Each one of the four lines corresponds to one of the four possible and exhaustive events that can

take place at any time s between the current time t and any future date τ1 at which player A

plans to quit. We go through the four lines in order. First player A’s prize arrives at tA ∈ [t, τ1),
before (the prize arrives to the rival at time) tB and before (the opponent quits first at time) τ .

Conditional on the true arrival rate λ, the density of this event for tA = s ∈ [t, τ1] is

f (s|λ)
1− F (t|λ)

1− F (s|λ)
1− F (t|λ)

1−H(g∗ (s) |λ)
1−H(g∗ (t) |λ) . (4.4)

as shown in the first line of (4.3). In this case, A wins the race, pays costs up to that time tA and

collects the prize b. Second, player B’s prize arrives at tB ∈ [t, τ1), before A’s prize arrives at tA
and before A quits at τ1. As a result, B wins the race at time tB and player A just pays costs.

The density of this event for tB = s ∈ [t, τ1] is again expressed in line (4.4). Third, player B quits

at τ ∈ [t, τ1) first, i.e. before either prize arrives. Then the signal zB is revealed to A by inverting
zB = g∗(τ). The density of this event for tA = s ∈ [t, τ1] is in the third line of (4.3). Player A
pays costs and collects V2,s(σ∗2(x, s)|x, g∗(s), s), the continuation value of going on alone optimally.
Fourth and last, nothing happens in the time interval [t, τ1): no one quits and no prize arrives. In

this case player A quits at τ1 and just pays costs. The probability of this event is in the fourth line

of (4.3).
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At any time t > 0, given that the opponent adopts a monotonic strategy σ∗1 with inverse g∗,

each player chooses the following optimal stopping time as first quitter:

τ∗1,t(x) = argmax
τ1≥t

�
V1,t (τ1|x) =

]
Λ
U1,t (τ1|λ)πt,t(λ|x, g∗ (t)+)dλ

�
.

The First-Order Condition: Necessity and Sufficiency. In order to find the optimal stop-

ping time of a player before the opponent quits, we differentiate the expected value Vt (τ1|x) with
respect to the stopping time τ1. After substantial manipulations that we omit but make available

upon request, we obtain:

dV1,t (τ1|x)
dτ1

∝ −c+Eτ1,τ1 [λ|x, g∗ (τ1)+] b (4.5)

+V2,τ1(σ
∗
2(x, τ1)|x, g∗(τ1), τ1)Eτ1,τ1

�
h(g∗ (τ1) |λ)dg∗ (τ1) /dτ1

1−H(g∗ (τ1) |λ)
����x, g∗ (τ1)+� .

This marginal value equals minus the flow cost −c plus two flow expected benefit terms, the

expected hazard rate Eτ1,τ1 [λ|x, g∗ (τ1)+] of prize arrival times the prize value b, and the expected
hazard rate Eτ1,τ1

k
h(g∗(τ1)|λ)dg∗(τ1)/dτ1

1−H(g∗(τ1)|λ)
���x, g∗ (τ1)+l of the opponent leaving the game times the

continuation value V2,τ1(σ
∗
2(x, τ1)|x, g∗(τ1), τ1) of remaining alone. Note that, again, the RHS of

(4.5) is independent of the current time t.

Remarkably, the possibility that the opponent may receive the prize and win the race does not

enter the marginal value of waiting to quit the game first. This surprising property has a simple

intuition. The derivative dV1,t (τ1|x) /dτ1 captures the difference in value at τ1 between leaving at
time τ1 + ∆τ1 and leaving immediately at τ1, where ∆τ1 is an arbitrarily small period of time.

During the period ∆τ1, the cost c∆τ1 is paid up-front and sunk, and either one of the two benefits

of size b or V2,τ1(σ
∗
2(x, τ1)|x, g(τ1), τ1) may arrive. If nothing arrives or if the opponent wins in

the meantime, then either way the payoff is zero. The only effect prize arrival to the opponent is

to end to game before τ1 +∆τ1 at no further cost, nor benefit to the player. Since the player is

anyway ending the game at time τ1 +∆τ1, the arrival of the prize to the opponent at any given

t ∈ (τ1, τ1 +∆τ1) bears no change in the player’s marginal value for waiting as ∆τ1 vanishes.
Lemma A.1 in Appendix establishes two “corner properties” of any equilibrium strategy. First,

never leaving the game as long as the other player stays in cannot be a best response to itself for

any signal realization x ≤ 0. In other words, there are no symmetric monotonic equilibria where
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the players remain in the race forever. Conversely, a player stays in the game for a positive amount

of time, when her opponent enters the game and stays in, provided that her signal is good enough.

Equilibrium Characterization. The key result of this subsection is a “survivor’s curse,” that

we identify in any monotonic equilibrium of this class of optimal-stopping games of conflicting

interests. Suppose that player B adopts a monotonic strategy σ1 with inverse g. Say that in the

event that B remains in the race, player A endowed with signal x plans to quit first at a time τ1

which satisfies the first-order condition dV1,t (τ1|x) /dτ1 = 0. If B quits first at any time τ earlier

than but close enough to τ1, then A must also immediately leave the race, regretting not having left

earlier. The intuition behind this result is simple. When player A plans to leave the race at τ1, she

conditions on player B still being in the race and hence on the expectation E[zB|zB ≥ g (τ1)] with
respect to B’s signal. If in fact B quits first at a time τ close but smaller than τ1, then A suddenly

realizes that B had observed signal zB = g (τ), which is much smaller than E[zB|zB ≥ g (τ)] and
hence smaller also than E[zB|zB ≥ g (τ1)]. This induces a sudden pessimistic revision of A’s beliefs
with respect to the promise of the project; accordingly, A quits immediately after B, regretting her

previous over-optimistic expectation of the rival’s assessment of the project’s feasibility.17

Lemma 3. In any monotonic equilibrium (σ∗1,σ∗2) , for any signal realization x ≤ 0, if a player (say
A) is planning to quit first at time τ1 > 0 such that dV1,t (τ1|x) /dτ1 = 0, then for any τ < τ1 close

enough to τ1, player A’s optimal stopping choice after B quits at τ is to immediately follow suit

and gain nil continuation value:

τ∗2,τ (x, τ) = τ >
b

c
(β + 2) + x+ g∗ (τ)− τ − α and V2,τ (τ

∗
2,τ (x, τ)|x, g∗(τ), τ) = 0.

Proof. We only need to show that

c > bEτ1,τ1 [λ|x, g∗ (τ1)] = b
β + 2

α− x− g∗ (τ1) + 2τ1 ,

by definition of τ∗2,τ (x, τ) and by continuity of the RHS.

17As a mirror image of this survivors’s curse, a ‘quitter’s curse’ arises if player B leaves the race at a time τ much
earlier than τ1, the planned stopping time of player A. In this case, player A remains in the race after τ , and player
B regrets having left.
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Since τ1 solves the first-order condition dV1,t(τ1|x)/dτ1 = 0, using equation (4.5), we obtain:

0 = bEτ1,τ1 [λ|x, g∗ (τ1)+]

+V2,τ1(σ
∗
2(x, τ1)|x, g∗(τ1), τ1)Eτ1,τ1

�
h(g∗ (τ1) |λ)dg∗ (τ1) /dτ1

1−H(g∗ (τ1) |λ)
����x, g∗ (τ1)+�− c

≥ bEτ1,τ1 [λ|x, g∗ (τ1)+]− c > bEτ1,τ1 [λ|x, g∗ (τ1)]− c,

where the first inequality follows because h(g
∗(τ1)|λ)dg∗(τ1)/dτ1
1−H(g∗(τ1)|λ) > 0 and V2,τ1(τ

∗
2,τ1(x, τ1)|x, g∗(τ1), τ1) ≥

0, whereas the second inequality follows from Lemma 2: knowing that the opponent’s signal is ex-

actly g∗ (τ1) is bad news with respect to knowing that it is at least g∗ (τ1) .

In light of the Lemma 3, for any x, the First-Order Condition dVt(τ1|x)/dτ1 = 0 can be rewritten
simply as:

c = bEτ1,τ1 [λ|x, g∗ (τ1)+] , (4.6)

which says that a player quits at the time τ1 when the flow cost c equals the expected flow benefit

consisting of the value of the prize b times expected hazard rate λ of arrival of the prize, conditional

on own private information x, on the opponent’s signal y being larger than g∗ (τ1) , and on neither

prize having arrived by time τ1. In any symmetric monotonic equilibrium (σ∗1,σ∗2) , symmetry

implies that g∗(σ∗1(x)) = x, so that Equation (4.6) is further simplified as

c = bEτ1,τ1 [λ|x, x+] = b (β + 1)
k
(α+ 2τ1 − x)−β−2 − (α+ 2τ1 − 2x)−β−2

l
k
(α+ 2τ1 − x)−β−1 − (α+ 2τ1 − 2x)−β−1

l . (4.7)

By Lemma 1, the right-hand side of this equation is strictly decreasing in τ1 and strictly increas-

ing in x. Therefore, it has a unique positive and increasing solution ζ1 (x) for any x such that

bE0,0 [λ|x, g∗ (0)+] = bE0,0 [λ|x, x∗+] ≥ c, i.e. x ≤ x∗, and no solutions otherwise. In particular,
x∗ = g∗ (0) is uniquely determined by

c = b (β + 1)

k
(α− x∗)−β−2 − (α− 2x∗)−β−2

l
k
(α− x∗)−β−1 − (α− 2x∗)−β−1

l . (4.8)

So far, our analysis has singled out as the unique candidate symmetric monotonic equilib-

rium stopping strategy the function σ∗1 such that: σ∗1 (x) solves the implicit function (4.7) if

bEτ1,τ1 [λ|x, x∗+] > c, and σ∗1 (x) = 0 otherwise. Lemma A.1 in the Appendix has shown that
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if bEτ1,τ1 [λ|x, x∗+] > c and the opponent adopts the stopping strategy σ∗1, a player endowed with
signal x who is in the race at time t finds it optimal to quit it at time σ∗1 (x) > 0.

In order to conclude that the stopping strategy σ∗1 is the unique symmetric monotonic equilib-

rium, we are only left to determine the optimal decision at the very beginning of the game, i.e. at

time t = 0.We verify in the Appendix (Lemma A.2) that if the opponent enters the game whenever

x > x∗, then it is optimal to enter the race if and only if x > x∗. Lemma 2 immediately implies

that x∗∗ > x∗: Upon knowing that the opponent failed to join the race, a player becomes more

pessimistic than if the opponent entered for a whatsoever small amount of time. Hence, whenever

x∗ < x < x∗∗, the player will initially join the race and then exit immediately after upon seeing

that the opponent did not join.

The following Proposition summarizes our findings for the equilibrium play σ∗1 before the oppo-

nent quits and, together with Propositions 1 and 2 for the strategy σ∗2 after the opponent has quit,

fully characterizes the unique symmetric monotonic equilibrium (σ∗1,σ∗2). It is important to note

that neither the optimal team’s strategy, nor the equilibrium strategy depend on the discount rate

r. This property will greatly simplify our welfare comparison, where the discount rate will play a

major role.

Proposition 3. (Equilibrium Play Before the Opponent Has Quit) The unique symmetric

monotonic equilibrium stopping time, conditional on a private signal x and on the opponent still

being in the game, is

σ∗1(x) =
�
0 if x < x∗

ζ1(x) if x ≥ x∗,

where ζ1(x) is the unique increasing solution of (4.7), and x
∗ < 0 is the unique root of ζ1(x) = 0,

or equivalently (4.8).

5. Welfare Analysis

5.1. The Cooperative Problem

In order to investigate the welfare properties of the unique symmetric monotonic equilibrium, we

compare its outcome to the first-best cooperative solution, in which players join forces in a single

team and share their private information. The team operates both projects as a single agent to
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maximize joint profits. In our model with independent negative-exponential prize arrivals and

Gamma prior, the optimal team policy is bang-bang. Specifically, the team keeps both projects

active at any time t such that the expected marginal benefit, 2Et,t [λ|x, y] b is larger than the
marginal cost 2c, and stops both projects simultaneously at the time t where the costs offset the

benefits (note that Et,t [λ|x, y] = [β+2]/[α−x−y+2t] is strictly decreasing in t). This immediately
leads to the following Proposition.18

Proposition 4. (The Team Solution) For every pair of signals x, y on the unobserved promise

λ of the two projects, the team optimally stops both projects simultaneously at time

T ∗(x, y) = max
�
0,
1

2

�
(β + 2)

b

c
− α+ x+ y

��
.

Because this single-agent optimization problem is already well-understood in the dynamic op-

timization literature from papers studying exponential experimentation models without private

information (e.g. Keller, Rady and Cripps (2004)), we omit our formal analysis which is available

upon request.19 The intuition behind the results is as follows. Owing to our model’s specification,

keeping two projects active instead of one is equivalent to doubling the intensity of experimenta-

tion, the experimentation costs and the speed of learning. If there were no uncertainty, the team’s

optimal policy would be ‘bang-bang’. When the marginal trade-off between costs and benefits

is positive, the team would pursue the prize at the maximal intensity available, by keeping both

projects active. When the marginal trade-off is negative, the team would shut down both projects.

Without uncertainty, this trade-off is time invariant, so the two projects stay active either for ever

or never. When the hazard rate λ is unknown, the team learns about λ by experimenting. It

revises beliefs about λ downwards as time advances and prizes do not arrive. Most importantly, it

learns twice faster by keeping both projects active, rather than only one. As the team is impatient
18The expression for T ∗ (x, y) coincides with the expression for the stopping strategy of the survivor σ∗2 (x, τ) when

setting g (τ) = y and equating σ∗2 (x, τ) = τ . In equilibrium, the survivor acts fully informed.
19 It is easy to show that, after relabeling the variables, the cooperative problem studied by Keller, Rady and Cripps

(2004) is equivalent to a N-project version of our team problem where the prior of λ is binary (instead of Gamma, as
in our paper) with realizations 0 and λ̂ > 0. In their problem, in fact, the team simultaneously operates N identical
bandits. Each bandit comprises a safe arm that yields a known flow payoff, and a risky arm that delivers prizes
according to a Poisson distribution of parameter λ. Once one of the risky arms delivers its first prize, all uncertainty
about λ is resolved: the team realizes that λ = λ̂ and, in practice, the game ends.
They show that the solution of this problem is such that the team keeps all N risky arms active until the time

when the expected marginal benefits of the risky arms coincide with the flow payoffs of the safe arms, and then it
simultaneously switches all N risky arms off.
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and discounts the future, there is no reason to slow down the speed of learning by proceeding with

one project only. Hence, whenever the marginal trade-off between costs and expected benefits is

positive, the team chooses to pursue the prize at the maximal intensity available, and it stops both

projects when the marginal trade-off becomes negative.

5.2. Interim Welfare Analysis

We now investigate the welfare properties of the unique symmetric monotonic equilibrium, by

comparing its outcome to the cooperative solution. We first characterize the welfare properties of

equilibrium conditional on the signal realizations x, y. Without loss of generality, we let x ≤ y, so
that player A is more pessimistic than player B. To avoid burdening the exposition with too many

subcases, we here focus on the case that y ≥ x > x∗ and T ∗(x, y) > 0, so that both players and

the team join the game. We relegate to the appendix the cases when some agents have such low

signals that they do not even enter the race.

When player A quits, she reveals her private signal x to B. If player B’s signal y is sufficiently

close to x, our “survivor’s curse” implies that player B immediately quits the race, regretting not

having left before. Clearly, experimentation is excessive because both projects are stopped too late.

Lemma 4. Suppose that y ≥ x > x∗. If

σ∗1(x) > T
∗(x, y) =

1

2

�
(β + 2)

b

c
− α+ x+ y

�
, (5.1)

then both players’ equilibrium stopping times are higher than the efficient common stopping time

of both projects:

σ∗2(y,σ
∗
1(x)) = σ∗1(x) > T

∗(x, y).

Since the function T ∗(x, y) is increasing in both x and y, given that y ≥ x, the inequality in
Equation (5.1) holds if x and y are sufficiently close.

A more complex case occurs when x is sufficiently small with respect to y that σ∗1(x) < T ∗(x, y).

When quitting at time σ∗1(x), player A underestimates the opponent’s signal y and quits too soon

with respect to the team’s solution. Player B stays in the race until time

σ∗2(y,σ
∗
1(x)) =

b

c
(β + 2) + g∗(σ∗1(x)) + y − α− σ∗1(x).
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In our Gamma-Poisson model, B’s equilibrium stopping time σ∗2(y,σ) is linear in signal y and in

A’s exit time σ. As a consequence, player B’s expected duration in the race (conditional on no

prize arrival) exactly offsets the premature quitting by player A:

σ∗2(y,σ
∗
1(x)) + σ∗1(x) =

b

c
(β + 2) + x+ y − α = 2T ∗(x, y).

Although the sum of equilibrium experimentation durations coincides with the team’s aggregate

duration, a key inefficiency remains. The cooperative solution dictates that the two projects should

be stopped simultaneously. In equilibrium, exit is sequential: Player A exits too soon and her

experimentation duration T ∗(x, y)−σ∗1(x) is “postponed” by player B after she has completed her

optimal duration T ∗(x, y). Since the team is impatient, this corresponds to suboptimally slowing

down the joint rate of innovation arrival. Hence, experimentation is suboptimal in equilibrium.20

To make this statement formal, we decompose the expression for time-0 expected team’s welfare,

conditional on stopping the first project at time T1 and the second one at time T2,

W (T1, T2|x, y) = B(T1, T2|x, y)−K(T1, T2|x, y)

as the difference between expected discounted rewards

B(T1, T2|x, y) ≡ b
]
Λ

�] T1

0
2f (s|λ) (1− F (s|λ)) e−rsds+ (1− F (T1|λ))

] T2

T1

f (s|λ) e−rsds
�
π0,0(λ|x, y)dλ

and the expected discounted costs

K(T1, T2|x, y) =
]
Λ
C(T1, T2|λ)π0,0(λ|x, y)dλ, with

C(T1, T2|λ) ≡ c
�] T1

0
2f (s|λ) (1− F (s|λ))

] s

0
2e−rvdvds+ (1− F (T1|λ))2

] T1

0
2e−rvdv

+(1− F (T1|λ))
] T2

T1

f (s|λ)
] s

T1

e−rvdvds+ (1− F (T1|λ)) (1− F (T2|λ))
] T2

T1

e−rvdv
�
.

We prove in the Appendix:

Lemma 5. If y > x > x∗, and 0 < σ∗1(x) < T ∗(x, y), then the time-0 expected present discounted

value of the research costs and benefits are smaller in equilibrium than in the team solution:
20This postponement effect extends to (monotonic) asymmetric equilibria, were they to exist. Also in such equilibria

firms almost-surely leave the race sequentially, instead of simultaneously. After the most pessimistic firm quits
the race, her opponent acts fully informed mimicking the team’s optimal solution for a suboptimally constrained
termination of the first project.
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K(σ∗1 (x) ,σ∗2(y,σ∗1 (x))|x, y) < K(T ∗(x, y), T ∗(x, y)|x, y) and hence B(σ∗1 (x) ,σ∗2(y,σ∗1 (x))|x, y) <
B(T ∗(x, y), T ∗(x, y)|x, y).

The source of this key result is a failure of information aggregation. Private information can

only be revealed credibly by quitting decisions. In any monotonic equilibrium it flows only from

the more pessimistic player to her opponent, and never vice versa.

The welfare analysis conditional on the signal pairs (x, y) is summarized in the following Propo-

sition.

Proposition 5. (Welfare Analysis Conditional on Signal Realizations) Given the unique

symmetric monotonic equilibrium (σ∗1,σ∗2) and the team’s optimal stopping time T ∗(x, y), there

exists an increasing continuous function ξ : (x∗, 0]→ (x∗, 0], implicitly defined by

σ∗1(x) = T
∗(x, ξ(x)) =

1

2

�
(β + 2)

b

c
− α+ x+ ξ(x)

�
,

such that ξ(x) > x for any x < 0, and that for any x, y with y ≥ x > x∗ and T ∗(x, y) > 0,

1. (E U -E ) If y > ξ(x) (i.e. signals differ sufficiently), then

equilibrium experimentation is too low. Both the total time-0 expected discounted experi-

mentation costs and the total time-0 expected discounted benefit are smaller in equilibrium

than in the team’s solution.

2. (E O -E ) If y < ξ(x) (private signals agree sufficiently),

then equilibrium experimentation is excessive. The total time-0 expected discounted experi-

mentation costs are larger in equilibrium than in the team’s solution.

This concludes the characterization of the normative properties of the equilibrium conditional

on the realizations of the private signals. Our interpretation of the results is as follows. If the social

planner has any reason to believe that the players disagree in their beliefs about the promise of

the project, then she would expect that experimentation is too low in equilibrium. Whereas if the

social planner deems that the players’ beliefs are in agreement, then she would expect equilibrium

over-experimentation.
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5.3. Ex-Ante Welfare Analysis

We now conclude the welfare analysis of the unique equilibrium. We determine whether under-

experimentation or over-experimentation is to be expected conditional only on prior beliefs about

the promise of the project (α and β), and before the players observe their private signals. This

is the perspective of a social planner who does not enjoy any informational advantage over any

players. We establish that, as long as the social planner is sufficiently impatient and deems the

project valuable enough, then she expects under-experimentation in equilibrium.

Intuitively, when the project’s expected hazard rate λ is high enough, the social planner is

mostly concerned with signal outcomes x, y such that T ∗(x, y) > 0: it would be optimal that both

players enter the game and exit simultaneously. In equilibrium, players jointly over-experiment if

their maximum duration σ∗1 (x) = σ∗2(y,σ∗1 (x)) is larger than T ∗(x, y), i.e. the more pessimistic

player overshoots the team solution. They jointly under-experiment if σ∗1 (x) < T ∗(x, y) so that

more pessimistic player exits too soon, and her shortfall T ∗(x, y) − σ∗1 (x) is compensated by the

opponent but postponed after T ∗(x, y). If the social planner is sufficiently impatient, then she is

relatively more concerned ex-ante about the risk of premature exit and postponement than about

the risk of delayed exit.

Formally, we let

D(α,β; r) =

]
Λ

]
R2−
[C (T ∗(x, y), T ∗(x, y)|λ)−C (σ∗1 (x) ,σ∗2 (y,σ∗1 (x)) |λ)]h (x|λ)h (y|λ) dπ (λ)

denote the difference between equilibrium experimentation costs and team costs on the basis of α

and β only.

Proposition 6. (Unconditional Welfare Properties of the Equilibrium) Given the unique

symmetric monotonic equilibrium (σ∗1,σ∗2) and the team’s solution T ∗, if the ex-ante expectation

of the project’s promise λ is sufficiently large, and if the discount rate r is sufficiently large, then

D(α,β; r) < 0: ex-ante experimentation is too low in equilibrium. If either the project is not valu-

able ex-ante, or if the social planner is very patient, thenD(α,β; r) > 0 and ex-ante experimentation

is too high in equilibrium.
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6. Extensions

Our construction can be extended in several directions. We shall now discuss some of the most

interesting and promising ones, to show that, by and large, our conclusions appear to be robust.

Formal arguments are available upon request.

Deterministic Accumulation of Knowledge over Time. Our model inherits from differ-

ential game models of R&D races the assumption that innovation arrival is governed by a Pois-

son process of parameter λ. This is equivalent to say that the unknown innovation hazard rate

L(t,λ) ≡ f (t|λ) / [1− F (t|λ)] is constant over time (and equal to λ). Then, it is natural to postu-
late conjugate Gamma prior and negative exponentially distributed signals. It is not too difficult,

however, to extend our equilibrium construction when the innovation hazard rates L(t,λ) of un-

known parameter λ is not constant over time.21 The engine of our equilibrium characterization is

Theorem A.1 in the Appendix. Its power goes well beyond the Gamma-Poisson specification of our

model.

Make the following mild regularity assumptions: the distribution of λ has connected support Λ

(with λ = inf Λ and λ̄ = supΛ), the hazard rate of the prize L(t,λ) is continuous in t,λ, and strictly

increasing in λ for every t, with L(t, λ̄) > c/b > L (t,λ), and the density h (x|λ) of private signals
x is differentiable, with support X ⊆ R, and limx→supX h (x|λ) <∞. In this environment, we can
prove that our equilibrium characterization presented in Propositions 1 and 3 holds if the following

two substantive restrictions are met. First, the signal density h(x|λ) is log-supermodular, i.e. the
ratio h�(x|λ)/h(x|λ) is strictly increasing in λ. Second, the expected hazard rates Et,t� [L(t,λ)|x, y]
and Et,t� [L(t,λ)|x, y+] are strictly decreasing in t for any fixed signals x, y and t�; and they both
attain the lower bound L (t,λ) in the limit as t → ∞. The first condition is reminiscent of log-
supermodularity conditions for pure strategy equilibrium existence derived in Athey (1999). The

second condition requires that for any fixed pair of signals x, y, as time goes by and the innovation

does not arrive, one becomes more and more pessimistic about the promise of the project, both

in the case that one knows precisely both signal realizations x and y, or that one only knows one

signal realization to be precisely x while that the other signal realization is larger than y. We

21 It is also easy to extend our analysis for the possibility that the value of the prize b changes over time, for example
growing at the economy’s rate.
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underline that this is not unduly strong. Among other things, it does not require that the actual

innovation hazard rate L(t,λ) be decreasing over time. As knowledge accumulate throughout the

R&D process, L (t,λ) is likely to be increasing over time; but it is also quite likely that one becomes

less optimistic about its feasibility as time goes by and the innovation does not materialize.

Random Accumulation of Private Information over Time. Knowledge about the project

may also arrive randomly as the race unfolds, and therefore remain private. A simple way to capture

this phenomenon within our Gamma-Poisson model is to assume that each player i who remains in

the race may observe “good news” as time goes by. Each good news is the arrival of a known event

at uncertain times, following a Poisson process of parameter kλ, where k > 1. Therefore, the more

promising the project, the higher λ and the more frequently good news accrue, typically before

the innovation itself because k > 1. Ruling out initial private signals for simplicity, all private

information at any time t is represented by the number n of good-news accrued to date t. For any

t and n, the player’s beliefs over λ are again represented by a Gamma distribution. The calculation

of the marginal value of waiting to exit is carried out in analogous way as in the present model.

The relevant events are (i) the arrival of prize, (ii) the exit of the opponent, (iii) the arrival of good

news. Each of these arrivals corresponds to a flow benefit that one weighs against the flow cost of

remaining in the race.

Just like in our model, a symmetric monotonic equilibrium strategy consists of two stopping

time functions. For number of good news n, the first stopping time function σ∗1 prescribes to

leave the race at time σ∗1 (n) as long as the opponent is still in the race, whereas given that the

opponent left the race at time τ , equilibrium exit is prescribed by stopping time function σ∗2 (n, τ) .

Monotonicity requires that both these stopping functions are increasing in n. Each player inverts

her opponent’s good-news index g∗ (τ) upon observing her exit at time τ . If the opponent is still

in the race, the only information available is that her good-news index n is at least as large as

g∗ (τ) .22 In equilibrium, one player prematurely exits if private information disagrees sufficiently.

If the team is impatient enough, equilibrium ex-ante discounted experimentation is suboptimally

low. Unlike our model, the equilibrium is fully-separating.

22While on the equilibrium path firms may only exit at a countable set of times, there is no practical issue with
beliefs off path, because of the assumption of irreversible exit.
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Prize Arrival Externalities. While the winner-take-all assumption is a natural benchmark,

our framework can also accommodate prize arrival externalities, both negative (e.g. reduced market

share, lost competitive edge), or positive (e.g. spillover effects, imitation, innovation dissemination,

industry-wide benefits) on the other player. Inspection of the equilibrium equations characterizing

the stopping time function σ∗1, reveals two possibilities. If the externality is borne by a player only

while in the race, then positive (negative) externalities exarcerbate (dampen) the herding effect:

players postpone (anticipate) their exit because of the benefits (losses) obtained if the prize arrives

to the opponent. If instead the externality is borne regardless of whether the player is still in the

race or not, then exactly the opposite implication holds: Negative (positive) externalities exacerbate

(dampen) herding, because players postpone (anticipate) their exit to reduce the probability that

the prize arrives to the opponent (to save on flow cost and shift the burden of experimentation on

the opponent).

Ruling out the (fairly implausible) case of negative externalities borne only if in the race, the

team optimal solution still consists in running both projects and simultaneously stopping them

when marginal benefits (which now internalize externality effects) are offset by flow costs. In fact,

when externalities are borne regardless of whether in the race or not, they do not affect the team’s

stopping policy, and positive externalities borne only if in the race, make the team prize value larger

when both projects are open. In equilibrium, one player prematurely exits if private information

disagrees sufficiently, and this results in under-experimentation if the team is impatient enough.

7. Conclusion

This paper studies a Poisson R&D race with fixed experimentation intensity and winner-take-all

termination, where firms are privately informed about the promise and feasibility of their com-

mon line of research. We have calculated the unique symmetric monotonic equilibrium, and com-

pared it with the optimal policy of a team that shares the firm’s private information. Due to the

interdependent-value nature of the problem, the equilibrium displays a strong herding effect that

distinguishes our framework from war-of-attrition models. Earlier models of R&D races without

private information predicted equilibrium overinvestment due to duplication costs. Despite our

herding effect, we have found that equilibrium expenditure in R&D is sub-optimally low whenever
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the social planner is sufficiently impatient. This is because the more pessimistic firm prematurely

exits the race when information is sufficiently heterogeneous, so that R&D activity is inefficiently

postponed. Our conclusions are that private incentives curb information sharing in R&D, and

secrecy, in turn, inefficiently slows down the pace of innovation.
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A. Appendix. Omitted Proofs.

Posterior Beliefs. We show the expressions for the posterior beliefs in (3.1) and (3.2):

πt,t�(λ|x, y) = e−αλλβ−1λeλxλeλye−λte−λt�U
Λ e
−αλ�λ�β−1λ�eλ�xλ�eλ�ye−λ�te−λ�t�dλ�

=
e−λ(α−x−y+t+t�)λβ+1

Γ (β + 2) (α− x− y + t+ t�)−β−2 , (A.1)

πt,t�(λ|x, y+) =
λβ
k
e−λ(α+t+t�−x) − e−λ(α+t+t�−x−y)

l
Γ (β + 1)

k
(α+ t+ t� − x)−β−1 − (α+ t+ t� − x− y)−β−1

l .
We begin our proofs with a very useful technical result.

Theorem A.1. Let q
�
λ,�θ

�
: Λ×?n → ?+, differentiable in�θ and integrable in λwith

U
Λ q
�
λ,�θ

�
dλ ∈

(0,∞). Then the c.d.f. defined by:

ϕ
�
L,�θ

�
≡
U L
λ q

�
λ,�θ

�
dλU

Λ q
�
λ�,�θ

�
dλ�

for every L ∈ �λ, λ̄� is stochastically strictly increasing in every component of �θ if q �λ,�θ� is
log-supermodular in (λ, θi), i.e. if ∂ log q

�
λ,�θ

�
/∂θi is strictly increasing in λ.

Proof. We want to show that for every L ∈ �λ, λ̄�
0 >

∂

∂θi

U L
λ q

�
λ,�θ

�
dλU

Λ q
�
λ,�θ

�
dλ

=

U L
λ

∂q(λ,Oθ)
∂θi

dλU
Λ q
�
λ,�θ

�
dλ
−
U L
λ q

�
λ,�θ

�
dλ
U
Λ

∂q(λ,Oθ)
∂θi

dλkU
Λ q
�
λ,�θ

�
dλ
l2

using ] ∂q
�
λ,�θ

�
∂θi

dλ =

] ∂ log q
�
λ,�θ

�
∂θi

q
�
λ,�θ

�
dλ

the claim reads]
Λ

∂ log q
�
λ,�θ

�
∂θi

q
�
λ,�θ

�
U
Λ q
�
λ�,�θ

�
dλ�
dλ >

] L

λ

∂ log q
�
λ,�θ

�
∂θi

q
�
λ,�θ

�
U L
λ q

�
λ�,�θ

�
dλ�
dλ

A sufficient condition for the latter inequality is that the RHS be strictly increasing in L. Since
the RHS is differentiable in L, it suffices that

0 <
∂

∂L

⎡⎣] L

λ

∂ log q
�
λ,�θ

�
∂θi

q
�
λ,�θ

�
U L
λ q

�
λ�,�θ

�
dλ�
dλ

⎤⎦
=

∂ log q
�
L,�θ

�
∂θi

q
�
L,�θ

�
U L
λ q

�
λ�,�θ

�
dλ�
− q

�
L,�θ

�] L

λ

∂ log q
�
λ,�θ

�
∂θi

q
�
λ,�θ

�
kU L

λ q
�
λ�,�θ

�
dλ�
l2dλ
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or
∂ log q

�
L,�θ

�
∂θi

>

] L

λ

∂ log q
�
λ,�θ

�
∂θi

q
�
λ,�θ

�
U L
λ q

�
λ�,�θ

�
dλ�
dλ.

But, since
U L
λ

q(λ,Oθ)U L
λ q(λ�,Oθ)dλ�

dλ = 1, this follows from the assumption that the LHS is strictly increasing

in λ.

Proof of Lemma 1. It suffices to show that for every x, y, t, t�, the c.d.f. associated with the pos-
terior beliefs πt,t� (λ|x, y+) are stochastically strictly decreasing in t and in t� and strictly increasing
in x and in y. We prove all these results as corollaries of Theorem A.1. Let �θ = (x, y, t, t�) ,

q
�
λ,�θ

�
= π (λ)h (x|λ) [1−H (y|λ)] [1− F (t|λ)] �1− F �t�|λ�� ,

ϕ
�
L,�θ

�
=

] L

λ
πt,t� (λ|x, y+) dλ.

Since the expressions

∂ log q
�
λ,�θ

�
∂t

= − f (t|λ)
1− F (t|λ) = −λ,

∂ log q
�
λ,�θ

�
∂t�

= − f (t�|λ)
1− F (t�|λ) = −λ

∂ log q
�
λ,�θ

�
∂x

=
h� (x|λ)
h (x|λ) = λ,

∂ log q
�
λ,�θ

�
∂y

= − h (y|λ)
1−H (y|λ) =

λeλx

1− eλx

are strictly increasing in λ, all monotonicity results follow from Theorem A.1. The result that
limt→∞Et,t� [λ|x, y+] = 0 follows from:

lim
τ→∞πτ ,τ (λ > ε|x, y+) = lim

τ→∞

U∞
ε e−αλλβ−1λeλx

�
1− eλy� e−λ2τdλU∞

ε e−αλ�λ�β−1λ�eλ�x
�
1− eλ�y� e−λ2τdλ� = 0.

Proof of Lemma 2. To show the first claim, we need to show that for any L ∈ �λ, λ̄�,U L
λ π (λ)h (x|λ) [1−H (y|λ)] [1− F (t|λ)] [1− F (t�|λ)] dλU

Λ π
�
λ�
�
h
�
x|λ�� �1−H �y|λ��� �1− F �t|λ��� �1− F �t�|λ��� dλ�

<

U L
λ π (λ)h (x|λ)h (y|λ) [1− F (t|λ)] [1− F (t�|λ)] dλU

Λ π
�
λ�
�
h
�
x|λ��h �y|λ�� �1− F �t|λ��� �1− F �t�|λ��� dλ� ,

this follows from] L

λ

h (y|λ)
1−H (y|λ)

π (λ)h (x|λ) [1−H (y|λ)] [1− F (t|λ)] [1− F (t�|λ)]U L
λ π (λ)h (x|λ) [1−H (y|λ)] [1− F (t|λ)] [1− F (t�|λ)] dλ

dλ

>

]
Λ

h (y|λ)
1−H (y|λ)

π (λ)h (x|λ) [1−H (y|λ)] [1− F (t|λ)] [1− F (t�|λ)]U
Λ π (λ)h (x|λ) [1−H (y|λ)] [1− F (t|λ)] [1− F (t�|λ)] dλ

dλ,
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where the inequality follows because

h (y|λ)
1−H (y|λ) =

λeλy

1− eλy , and
∂

∂λ

�
λeλy

1− eλy
�
= eλy

�
1− eλy + λy

�
(1− eλy)2 < 0 for any λ and y.

The proof of the second inequality is analogous.

Proof of Proposition 2. We consider the problem of player A who contemplates stopping second
at time τA, player B’s problem being symmetric. We compute

E
�
λ| zA = x, zB ≤ y, tA ≥ t, tB ≥ t�

�
=

]
Λ
λ

π (λ)h (x|λ)H (y|λ) [1− F (t|λ)] [1− F (t�|λ)]U
Λ π

�
λ�
�
h
�
x|λ��H �y|λ�� �1− F �t|λ��� �1− F �t�|λ��� dλ�dλ

=

]
Λ

λβ+1e−λ(α+t+t�−x−y)

Γ (β + 1) (α+ t+ t� − x− y)−β−1dλ =
β + 1

α− x− y + t+ t� .

If the first-order condition has a positive solution, this is unique and a global maximum of the
value function. Therefore, the desired stopping time is the maximum of 0 and the solution τA to
c = bE

�
λ| zA = x, zB ≤ g (0) , tA ≥ τA, tB ≥ 0)

�
.

Lemma A.1 Suppose that player B plays a monotonic strategy σ1 with inverse g. For any signal
realization x observed by player A, there exists a time τ̄ > 0 large enough that player A’s marginal
value of waiting V �1,t(τ1|x) is negative for any τ1 ≥ τ̄ . For any signal realization x such that
bE0,0 [λ|x, g (0)+] > c, there exists τ > 0 small enough that V �1,t(τ1|x) > 0 for any t ≤ τ1 ≤ τ .

Proof. From Proposition 1, we have

σ∗2(x, τ1) = max{τ1,
b

c
(β + 2) + x+ g(τ1)− α− τ1}.

Since g (τ1) ≤ 0, it follows that bc (β + 2) + x+ g(τ1)− α− τ1 ≤ b
c (β + 2) + x−α− τ1. For any x,

there is τ̄ large enough such that for any τ1 ≥ τ̄ , bc (β + 2)+x−α− τ1 ≤ τ1; hence σ∗2(x, τ1) = τ1,

V2,τ1(σ
∗
2(x, τ1)|x, g (τ1) , τ1) = 0 and

V �1,t (τ1|x) ∝ bEτ1,τ1 [λ|x, g (τ1)+]

+V2,τ1(σ
∗
2(x, τ1)|x, g(τ1), τ1)Eτ1,τ1

�
h(g (τ1) |λ)g� (τ1)
1−H(g (τ1) |λ)

����x, g (τ1)+�− c
= bEτ1,τ1 [λ|x, g (τ1)+]− c ≤ bEτ1,τ1 [λ|x, 0]− c = b

β + 2

α− x+ 2τ1 − c,

where the inequality follows by Lemma 2, and [β + 2] / [α− x+ 2τ1]→ 0 for τ1 → 0.

Since

V �1,t (τ1|x) = bEτ1,τ1 [λ|x, g (τ1)+]

+V2,τ1(σ
∗
2(x, τ1)|x, g(τ1), τ1)Eτ1,τ1

�
h(g (τ1) |λ)g� (τ1)
1−H(g (τ1) |λ)

����x, g (τ1)+�− c
≥ bEτ1,τ1 [λ|x, g (τ1)+]− c,
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for any x such that bE0,0 [λ|x, g (0)+] > c, and any t ≤ τ1 small enough, it must be that
V �1,t (τ1|x) > 0 by continuity of V �1,t.
Lemma A.2 Suppose that player B plays the first-quitter stopping strategy σ∗1. If player A holds
a signal x ≤ x∗, then at time 0 she optimally chooses not to enter the game. Whereas if x > x∗,
then player A enters the game at time 0, and optimally selects the stopping time σ∗1 (x) .

Proof. Consider the choice at time t = 0 of player A with a signal x. If she chooses not to enter the
game and set τ1 = 0, her payoff is V1,0 (0|x) = 0. If she chooses to enter the game, and set τ1 > 0,
then she will observe whether B enters the game or not. This allows us to write A’s expected payoff
for playing any τ1 > 0 as:

V1,0 (τ1|x) = Pr (zB ≤ x|x) lim
t↓0
V2,t(σ

∗
2(x, 0)|zA = x, zB ≤ x, tB ≥ 0) + [1− Pr (zB ≤ x|x)] lim

t↓0
V1,t (τ1|x)

Suppose first that x is such that bEτ1,τ1 [λ|x, x+] ≤ c; and hence that the equilibrium prescription
is τ11 (x) = 0. Since this implies that for any τ1 ≥ t > 0, V �1,t (τ1|x) < 0; it follows that for any
τ1 > 0, limt↓0 V �1,t (τ1|x) < 0. Since

b
β + 1

α− x− x+ 2τ1 < b
β + 2

α− x− x+ 2τ1 = bEτ1,τ1 [λ|x, x] < bEτ1,τ1 [λ|x, x+] ,

where the last inequality is by from Lemma 2, it follows that σ∗2(x, 0) = 0 by Proposition 2, and
hence limt↓0 V2,t(σ∗2(x, 0)|zA = x, zB ≤ x, tB ≥ 0) = 0. So the player optimally chooses to follow the
equilibrium prescription σ∗1 (x) = 0. Second, suppose that x is such that bEτ1,τ1 [λ|x, x+] > c; the
player will comply with the equilibrium prescription σ∗1 (x) > 0 because limt↓0 V2,t(σ∗2(x, 0)|zA =
x, zB ≤ x, tB ≥ 0) ≥ 0 and for any τ1 small enough limt↓0 V �1,t (τ1|x) > 0.
Proof of Lemma 5. Consider the time-0 team’s expected costs for adopting stopping times
T1 ≤ T2 (such that T1 + T2 = 2T ∗) and conditional on any λ:

C (T1, T2|λ) = c

�] T1

0
2f (s|λ) (1− F (s|λ))

] s

0
2e−rvdvds+ (1− F (T1|λ))2

] T1

0
2e−rvdv (A.2)

+(1− F (T1|λ))
] T2

T1

f (s|λ)
] s

T1

e−rvdvds+ (1− F (T1|λ)) (1− F (T2|λ))
] T2

T1

e−rvdv
�

= c

�] T1

0
2λe−λse−λs

] s

0
2e−rvdvds+ e−2λT1

�] T1

0
2e−rvdv

�
+e−λT1

] T2

T1

λe−λs
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e−rvdvds+ e−λT1e−λT2
] T2
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e−rvdv
�
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�
− 4λ
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+
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1− e−2λT1

r
+
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e−λT1
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e−(λ+r)T1 − e−λT2−rT1

�
− e−λT1 λ
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�
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multiplying by r/c, simplifying terms and substituting 2T ∗ − T1 for T2,
rC (T1, 2T

∗ − T1|λ)
c

=
2r

2λ+ r
− e−(2λ+r)T1 r2

(λ+ r) (2λ+ r)
− r

λ+ r
e−(λ+r)2T

∗+rT1

Taking a derivative with respect to T1,

∂C (T1, 2T
∗ − T1|λ)

∂T1
∝ e−(2λ+r)T1 r2

λ+ r
− r2

λ+ r
e−(λ+r)2T

∗+rT1 = e−(2λ+r)T1
r2

λ+ r

�
1− e−(λ+r)2(T ∗−T1)

�
.

This quantity is strictly positive if and only if T1 < T ∗, thereby implying that if T1 + T2 = 2T ∗,
then C (T1, T2|λ) is maximized by setting T1 = T ∗ = T2.

If y ≥ x > x and σ∗1(x) < T ∗(x, y), then, since σ∗2 (y,σ∗1 (x)) = 2T ∗(x, y)− σ∗1(x),

C (σ∗1 (x) ,σ
∗
2 (y,σ

∗
1 (x)) |λ) < C (T ∗(x, y), T ∗(x, y)|λ) for every λ,

and hence]
Λ
C (σ∗1 (x) ,σ

∗
2 (y,σ

∗
1 (x)) |λ)π0,0(λ|x, y)dλ <

]
Λ
C (T ∗(x, y), T ∗(x, y)|λ)π0,0(λ|x, y)dλ.

This inequality, together with the inequality

W (σ∗1 (x) ,σ
∗
2 (y,σ

∗
1 (x)) |x, y) < W (T ∗(x, y), T ∗(x, y)|x, y)

implied by the team’s optimal stopping times T1 = T2 = T ∗(x, y), shows that

B (σ∗1 (x) ,σ
∗
2 (y,σ

∗
1 (x)) |x, y) < B (T ∗(x, y), T ∗(x, y)|x, y) .

Completion of Interim Welfare Analysis. To avoid triviality, we assume that α < (β + 2) b/c;
if not T ∗(x, y) = max{0, [(β+2)b/c+x+y−α]/2} = 0 and σ∗1 (x) = σ∗2 (x, τ) = σ∗1(y) = σ2(y, τ) = 0

for any signals (x, y) ∈ R2− and time τ ∈ R+: neither the team, nor any of the two players ever
participate in the game. The subcases that remain to consider are as follows.

First, σ∗1 (x) > T ∗(x, y) = 0, i.e. x+ y < α− (β + 2) bc and y ≥ x > x∗: both players enter the
game whereas the team would not participate. This may happen with positive probability because
2x∗ < α− (β + 2) bc .

Second, when player A fails to join the race, player B only learns that x ≤ x∗ but cannot
precisely figure out x. Hence she quits at:

σ∗2(y, 0) =
b

c
(β + 1) + y + x∗ − α.

Player B stays in the game more than a negligible amount of time if and only if y > x∗∗ where
simple algebraic manipulations imply that T ∗ (x∗, x∗∗) > 0. Hence, when neither player stays in the
race for more than an instant (i.e. x ≤ x∗, y ≤ x∗∗), there are two possibilities: if T ∗(x, y) = 0, the
outcome is trivially efficient because also the team would not participate, whereas if T ∗(x, y) > 0
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we have a strong but somewhat special instance of under-experimentation in which the team would
pursue the project and the players give up immediately.

When x ≤ x∗ but y > x∗∗, only player B joins, and remains for a significant amount of
time in the race: Under-experimentation occurs if (i) σ∗2(y, 0) < 2T ∗(x, y), i.e. x > x∗ − b

c , using
their respective expressions derived earlier. Due to imperfect equilibrium information transmission,
when the most pessimistic player does not even enter the race both players end up stopping too
soon in equilibrium. When (ii) σ∗2(y, 0) > 2T ∗(x, y), i.e. x < x∗ − b

c , and T
∗(x, y) > 0, by the

same reasoning as in Lemma 5, the equilibrium features under-experimentation if σ∗2(y, 0) is close
enough to 2T ∗(x, y) (x is large enough, but still below x∗− b

c) and equilibrium over-experimentation
otherwise. When (iii) T ∗(x, y) = 0, instead, the players should not enter the race in the first place,
and a somewhat special instance of over-experimentation arises.

Proof of Proposition 6. For any signal pair (x, y), we let z = x+y,H (z) denote the unconditional
distribution of z, and H (x|z) the conditional distribution of x given z. From the convolution
formula, the density of z conditional on the arrival rate λ equals] 0

z
λeλ(z−x)λeλxdx = λ2eλz

] 0

z
dx = −zλ2eλz

(recall y ≤ 0, so z ≤ x). The c.d.f. is then

H (z) =
] ∞

0
−zλ2eλz αβ

Γ(β)
e−αλλβ−1dλ = −z αβ

(α− z)β+2β (β + 1) .

Next, notice from their expressions in (resp.) (B.2) and (A.1) that both the team’s optimal
stopping time T ∗(x, y) and the posterior beliefs about the arrival rate after observing both signals
x, y but before beginning the race π0,0(λ|x, y) depend on x, y only through their sum z = x + y.

Therefore, with a slight abuse of notation we let T ∗ (z) = T ∗ (x, z − x) for any 0 ≥ x ≥ z, and
π0,0 (λ|z) = π0,0(λ|x, y).

Without loss of generality normalize c = 1 and let C (x, z|λ) = C (σ∗1 (x) ,σ∗2 (z − x,σ∗1 (x)) |λ)
denote the total expected discounted cost of experimentation given λ and x ≥ z in equilibrium, and
C∗ (z|λ) = C (T ∗ (z) , T ∗ (z) |λ) the analogous magnitude given λ and z when following the team’s
optimal policy. Conditioning on the sum of signals z, then on x and finally on λ, the difference in
expected PDV of experimentation costs is:

D(α,β; r) =

] 0

−∞

] 0

z

]
Λ
[C (x, z|λ)− C∗ (z|λ)] dΠ0,0 (λ|z) dH (x|z) dH (z) .

Split this integral in two parts, one for T ∗ (z) > 0, i.e. z > α − (β + 2) bc , and the residual. This
second piece, conditional on the team not experimenting, is] α−(β+2) b

c

−∞

] 0

z

]
Λ
[C (x, z|λ)− C∗ (z|λ)] dΠ0,0 (λ|z) dH (x|z) dH (z) .
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The probability of this second event equals

Pr

�
z ≤ α− (β + 2) b

c

�
= min

-�
(β + 2)

b

c
− α

�
αβ

(α− z)β+2β (β + 1) , 1
.

This chance converges to zero both for α → 0 (by simple inspection) and for β → ∞: in fact,
α/ (α− z) < 1 for any z < 0, and for large β the geometric term αβ/ (α− z)β+2 = α−2 [α/ (α− z)]β+2
vanishes faster than the exploding polynomial terms in β.

Therefore, to study the sign of D(α,β; r) as β/α → ∞ we can concentrate on the term condi-
tional on the team experimenting.

D(α,β, z; r) ≡
] 0

z

]
Λ
[C (x, z|λ)− C∗ (z|λ)] dH (x|z) dΠ0,0 (λ|z)

= 2

]
Λ
−
+] ξ̃(z)

z
[C∗ (z|λ)− C (x, z|λ)] dH (x|z) +

] z/2

ξ̃(z)
[C (x, z|λ)− C∗ (z|λ)] dH (x|z)

,
dΠ0,0 (λ|z) ,

where we use the symmetry between x and y = z − x (which makes both C (x, z|λ) and dH (x|z)
symmetric in x and z− x), and calculate only the case that x < y = z− x (which entails x ≤ z/2);
and where the function ξ̃ : (α− (β + 2) bc , 0]→ (α− (β + 2) bc , 0] is implicitly defined by σ∗1(ξ̃ (z)) =
T ∗ (z) , so that σ∗1(x) > (<)T ∗ (z) if x > (<)ξ̃(z) and x ≤ z/2 and the first player certainly over-
(under-) experiments (since ξ (x) > x, we know that ξ̃ (z) < z/2). Conditional on λ and given
discounting, we know from Lemma 5 that this implies that equilibrium features over- (under-)
experimentation and C (x, z|λ) > (<)C∗ (z|λ). Hence both inner integrals are strictly positive, and
their difference as written above has an ambiguous sign. The question we address now is which
effect dominates on average.

Now, if ξ̃ (z) < x ≤ z/2, then σ∗1 (x) > T ∗(z). Because σ∗2 (y,σ∗1 (x)) = max{σ∗1 (x) , 2T ∗(x, y)−
σ∗1 (x)}, we can use the calculations (A.2) in the proof of Lemma 5 and, simplifying notation by
omitting the dependence on x and z in σ∗1 (x) and T ∗(z), obtain

C (x, z|λ)− C∗ (z|λ) = 2

2λ+ r

�
e−(2λ+r)T

∗ − e−(2λ+r)σ∗1
�
.

If instead x < ξ̃ (z) ≤ z/2, then σ∗1 (x) < T ∗(z), and, again simplifying notation

C∗ (z|λ)− C (x, z|λ) =
2

2λ+ r

�
e−(2λ+r)σ

∗
1 − e−(2λ+r)T

�
−1
r

�
e−(2λ+r)σ

∗
1 − λ

λ+ r

�
e−2λσ1 − e−λ2T∗

�
− e−2λT ∗−r(2T ∗−σ∗1)

�
.

For any fixed z, and λ, pick an arbitrary pair of signals (x, u) such that z ≤ u < ξ̃ (z) < x ≤ z/2.
We study the ratio:

C∗ (z|λ)− C (x, u|λ)
C (x, z|λ)− C∗ (z|λ) =

2
2λ+r

�
e−(2λ+r)σ∗1(u) − e−(2λ+r)T ∗�

2
2λ+r

�
e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x)�

−
1
r

k
e−(2λ+r)σ∗1(u) − e−2λT ∗−r(2T ∗−σ∗1(u)) − λ

λ+r

�
e−2λσ∗1(u) − e−λ2T ∗�l

2
2λ+r

�
e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x)�
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=
e−(2λ+r)σ∗1(u) − e−(2λ+r)T ∗
e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x) −

e−(2λ+r)σ∗1(u) − e−2λT ∗−r(2T∗−σ∗1(u))
2r
2λ+r

�
e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x)� +

λ
λ+r

�
e−2λσ∗1(u) − e−2λT∗�

2r
2λ+r

�
e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x)�

≥ e−(2λ+r)σ∗1(u) − e−(2λ+r)T ∗
e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x) −

e−(2λ+r)σ∗1(u) − e−2λT ∗−r(2T∗−σ∗1(u))
2r
2λ+r

�
e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x)� .

Where the inequality follows because σ∗1 (x) > T ∗ > σ∗1 (u) .
As the social planner becomes more and more impatient:

lim
r→∞

%
e−(2λ+r)σ∗1(u) − e−(2λ+r)T ∗
e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x) −

�
2λ+ r

2r

�
e−2λσ∗1(u)e−rσ∗1(u) − e−2λT ∗e−r(2T∗−σ∗1(u))�

e−(2λ+r)T ∗ − e−(2λ+r)σ∗1(x)�
&

= lim
r→∞

%
e−(2λ+r)σ∗1(u)

e−(2λ+r)T ∗
1− e−(2λ+r)(T ∗−σ∗1(u)) − 2λ+r

2r

�
1− e−2(λ+r)(T ∗−σ∗1(u))�

1− e−(2λ+r)(σ∗1(x)−T∗)
&

=
1

0+
1− 0− 1

2 (1− 0)
1− 0 = +∞,

because limr→∞ e−(2λ+r)(T
∗−σ∗1(u)) as T ∗ > σ∗1 (u) .

Since the argument holds for any arbitrary z > α − (β + 2) bc , any λ and any arbitrary pair of
signals (x, u) such that u < ξ̃ (z) < x, this concludes that, for any z,

D(α,β, z; r) < 0 for r large enough.

Derivation of Equation (4.5).

dV1,t (τ1|x)
dτ1

=

]
Λ

�
f (τ1|λ)
1− F (t|λ)

1− F (τ1|λ)
1− F (t|λ)

1−H(g∗ (τ1) |λ)
1−H(g∗ (t) |λ)

�] τ1

t
(−2c) e−r(v−t)dv + e−r(τ1−t)b

�
+

�
1− F (τ1|λ)
1− F (t|λ)

�2 h(g∗ (τ1) |λ)dg∗ (τ1) /dτ1
1−H(g∗ (t) |λ)

�] τ1

t
(−c) e−r(v−t)dv + e−r(τ1−t)V2,τ1(σ∗2(x, τ1)|x, g∗(τ1), τ1)

�

+
2 (1− F (τ1|λ)) f (τ1|λ) [1−H(g∗ (τ1) |λ)] + [1− F (τ1|λ)]2 h(g∗ (τ1) |λ)dg∗ (τ1) /dτ1

[1− F (t|λ)]2 [1−H(g∗ (t) |λ)]
] τ1

t
ce−r(v−t)dv

+

�
1− F (τ1|λ)
1− F (t|λ)

�2 [1−H(g∗ (τ1) |λ)]
[1−H(g∗ (t) |λ)] (−c) e

−r(τ1−t)
&
πt,t (λ|x, g∗ (t)+) dλ

=

]
Λ

�
f (τ1|λ)
1− F (t|λ)

1− F (τ1|λ)
1− F (t|λ)

1−H(g∗ (τ1) |λ)
1−H(g∗ (t) |λ) e

−r(τ1−t)b

+

�
1− F (τ1|λ)
1− F (t|λ)

�2 h(g∗ (τ1) |λ)dg∗ (τ1) /dτ1
1−H(g∗ (t) |λ) e−r(τ1−t)V2,τ1(τ

∗
2(x, τ1)|x, g∗(τ1), τ1)

+

�
1− F (τ1|λ)
1− F (t|λ)

�2 [1−H(g∗ (τ1) |λ)]
[1−H(g∗ (t) |λ)] (−c) e

−r(τ1−t)
&
πt,t (λ|x, g∗ (t)+) dλ
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= Σt,t(τ1, x, g
∗ (τ1)+)

]
Λ

�
f (τ1|λ)

1− F (τ1|λ)b

+
h(g∗ (τ1) |λ)dg∗ (τ1) /dτ1

1−H(g∗ (τ1) |λ) V2,τ1(σ
∗
2(x, τ1)|x, g∗(τ1), τ1))− c

�
πτ1,τ1(λ|x, g∗ (τ1)+)dλ

∝ bEτ1,τ1 [λ|x, g∗ (τ1)+] + V2,τ1(σ∗2(x, τ1)|x, g∗(τ1), τ1)Eτ1,τ1

�
h(g∗ (τ1) |λ)dg∗ (τ1) /dτ1

1−H(g∗ (τ1) |λ)
����x, g∗ (τ1)+�− c

where we introduce a normalizing factor

Σt,t (τ1, x, g
∗ (τ1)+) ≡ e−r(τ1−t)

U
Λ π (λ)h (x|λ) [1−H(g∗ (τ1) |λ)] [1− F (τ1|λ)]2 dλU
Λ π (λ)h (x|λ) [1−H(g∗ (t) |λ)] [1− F (t|λ)]2 dλ�

> 0.

B. Appendix. Analysis of the Team Problem.

In the first-best solution, players join forces in a single team, sharing four pieces of information:
the two signal realizations x, y, that project A has not delivered a prize by time t and project B by
time t�. In principle the team may choose to irreversibly stop projects in sequence. Hence, we study
the problem by backward induction, in the same manner as in the equilibrium analysis. We first
consider the case in which one of the two projects (project “1”) has been irreversibly stopped at
time T1 ≥ 0, and the other (project “2”) is still ongoing at time T2 ≥ T1. This will allow us later to
solve backwards the problem where both projects are still ongoing. Project 1 may be indifferently
either project A or B, as they have identical statistical properties.

We first determine the optimal stopping time of the second project, T ∗2,t(x, y, T1) for any signal
pair x, y, current calendar time t, and time T1 when the first project was stopped. Evidently, this
problem is analogous to the equilibrium problem of a single player with signal x after her opponent
left the race. Due to equilibrium monotonicity, the player is informed of her opponent’s signal y.
Because the team cannot reactivate the first project, it maximizes the same payoffs as the remaining
player in the race. Thus the analysis is analogous to the analysis leading to Proposition 1.

At time t, conditional on a true value of λ, the expected value of planning to stop a single
project at T2 ≥ t equals

Q2,t (T2|λ) =
] T2

t

f (s|λ)
1− F (t|λ)

�] s

t
(−c) e−r(v−t)dv + e−r(s−t)b

�
ds+

1− F (T2|λ)
1− F (t|λ)

] T2

t
(−c) e−r(v−t)dv

where the subscript “2” denotes the relevance of this value for the second project, the first project
being already off line. The team, having stopped the first project at calendar time T1, plans at a
subsequent time t ≥ T1 to stop the second project at an even further time T ∗2,t(x, y, T1) ≥ t such
that

T ∗2,t(x, y, T1) = argmax
T2≥t

�
W2,t(T2|x, y, T1) =

]
Λ
Q2,t (T2|λ)πt,T1(λ|x, y)dλ

�
. (B.1)
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To find the optimal T2 we differentiate the expected value function (B.1). The same manipulations
as in Equation (4.1) yield:

dW2,t (T2|x, y, T1)
dT2

∝ bET2,T1 [λ|x, y]− c = b
β + 2

α− x− y + T1 + T2 − c.

This leads to the following result.

Lemma B.1. For every pair of signals x, y, if the team has stopped the first project at time T1,
the optimal stopping time of the second project is

T ∗2 (x, y, T1) = max{T1, T2(x, y, T1) ≡
b

c
(β + 2) + x+ y − α− T1},

where T1 ≥ T2(x, y, T1) if and only if T1 ≥ 1
2

�
b

c
(β + 2) + x+ y − α

�
≡ T ∗(x, y). (B.2)

As a result, if T1 ≥ T ∗(x, y), i.e. the team carries on both projects for a long enough time, then
it must optimally stop them simultaneously: T ∗2 (x, y, T1) = T1.

We may now calculate by backward induction the optimal stopping time of the first project
T ∗1 (x, y). Specifically, we will show that the team’s optimal policy always prescribes to stop both
projects simultaneously, so that T ∗1 (x, y) = T ∗(x, y) = T ∗2 (x, y, T ∗1 (x, y)).

The team plans at time t a stopping time

T ∗1,t(x, y) = argmax
T1≥t

�
W1,t(T1|x, y) =

]
Λ
Q1,t (T1|λ)πt,t(λ|x, y)dλ

�
where

Q1,t (T1|λ) =

] T1

t

2f (s|λ) (1− F (s|λ))
(1− F (t|λ))2

�] s

t
(−2c) e−r(v−t)dv + e−r(s−t)b

�
ds

+
(1− F (T1|λ))2
(1− F (t|λ))2

�] T1

t
(−2c) e−r(v−t)dv + e−r(T1−t)Q2,T1 (T ∗2 (x, y, T1)|λ)

�
is the expected value of stopping at time T1 conditional on a known value of λ. Here 2f (s|λ) (1− F (s|λ))
is the density of arrival of the prize to either one of the two projects, namely the derivative of the
corresponding c.d.f. 1− (1− F (s|λ))2, the first line collects payoffs in case the prize arrives while
both projects run together (before T1), and the second line the cost of running two projects fruit-
lessly until T1 and then collecting the payoff of continuing optimally with one project from that
moment forward.

To find T ∗1,t(x, y), as for the second project we differentiate the value function W1,t with respect
to T1.

Lemma B.2. For every pair of signals x, y,

dW1,t(T1|x, y)
dT1

∝ −c+ET1,T1 [λ(b−Q2,T1(T ∗2 (x, y, T1)|λ))|x, y]. (B.3)
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Proof. First we expand the derivative as in the analysis determining T ∗2 (x, y, T1):

dW1,t(T1|x, y)
dT1

=

]
Λ

d

dT1
Qt (T1|λ)πt,t(λ|x, y)dλ

=

]
Λ

�
2f (T1|λ) (1− F (T1|λ))

(1− F (t|λ))2
�] T1

t
(−2c) e−r(v−t)dv + e−r(T1−t)b

�
−2f (T1|λ) (1− F (T1|λ))

(1− F (t|λ))2
�] T1

t
(−2c) e−r(v−t)dv + e−r(T1−t)W2,T1 (T

∗
2 (x, y, T1)|x, y, T1)

�
+
(1− F (T1|λ))2
(1− F (t|λ))2

�
(−2c) e−r(T1−t) + d

dT1

�
e−r(T1−t)W2,T1 (T

∗
2 (x, y, T1)|x, y, T1)

��,
πt,t(λ|x, y)dλ

simplifying the term in 2c and collecting the discounting term

= e−r(T1−t)
]
Λ

+
2f (T1|λ) (1− F (T1|λ))

(1− F (t|λ))2 [b−W2,T1 (T
∗
2 (x, y, T1)|x, y, T1)] +

(1− F (T1|λ))2
(1− F (t|λ))2 ·

·
�
−2c− rW2,T1 (T

∗
2 (x, y, T1)|x, y, T1) +

d

dT1
W2,T1 (T

∗
2 (x, y, T1)|x, y, T1)

��
πt,t(λ|x, y)dλ

using the definitions of πt,t(λ|x, y), πT1,T1(λ|x, y)
d

dT1
W2,T1 (T

∗
2 (x, y, T1)|x, y, T1) ∝

]
Λ

�
f (T1|λ)

(1− F (T1|λ)) (b−W2,T1 (T
∗
2 (x, y, T1)|x, y, T1))

�
πT1,T1(λ|x, y)

+

]
Λ

�
−r
2
W2,T1 (T

∗
2 (x, y, T1)|x, y, T1) +

1

2

d

dT1
W2,T1 (T

∗
2 (x, y, T1)|x, y, T1)− c

�
πT1,T1(λ|x, y)dλ

∝ bET1,T1 [λ|x, y]− c−W2,T1 (T
∗
2 (x, y, T1)|x, y, T1)

�r
2
+ET1,T1 [λ|x, y]

�
+
1

2

d

dT1
W2,T1 (T

∗
2 (x, y, T1)|x, y, T1) .

(∗)

Using the expression for W2,T1 (T
∗
2 (x, y, T1)|x, y, T1) , and the envelope theorem to ignore the effect

of T1 on this value through T ∗2 (x, y, T1),

d

dT1
W2,T1 (T

∗
2 (x, y, T1)|x, y, T1) =

d

dT1
ET1,T1 [Q2,T1 (T

∗
2 (x, y, T1)|λ) |x, y]

=
d

dT1

]
Λ

%] T ∗2 (x,y,T1)

T1

f (s|λ)
1− F (T1|λ)

�] s

T1

(−c) e−r(v−T1)dv + e−r(s−T1)b
�
ds

+
1− F (T ∗2 (x, y, T1)|λ)

1− F (T1|λ)
] T ∗2 (x,y,T1)

T1

(−c) e−r(v−T1)dv
&
πT1,T1(λ|x, y)dλ
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= ET1,T1

%
−λb+ 1− F (T

∗
2 (x, y, T1)|λ)

1− F (T1|λ) c+ c

] T ∗2 (x,y,T1)

T1

f (s|λ)
1− F (T1|λ) |x, y

&

+rET1,T1

%] T ∗2 (x,y,T1)

T1

f (s|λ)
1− F (T1|λ)

�] s

T1

(−c) e−r(v−T1)dv + e−r(s−T1)b
�
ds|x, y

&

+rET1,T1

%
−c1− F (T

∗
2 (x, y, T1)|λ)

1− F (T1|λ)
] T ∗2 (x,y,T1)

T1

e−r(v−T1)dv|x, y
&

+ET1,T1 [λQ2,T1 (T
∗
2 (x, y, T1)|λ) |x, y] +

]
Λ
Q2,T1 (T

∗
2 (x, y, T1)|λ)

dπT1,T1(λ|x, y)
dT1

dλ

= ET1,T1 [−λb+ c|x, y] + rW2,T1 (T
∗
2 (x, y, T1)|x, y, T1)

+ET1,T1 [λQ2,T1 (T
∗
2 (x, y, T1)|λ) |x, y] +

]
Λ
Q2,T1 (T

∗
2 (x, y, T1)|λ)

dπT1,T1(λ|x, y)
dT1

dλ

Replacing this expression for dW2,T1 (T
∗
2 (x, y, T1)|x, y, T1) /dT1 into (∗) and collecting terms

dW1,t(T1|x, y)
dT1

∝ 1
2
{bET1,T1 [λ|x, y]− c}−ET1,T1 [λ|x, y]ET1,T1 [Q2,T1 (T ∗2 (x, y, T1)|λ) |x, y]

+
1

2
ET1,T1 [λQ2,T1 (T

∗
2 (x, y, T1)|λ) |x, y] +

1

2

]
Λ
Q2,T1 (T

∗
2 (x, y, T1)|λ)

dπT1,T1(λ|x, y)
dT1

dλ.∗∗

(B.4)

Using the expression for πT1,T1(λ|x, y) and after some manipulations
dπT1,T1(λ|x, y)

dT1
= −2λπT1,T1(λ|x, y) + 2πT1,T1(λ|x, y)ET1,T1 [λ|x, y]

and replacing into (B.4)

dW1,t(T1|x, y)
dT1

∝ 1

2
{bET1,T1 [λ|x, y]− c}−ET1,T1 [λ|x, y]ET1,T1 [Q2,T1 (T ∗2 (x, y, T1)|λ) |x, y]

+
1

2
ET1,T1 [λQ2,T1 (T

∗
2 (x, y, T1)|λ) |x, y]−ET1,T1 [λQ2,T1 (T ∗2 (x, y, T1)|λ) |x, y]

+ET1,T1 [λ|x, y]ET1,T1 [Q2,T1 (T ∗2 (x, y, T1)|λ) |x, y]

∝ 1

2
{bET1,T1 [λ|x, y]− c−ET1,T1 [λQ2,T1 (T ∗2 (x, y, T1)|λ) |x, y]}

∝ −c+ET1,T1 [λ (b−Q2,T1(T ∗2 (x, y, T1)|λ)) |x, y] .

Intuitively, by delaying the stopping time T1 of the first project an extra instant, the team
pays the flow cost c and receives the following expected marginal benefit: at hazard rate λ,

the prize arrives and the benefit b is obtained, but on the other hand the continuation value
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Q2,T1(T
∗
2 (x, y, T1)|λ) of proceeding with only one project is lost.23 If both projects are stopped

simultaneously, namely if T1 is such that T ∗2 (x, y, T1) = T1, then clearly the continuation value of
the second project alone is zero: Q2,T1(T

∗
2 (x, y, T1)|λ) = 0. In this case the familiar expression

dW1,t(T1|x, y)/dT1 ∝ (bET1,T1 [λ|x, y]− c) obtains.
Next, we show that the optimal stopping time T ∗1 (x, y) of the first project cannot exceed the

magnitude T ∗(x, y) defined in (B.2). In fact, proceed by contradiction. By Lemma B.1, if T1 >
T ∗(x, y), then T ∗2 (x, y, T1) = T1, i.e. the team stops the second project at the same time as the first
one, so the continuation value is zero for every value of λ: Q2,T1(T

∗
2 (x, y, T1)|λ) = 0. Thus

dW1,t(T1|x, y)
dT1

∝ −c+ bET1,T1 [λ|x, y] < −c+ bET ∗(x,y),T ∗(x,y) [λ|x, y] = 0

where the first proportionality follows from (B.3), the inequality from the assumption T1 > T ∗(x, y)
and the monotonicity of the expected hazard rate, and the last equality from the definition of
T ∗(x, y) as the solution to the first-order condition for the team. But then T1 = T ∗1 (x, y) violates
a necessary first-order condition and cannot be optimal.

If parameters are such that T ∗(x, y) = 0, then using 0 ≤ T ∗1 (x, y) ≤ T ∗(x, y) = 0 we get
T ∗2 (x, y, T ∗1 (x, y)) = T ∗1 (x, y) = 0 and no project is ever started. But, in the case that T ∗(x, y) > 0,
the key question is still whether it is best for the team to stop the two projects simultaneously
at time T ∗(x, y), or to stop them sequentially, so that T ∗1 (x, y) < T ∗2 (x, y, T ∗1 (x, y)). By Lemma
B.1 sequential stopping requires that T ∗1 (x, y) < T ∗(x, y); the following Lemma shows that this
inequality is in fact impossible.

Lemma B.3. For every pair of signals x, y such that T ∗(x, y) > 0, the optimal stopping time
T ∗1 (x, y) of the first project cannot be strictly smaller than T ∗(x, y).

Proof. First we calculate

Q2,t (T |λ) =
] T

t

f (s|λ)
1− F (t|λ)

�] s

t
−ce−r(v−t)dv + e−r(s−t)b

�
ds+

1− F (T |λ)
1− F (t|λ)

] T

t
−ce−r(v−t)dv.

=

] T

t
λe−λ(s−t)

�] s

t
−ce−r(v−t)dv + e−r(s−t)b

�
ds− e−λ(T−t)

] T

t
−ce−r(v−t)dv

= (λb− c) 1− e
−(λ+r)(T−t)

λ+ r
.

Using this expression in (B.3), for every T1 ∈ (t, T ∗(x, y)] we obtain:

dW1,t(T1|x, y)
dT1

∝ −c+ET1,T1
%
λ

#
b− (λb− c) 1− e

−(λ+r)(T ∗2 (x,y,T1)−T1)

λ+ r

$
|x, y

&
23Notice that U2,T1(T

∗
2 (x, y, T1)|λ) < b, as in the continuation the impatient team can earn at most b, and not

immediately a.s. Furthermore, the hazard rate λ of the prize and the continuation value conditional on λ, namely
U2,T1(T

∗
2 (x, y, T1)|λ), are multiplied within the posterior expectation: the team cares about their covariance induced

by the common dependence on λ.
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using c = ET1,T1 [c|x, y] , some algebra and T ∗(x, y) > 0,

= ET1,T1

%
(λb− c) r + λe−(λ+r)(T

∗
2 (x,y,T1)−T1)

λ+ r
|x, y

&

=

]
Λ
(λb− c) r + λe−(λ+r)

b
c
(β+2)+x+y−α−2T1

r + λ

e−λ(α−x−y+2T1)λβ+1

Γ (β + 2) (α− x− y + 2T1)−β−2
dλ

∝ S(T1) ≡
]
Λ

�
λ
b

c
− 1
�
r + λe−(λ+r)(

b
c
(β+2)+x+y−α−2T1)

λ+ r
e−λ(α−x−y+2T1)λβ+1dλ,

where note that S(T ∗(x, y)) = 0 because if T1 = T ∗(x, y) then T ∗2 (x, y, T1)− T1 = 0.
Differentiating S(T1) we obtain:

S� (T1) =
d

dT1

%]
Λ

�
λ
b

c
− 1
�
r + λe−(λ+r)(

b
c
(β+2)+x+y−α−2T1)

λ+ r
e−λ(α−x−y+2T1)λβ+1dλ

&

=

]
Λ

�
λ
b

c
− 1
� −2rλ+ 2rλe−(λ+r)( bc (β+2)+x+y−α−2T1)

λ+ r
e−λ(α−x−y+2T1)λβ+1dλ

= 2r

]
Λ

�
λ
b

c
− 1
�
r + λe−(λ+r)(

b
c
(β+2)+x+y−α−2T1)

λ+ r
e−λ(α−x−y+2T1)λβ+1dλ

+2r

]
Λ

�
λ
b

c
− 1
� −λ− r

λ+ r
e−λ(α−x−y+2T1)λβ+1dλ

= 2rS(T1)− 2r
]
Λ

�
λ
b

c
− 1
�
e−λ(α−x−y+2T1)λβ+1dλ

= 2rS(T1)− 2r Γ (β + 2)

(α− x− y + 2T1)β+2
�

(β + 2)

α− x− y + 2T1
b

c
− 1
�
.

So, finally we obtain the differential equation

S�(T1) = 2rS(T1)− 2r Γ (β + 2)

(α− x− y + 2T1)β+3 2(T
∗(x, y)− T1) (B.5)

where clearly (α − x − y + 2T1)β+3 > 0. We use (B.5) to prove the claim. First, we exclude an
optimal interior (positive) T ∗1 (x, y) ∈ (0, T ∗(x, y)). By contradiction: if there is an optimal interior
T1 = T

∗
1 (x, y) ∈ (0, T ∗(x, y)), it must satisfy the NFOC

dW1,t(T1|x, y)
dT1

= 0⇒ S(T1) = 0.

But then, S(T ∗1 (x, y)) = 0 and T ∗1 (x, y) < T ∗(x, y) in (B.5) together imply S�(T ∗1 (x, y)) < 0. By
continuity there exists ε > 0 such that S(T ∗1 (x, y) + ε) < 0. Then by smoothness of S (many times
differentiable) and S(T ∗(x, y)) = 0 there exists a T �1 ∈ (T ∗1 (x, y), T ∗(x, y)) such that S� (T �1) = 0 >
S (T �1) ; but from (B.5) T �1 < T ∗(x, y) and S (T �1) < 0 imply S� (T �1) < 0 a contradiction. Second, we
exclude a corner solution at T1 = T ∗1 (x, y) = 0. For this, we would require

dW1,t (0|x, y)
dT1

≤ 0⇒ S(0) ≤ 0
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which, together with T ∗(x, y) > 0 = T ∗1 (x, y) and (B.5), imply S� (0) < 0. But then the function
S(t) keeps declining at increasing rate from the initial value S(0) ≤ 0 (formally the differential
equation for S is exploding downward) as t rises from 0, contradicting S(T ∗(x, y)) = 0.

This completes the analysis of the team problem. The results are summarized in the following
Proposition.

Proposition B.1 (The Team Solution). For every pair of signals x, y on the unobserved
promise λ of the two projects, the team optimally stops both projects simultaneously at time

T ∗1 (x, y) = T
∗
2 (x, y, T

∗
1 (x, y)) = max{0,

1

2
[(β + 2)

b

c
+ x+ y − α]}.
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