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Abstract

This paper assumes that groups of consumers in network markets
can coordinate their choices when it is in their best interest to do so,
and when coordination does not require communication. It is shown
that multiple asymmetric networks can coexist in equilibrium if con-
sumers have heterogeneous reservation values. A monopolist provider
might choose to operate multiple networks to price differentiate con-
sumers on both sides of the market. Competing network providers
might operate networks such that one of them targets high reservation
value consumers on one side of the market, while the other targets
high reservation value consumers on the other side. Firms can obtain
positive profits in price competition. In these asymmetric equilibria
product differentiation is endogenized by the network choices of con-
sumers. Heterogeneity of consumers is necessary for the existence of
this type of equilibrium.
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1 Introduction

A market has network externalities if consumers’ utility from purchasing a
product depends on which other consumers buy the same product. A high-
lighted special case of this is two-sided markets with network externalities.
In these markets consumers are divided into two distinct subgroups. A con-
sumer’s utility on one side increases in the total number of consumers on the
other side of the market who buy the same product (and possibly decreases
in the number of consumers on the same side of the market). This applies to
various situations in which two groups of agents need a common platform to
interact and one or more firms own platforms and sell access to them. The
higher the number of agents on one side who join a platform, the higher the
utility of an agent on the other side of the platform because she has a higher
number of potential partners with whom to trade or interact. One example
of this is the market for on-line matchmaking services where the two sides
are women and men. In other cases the two sides are buyers and sellers and
the platforms are auction websites, directory services, classified advertisers
and credit card networks (the sellers are merchants who accept the credit
card and the buyers are credit card holders).

This paper investigates the decisions of firms regarding how many net-
works to operate and how to price them, and the network choices of con-
sumers in two-sided markets with network externalities. We consider an
extensive form game in which in the first stage firms establish networks, in
the second stage they announce registration fees for these networks, and in
the third stage consumers simultaneously choose networks or decide to stay
out of the market.

The first contribution of this paper is methodological. Equilibrium
analysis on network markets is an involved task. The coordination prob-
lems that arise among consumers result in a severe multiplicity of equilibria
both in games in which there is a monopolist network provider and in games
in which there are multiple providers. Consumers can have various self-
fulfilling expectations regarding which networks other consumers join and
whether they join any network at all. To address the issue of multiplicity
of equilibria we use the concept of coalitional rationalizability, proposed by
Ambrus ([02],[03]) to select equilibria and therefore derive qualitative pre-
dictions. Informally, this method corresponds to assuming that consumers
can coordinate their network choices as long as it is in their joint interest
and this coordination does not require explicit communication.
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The second contribution of the paper is that this methodology allows us
to analyze pricing games in which consumers in the market are heteroge-
neous. This makes it possible to ask a new set of questions. These include
whether price discrimination among different type of consumers is possible
without product differentiation, whether there can be multiple active net-
works operated by competing firms, attracting different types of consumers,
and whether it can be in the interest of a monopolistic network provider to
operate multiple networks, aimed at different sets of consumers.

Coordination failures and the resulting inefficiencies are relevant phe-
nomena in network markets, since typically there are many anonymous con-
sumers who cannot communicate with each other. Nevertheless, in some
cases it is reasonable to expect consumers to be able to coordinate on a par-
ticular network. The simplest example is if there are two networks and one is
cheaper on both sides of the market. Choosing this network is then a natural
focal point on which consumers can coordinate. The central assumption of
our paper is that consumers can coordinate their decisions to their advan-
tage if their interests coincide and if coordination can be achieved without
communication, as in the above case. In contrast, if there is no unique
candidate network that consumers would agree to join, we do not assume
successful coordination even if it is in the common interest of consumers.
Our motivation for this is that if there are lot of small consumers on the
market then it is practically impossible for them to get together and make
explicit agreements on network choices.

Coalitional rationalizability allows us to incorporate the above assump-
tion into the analysis. This noncooperative solution concept assumes that
players can coordinate to restrict their play to a subset of the original strat-
egy set if it is in the interest of every participant to do so. This defines a set
of implicit agreements, which puts restrictions on beliefs that players can
have at different stages of the game. These agreements are based on public
information, the description of the game, and therefore do not require ex-
plicit communication. Furthermore, they are self-fulfilling in the sense that
if participants expect each other to choose networks according to an agree-
ment, then it is in their best interest to act according to the agreement. In
the games that we analyze there can be groups of consumers who can coor-
dinate their network choices this way after certain price announcements.

We investigate the subgame perfect equilibria of the above market games
that are compatible with the additional assumption of coalitional rational-
izability. We call these equilibria coalition perfect.
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We analyze participation rates of consumers, prices charged by the firms,
network sizes and firms’ profits in coalition perfect equilibria. The analysis is
carried out for the cases of both one and two firms operating on the market.
In the former case we distinguish between the case that the firm can operate
only one network and the case in which it can decide to operate multiple
networks.

We show that if consumers are homogeneous on the same side of the
market then a monopolist network provider only establishes one network in
coalition perfect equilibrium. On the other hand, if there is enough hetero-
geneity among consumers, a monopolist might want to establish two net-
works, which in equilibrium are joined by different type of consumers. The
intuition is that, if there are high reservation value consumers on both sides
of the market, then the monopolist wants to extract surplus from both of
these groups. However, if there are relatively few of these consumers and the
monopolist operates only one network, then he can charge a high price on at
most one side. In order to charge a high price on one side, there have to be
enough consumers on the other side of the network, which is only possible if
the price charged on that side is low. On the other hand, if the monopolist
establishes two networks such that one of them is cheap on one side of the
market and the other network is cheap on the other side, then all consumers
are willing to join some network and consumers with high reservation values
are willing to join the network which is more expensive for them. The way
price discrimination is achieved in these equilibria is through endogenous
product differentiation. Networks are physically the same, but if one side
of a network attracts a lot of consumers, then the other side of the network
becomes more valuable for consumers.

In the case of two network providers competing for consumers we show
that homogeneity of consumers on the same side of the market ensures that
both firms’ profits are zero in coalition perfect equilibrium, reestablishing
the classic Bertrand result. This holds despite the fact that equilibrium
prices do not have to be equal to the marginal cost (consumers on one side
of the market can be subsidized). Homogeneity of the consumers also im-
plies that there cannot be multiple asymmetric networks in coalition perfect
equilibrium. On the other hand, we show that if consumers are heteroge-
neous, then there can be equilibria in which there are two networks that
attract different type of consumers and in which firms earn positive profits.
The intuition is that although firms can steal each others’ consumers by un-
dercutting their rival’s prices on both sides of the market, this move is not
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necessarily profitable. In particular, undercutting might be unprofitable if it
increases the number of consumers to be subsidized more than the number
of consumers who pay a positive price.

In both the monopoly and the duopoly case the coalition perfect equi-
libria with two asymmetric networks have the feature that one network is
larger and cheaper on one side of the market, while the other one is larger
and cheaper on the other side. One example of this configuration is when
a town has both a freely and universally distributed newspaper with clas-
sified ads and one that is not freely distributed. The first newspaper is
cheaper and larger on the buyers’ side. In order to compete with the freely
distributed newspaper, typically the other newspaper has to have more ads
posted on it, and therefore can only charge a smaller fee for posting ads.
Therefore this newspaper is typically cheaper and larger on the sellers’ side.
Another example is on-line job search, where the two main platforms are
Careerbuilder.com and Monster.com. Monster has a database of 25 million
resumes versus Careerbuilder’s 9 million, therefore larger on the job seekers’
side. On the other hand, Careerbuilder has 45.2% of the job postings of the
on-line job search market in the US, while Monster has only 37.5%.1 There-
fore Careerbuilder is larger on this side. And to post a job on Careerbuilder,
a firm pays $269, while to post a job on Monster a firm pays $335.2

2 Related literature

Recently a number of papers investigated the issue of optimal pricing and
price competition in markets with two-sided network externalities. For a
more extensive literature review, see for example Armstrong (2002).

Rochet and Tirole (2003) and Armstrong (2002) study monopolistic pric-
ing and price competition between two firms on markets where the firms are
platforms that try to attract two groups of agents. The models in these
papers abstract away from coordination problems among consumers. They

12004 February figures. The information about the size of the two databases is taken
form www.careerbuilder.com and www.monster.com. The information about the number
of job postings is obtained from Corzen.

2The base cost of posting a resume is zero on both sites, but job seekers pay extra fees
for preferential treatment of their resumes (for example if they want them to come up at
the top of search result lists obtained by firms). We do not have information on how many
job seekers pay these extra fees, therefore we cannot make a correct price comparison on
this side of the market.
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assume differentiable demand functions for the networks, implicitly assum-
ing differentiated networks (that consumers have heterogeneous inherent
preferences between networks). Also, they focus on a particular symmetric
equilibrium. Moreover, Rochet and Tirole emphasize the case in which the
networks’ primary pricing instrument are transaction fees.

Jullien (2001) constructs a duopoly model that allows for more than two
subgroups of consumers and for both inter-groups and intra-group network
externalities. The setup of this paper differs from ours in that the intrinsic
value of the good sold by each firm is assumed to be high compared to the
network effect and also that one of the firms is highlighted in the sense that
consumers always coordinate on the equilibrium which is the most favorable
for this firm.

Ellison, Fudenberg and Mobius (2002) study competition between two
auction sites. In their model, like in ours, multiple asymmetric platforms can
coexist in equilibrium, despite no product differentiation. In addition to this,
they assume heterogeneous agents on both sides of the market. On the other
hand, in their model consumers choose platforms ex ante, while in our paper
they do it after learning about their types. Furthermore, the reason that
multiple active networks can coexist in equilibrium is completely different in
their model. They consider a finite number of buyers and sellers, therefore
one of them switching from one platform to another adversely affects the
market price on the latter platform.3 In our model there is a continuum of
consumers on both sides of the market, therefore this market-impact effect
is absent.

The model in Damiano and Li (2003a and 2003b) is similar to ours in
that consumers on a two-sided market are heterogeneous and that registra-
tion fees serve the role to separate different types of consumers. The main
difference between our setup and theirs is that in the latter there is no net-
work externality. Consumers care about the average quality of consumers
on the other side of the network and not their number. On the other hand,
in our model consumers are symmetric with respect to the external effect
they generate on consumers on the other side.

The most similar model to ours is presented by Caillaud and Jullien (2001
and 2003). They analyze markets where firms are intermediaries offering
matchmaking services to two groups of agents. The above papers assume

3See Ellison and Fudenberg (2003) for a detailed analysis of this point.
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that consumers on each side are homogeneous and their utility is linear in the
number of consumers on the other side of the network.4 The assumption of
homogeneity implies that these papers do not address most of the issues we
investigate in this paper. Also, Caillaud and Jullien select among equilibria
by imposing monotonicity on the demand function of consumers and by
assuming full market coverage in equilibrium. As opposed to making an
assumption on the aggregate demand function our paper imposes restrictions
directly on the expectations of individual players.

In our model different types of consumers might select to join different
networks. In this aspect, our analysis is connected to the literature on price
discrimination (for an overview see Varian (1987)) multiproduct pricing (see
Baumol et al. (1982)) and the theory of screening (for an overview see
Salanie (1997)).

3 The Model

We consider a standard model of price competition in two-sided markets
with network externalities. It is a sequential move game in which first firms
announce prices, then consumers observe the announcements, and finally
consumers choose which network to join, if any. We examine the cases of
one or two firms operating in the market. The added features of our model
are the following. First, in the monopoly case we allow the firm to choose the
number of networks to be established. Second, consumers are not assumed
to be homogeneous in that how much they value the network good. Third,
we do not make any restriction on the utility functions of consumers besides
quasilinearity in money.

Formally, the set of players in the model is (F,C1, C2), where F denotes
the firms, while C1 and C2 the consumers of the corresponding sides. We
assume there is a continuum of consumers on both sides of the market,
indexed by the interval [0, 1]. Let Ck

i denote consumer i on side k. As far
as firms are concerned, we restrict attention to the cases F = {A} (only one
firm, A is present) and F = {A,B} (two firms, A and B are present).

We consider a three-stage game with observable actions (after every stage
all players observe all action choices made in that stage).

4For a comparison between our results in this context and the ones of Caillaud and
Jullien (2003), see Subsection 7.1.
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In the first stage the firms simultaneously choose how many networks to
establish. We will restrict attention to cases when the maximum number
of networks a firm can operate is either one (in which case decisions at this
stage are trivial) or two. Let nk denote the first stage action of firm k.
Furthermore, let (τmk )m=1,...,nk denote the networks that firm k establishes.

In the second stage the firms simultaneously set prices (registration fees)
on the established networks. Firms can charge different registration fees on
different networks or on different sides of the same network. Furthermore,
they can charge negative prices on either side of the networks (subsidizing
consumers on that side). Let pjk,n denote the price that firm k sets on side
j of τnk . If every firm can only have one network, then we use the simpler
notation pjk.

In the third stage the consumers simultaneously choose which network
to join, if any. We assume that a consumer can join at most one network
(exclusivity of networks).5

Firms maximize profits. Let πk denote the profit of firm k. We assume
that firms are symmetric and that the cost of operating a network is zero,
independently of the number of consumers joining the network.6 Then the
payoff of the firm is the sum of the revenues collected from the firm’s net-
works, where the revenue collected from a network is sum of the revenue
collected on side 1 and the revenue collected on side 2. Let N j

k,n denote
the number of consumers on side j who join network τnk .

7 If the maximum
number of networks k can operate is 1 then we use the simpler notation N j

k .
Then πk =

P
n=1,...,nk

P
j=1,2

pjk,nN
j
k,n.

Consumer i on side j maximizes the individual-specific utility function
U j
i . Let U

j
i = 0 if she does not join any network. Let U

j
i = gji (N

−j
k,n)− pj

cji
if

she joins network τnk . Assume g
j
i (0) = 0 and that g

j
i is increasing for every

consumer Cj
i .
8 A consumer’s utility if joining a network is quasilinear in

5See Section 8 for a discussion on relaxing this assumption.
6See Section 8 for a discussion on how the results affected by assuming a positive

marginal cost.
7More precisely, the Lebesgue measure of consumers on that side joining the network.

We leave payoffs undefined for cases where the latter set is not measurable.
8We assume that network participation is a pure network good for analytical conve-

nience. Most results of the paper could be generalized to the case of gji (0) ≥ 0.
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money and increases in the number of people joining the network from the
other side of the market.9 Implicit in the construction is that consumers do
not have any inherent preference for joining one network or another, they
only care about the number of people joining the networks and the price
they have to pay.

Let uji = gji (1). We call u
j
i the reservation value of consumer i on side j.

If gji = gji0 ∀ i, i0 ∈ [0, 1] and j ∈ {1, 2}, then we say consumers are homo-
geneous. A special case of the above specification, that received highlighted
attention in the existing literature, is when for every j = 1, 2 and i ∈ [0, 1]
it holds that gji (N

−j
k,n) = ujN−j

k,n (consumers on the same side have the same
linear utility function).

4 Coalitional rationalizability and coalition per-
fect equilibrium

The central assumption of our paper is that at every stage of the game play-
ers can coordinate their actions whenever it is in their joint interest and it
does not require communication. The formal concept we use is coalitional ra-
tionalizability. It is a solution concept that builds on the idea that whenever
it is in the mutual interest of some group of players (a coalition) to restrict
their play to a certain subset of the strategy space (to implicitly agree upon
not playing some strategies) then these players indeed expect each other to
make this restriction. These restrictions are called supported. The set of
coalitionally rationalizable strategies are the outcomes that are consistent
with common certainty of the assumption that play is consistent with every
supported restriction by every coalition. For the formal construction see
Ambrus [02].

In the forthcoming analysis we restrict attention to pure strategy sub-
game perfect equilibria in which players play coalitionally rationalizable
strategies in every subgame. We call these outcomes coalition perfect equi-
libria.10

9The above specification makes the simplifying assumption that a consumer’s utility
is independent of how many consumers join the network on her side, implicitly assuming
that interacting with consumers on the other side is a nonrival activity. Section 8 discusses
implications of partially relaxing this assumption.
10 It is possible to show that in our context the requirement that players play coalitionally

rationalizable strategies in every subgame is outcome equivalent to the concept of extensive
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Definition: a strategy profile is a coalition perfect equilibrium if it is a
subgame perfect Nash equilibrium and in every subgame every player plays
some coalitionally rationalizable strategy.

Intuitively, coalition perfect equilibrium requires that supported restric-
tions can be made not only at the beginning of the game, but after any
publicly observed history, and that players at any stage of the game foresee
restrictions that are made at later stages. In the games we consider coali-
tional rationalizability puts restrictions in certain subgames on consumers’
beliefs concerning other consumers’ choices. To provide some intuition on
this, we proceed with an informal definition of supported restriction in con-
sumer subgames, and three examples of such restrictions.

Consider a third stage (consumer) subgame. Assume that players are
certain that play is in some subset S0 of the set of strategies. Then a coalition
of consumers supports restricting play to a subset S00 of S0 if for any player
in the coalition the following condition holds. No matter what beliefs she
has concerning the choices of consumers outside the coalition, her expected
payoff is always strictly higher if the restriction is made (if every player in
the coalition plays inside S00) than if the restriction is not made and she
plays some strategy outside S00.

For the first example suppose F = {A,B} and that for every j = 1, 2
and i ∈ [0, 1] it holds that gji (N−j) = uN−j for some u > 0. Consider the
consumer subgame that follows price announcements pjk = 0 ∀ j = 1, 2 and
k = A,B. Then the restriction to join either A’s network or B’s network (or
agreeing upon not to stay out of the market) is a supported restriction for
the coalition of all consumers, because if the restriction is made, then any
possible conjecture that is compatible with it is such that a best response
to it yields expected payoff of at least u/2 (the conjecture should allocate
an expected size of at least 1/2 to one of the two networks), while staying
out of the market yields zero payoff. Because prices charged by the two
networks are the same, no more strategies are eliminated by coalitional
rationalizability in this subgame. Both joining A’s network and joining B’s
network are coalitionally rationalizable for every consumer and therefore this
subgame has three coalitionally rationalizable Nash equilibria. Either every

form coalitional rationalizability (see Ambrus[03]).
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consumer joins A or every consumer joins B, or one half of the consumers
on both sides joins each network.

Next, consider the subgame in the same game that follows price an-
nouncements pjA = 0 and pjB = u/4 ∀ j = 1, 2. In this subgame A is a
supported restriction for the coalition of all players, since it yields payoff u
to all consumers, while joining B’s network can yield a payoff of at most
3u/4 and staying out yields 0. Coalitional rationalizability pins down a
unique strategy profile in this subgame.

If consumers are heterogeneous then the set of coalitionally rationaliz-
able outcomes in a subgame might only be reached after multiple rounds of
agreements. Suppose F = {A,B}, consumers have linear utility functions
and u1i = 1 i ∈ [0, 1/2], u1i = 1/2 i ∈ (1/2, 1] and u2i = 1 i ∈ [0, 1]. In words,
consumers on side 2 are homogeneous, while half of the consumers on side
1 have relatively low reservation values. Consider the subgame following
price announcements p1A = .4, p2A = .8 and p1B = .8, p2B = .4. Initially, there
is no supported restriction for the coalition of all consumers. Consumers
would prefer to coordinate their network choices, but coordinating on A is
better for side 1 consumers, while coordinating on B is better for side 2 con-
sumers. However, note that joining B is not rationalizable for any consumer
C1i for i ∈ (1/2, 1] and therefore not joining B is a supported restriction for
these consumers. Once it is established that players C1i for i ∈ (1/2, 1] only
consider strategies ∅ or A, it is a supported restriction for the coalition of
all consumers to join A. Therefore coalitional rationalizability pins down a
unique outcome in this subgame as well.

The sequential structure of the game implies that there are no supported
restrictions in the game that involve both firms and consumers. By the time
consumers move, firms already made their choices and those choices were
observed by the consumers. And since consumers cannot commit them-
selves to make choices that are not in their interest, there are no credible
implicit agreements between firms and consumers. Showing this formally is
straightforward and therefore omitted from here. It is less straightforward
to establish that there are no supported restrictions between two firms, and
we could not establish a result like that for the general specification. How-
ever, we did not find any example in which there is a supported restriction
by firms. Firms in our model are competitors and they only move once,
therefore their possibilities to make credible and mutually advantageous re-
strictions are very limited.
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We note that the solution concept we use is not equivalent to coalition-
proof Nash equilibrium (Bernheim, Peleg and Whinston (1987)) or Pareto
efficiency in the consumer subgames. In consumer subgames in which there
is a unique Pareto efficient outcome coalition perfect equilibrium implies
that the efficient outcome is played. But in subgames with multiple Pareto
efficient outcomes it is consistent with coalition perfect equilibrium that a
Pareto inefficient outcome is played. Also if consumers are heterogeneous,
then not every Pareto efficient outcome is consistent with coalition perfect
equilibrium. In general, none of the results of the paper for heterogeneous
consumers would hold if instead of coalitional rationalizability we assumed
Pareto efficiency in consumer subgames.11 As far as coalition-proof Nash
equilibrium is concerned, it can be shown that in our model it is a stronger
concept than coalitionally rationalizable Nash equilibrium, implying that it
assumes a more effective form of coordination than what we impose.12 It
can be established that both the range of network choices and equilibrium
prices can be larger in coalition perfect equilibrium than in coalition-proof
Nash equilibrium.13 The above implies that those results of this paper that
establish properties of all coalition perfect equilibria are valid for (the strictly
smaller set of) perfect coalition-proof equilibria too.

We do not investigate the issue of existence of pure strategy coalition
perfect equilibrium here. It is possible to show that under some technical
conditions every game with one firm has a pure strategy coalition perfect
equilibrium, while every game with two firms has a coalition perfect equi-
librium in which consumers play pure strategies and only firms use mixed
strategies.14 We restrict attention to pure strategies to keep the analysis
tractable. In all examples we provide in the paper there exists a pure strat-
egy coalition perfect equilibrium.

5 Monopolist with one network
11One intuition for this is that if in every equilibrium of a consumer subgame there are

some consumers who do not join any network, then the requirement of Pareto efficiency is
very weak (consumers who stay out get utility zero, no matter how many other consumers
stay out or how many consumers join one network versus the other).
12 In particular, it assumes successful coordination even when there are multiple out-

comes in a subgame that cannot be ruled out by the logic of coalitional agreements. In
our view in these cases coordination can only be achieved through explicit agreements,
which is not possible in the settings we consider.
13See the earlier version of our paper for an example.
14The conditions are that utility functions are differentiable and there is a uniform

bound on their derivatives.
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In this subsection we assume F = {A} and that firm A can only establish
one network.

In a market without network externalities, subgame perfection, which
is implicitly assumed when the demand function of consumers is derived,
guarantees that a monopolist can achieve the maximum profit compatible
with Nash equilibrium.15 In markets with network externalities the above
result does not hold. Typically there are many different equilibria of the
pricing game with one network provider. The consumers face a coordination
problem when deciding on whether to join a network or not, which results in
a wide range of subgame perfect equilibrium prices, consumer participation
measures and profit levels.

In sharp contrast, Theorem 1 below establishes that in every coalition
perfect equilibrium the monopolist gets the maximum profit compatible with
Nash equilibrium. The intuition is the following. In any Nash equilibrium
consumers who join the network get nonnegative utility. Then coalitional
rationalizability guarantees that all these consumers join the network if the
price is smaller than the previous equilibrium price. But then the firm is
guaranteed to get a profit that is arbitrarily close to the above equilibrium
profit by charging slightly smaller prices (note that if the equilibrium price
on one side is negative, then all consumers on that side join the network in
equilibrium, so a price decrease cannot result in having to subsidize more
consumers).

The proofs of all theorems that are stated in the main section of the
paper are in the Appendix.

Theorem 1 πA is uniquely determined in coalition perfect equilibrium and
it is equal to the maximum possible profit of A in Nash equilibrium.

If consumers are homogeneous and the reservation values of consumers
are u1 on side 1 and u2 on side 2, then Theorem 1 implies that in any
coalition perfect equilibrium that pkA = uk and Nk

A = 1 ∀ k = 1, 2. The
assumption that consumers can implicitly coordinate their choices in this

15To give a simple example, if all consumer have the same reservation value u > 0
for some indivisible good and the firm charges a price strictly below u, then subgame
perfection implies that all consumers buy the good. Then in any subgame perfect Nash
equilibrium the firm gets a profit of u times the number of consumers.
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case ultimately hurts them because the firm can extract all the potential
consumer surplus on the market.

A corollary of the previous observation is that if consumers are homoge-
neous, then it is never in the interest of the firm to establish more than one
network. By providing one network the firm can extract the maximum pos-
sible gross consumer surplus on this market. If there are two active networks
then gross consumer surplus is smaller than in the above case, and since no
consumer can get negative utility in any Nash equilibrium, the profit of the
firm is strictly smaller than in the one network case.

6 Monopolist who can operate multiple networks

This section investigates a monopolist network provider’s decision on how
many networks to operate and how to price them. Since the analysis of
the model with more than two networks and heterogeneous consumers is
involved, we restrict attention to the case when the monopolist can operate
at most two networks.

First we show in a simple setting that it can indeed be better for the
monopolist to operate two networks, despite the fact that it would be so-
cially optimal to have all consumers on the same network. The example
also demonstrates that in network markets the monopolist can effectively
price discriminate among consumers through registration fees, even without
product differentiation. We compare social welfare in the case the monopo-
list can operate only one network versus if it is allowed to operate multiple
networks. For general distribution of types we provide a necessary condition
for two networks being established in equilibrium.

We note that the results of this section carry over to the case when con-
sumers can join multiple networks at the same time.16 Furthermore, the
latter framework is formally equivalent to one in which the monopolist op-
erates only one network but can sell restricted access to the network (can
control which transactions can occur on the network). Therefore in that set-
ting if there is enough heterogeneity among consumers then the monopolist
might want to sell both limited access at a lower price, and full access at a
higher price, on both sides of the network.

16See Subsection 8.2 for a discussion.
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6.1 Two types of consumers on each side

Here we restrict attention to a context in which the two sides of the market
are symmetric, there are only two types of consumers on each side, and
consumers have linear utility functions.

Assume that gji (N) = uji ·N ∀ j = 1, 2 and i ∈ [0, 1]. Also assume that
for every u1i = u2i = h for i ∈ [0, a] and u1i = u2i = l for i ∈ (a, 1], where
l < h and a ∈ [0, 1].

In each side a fraction a of the consumers have a reservation value h,
which is higher than l, the reservation value of the rest of the consumers.
We refer to consumers with reservation value h as high types, and consumers
with reservation value l as low types17.

It is possible to show that for all parameter values a, l and h there exists
a coalition perfect equilibrium, no matter what is the maximum number of
networks that A can establish.18

As a first step we characterize the set of coalition perfect equilibria when
the firm can only establish one network. The coalition perfect equilibrium
is almost always unique, but depends on the values of parameters a, h and
l. If l is relatively low and a is high, then the monopolist targets only the
high type consumers and charges a high price on both sides. If l is relatively
high and a is small, then the monopolist targets all consumers and charges
a low price on both sides. In cases in between the monopolist might target
all consumers on one side and only the high types on the other side, by
charging a low and a high price. These results are both intuitive and in
accordance with classic results from the literature on multi product pricing
with heterogeneous consumers.

Define the following cutoff points:

t1 ≡ 2a− 1 (1)

t2 ≡
a

2− a
(2)

17Note that high and low type only refers to the reservation value of consumers and
not to their quality in terms of how desirable a consumer’s presence is on the network for
consumers on the other side. In our model all consumers are ex ante identical in terms of
this external effect.
18The previous version of the paper establishes a more general result.

15



Notice that if a ≥ 1
2 then 0 ≤ t1 ≤ t2 ≤ 1

2 , while if a ≤
1
2 then t1 ≤ 0 ≤

t2 ≤ 1
2 . Also, notice that both t1 and t2 are strictly increasing in a.

Theorem 2 For every coalition perfect equilibrium the following hold:

1. If l
h < max {0, t1} , then only the high types on both sides join the

network and p1A = p2A = ah

2. If l
h ∈ (max {0, t1} , t2) then there is j ∈ {1, 2} such that on side j all

consumers join the network and pjA = al and on the other side only
high types join the network and p−jA = h.

3. If l
h ∈ (t2, 1) then all consumers on both sides join the network and

p1A = p2A = l.

Finally, if l
h = t1 there are coalition perfect equilibria of both type

1 and type 2 above. Similarly if l
h = t2 then there are coalition perfect

equilibria of both type 2 and type 3 above.

Note that if a < 1/2, then there is no coalition perfect equilibrium in
which the monopolist charges a high price on both sides of the market,
targeting only high types. Charging a high price on one side of the market
has to be accompanied by charging a low price on the other side. The reason
is that there have to be enough consumers on the other side on the network
for high types on the first side to be willing to pay the high price. The
monopolist therefore cannot extract a high level of consumer surplus from
both sides of the market simultaneously.

Assume now that the maximum number of networks A can establish is
2. The next theorem shows that for a range of parameter values in every
coalition perfect equilibrium the monopolist chooses to operate two networks
and high and low type consumers on the same side of the market choose
different networks.

Define the following cutoff points:

z1 ≡ 4a− 1 (3)

z2 ≡
a (1− 2a)
1− a

(4)
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Notice that if a ∈
h
0, 1−

√
2
2

i
then t1 ≤ z1 ≤ t2 ≤ z2. and both z1 and

z2 are strictly increasing in a.

Theorem 3 If a ∈
³
0, 1−

√
2
2

´
and l

h ∈ (max {0, z1} , z2) then the follow-
ing hold for every coalition perfect equilibrium:

(1) nA = 2
(2) There is n ∈ {1, 2} such that all high types on side 1 and all low

types on side 2 join τnk , while all low types on side 1 and all high types
on side 2 join τ−nk . The prices are p1A,n = p2A,−n = h (1− 2a) + al and
p2A,n = p1A,−n = al.

Note that this range of parameter values cuts into the region in which a
monopolist with one network would target all consumers on both sides and
into the region in which it targets only high type consumers on one side and
all consumers on the other.

By establishing two networks and pricing them differently the monopolist
implements a form of second degree price discrimination. In particular, if
the proportion of high types is sufficiently low, then the monopolist can
separate the low types and the high types on each side even if reservation
values are unobservable, by charging a high price on side 1 and a low price
on side 2 in one network, and doing the opposite on the other network19. An
appropriate choice of prices results in low type consumers choosing networks
that are relatively cheap for them, while high type consumers choosing the
ones that are relatively expensive for them. In equilibrium the two networks,
despite being physically equivalent, end up being of different quality. In our
framework the quality of a network for a consumer is determined by how
many consumers join the network on the other side of the market. If the
majority of consumers on each side of the market are low types, then when all
low type consumers on side 1 join one network, that network becomes higher
quality for side 2 consumers. Similarly when all low type consumers on side 2
join one network, that network becomes higher quality for side 1 consumers.
Since in the above equilibria the low type consumers join different networks,

19Note that coalitional rationalizability implies that in order to have two active networks
in equilibrium they either have to have exactly the same prices, or one network has to
be relatively cheaper on one side, while the other one on the other side. Therefore there
cannot be coalition perfect equilibria with two networks with one being large and expensive
on both sides, while the other small and cheap on both sides.
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one network ends up being high quality for side 1 consumers, while the other
one for side 2 consumers. High type consumers have a higher willingness to
pay for quality and therefore are willing to join the networks that are more
expensive for them.

The result that in equilibrium the monopolist separates consumers on
the same side by offering them two products that have different prices and
qualities is standard in the adverse selection literature20. What is special
to this model is that the two networks are ex-ante identical and product
differentiation is endogenous. The quality of a network is determined in
equilibrium by the network choices of the consumers, which are driven by
the prices of the networks.

The reason the monopolist might be better off by the price discrimination
is that it can extract a large consumer surplus from high type consumers
simultaneously on both sides of the market, something that it cannot achieve
by operating only one network (see Figure 1 for an illustration).

Notice that in the above equilibrium the firm sacrifices some gross con-
sumer surplus (it is socially efficient if all participating consumers are on
the same network) in order to be able to extract a high share of the surplus
from consumers with high reservation values on both sides of the market.

High Fee High Fee

Low Fee Low Fee l

hh

l

SIDE 2SIDE 1
Figure 1

20See Mussa-Rosen (1978) and Maskin-Riley (1984).
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Despite this, the aggregate social welfare in the situation in which the
monopolist is not allowed to operate multiple networks can be both higher
or lower than in the situation in which it can only operate one. If l

h ∈ (t2, z2)
then a monopolist operating only one network charges prices (l, l) and all
consumers join the network. This generates a higher aggregate surplus than
if the monopolist can operate two networks, because the same set of con-
sumers participate in the market both cases, but more surplus is generated
if they all join same network. As far as consumer surplus is concerned, high
types are better off if the monopolist can only run one network and low
types are indifferent (they get zero utility in both cases). On the other hand
if l

h ∈ (z1, t2), then being restricted to operate one network the monopolist
sets a price of h on one side and la on the other. Only high types join the net-
work on the first side and all consumers on the other side. In this case high
type consumers are better off if the monopolist can operate two networks
and low types are again indifferent. Furthermore, it is straightforward to
establish that aggregate social surplus is higher in the case of two networks.
In case of two networks aggregate surplus is 2(ah (1− 2a)+al)+2a2 (h− l),
while in case of one network it is ah+ al + a2 (h− l). The difference of the
two surpluses is ah+al− 3a2h−a2l, which is positive given that l

h < 1 and
l
h ≥ z1 = 4a− 1 implies a < 1

4 .

Equilibrium prices and quantities have to satisfy the “incentive com-
patibility constraints” that a high type consumer should prefer the more
expensive network, while a low type consumer should prefer the cheaper
network. Furthermore, since staying out of the market is an option to every
consumer, consumers have to get nonnegative utility in equilibrium - a “par-
ticipation constraint”. One feature of the above result, which is consistent
with the literature on adverse selection, is that the incentive compatibility
constraints for the high types and the participation constraints for the low
types are binding in equilibrium.

6.2 General specification

The question of when it is in the interest for the monopolist to operate mul-
tiple networks is difficult to answer in general.21 One result in the restricted

21One complication is that as opposed to the case of two types of consumers on each
side, in general the profit of a monopolist might not be uniquely determined in coalition
perfect equilibrium. The previous version of the paper provides an example in which there
are coalition perfect equilibia in which only one network is established, but there are also
coalition perfect equilibria in which two networks are established, yielding different profit

19



setting of the previous subsection is that the reservation values of high and
low type consumers have to be sufficiently different for the monopolist want-
ing to establish two networks. Below we show that this can be extended to
a more general setting. In particular we provide a lower bound on the ratio
of the highest and lowest reservation value which is consistent with two net-
works being operated by the monopolist, provided that consumers’ utility
functions are convex (including the linear specification).

Let F = {A} and let the maximum number of networks A can establish
be 2. Assume that gji is weakly convex for every j = 1, 2 and i ∈ [0, 1].

Theorem 4 If uji/u
j
i0 < 3+ 2

√
2 for every j = 1, 2 and i, i0 ∈ [0, 1] then in

every coalition perfect equilibrium either nA = 1, or ∃ n ∈ {1, 2} such
that Nk

A,n = 0 for some k ∈ {1, 2}.

The central point of the proof is that the above assumptions guarantee
that establishing one network and charging prices equal to the lowest reserva-
tion values is always more profitable than establishing two active networks.
Recall that establishing two active networks implies sacrificing some con-
sumer surplus, which limits the price that the monopolist can charge on the
networks. Therefore it can only be profitable if there are some consumers
on both sides of the market with sufficiently high reservation values relative
to the rest of the consumers.

7 Duopoly

In this section we consider two firms operating in the market, each allowed
to establish only one network. Just like in the case of one firm operating in
the market, typically there are many different types of subgame perfect Nash
equilibria, including one in which no consumers participate in the market.
There are also equilibria in which firms get positive profits.22

levels. This is possible because coalitional rationalizability does not uniqely determine
choices in every consumer subgame.
22The presence of so called “divide and conquer” strategies (introduced by Innes and

Sexton[93], and then analyzed in the context of network markets by Jullien[01] and Cail-
laud and Jullien[01]) restricts the set of SPNE. If a firm charges a sufficiently low (negative)
price compared to its rival on one side of the market, it can make its network a dominant
choice for consumers on that side. Then it can charge a high price on the other side of
the market and still make sure that consumers join its network on that side. Despite this
there is typically a severe multiplicity of equilibria.
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We investigate whether the assumption of coalitional rationalizability
reestablishes the result that firms’ profits are zero in Bertrand competition
for markets with network externalities. Furthermore we ask whether there
exist coalition perfect equilibria in which asymmetric networks coexist in
the market, with different types of consumers choosing different networks.
First we address these questions in the special case that all consumers on
the same side have the same reservation values, where we can character-
ize the set of coalition perfect equilibria. Then we investigate the case of
heterogeneous consumers, where we provide an example to show that there
might be coalition proof equilibria with novel features, and obtain a partial
characterization result.

7.1 Homogeneous consumers

In this subsection we assume that consumers on the same side have the same
reservation value, u1 on side 1 and u2 on side 2. It can be shown that in all
these games there exists coalition perfect equilibria.

Theorem 5 establishes that in this case coalition perfect equilibria of
the duopoly game have similar properties to subgame perfect equilibria of
duopoly pricing games with no network externalities. Namely in every coali-
tion perfect equilibrium both firms’ profits are zero, and if both of them are
active then they charge the same prices and have the same size. The dif-
ference is that in this two-sided market environment prices do not have to
be zero, despite the assumption that the marginal cost is zero. It is com-
patible with coalition perfect equilibrium that consumers on one side of the
market pay a positive price for joining a network, while consumers on the
other side are subsidized to join. In fact Theorem 6 below shows that if the
two sides are asymmetric (u1 6= u2), then in every coalition perfect equilib-
rium the side with the smaller reservation value gets strictly subsidized, and
consumers on the other side pay a strictly positive price.

Theorem 5 There can be two types of coalition perfect equilibria:

1. ∃ k ∈ {A,B} such that N j
k = 1 ∀ j = 1, 2 and i ∈ [0, 1], p1k = −p2k

and pjk ≤ uj ∀ j = 1, 2

2. N1
A = N2

A = N1
B = N2

B = 1/2, p
1
A = p1B = −p2A = −p2B and pjA ≤ uj ∀

j = 1, 2
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Either all consumers join the same network, or the two networks charge
the same prices and split the consumers equally. In all equilibria no consumer
stays out of the market and all consumers on the same side of the market
pay the same price. This market price on one side of the market is just the
negative of the price on the other side. Therefore either both prices are zero,
or consumers on one side pay a positive price while consumers on the other
side receive an equivalent subsidy. In all equilibria both firms’ profits are
zero.

The intuition behind the zero profit result is that coalitional rational-
izability implies that slightly undercutting the competitor’s price on both
sides of the market results in stealing the whole market. Then if in some
profile at least one firm’s profit is positive, then at least one firm could prof-
itably deviate by slightly undercutting the other firm’s prices. Furthermore,
even in profiles in which firms get zero profit but active firms do not charge
the same prices at least one firm could profitably deviate by undercutting.

The result of full consumer participation comes from the fact that in all
the above equilibria either the market price (the price charged by the active
firm(s)) is negative on one side, or the market price is zero on both sides. The
first case implies that consumers on the side with the negative market price
do not stay out of the market, and then the zero profit result can be used to
show that there has to be full consumer participation on the other side as
well. The intuition behind the result that every consumer joins some network
is that if prices are zero then it is a supported restriction for the coalition of
all consumers to agree upon joining some network. This is because even the
most pessimistic expectation compatible with the agreement (namely that
other consumers are equally dispersed between the two networks) yields a
positive expected payoff, while staying out of the market gives a zero payoff.

Theorem 6 Assume uj < u−j for j ∈ {1, 2}. Then in every coalition
perfect equilibrium N1

k + N2
k > 0 for some k ∈ {A,B} implies that

pjk ∈ [−u−j , uj − u−j ]

Theorem 6 states that if consumers on one side have a higher reservation
value than consumers on the other side, then in a coalition perfect equilib-
rium the price charged on the side which has the smaller reservation value
has to be in an interval that is strictly below zero. The minimal amount of
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subsidy that consumers on this side get is the difference between the reserva-
tion values. This result is not a consequence of coalitional rationalizability,
but comes from the restrictions that “divide and conquer” strategies put on
any subgame perfect Nash equilibrium23. If the market price is positive on
the side with the low reservation value, then it is relatively cheap to steal
consumers on that side, and then a higher price can be charged on the side
with the high reservation value.

The following claim concerning the context of linear utility functions is
straightforward to establish using Theorems 5 and 6.

Claim 1 Let gji (N
−j) = N−juj ∀ j = 1, 2 and i ∈ [0, 1]. Then the following

hold:

• If u1 = u2 ≡ u, then two types of coalition perfect equilibria exist:

1. (monopoly equilibria with zero profits) ∃ k ∈ {A,B} such that all
consumers join network τk, p1k = −p2f and pjk ≤ u ∀ j = 1, 2

2. (symmetric equilibria with zero profits) N1
A = N2

A = N1
B = N2

B = 1/2,
p1A = p1B = −p2A = −p2B and pjA ≤ u/2 ∀ j = 1, 2

• If uj < u−j for some j ∈ {1, 2} and u−j ≤ 2uj, then two types of

coalition perfect equilibria exist:

1. (monopoly equilibria with zero profits) ∃ k ∈ {A,B} such that all
consumers join network τk, p1k = −p2k and pjk ∈ [−u−j , uj − u−j ]

2. (symmetric equilibria with zero profits) N1
A = N2

A = N1
B = N2

B = 1/2,
p1A = p1B = −p2A = −p2B and pjk ∈ [−u

−j

2 , uj − u−j ]

• If uj < u−j for some j ∈ {1, 2} and u−j > 2uj, then only one type of
coalition perfect equilibrium exists:

(monopoly equilibria with zero profits) ∃ k ∈ {A,B} such that all con-
sumers join network τk, p = −p2k and pjk ∈ [−u−j , uj − u−j ].

23 this is why Caillaud and Jullien[01] obtain a similar result for equilibria in which both
firms are active
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The above linear specification gives an opportunity for a direct compar-
ison with the predictions of Caillaud and Jullien[01a] in the case of asym-
metric sides, since that is exactly the context of their investigation. By
assuming monotonicity of the demand function, they obtain the same set of
equilibria with two active firms. On the other hand, their refinement selects
a larger set of equilibria with one active firm, including equilibria in which
the active firm gets positive profits. Furthermore, full participation is an
extra assumption in their model, while it is a result in our paper.

7.2 The general case

The next example shows that, as opposed to the case of homogeneous con-
sumers, price competition does not necessarily drives profits to zero if con-
sumers are heterogeneous. The example also points out that consumers with
different reservation values might join different networks and pay different
prices in equilibrium, even in the absence of product differentiation.

Claim 2 Assume gji (N
−j) = N−j ·uji ∀ j = 1, 2 and i ∈ [0, 1]. Assume that

on both sides of the market, a mass of consumers with measure 0.4 have
reservation value 2.55 (‘I’ types), a mass of consumers with measure
0.15 have reservation value 0.51 (‘II’ types), a mass of consumers with
measure 0.1 have reservation value 0.46 (‘III’ types), while a mass of
consumers with measure 0.35 have reservation value 0.15 (‘IV’ types).
Then there exists a coalition perfect equilibrium in which one firm
charges a price of 0.31 on side 1 and −0.2 on side 2, while the other
firm charges −0.2 on side 1 and 0.31 on side 2. All type ‘I’ consumers
on side 1 and type ‘II’-‘IV’ consumers on side 2 join the first firm,
while all type ‘I’ consumers on side 2 and type ‘II’-‘IV’ consumers on
side 1 join the second firm.

Notice that in this profile both firms get a profit of 0.31×0.4−0.2×0.6 =
0.04, which is strictly positive. Furthermore, in the described equilibrium the
firms charge different prices, and consumers on the same side of the market
with different reservation values end up paying different prices for the market
good, despite the fact that reservation prices are private information of the
consumers.

Every consumer on both sides of the market joins some network. Type
‘I’ consumers on both sides of the market pay a registration fee of 0.31 for
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joining a network, and in equilibrium they face a measure of 0.6 consumers
from the other side of the market. All other consumers on both sides of the
market are subsidized, they pay a registration fee of −0.2. In the equilibrium
they face only a measure of 0.4 consumers from the other side of the market.

This equilibrium structure is similar to the equilibria in the previous
section, in which the monopolist achieved price discrimination by operating
two networks. In particular, one network is cheaper on one side of the
market, while the other one is cheaper on the other side. A larger fraction
of consumers, those having relatively low reservation values, join the cheap
network sides, which makes it worthwhile for the remaining, high reservation
value, consumers to join the expensive network sides. These similarities are
consequences of assuming that after every price announcement consumers
play some coalitionally rationalizable Nash equilibrium. In the monopoly
case it is never in the interest of the firm to establish two networks that
are priced equally, since that would just split consumers into two networks,
generating less consumer surplus and therefore less profit. In the duopoly
case there cannot be a coalition perfect equilibrium with positive profits
and equally priced networks, because of the usual Bertrand competition
undercutting argument. Therefore in both cases, for different reasons, the
two networks have to be priced differently.

The intuition why competition does not drive profits down to zero in the
above example is that with heterogeneous consumers deviation strategies
based on undercutting, which are always effective due to the assumption of
coalitional rationalizability, are not necessarily profitable. For example if B
announces slightly smaller prices than the equilibrium prices of firm A then
coalitional rationalizability implies that all type ‘I’-‘III’ from side 1, and all
consumers from side 2 join its network. But the highest profit B can achieve
this way is strictly smaller than the equilibrium profit of B. The reason is
that the proposed undercutting increases the number of consumers joining
the network by a larger amount on the side where the price is negative.

The same intuition applies to “divide and conquer” type strategies. A
firm can lower its price so that it makes it a dominant choice for some type
of consumers to join its network and then it can charge a high price on the
other side of the market and still make sure that some consumers join its
network on that side as well. But if consumers are heterogeneous, then the
proportion of consumers who are willing to pay the increased price on the
latter side might be too low to compensate for the costs associated with
lowering the price (increasing the subsidy) on the first side.
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Theorem 7 establishes that the basic features of the above example hold
for any coalition perfect equilibrium in which some firm’s profit is positive,
for any game with two firms.

Theorem 7 Suppose that in a coalition perfect equilibrium πk > 0 for some
k ∈ {A,B}. Then (1) N j

k > 0 ∀ j ∈ {1, 2} and k ∈ {A,B}; (2) ∃
j ∈ {1, 2} such that pjA > pjB, p

−j
A ≤ p−jB , N

j
A ≤ N j

B and N−j
A > N−j

B .

In all these equilibria both firms have to be active and firm A’s network
has to be (weakly) more expensive and smaller on one side of the market
and (weakly) cheaper and larger on the other than firm B’s network. Fur-
thermore, the two networks have to be asymmetric in the sense that on at
least one side the networks charge different prices and on at least one side a
different fraction of consumers choose A’s network than B’s.

We conclude the section by establishing that just like in the case of a
monopolist network provider, enough heterogeneity among the consumers
is needed for the existence equilibria with two asymmetric networks (and
therefore for the existence of equilibria with nonzero profits). The next
theorem is an extension of Theorem 5 to the case of nearly homogeneous
consumers, provided that consumers’ utility functions are weakly convex.

Assume that gji is weakly convex for every j = 1, 2 and i ∈ [0, 1].

Theorem 8 If uji/u
j
i0 ≤ 4/3 for every j = 1, 2 and i, i0 ∈ [0, 1] then

πA = πB = 0. Furthermore, there can be two types of coalition perfect
equilibria:

1. ∃ k ∈ {A,B} such that N j
k = 0 ∀ j = 1, 2 and i ∈ [0, 1]

2. N j
A = N j

B and pjA = pjB ∀ j ∈ {1, 2}

8 Discussion

In this section, we discuss how the results of the paper would be affected by
changing different assumptions we made in the model.
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8.1 Positive marginal cost

If firms face a positive constant marginal cost, all the qualitative results
still hold, with one exception. If the marginal cost is higher than a certain
threshold, then even if every consumer’s reservation value is still higher than
the marginal cost, coalitional rationalizability does not exclude the possibil-
ity that in price competition between two firms consumers do not join any
network in equilibrium. The reason is that if marginal costs are high, then
the average price charged on consumers is high and ex-ante coordination to
join some network becomes harder.

8.2 Multi-homing

In some two-sided markets network choices are naturally mutually exclusive,
at least over a given period of time. For example people looking for a
date can only be in one entertainment facility at a time. In other contexts
consumers can join multiple platforms, which is called multi-homing in the
literature. The qualitative conclusions of the paper remain valid if we allow
for multi-homing. In particular if there are multiple active networks in
coalition perfect equilibrium that are not equally priced then it has to be
that one network is cheaper and larger on one side of the market and the
other network is cheaper and larger on the other side. If consumers are
homogeneous, then it still holds that in every coalition perfect equilibrium
both firms get zero profit. On the other hand firms can have positive profits
in price competition if consumers are heterogeneous, the intuition being the
same as in Section 7. Finally, multi-homing does not change the result that
a monopolist might find it more profitable to operate two networks rather
than one. In fact, if multi-homing is allowed, then the high reservation value
consumers join multiple networks, increasing the monopolist’s revenue. This
makes operating two networks more attractive and therefore there is a larger
set of games in which the monopolist runs two networks in coalition perfect
equilibrium.

8.3 Conflict of interest among consumers on the same side

The assumption that a consumer’s utility is not affected by the number of
consumers from the same side of the market who join the same platform
as she does can be restrictive in a variety of contexts. If the networks
are matchmaking services or auction sites, then people on the same side of
the market might competite for the same transactions. In other contexts
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transactions are non-rival goods, validating our assumption of no conflict of
interest on the same side.

If consumers are homogeneous, it is possible to partially relax the as-
sumption of no conflict of interest on the same side. In particular, it is
enough to assume no conflict of interest on the same side only if every con-
sumer from the other side is present at the same network, for the main
qualitative conclusions of the paper to remain valid.24 In all other cases
consumers’ utilities might depend negatively on the number of consumers
from the same side joining the same network. One scenario that validates
this assumption is if there exist ideal matches in the market, in which case
two consumers from the same side are competitors only if their ideal partners
from the other side of the market are not present at their network (which
cannot happen if all consumers from the other side are present).

8.4 More than two firms

With more than two firms operating on the market the analysis of the price
competition game becomes complicated and therefore omitted from this pa-
per. However, we note that there can exist coalition perfect equilibria with
multiple asymmetric networks in the case of more than two firms too. In
fact, in general there is a wider range of coalition perfect equilibria. The
intuition behind this is that coordination among consumers is more difficult
if there are more than two firms. Formally, coalitional rationalizability puts
less restriction on what can happen in consumer subgames. We plan to
investigate the effect of the number of firms in the market on the range of
equilibria in a future project.

9 Conclusions and possible extensions

This paper analyzes pricing decisions of firms and platform choices of con-
sumers on two-sided markets with network externalities, assuming that
groups of consumers can coordinate their choices if coordination is focal.
A key feature of the analysis is that consumers are allowed to be hetero-
geneous with respect to their willingness to pay for the network good. To
keep the analysis tractable, several simplifying assumptions are made in
other dimensions though. Section 8 discusses the consequences of relaxing
some of these, but there are several other extensions that would make the

24See the previous version of our paper for a formal investigation of this.
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model more realistic in important settings. Besides registration fees, in sev-
eral contexts firms might be able to charge usage fees, fees for successful
matches, or more complicated pricing instruments like contingent offers. In
other two-sided markets, for example the market for health insurance, ad-
verse selection is a central problem. Our model assumes that serving every
consumer induces the same marginal cost to the firm and therefore abstracts
away from this issue. Finally, there are contexts in which consumers are not
ex ante symmetric with respect to the network externality they generate
(their “attractiveness” to consumers on the other side). Some of these di-
rections are addressed in the existing literature, others are left for future
research.

10 Appendix

Some extra notation for the Appendix.

Let C = C1 ∪ C2.
For every D ⊂ C such that {i : Ci ∈ D} is measurable with respect to

the Lebesgue measure, let N(D) =
R

Ci∈D
di.

Let SA denote the set of strategies of player A, SB the set of strategies
of player B and Sj

i the set of strategies of C
j
i for j = 1, 2 and i ∈ [0, 1]. Note

that strategies in Sj
i specify actions for C

j
i after any history of length 2. Let

Sc = ×
i∈[0,1]

S1i ×
i∈[0,1]

S2i

For any game, let Γc be the set of all subgames that start in the third
stage. We refer to elements of Γcas consumer subgames.

Moreover, let cji denote the action choice of consumer i on side j.
Finally, for every s ∈ S, k ∈ F, j ∈ {1, 2}, n = 1, ..., nk and i ∈ [0, 1]

let nk(s), πk(s), p
j
k,n(s), N

j
k,n(s) and cji (s) denote the realized nk, πk, p

j
k,n,

N j
k,n and cji if s is played

Lemma 1 Let Gc = (C,Sc, uc) ∈ Γc(G). Then ∃ s ∈ Sc such that s is
a coalitionally rationalizable Nash equilibrium of Gc.

Proof of Lemma 1 For any A ⊂ Sc such that A = ×
j=1,2

×
i∈[0,1]

Aj
i 6= ∅

let z(A) be the collection of supported restrictions in Sc given A. Let
A0, A1, ... be such that A0 = Sc and Ak = ∩

B∈z(Ak−1)
B ∀ k ≥ 1. Note

that A∗ = lim
k→∞

Ak is the set of coalitionally rationalizable strategies in Gc.

29



Let k ≥ 0 and assume Ak 6= ∅. For every i ∈ [0, 1] and j = 1, 2 let
uji (k) = sup

ω−i,j∈Ω−i,j(Ak),ai,j∈Ak
i,j

uci,j(ai,j , ω−i,j). Let (a
m
i,j , ω

m
−i,j)m=1,2,... be such

that ami,j ∈ Ak
i,j and ωm−i,j ∈ Ω−i,j(Ak) ∀ m ≥ 1, and uci,j(a

m
i,j , ω

m
−i,j)→ uji (k)

as m → ∞. Since Ak
i,j is finite, (a

m
i,j) has a subsequence (a

mn
i,j ) such that

lim
mn→∞

amn
i,j = a ∈ Ak

i,j . Then by the definition of supported restriction

a ∈ Bi,j for every B ⊂ Ak such that B is a supported restriction in Gc given
Ak. Since i and j were arbitrary, this implies Ak+1 6= ∅. Then by induction
A0 = Sc 6= ∅ implies A∗ 6= ∅.

Note that (Sc)ji = (Sc)j
0

i0 ≡ S
c ∀ i, i0 ∈ [0, 1] and j, j0 ∈ {1, 2}. Order

pure strategies in S
c
any way, such that S

c
= {a1, ..., an}. Define x(s) :

S
c → R2n such that xk(s) = N(C1i ∈ C1 : c1i (s) = ak) ∀ i ∈ 1, ..., n and

xk(s) = N(C2i ∈ C2 : c2i (s) = ak−n) ∀ i ∈ n+ 1, ..., 2n.
Let Θ = {θ ∈ R2n : ∃ s ∈ A∗ s.t. x(s) = θ}. It is easy to establish

that Θ is a nonempty, compact and convex subset of R2n. For every θ ∈ Θ,
i ∈ [0, 1] and j = 1, 2 let BRj

i (θ) = {a ∈ S
c
: ∃ s ∈ S s.t. x(s) = θ and

a ∈ BRj
i (s−j,i)}. Now define the correspondence F : Θ → R2n such that

F (θ) = {y : ∃ s ∈ Sc s.t. sji ∈ BRj
i (θ), and y = x(s)}. It is straightforward

to establish that BRj
i (s−j,i) ⊂ (A∗)

j
i ∀ i ∈ [0, 1] and j = 1, 2. This implies

that F (θ) ⊂ Θ ∀ θ ∈ Θ, therefore F is a correspondence from Θ to itself.
Note that F is nonempty valued, since S

c
is finite, so the best response

correspondence is nonempty valued. Furthermore, if s, t ∈ S
c
are such that

sji , t
j
i ∈ BRj

i (θ) for some θ ∈ Θ, then z
j
i ∈ BRj

i (θ) for every z ∈ S
c
for which

it holds that ∀ i ∈ [0, 1] and j = 1, 2 either zji = sji or z
j
i = tji . This implies

that F is convex valued. Finally, since for every i ∈ [0, 1] and j = 1, 2 gji
is continuous, it holds that for every i ∈ [0, 1] and j = 1, 2 BRj

i (θ) is upper
hemicontinuous, which implies that F is upper hemicontinuous.

The above imply that all the conditions for Kakutani’s fixed point the-
orem hold for F , therefore it has a fixed point θ∗. That implies ∃ s∗ ∈ A∗

such that x(s∗) = θ∗ and (s∗)ji ∈ BRj
i (θ

∗) ∀ θ ∈ Θ, i ∈ [0, 1] and j = 1, 2.
This implies (s∗)ji ∈ BRj

i (s
∗
−j,i) ∀ θ ∈ Θ, i ∈ [0, 1] and j = 1, 2, which

establishes that s∗ is a coalitionally rationalizable Nash equilibrium. QED.

Proof of Theorem 1 Let πA(s) = π. If π = 0 the claim is trivial,
since in every Nash equilibrium and therefore in every coalition perfect Nash
equilibrium the firm has to get nonnegative profit (since announcing prices
above 0 guarantees that).

Suppose now that π > 0. That implies that at least on one side of the
market the monopolist charges a strictly positive profit and has a strictly
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positive market share.
Let cCj(s) = {Cj

i : c
j
i (s) = A} for j = 1, 2. Then for Cj

i ∈ cCj(s) and
N j ∈ [0, 1] it holds that gji (N−j) − pjA(s) > 0 (note that gji (N

−j
A (s)) is

constant in N j). Then for every ε > 0 and Cj
i ∈ cCj(s) it holds that

gji (N
−j
A (s))− pjA(s) + ε > 0, which implies that after a price announcement

of
¡
p1A(s)− ε, p2A(s)− ε

¢
joining the network is a supported restriction forcC1(s) and cC2(s).

If pjA(s) > 0 for j = 1, 2, then it has to be the case that N j
A(s) ≥

0 and Max
n
N j
A(s), N

−j
A (s) > 0

o
. Then the firm can guarantee a profit

arbitrarily close to π by charging prices
¡
p1A(s)− ε, p2A(s)− ε

¢
. If pjA(s) > 0

and p−jA (s) = 0 then it has to be the case that N
j
A(s) > 0 and N−j

A (s) ≥ 0.
In this case, by charging

¡
p1A(s)− ε, p2A(s)− ε

¢
the monopolist gets market

shares N j
A ≥ N j

A(s) and N
−j
A = 1 and profits arbitrarily close to π. Finally, if

pjA(s) > 0 and p−jA (s) = 0 it has to be the case that N
j
A(s) and N−j

A (s) = 1.
Then, by charging

¡
p1A(s)− ε, p2A(s)− ε

¢
the monopolist gets market shares

N j
A ≥ N j

A(s) and N−j
A = 1 and again profits arbitrarily close to π.

That means that if consumers play only coalitionally rationalizable strate-
gies, then the firm can guarantee a profit arbitrarily close to π by charging
prices

¡
p1A(s)− ε, p2A(s)− ε

¢
where ε > 0 is small enough. This implies that

it cannot be that π(s0) < π. QED

Proof of Theorem 2 Let s ∈ S be a coalition perfect equilibrium. If
p1 (s) , p2 (s) < l then joining the network is a supported restriction for the
coalition of all consumers. The supremum of the profit the firm in this price
range is 2l and the firm can get a profit arbitrarily close to it by charging¡
p1 (s) , p2 (s)

¢
= (l − ε, l − ε) for small enough ε > 0. If p1 (s) , p2 (s) < ah

then joining the network is a supported restriction for the coalition of con-
sumers that involve the high types from both sides of the market. Therefore
the monopolist can guarantee a profit arbitrarily close to 2a2h by charging
prices

¡
p1 (s) , p2 (s)

¢
= (ah− ε, ah− ε) for small enough ε > 0. If pj (s) < h

and p−j (s) < al for some j ∈ {1, 2} then joining the network is a supported
restriction for C−j ∪ {Cj

i : i ∈ [0, a]}. Therefore the monopolist can guaran-
tee a profit arbitrarily close to a(h+ l) by charging prices

¡
p1 (s) , p2 (s)

¢
=

(h− ε, al − ε) for small enough ε > 0.
The above establish that πA(s) ≥ max(2l, 2a2h, a(h+ l)).
If pj (s) > h for some j ∈ {1, 2}, then N j(s) = 0. Then N−j(s) > 0

only if p−j (s) ≤ 0. In any case πA(s) < max(2l, 2a2h, a(h+ l)). Therefore
pj (s) ≤ h for j = 1, 2.

31



It cannot be that pj (s) ≤ l ∀ j ∈ {1, 2} and pj (s) < l for some j ∈ {1, 2},
since then πA(s) < 2l.

If pj (s) > l ∀ j ∈ {1, 2} then cji (s) = ∅ ∀ j = 1, 2 and i ∈ (a, 1]. Then
it cannot be that pj (s) > ah for some j ∈ {1, 2}, otherwise cji (s) = ∅ ∀
j = 1, 2 and i ∈ [0, 1] and therefore πA(s) = 0. Furthermore, it cannot be
that pj (s) < ah for some j ∈ {1, 2}, otherwise πA(s) < 2a2h.

Suppose now that pj (s) > l and p−j (s) ≤ l for some j ∈ {1, 2}. It
cannot be that p−j (s) < al since then πA(s) < a(l + h). If p−j (s) > al,
then pj (s) > ah or p−j (s) > ah implies πA(s) = 0. Then pj (s) < ah or
p−j (s) < ah implies πA(s) < 2a2h. Finally, pj (s) = ah and p−j (s) = ah
contradict that pj (s) > l and p−j (s) ≤ l. This concludes that p−j (s) = al.
Then pj (s) = h, otherwise πA(s) < a(l + h).

Consider first the case that ah > l. If pj (s) ≥ ah then only high types
can join the network in equilibrium. Furthermore, consumers on side j only
join in equilibrium if at least some low types join the network from the
other side. For that to be possible in equilibrium, it has to be the case that
p−j (s) ≤ al. The above imply that if j (s) > h for j = 1 or j = 2 then
π (s) ≤ ah + al But note that the firm can get a profit arbitrarily close to
this amount by charging (h − ε, al − ε) for small enough ε > 0, since then
joining the network is a supported restriction for the coalition of consumers
involving all high types on side 1 and all consumers on side 2.

Consider now the case that l > ah. If j (s) > l for j = 1 or j = 2 the
same arguments as above establish that π (s) ≤ ah+ al, but the monopolist
can get a profit arbitrarily close to ah + al by charging (h − ε, al − ε) for
small enough ε > 0.

This concludes that π (s) ≤ max(2l, 2a2h, ah + al), but if consumers
play only coalitionally rationalizable strategies then the monopolist can al-
ways guarantee a profit arbitrarily close to max(2l, 2a2h, ah+ al). But then
it has to be the case that in every coalition perfect equilibrium π (s) =
max(2l, 2a2h, ah+ al). This establishes that the prices charged by the mo-
nopolist are either (l, l) or (ah, ah) or (h, al) or (al, h) in any coalition perfect
equilibrium, and in the first case c1i (s) = c2i (s) = A ∀i ∈ [0, 1] , in the second
case c1i (s) = c2i (s) = A ∀ i ∈ [0, a] and c1i (s) = c2i (s) = ∅ ∀ i ∈ (a, 1] and in
the third case either c1i = A ∀ i ∈ [0, a], c1i = A ∀ i ∈ (a, 1] and c2i = A ∀
i ∈ [0, 1] or p1 (s) = al, p2 (s) = h, c1i = A ∀ i ∈ [0, 1], c1i = A ∀ i ∈ [0, a]
and c1i = ∅ ∀ i ∈ (a, 1].

The above imply that if 2l > max(2a2h, ah + al) then pj (s) = l and
N j(s) = 1 ∀ j ∈ {1, 2}. If 2a2h > max(2l, ah + al) then pj (s) = ah and
N j(s) = a ∀ j ∈ {1, 2}. And if ah + al > max(2l, 2a2h) then pj (s) = h,
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p−j (s) = al, N j(s) = a and N−j(s) = 1 for some j ∈ {1, 2}.
Suppose 2a2h > al+ ah. Since a > 0, this is equivalent to (2a− 1)h > l.

The latter implies a2h > l since a2h− (2a− 1)h = (a− 1)2h > 0. Therefore
(2a− 1)h > l implies that 2a2h > max(2l, ah+ al).

Suppose now that ah+ al < 2l. It is equivalent to l > a
2−ah. The latter

implies l > a2h since a
2−ah − a2h = ah1−2a+a

2

2−a > 0. Therefore 2a2h < 2l.
This establishes that if l > a

2−ah then 2l > max(2a
2h, ah+ al).

Note that (2a−1)h < a
2−ah. If l ∈ ((2a−1)h,

a
2−ah) then 2a

2h < al+ah

and ah+ al > 2l and therefore ah+ al > max(2l, 2a2h).
Let G1 = (I, S1, u1) ∈ Γc be the subgame following price announcements

(ah, ah) and let s1 ∈ S1 be such that (s1)1i = (s1)2i = A ∀ i ∈ [0, a] and
(s1)1i = (s1)2i = ∅ ∀ i ∈ (a, 1]. Let G2 = (I, S2, u2) ∈ Γc be the subgame
following price announcements (h, al) and let s2 ∈ S2 be such that (s1)1i = A
∀ i ∈ [0, a], (s1)1i = ∅ ∀ i ∈ (a, 1] and (s1)2i = A ∀ i ∈ [0, 1]. Let G3 =
(I, S3, u3) ∈ Γc be the subgame following price announcements (l, l) and let
s3 ∈ S3 be such that (s3)1i = (s3)2i = A ∀ i ∈ [0, 1]. It is straightforward
to establish that for k = 1, 2, 3 sk is a coalitionally rationalizable Nash
equilibrium in Gk. Let now s−A ∈ S−A be any profile that specifies sk in Gk

for every k = 1, 2, 3 and specifies some arbitrary coalitionally rationalizable
Nash equilibrium in every other Gc ∈ Γc. By Lemma 1 there exists a profile
like that. Let sA be such that pA(sA) = (ah, ah). Let s0A be such that
pA(s

0
A) = (h, al). And let s00A be such that pA(s

00
A) = (l, l). If l

h = 2a − 1
then 2a2h = ah+al = max(2l, 2a2h, ah+al). The above then establish that
both (sA, s−A) and (s0A, s−A) are coalition perfect equilibria. If

l
h =

a
2−a

then 2l = ah + al = max(2l, 2a2h, ah + al). The above then establish that
both (s0A, s−A) and (s

00
A, s−A) are coalition perfect equilibria. QED

Proof of Theorem 3 If s−A ∈ S−A is such that consumers play a
coalitionally rationalizable Nash equilibrium in every consumer subgame,
then in the subgame following nA(sA, s−A) = 2 and p11 = p22 = la − ε,
p21 = p12 = la + (1 − a)h − 2ε (ε > 0), it has to hold that n1i = 2, n2i = 1
∀ i ∈ [0, a] and n1i = 1, n

2
i = 2 ∀ i ∈ (a, 1]. To see this, define A ⊂ S such

that A = ×
i∈[0,1],j=1,2

Aj
i and Aj

i ≡ {∅, 1, 2} ∀ i ∈ [0, a], j = 1, 2, A1i ≡ {∅, 1}

∀ i ∈ (a, 1] and A2i ≡ {∅, 2} ∀ i ∈ (a, 1]. Also define B ⊂ S such that
B = ×

i∈[0,1],j=1,2
Bj
i and B1i ≡ {2} ∀ i ∈ [0, a], B2i ≡ {1} ∀ i ∈ [0, a], j = 1, 2,

B1i ≡ {1} ∀ i ∈ (a, 1] and A2i ≡ {2} ∀ i ∈ (a, 1]. First note that A
j
i×S−1,i is a

supported restriction by Cj
i given S ∀ i ∈ [0, 1] and j = 1, 2 (since strategies

in Sj
i /A

j
i are never best responses for C

j
i ). Next, B is a supported restriction
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given A by C1 ∪C2 since it gives the best possible payoff to every consumer
in this subgame, given A. Therefore n1i = 2, n

2
i = 1 ∀ i ∈ [0, a] and n1i = 1,

n2i = 2 ∀ i ∈ (a, 1] is the only coalitionally rationalizable strategy in the
above subgame.

Since ε can be arbitrarily small positive, the above establishes that if
s ∈ S is a coalition perfect equilibrium, then πA(s) ≥ 2(la+(1−a)ah) ≡ π∗.

Suppose s−A ∈ S−A is such that consumers play a coalitionally ratio-
nalizable Nash equilibrium in every consumer subgame and ∃ bsA ∈ SA such
that πA(bsA, s−A) ≥ π∗ and it is not the case that nA(bsA, s−A) = 2, and
p1j (bsA, s−A) = p2−j(bsA, s−A) = la, p2j(bsA, s−A) = p1−j(bsA, s−A) = la+(1−a)h
for some j = 1, 2.

Let s = (bsA, s−A).
First suppose nA(s) = 1. If l ∈

³
(4a− 1)h, a

2−ah
´
, then by Theorem

4 πA(s) ≤ (l + h)a. But for l > (4a − 1)h it holds that (l + h)a < 2(la +

(1−a)ah) ≡ π∗, a contradiction. If l ∈
³
( a
2−ah,

a(1−2a)
1−a h

´
, then by Theorem

4 πA(s) ≤ 2l. But l < a(1−2a)
1−a h implies 2l < 2(la + (1 − a)ah) ≡ π∗, a

contradiction.
Therefore nA(s) = 2.
It cannot be that N j

k = 0 for some j = 1, 2 and k = 1, 2 since then either
N−j
k (s) = 0 or p−jk (s) ≤ 0 (otherwise consumers choosing network k in s

would get negative utility, contradicting the assumption on s−A). In either
case πA(s) is smaller or equal to the supremum of profits attainable by a
strategy in which A operates only one network. Then, as established above,
πA(s) < π∗. Therefore N j

k > 0 ∀ j = 1, 2 and k = 1, 2.
Let Hj = {Cj

i : i ∈ [0, a]} and Lj = {Cj
i : i ∈ (a, 1]} ∀ j = 1, 2.

Let Xj
k = {C

j
i : n

j
i (s) = k} ∀ j = 1, 2 and k = 1, 2.

First we establish that it cannot be that for some j = 1, 2 both Xj
1∩Lj =

∅ and Xj
2 ∩Lj = ∅. If Xj

1 ∩Lj = ∅ and Xj
2 ∩Lj = ∅ ∀ j = 1, 2 then πA(s) <

2a2h < π∗. Otherwise, w.l.o.g. assume X2
1 ∩ L2 = ∅ and X2

2 ∩ L2 = ∅ and
X1
2 ∩L1 6= ∅. Then consider a deviation s0 by the firm such that nA(s0) = 1,

p1(s0) = max(0, p11(s)
N2
1+N

2
2

N2
2
− ε) and p2(s0) = max(0, p22(s) − ε). In the

subgame following the above prices it is a supported restriction for X1
1 ∪

X1
2 ∪X2

1 ∪X2
2 (note that X

1
2 ∩L1 6= ∅ and therefore p11(s) ≤ lN2

2 ) to choose 1,
which guarantees a profit of at least π0 ≡ p1(s0)(N1

1 +N1
2 )+p2(s0)(N2

1 +N2
2 ).

Consider now deviation s00 by the firm such that nA(s
00) = 1, p1(s00) =

max(0, p21(s)
N2
1+N

2
2

N2
1
− ε) and p2(s00) = max(0, p21(s) − ε). In the subgame

following the above prices it is a supported restriction for X1
2 ∪X2

1 ∪X2
2 to
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choose 1, which guarantees a profit of at least π00 ≡ p1(s00)N1
2 + p2(s00)(N2

1 +
N2
2 ). It is straightforward to verify that both π0 ≤ πA(s) and π00 ≤ πA(s),

and therefore at least one of the above deviations yields higher profit than
πA(s). And since nA(s0) = 1 and nA(s

00) = 1, it holds that π0 < π∗ and
π00 < π∗.

Next we establish that it cannot be that for some j = 1, 2 both Xj
1∩Lj 6=

∅ and Xj
2 ∩ Lj 6= ∅. If Xj

1 ∩ Lj 6= ∅ and Xj
2 ∩ Lj 6= ∅ ∀ j = 1, 2 then

pjk(s) ≤ lN−j
k (s) ∀ k = 1, 2 and j = 1, 2. Then πA(s) < 2l < π∗. Otherwise

w.l.o.g. assume X1
1 ∩ L1 6= ∅, X1

2 ∩L1 6= ∅ and X2
1 ∩ L2 6= ∅. Then πA(s) <

(h + l)N1
1 (s)N

2
2 (s) + 2lN

2
1 (s)N

1
2 (s), since p

1
1(s) ≤ lN2

2 (s), p
1
2(s) ≤ lN1

2 (s),
p21(s) ≤ lN1

1 (s) and p
2
2(s) < hN1

2 (s). Note that (h+ l)N2
2 (s) < (h+ l)a < π∗

and therefore (h + l)N2
2 (s) < (h + l)N1

1 (s)N
2
2 (s) + 2lN

2
1 (s)N

1
2 (s). This

implies (h + l)N2
2 (s) < 2lN2

1 (s) < 2l. Furthermore, 2l < π∗ and therefore
2l < (h+ l)N1

1 (s)N
2
2 (s)+2lN

2
1 (s)N

1
2 (s). This implies 2l(1−N2

1 (s)N
1
2 (s)) <

(h+l)N1
1 (s)N

2
2 (s) which implies 2lN

1
1 (s) < (h+l)N

1
1 (s)N

2
2 (s) which implies

2l < (h+ l)N2
2 (s), a contradiction.

Next we establish that it cannot be that for some k = 1, 2 both X1
k ∩

L1 6= ∅ and X2
k ∩ L2 6= ∅. Suppose otherwise. Then, as established above,

X1
−k ∩ L1 = ∅ and X2

−k ∩ L2 = ∅, but X1
−k 6= ∅ and X2

−k 6= ∅. This implies
N−j
k (s)l − pjk(s) ≥ N−j

−k(s)l − pj−k(s) ∀ j = 1, 2 and N−j
k (s)h − pjk(s) ≤

N−j
−k(s)h − pj−k(s) ∀ j = 1, 2, which implies pjk(s) ≤ pj−k(s) ∀ j = 1, 2.

Then by Lemma 1 it has to be that pjk(s) = pj−k(s) ∀ j = 1, 2. But since

pjk(s) ≤ N−j
k (s)l < l ∀ j = 1, 2 , this implies πA(s) < 2l < π∗.

Therefore ∃ k ∈ {1, 2} such that X1
k ∩H1 = X1

k and X2
−k ∩H2 = X2

k .
W.l.o.g. let k = 1.

Note that p21(s) ≤ lN1
1 and p12(s) ≤ lN2

2 since X
2
1 ∩ L2 6= ∅, X1

2 ∩L1 6= ∅
and by definition no consumer can get negative utility in any subgame if s
is played. Then hN2

1 −p11(s) ≥ hN2
2 −p12(s) implies p11(s) ≤ lN2

2 +h(1−N2
2 )

and hN1
2 − p22(s) ≥ hN1

1 − p21(s) implies p
2
2(s) ≤ lN1

1 + h(1 − N1
1 ). This

establishes that πA(s) ≤ l(N1
1N

2
1 +N1

2N
2
2 ) +(lN

2
2 +h(1−N2

2 ))N
1
1 +(lN

1
1 +

h(1−N1
1 ))N

2
2 ≤ l(N1

1 +N2
2 ) + h(N1

1 +N2
2 − 2N1

1N
2
2 ).

Note that ∂(l(N1
1+N

2
2 )+h(N

1
1+N

2
2−2N1

1N
2
2 ))

∂N1
1

= h+ l−2hN2
2 ≥ h+ l−2ha > 0

(since the starting assumptions imply a < 1/2). Similarly it holds that
∂(l(N1

1+N
2
2 )+h(N

1
1+N

2
2−2N1

1N
2
2 ))

∂N2
2

= h+ l − 2hN1
1 ≥ h+ l − 2ha > 0. Therefore

πA(s) < l2a+h(2a− 2a2) = π∗ unless p21(s) = p12(s) = al, N2
1 (s) = N1

2 (s) =
1− a, p11(s) = p22(s) = la+ h(1− a) and N1

1 (s) = N2
2 (s) = a.

This concludes the claim. QED
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Proof of Theorem 4 Suppose ∃ s ∈ S such that s is a coalition perfect
equilibrium, nA(s) = 2 and N j

k(s) > 0 ∀ j ∈ {1, 2} and k ∈ {A,B}.
By Lemma 5.1 (see below) ∃ k ∈ {1, 2} such that p1k(s) ≤ p13−k(s) and

p2k(s) ≥ p23−k(s), otherwise N1
k (s) = N2

k (s) = 0 for some k ∈ {1, 2}. Let
l1 = ( inf

i∈[0,1]:cji (s)=k
u1i )(N

2
k (s) + N2

3−k(s)), h
1 = ( inf

i∈[0,1]:cji (s)=3−k
u1i )(N

2
k (s) +

N2
3−k(s)), l

2 = ( inf
i∈[0,1]:cji (s)=3−k

u2i )(N
1
k (s)+N

1
3−k(s)) and h

2 = ( inf
i∈[0,1]:cji (s)=k

u2i )

(N1
k (s)+N

1
3−k(s)). Then Nash equilibrium implies p

1
k(s) ≤ N2

k (s)l
1/(N2

k (s)+
N2
3−k(s)), p

2
3−k(s) ≤ N1

k (s)l
2/(N1

k (s)+N1
3−k(s)), p

1
3−k(s) ≤ (N2

k (s)−N2
k (s))

h1/(N2
k (s) +N2

3−k(s)) + p1k(s) and p2k(s) ≤ (N1
3−k(s) −N1

k (s))h
2/(N1

k (s) +
N1
3−k(s)) + p23−k(s). Let x

1 = N1
k (s)/(N

1
k (s) +N1

3−k(s)) and x2 = N2
3−k(s)/

(N2
3−k(s) +N2

k (s)). Then πA(s) ≤ x2l1(1− x1) + x1((1− 2x2)h1 + x2l1) +
x1l2(1−x2)+x2((1−2x1)h2+x1h2) = h1x1+h2x2+l1x2+l2x1−2h1x1x2−2h2
x1x2. Taking first order conditions it is easy to verify that the latter expres-
sion is maximized at x1 = h2+l1

2h1+2h2 , x2 =
h1+l1

2h1+2h2 . Substituting these values

into the expression yields πA(s) ≤ (
h1+l2)(h2+l1)
2(h1+h2) .

Let bC(s) = {Cj
i ∈ C : cji (s) 6= ∅}. Notice that if s0A ∈ SA is such that

nA(s
0
A) = 1 and p

j
A(s

0
A) = lj/(N3−j

k (s)+N3−j
3−k(s))−ε ∀ j ∈ {1, 2}, where ε >

0, then πA(s0A, sA) ≥ l1+ l2− ε(
P

j=1,2

P
k=1,2

N j
k(s)), since the assumptions that

there is no conflict of interest among consumers on the same side and that
s is a Nash equilibrium together guarantee that in the consumer subgame
following the above price announcements joining the network is a supported
restriction for all players in bC(s). Since s is a Nash equilibrium, this implies
πA(s) ≥ l1 + l2. Therefore (

h1+l2)(h2+l1)
2(h1+h2)

≥ l1 + l2.
It is straightforward to verify that for any h1+h2 = h > 0 and l1+ l2 =

l > 0 the expression (h1+l2)(h2+l1)
2(h1+h2)

− l1 − l2 is maximized at h1 = h2 = h/2,

l1 = l2 = l/2. In that case (h1+l2)(h2+l1)
2(h1+h2)

− l1 − l2 = h2 − 6hl + l2. Then s

being a Nash equilibrium implies h2− 6hl+ l2 ≥ 0. Since h > l, this implies
h ≥ (3 + 2

√
2)l. Therefore if (max

i∈[0,1]
uji )/( min

i∈[0,1]
uji ) < 3 + 2

√
2 ∀ j ∈ {1, 2},

then s cannot be a Nash equilibrium, a contradiction. QED

Lemma 5.1 Let Gc = (C,Sc, uc) be the subgame following price an-
nouncements (p1A, p

2
A, p

1
B, p

2
B). If p

j
A < pjB ∀ j = 1, 2 then B is not coalition-

ally rationalizable in Gc for any Cj
i ∈ C. If also pjA < uj ∀ j ∈ {1, 2} then

A is the unique coalitionally rationalizable strategy in Gc for every Cj
i ∈ C.

Similarly if pjB < pjA ∀ j = 1, 2 then A is not coalitionally rationalizable
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in Gc for any Cj
i ∈ C. If also pjB < uj ∀ j ∈ {1, 2} then B is the unique

coalitionally rationalizable strategy in Gc for every Cj
i ∈ C.

Proof of Lemma 5.1 Consider pjA < pjB ∀ j = 1, 2. If pjB > uj for
some j ∈ {1, 2} then in Gc choosing B is not rationalizable for any Cj

i ∈ C.
Observe that pjA ≤ uj ∀ j ∈ {1, 2} implies pjA < uj ∀ j ∈ {1, 2}. For every
Cj
i ∈ C the maximum utility Cj

i can expect when joining B is uj − pjB.
The minimum utility that Cj

i can expect if every consumer in C joins A is
uj−pjA(s) > uj−pjB. If p

j
A(s) < uj ∀ j ∈ {1, 2} then this implies that joining

A is a supported restriction for consumers in C, which implies the claim.
The other case is perfectly symmetric. QED

Lemma 5.2 For every k = 1, 2 and i ∈ [0, 1] it holds that ∅ is not coali-
tionally rationalizable for Ck

i in the subgame following price announcements
(0, 0, 0, 0).

Proof of Lemma 5.2 Let bSk
i = {A,B} ∀ k = 1, 2 and i ∈ [0, 1]. Con-

sider the restriction bS ≡ ×
i∈[0,1]

bS1i ×
i∈[0,1]

bS2i given Sc by C in the subgame fol-

lowing price announcements (0, 0, 0, 0). Let k ∈ {1, 2}, i ∈ [0, 1] and ω−k,i ∈
Ω−k,i(bS). Let n−kA (ω−k,i) =

R
t−i∈S−i

gj(C
−k
j ∈ C−k/C−ki : tkj (0, 0, 0, 0) =

A)dω−k,i and let n
−k
B (ω−k,i) =

R
t−i∈S−i

gj(C
−k
j ∈ C−k/C−ki : tkj (0, 0, 0, 0) =

B)dω−k,i. Since ω−k,i ∈ Ω−k,i(bS), min(n−kA (ω−i), n
−k
B (ω−i)) > 0. Then

playing a best response strategy to ω−k,i yields a positive expected payoff
to Ck

i . Since U
k
i (∅) = 0 ∀ i ∈ [0, 1], this implies that the above restriction is

supported for C and therefore ∅ is not a coalitionally rationalizable strategy
for any k = 1, 2 and i ∈ [0, 1]. QED

Lemma 5.3 Let s be a coalition perfect equilibrium. If Nk
A(s) > 0

for some k = 1, 2 and N1
B(s) = N2

B(s) = 0 then (i) p1A(s) = −p2A(s), (ii)
pkA(s) ≤ uk ∀ k = 1, 2 and (iii) N1

A(s) = N2
A(s) = 1. Similarly if N

k
B(s) > 0

for some k = 1, 2 and N1
A(s) = N2

A(s) = 0 then (i) p1B(s) = −p2B(s), (ii)
pkB(s) ≤ uk ∀ k = 1, 2 and (iii) N1

B(s) = N2
B(s) = 1.

Proof of Lemma 5.3 Note that N1
B(s) = N2

B(s) = 0 implies πB(s) = 0.
Suppose pkA(s) > uk for some k = 1, 2. Then Nk

A(s) = 0 since consumers
cannot get negative utility in s. Then N−k

A (s) > 0 implies that p−kA (s) ≤ 0,
again because consumers cannot get negative utility in s. Since A cannot
have negative profit in s, this implies p−kA (s) = 0. Consider the deviation
(u − ε,−ε) by B, where ε > 0. In the subgame following this deviation it
is a supported restriction for C1 ∪C2 to play B, because that profile yields
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the highest possible payoff in this subgame for every Ck
i ∈ C, and choosing

A or ∅ yields a strictly smaller payoff than this maximum no matter what
strategies other consumers play. Therefore ski (p

1
A(s), p

2
A(s), u−ε,−ε) = B ∀

k = 1, 2 and i ∈ [0, 1]. Then B’s profit after this deviation is u− 2ε, which
is positive for small enough profits, a contradiction. This concludes that
pkA(s) ≤ uk ∀ k = 1, 2.

Suppose now that p1A(s) + p2A(s) > 0. Consider the deviation (p1A(s) −
ε, p2A(s) − ε) by B, where ε > 0. By lemma 5.1 ski (p

1
A(s), p

2
A(s), p

1
A(s) −

ε, p2A(s) − ε) = B ∀ k = 1, 2 and i ∈ [0, 1]. Then B’s profit after this
deviation is p1A(s) + p2A(s) − 2ε, which is positive for small enough ε, a
contradiction. This concludes that p1A(s) + p2A(s) ≤ 0.

Suppose now that p1A(s) + p2A(s) < 0. This implies pkA(s) < 0 for some
k = 1, 2. Then Nk

B(s) = 0 implies N
k
A(s) = 1, since A strictly dominates ∅

for side 1 consumers. But then p1A(s)+p2A(s) implies πA(s) = p1A(s)N
1
A(s)+

p2A(s)N
2
A(s) < 0, a contradiction. This concludes that p

1
A(s) + p2A(s) ≤ 0.

If pkA(s) < 0 for some k = 1, 2, then N
k
B(s) = 0 implies N

k
A(s) = 1. Then

πA(s) ≥ 0 implies that Nk
A(s) = 1 ∀ k = 1, 2.

Consider now p1A(s) = p2A(s) = 0. Then πA(s) = 0. If pkB(s) < 0 for
some k = 1, 2, then ∅ is a strictly dominated strategy for side k consumers,
and therefore Nk

B(s) = 0 implies Nk
A(s) = 1. Then choosing A yields util-

ity u−k > 0 for side −k consumers, and therefore N−k
B (s) = 0 implies

N−k
A (s) = 1. Suppose now that p1B(s) > 0 and p2B(s) = 0. Then by lemma

5.1 a deviation min(u − ε, p1B(s) − ε),−ε by A for ε > 0 guarantees that
all consumers join A, which for small enough ε yields positive profit for A,
contradicting that s is an equilibrium. A symmetric argument rules out that
p1B(s) = 0 and p2B(s) > 0. If p1B(s) = p2B(s) = 0, then lemma 5.2 implies
that Nk

A(s) + Nk
B(s) = 1 ∀ k = 1, 2, and then N1

B(s) = N2
B(s) = 0 implies

N1
A(s) = N2

A(s) = 1. QED

Lemma 5.4 Let s be a coalition perfect equilibrium such thatNk
A(s) > 0

for some k = 1, 2 and Nk
B(s) > 0 for some k = 1, 2. Then p1A(s) = p1B(s) =

−p2A(s) = −p2B(s) and pkA(s) ≤ uk ∀ k = 1, 2. Moreover, N1
A(s) = N2

A(s) =
N1
B(s) = N2

B(s) = 1/2.
Proof of Lemma 5.4 Suppose pkf (s) > uk for some k = 1, 2 and f ∈

{A,B}. W.l.o.g. assume p1A(s) > u1. Then N1
A(s) = 0 and therefore

N2
A(s) > 0. This is only compatible with consumers choosing A in s playing

a best response and A not getting negative profits if p2A(s) = 0. Then by
lemma 5.1 a price announcement (u1 − ε,−ε) by B for ε > 0 guarantees
that all consumers join B, which for small enough ε yields positive profit
for B. Therefore πA(s) = 0 and πB(s) > 0. The latter can only be if both
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N1
B(s) > 0 and N2

B(s) > 0, which imply that pkB(s) ≤ uk ∀ k = 1, 2. Then
by Lemma 5.1 a deviation p1B(s) − ε, p2B(s) − ε by A for ε > 0 guarantees
that all consumers join A. For small enough ε this deviation profit is close
to p1B(s) + p2B(s). If p

k
B(s) ≥ 0 ∀ k = 1, 2, then πB(s) > 0 implies p1B(s) +

p2B(s) > 0, which implies that the above deviation is profitable for small
enough ε. If p2B(s) ≤ 0, then πB(s) > 0 implies N1

B(s) > 0, but then
N2
A(s) > 0 contradicts that every consumer plays a best response in s.

Therefore p2B(s) > 0. If p
1
B(s) < 0 and p

2
B(s) > 0, then N

1
B(s) = 1 since B is

the unique best response in s after the equilibrium price announcements for
side 1 consumers, and therefore p1B(s)+p

2
B(s) ≥ p1B(s)N

1
B(s)+p

2
B(s)N

2
B(s) =

πB(s) > 0. This again implies that the above deviation for A is profitable for
small enough ε, contradicting that s is a Nash equilibrium. This concludes
that pkf (s) ≤ uk ∀ k = 1, 2 and f ∈ {A,B}. Suppose pkA(s) 6= pkB(s) for some
k = 1, 2. W.l.o.g. assume p1A(s) > p1B(s). Then p2A(s) ≤ p2B(s), otherwise
lemma 5.1 implies N1

A(s) = N2
A(s) = 0. Suppose first that N

1
A(s) = N1

B(s) =
0. Then N2

A(s) > 0 and N
2
B(s) > 0. This is only compatible with consumers

being in equilibrium and firms not getting negative profit if p2A(s) = p2B(s) =
0. Then πB(s) = 0. Then by lemma 5.1 a deviation min(u−ε, p1A(s)−ε),−ε
byB for ε > 0 guarantees that all consumers joinA, which for small enough ε
yields positive profit for B, contradicting that s is an equilibrium. Suppose
next that N2

A(s) = N2
B(s) = 0. Then N1

A(s) > 0 and N1
B(s) > 0, which

contradicts that s is a Nash equilibrium, since N2
A(s) = N2

B(s) = 0 and
p1A(s) > p1B(s) implies that given s−1,i B is a better response than A in the
subgame following the equilibrium price announcements for every C1i ∈ C1.
This concludes that N1

k (s) > 0 for some k = A,B and N1
k (s) > 0 for

some k = A,B. But then N1
A(s) ≤ N1

B(s) and N2
A(s) > N2

B(s), otherwise
p1A(s) > p1B(s) and p

2
A(s) ≤ p2B(s) imply that some consumers are not playing

a best response in s. Consider now following two deviations. The first
is (p1B(s) − ε, p2B(s) − ε) by A, and the second is (p1A(s) − ε, p2A(s) − ε)
by B. Since pkf (s) ≤ uk ∀ k = 1, 2 and f ∈ {A,B}, lemma 5.1 implies
that ski (p

1
B(s)− ε, p2B(s)− ε, p1B(s), p

2
B(s)) = A and ski (p

1
A(s), p

2
A(s), p

1
B(s)−

ε, p2B(s)− ε) = B ∀ k = 1, 2 and i ∈ [0, 1]. Then the first deviation yields a
profit p1B(s)+ p2B(s)− 2ε to A, while the second yields p1A(s)+ p2A(s)− 2ε to
B. The sum of these deviation profits is p1A(s)+ p2A(s)+ p1B(s)+ p2B(s)− 4ε.
The sum of the two firms’ equilibrium profits is N1

A(s)p
1
A(s)+N2

A(s)p
2
A(s)+

N1
B(s)p

1
B(s) +N2

B(s)p
2
B(s) ≡ π∗. Note that p1B(s) < 0 implies that N

1
A(s) +

N2
A(s) = 1, since then ∅ is never a best response for any C1i ∈ C1. Similarly,

p2A(s) < 0 implies that N1
B(s) + N2

B(s) = 1. Then by N1
A(s) ≤ N1

B(s),
N2
A(s) > N2

B(s), p
1
A(s) > p1B(s) and p2A(s) ≤ p2B(s) it has to hold that
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N1
A(s)p

1
A(s)+N2

A(s)p
2
A(s)+N1

B(s)p
1
B(s)+N2

B(s)p
2
B(s) <

1
2(p

1
A(s)+ p2A(s)+

p1B(s)+p2B(s)). The left hand side of this inequality is nonnegative (it is the
sum of equilibrium profits), therefore the right hand side is positive, which
implies that also N1

A(s)p
1
A(s) +N2

A(s)p
2
A(s) +N1

B(s)p
1
B(s) +N2

B(s)p
2
B(s) <

p1A(s) + p2A(s) + p1B(s) + p2B(s). But that implies that for small enough ε
the sum of the two deviation profits above is larger than the sum of the two
equilibrium profits, implying that at least one of the deviations is profitable,
a contradiction. This concludes that pkA(s) = pkB(s) ∀ k = 1, 2. Suppose
that πA(s) + πB(s) > 0. W.l.o.g. assume πA(s) ≥ πB(s). Then πB(s) <
p1A(s) + p2A(s) ≤ πA(s) + πB(s) (note that pkA(s) = pkB(s) ∀ k = 1, 2, and
that pkA(s) < 0 implies that Ck

i (s) 6= ∅ ∀ Ck
i ∈ Ck). By lemma 5.1 a

deviation p1A(s)− ε, p2A(s)− ε by B for ε > 0 guarantees that all consumers
join B, which yields a profit of p1A(s) + p2A(s) − 2ε to B. This implies that
the above deviation is profitable for small enough ε, a contradiction. Then
πA(s) + πB(s) ≤ 0 and since equilibrium profits have to be nonnegative,
πA(s) = πB(s) = 0. Suppose p1A(s) + p2A(s) > 0. By lemma 5.1 a deviation
p1A(s)−ε, p2A(s)−ε byB for ε > 0 guarantees that all consumers joinB, which
yields a profit of p1A(s)+ p2A(s)− 2ε to B. But for small enough ε this profit
is positive, which contradicts that πB(s) = 0 and that s is an equilibrium.
This concludes that p1A(s) + p2A(s) ≤ 0. Suppose p1A(s) + p2A(s) < 0. Then
pkA(s) = pkB(s) < 0 for some k = 1, 2. Then Nk

A(s) +Nk
B(s) = 1, since ∅ is

never a best response for any Ck
i ∈ Ck in the subgame after the equilibrium

price announcements. But then min(πA(s), πB(s)) < 0, contradicting that
s is a Nash equilibrium. This concludes that p1A(s) + p2A(s) = 0. If p

k
A(s) =

pkB(s) < 0 for some k = 1, 2, then Nk
A(s) +Nk

B(s) = 1. Then nonnegativity
of equilibrium profits implies that also N−k

A (s) + N−k
B (s) = 1 and that

N1
A(s) = N2

A(s), N
1
B(s) = N2

B(s). If p
1
A(s) = p1B(s) = p2A(s) = p2B(s) =

0, then by lemma 5.2 Nk
A(s) + Nk

B(s) = 1 ∀ k = 1, 2. As shown above,
Nk
A(s) + Nk

B(s) > 0 ∀ k = 1, 2. Then pkA(s) = pkB(s) ∀ k = 1, 2 implies
Nk
A(s) = Nk

B(s) ∀ k = 1, 2. This implies πA(s) = πB(s). If pkA(s) = pkB(s) <
0 for some k = 1, 2, then the above implies that Nk

A(s) = Nk
B(s) = 1/2. Then

p1A(s) + p2A(s) = 0 and nonnegativity of equilibrium profits together imply
that also N−k

A (s) = N−k
B (s) = 1/2. If p1A(s) = p1B(s) = p2A(s) = p2B(s) = 0,

then N j
A(s)+N j

B(s) = 1 ∀ j = 1, 2 and the fact that s is a Nash equilibrium
imply that N j

A(s) = N j
B(s) = 1/2 ∀ j = 1, 2. QED

Proof of Theorem 5: Lemma 5.3 and lemma 5.4 establish that there
are no other coalition perfect equilibria with one or two active firms than
those stated in the claim. All that remains to be shown is that there is no
coalition perfect equilibrium with no active firm.
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Suppose Nk
A(s) + Nk

B(s) = 0 ∀ k = 1, 2. Then πA(s) = πB(s) = 0. If
pkf (s) < 0 for some k = 1, 2 and f = A,B, then Nk

A(s) +Nk
B(s) = 1, since ∅

is a never best response strategy for any Ck
i ∈ Ci, a contradiction. Suppose

now that ∃ k ∈ {A,B} such that pjk(s) ≥ 0 ∀ j = 1, 2 and plj(s) > 0 for
some l ∈ {1, 2}. W.l.o.g. assume p1A(s) > 0 (and p2A(s) ≥ 0). By lemma 5.1
the deviation min(u1 − ε, p1A(s)− ε), min(u2 − ε, p2A(s)− ε) by B for ε > 0
guarantees that every consumer joins B, and it yields strictly positive profit
for small enough ε, a contradiction. If pjk(s) = 0 ∀ j = 1, 2 and k = A,B,
then N j

A(s) +N j
B(s) = 1 ∀ j = 1, 2 by lemma 5.3. This concludes that if s

is a coalition perfect equilibrium, then it cannot be that N j
A(s)+N j

B(s) = 0
∀ j = 1, 2. QED

Proof of Theorem 6 W.l.o.g. assume that k = 1 (the other case is
perfectly symmetric), so u1 < u2.

By Theorem 5 if N1
k (s) +N2

k (s) > 0 for some k ∈ {A,B}, then p1k(s) =
−p2k(s) and plk(s) ≤ ul ∀ l = 1, 2. Furthermore, πA(s) = πB(s) = 0.

Assume N1
A(s) +N2

A(s) > 0 and suppose p
1
A(s) > u1 − u2. Consider the

deviation p1A(s) − u1 − ε, u2 − ε by B for ε > 0. In the subgame following
the deviation B is a strictly dominant strategy for every C1i ∈ C1, therefore
it is the only rationalizable strategy. But then B is the only rationalizable
strategy in the subgame for every C2i ∈ C2 too. Therefore after the above
deviation B’s profit in s is p1A(s) − u1 + u2 − 2ε. Since p1A(s) > u1 − u2,
this profit is strictly positive for small enough ε, contradicting that s is an
equilibrium. A perfectly symmetric argument shows that it cannot be that
N1
B(s) +N2

B(s) > 0 and p1B(s) > u1 − u2. QED

Proof of Theorem 7 Let s be a coalition perfect equilibrium.
Suppose first thatN j

k(s) = 0 for some j ∈ {1, 2} and k ∈ {A,B}. W.l.o.g.
assume k = A and j = 1. Then either N1

A(s) = N2
A(s) = 0 or N2

A(s) > 0
and p1A(s) = 0. In either case πA = 0 and then by the starting assumption
πB(s) > 0. Let bC = {Cj

i : c
j
i (s) = B}. Note that pjB(s) < 0 for some

j ∈ {1, 2} implies that Cj ⊂ bC. Consider now deviation (p1B(s)−ε, p2B(s)−ε)
for ε > 0 by A. Similar arguments as in Lemma 5.1 establish that in
the subgame after this deviation A is the unique coalitionally rationalizable
strategy for every Cj

i ∈ bC. But then for small enough ε the deviation is
profitable, a contradiction. Therefore N j

k(s) > 0 ∀ j ∈ {1, 2} and k ∈
{A,B}.

If pjA(s) > pjB(s) ∀ j = 1, 2 then similar arguments as in 5.1 establish
that N1

A(s)+N2
A(s) = 0, contradicting the above result. Similarly it cannot
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be that pjA(s) < pjB(s) ∀ j = 1, 2.
Consider now pjA(s) = pjB(s) ∀ j = 1, 2. Let bC = {Cj

i : c
j
i (s) 6= ∅}. There

exists k ∈ {A,B} such that πk(s) ≤ (π1(s)+ π2(s))/2 > 0. W.l.o.g. assume
k = A. Consider deviation (p1B(s) − ε, p2B(s) − ε) by A. Similar arguments
as in Lemma 5.1 establish that in the subgame after this deviation A is the
unique coalitionally rationalizable strategy for every Cj

i ∈ bC. Therefore if ε
is small enough then after this deviation A’s profit is larger than (π1(s) +
π2(s))/2 (note that p

j
B(s) < 0 for some j = 1, 2 implies that Cj ⊂ bC), a

contradiction.
Finally, notice that if pjA(s) ≤ pjB(s) for some j ∈ {1, 2}, then N

j
B(s) > 0

and the assumption that s is a Nash equilibrium imply that N3−j
B (s) ≥

N3−j
A (s). If pjA(s) < pjB(s) for some j ∈ {1, 2}, then N j

B(s) > 0 and the as-
sumption that s is a Nash equilibrium imply that N3−j

B (s) > N3−j
A (s). Sim-

ilarly if pjB(s) ≤ pjA(s) (correspondingly p
j
B(s) < pjA(s)) for some j ∈ {1, 2},

then N3−j
B (s) ≤ N3−j

A (s) (correspondingly N3−j
B (s) < N3−j

A (s)). QED

Lemma 8.1 Let Gc = (C,Sc, uc) be the subgame following price an-
nouncements (p1A, p

2
A, p

1
B, p

2
B). If p

j
A < pjB ∀ j = 1, 2 then B is not coali-

tionally rationalizable in Gc for any Cj
i ∈ C. Furthermore, if A is ratio-

nalizable for some Cj
i ∈ C in a subgame following price announcements

(q1A, q
2
A, p

1
B, p

2
B) where q

1
A > p1A and q2A > p2A then A is the unique coalition-

ally rationalizable strategy in Gc for Cj
i .

Similarly if pjB < pjA ∀ j = 1, 2 then A is not coalitionally rationalizable
in Gc for any Cj

i ∈ C. Furthermore, if B is rationalizable for some Cj
i ∈ C

in a subgame following price announcements (p1A, p
2
A, q

1
B, q

2
B) where q

1
B > p1B

and q2B > p2B then B is the unique coalitionally rationalizable strategy in Gc

for Cj
i .
Proof of Lemma 8.1 Analogous to the proof of Lemma 5.1, therefore

ommitted.
Proof of Theorem 8 Let ∆ = min(

supk u
1
k

infj,k u
1
k
,
supk u

2
k

infj,k u
2
k
) and let s be a

coalition perfect equilibrium. By the starting assumption ∆ ≤ 4/3. Assume
the theorem does not hold for s. Then by Theorem 7 ∃ j ∈ {1, 2} such that
pjA(s) < pjB(s), N

j
A(s) ≥ N j

B(s) and p−jA (s) ≥ p−jB (s), N
−j
A (s) < N−j

B (s).
For every j ∈ {1, 2} let infk ujk ≡ lj . If pjk(s) ≤ lj ∀ k ∈ {A,B} and
j ∈ {1, 2} then an analogous proof to the proof of Lemma 5.4 establishes
that there is a profitable deviation for at least one firm, contradicting that s
is a coalition perfect equilibrium. The same holds if pjk(s) ≥ 0 ∀ k ∈ {A,B}
and j ∈ {1, 2}. It is straightforward to show that it cannot be that for some
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k ∈ {A,B} it holds that pjk(s) > lj ∀ j ∈ {1, 2}. Below we consider the
remaining possibilities. Consider first the case that for some k ∈ {A,B}
and j ∈ {1, 2} it holds that pjk(s) > lj , p−jk (s) < 0 and 0 ≤ p1−k(s), p

2
−k(s).

Since supk u
j
k ≤ ∆lj ≤ 4

3 l
j and pjk(s) > lj , for N j

k(s) > 0 it has to be
that N−j

k (s) > 3
4 . Furthermore, p

j
k(s) > pj−k(s) implies N

j
k(s) ≤ 1

2 , and

supk u
j
k ≤ ∆lj ≤ 4

3 l
j implies pjk(s) <

4
3 l
j . Therefore πk(s) ≤ 2

3 l
j + 3

4p
−j
k (s).

Then πk(s) ≥ 0 implies lj + p−jk (s) >
2
3 l
j + 3

4p
−j
k (s) and therefore πk(s) <

lj+p−jk (s). But note that−k can get a profit arbitrarily close to lj+p
−j
k (s) by

deviating to price announcements (lj − ε, p−jk (s)− ε) for small enough ε > 0
(since by Lemma 8.1 after that price announcement all consumers join B).
So if π−k(s) ≤ πk(s) then −k has a profitable deviation from s. On the other
hand note that k can get a profit arbitrarily close to lj+p−jk (s) by deviating
to price announcements (p1−k(s)− ε, p2−k(s)− ε) for small enough ε > 0. So
if π−k(s) > πk(s) then k has a profitable deviation from s. This concludes
that s cannot be a coalition perfect equilibrium, a contradiction. Consider
now the case that for some k ∈ {A,B} and j, h ∈ {1, 2} it holds that
pjk(s) > lj and 0 > ph−k(s). Just like in the previous case, it has to be that
N−j
k (s) > 3

4 and therefore N
−j
−k(s) <

1
4 . Then supk u

j
k ≤ ∆lj ≤ 4

3 l
j implies

pj−k(s) <
1
3 l
j . Then 0 > ph−k(s) and

4
3 l
j > p−h−k(s) imply that π−k(s) <

1
3 l
j .

Since N j
k(s) ≤ 1

2 and pjk(s) ≤ 4
3 l
jN−j

k (s) and πk(s) ≥ 0, it holds that
2
3 l
jN−j

k (s) + p−jk (s)N
−j
k (s) ≥ 0, therefore p−jk (s) ≥ −23 lj . Therefore lj +

p−jk (s) ≥ 1
3 l
j . But note that −k can get a profit arbirarily close to lj+p−jk (s)

by deviating to price announcement (lj − ε, p−jk (s) − ε) for small enough
ε > 0. This concludes that s cannot be a coalition perfect equilibrium, a
contradiction. QED
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