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Abstract

First order autoregression is shown to satisfy a limit theory which is uniform over
stationary values of the autoregressive coefficient ρ = ρn ∈ [0, 1) provided (1− ρn)n→
∞. This extends existing Gaussian limit theory by allowing for values of stationary ρ
that include neighbourhoods of unity provided they are wider than O

¡
n−1

¢
, even by a

slowly varying factor. Rates of convergence depend on ρ and are at least
√
n but less

than n. Only second moments are assumed, as in the case of stationary autoregression
with fixed ρ.
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1 Introduction

In pioneering work on limit theory for autoregressions, Mann and Wald (1943) showed
consistency and asymptotic normality of least squares regression in stationary models. An-
derson (1959) confirmed that these results hold in scalar models under weaker conditions
requiring only second moments. Lai and Wei (1982) extended the results further to stochas-
tic regression models with martingale difference errrors having homoscedastic variance and
moments of order greater than two. In contrast, it is well known that in unit root autore-
gressions (White, 1958) and in models whose roots are local to unity (Phillips, 1987; Chan
and Wei, 1987) the limit distribution is non-Gaussian and involves functionals of stochastic
processes.

The present note shows that in stationary regions that are further removed from unity
than O

¡
n−1

¢
for samples of size n the Gaussian limit theory still applies. In particular,

in first order autoregression a Gaussian limit theory holds uniformly over stationary values
of the autoregressive coefficient ρ = ρn ∈ [0, 1) which includes local vicinities of unity that
satisfy (1− ρn)n →∞. Thus, even for ρn = 1− Ln/n where Ln →∞ is slowly varying at
infinity the usual Gaussian limit theory applies. Rates of convergence depend on ρn and are
at least

√
n but less than n. Only second moments are assumed, as in the case of stationary

autoregression with fixed ρ.
The results given here provide a supplement to those of Lai and Wei (1982). Theorem 3

of Lai and Wei gives the asymptotic normality of a suitably standardized and centred least
squares estimator in regression models with stochastic regressors under known conditions
that enable the use of a standard martingale CLT. These conditions, which need to be
checked in individual cases, involve a stability condition on the sample variance of the
regressors, a uniform negligibility condition on the standardized regressors and uniform
error moments of order greater than two. The present work provides a direct proof of
asymptotic normality under primitive conditions on ρn and the errors in an autoregression,
allowing for roots in the vicinity of unity of the form ρn. These conditions appear to be
near minimal for Gaussianity in an autoregression. Our proof of asymptotic normality uses
an asymptotic truncation argument and a martingale CLT that applies when only second
moments are finite.

2 Main results

We consider the model
yt = ρnyt−1 + ut, t = 1, ...n (2.1)

where ut, t ∈ Z+ is a stationary and ergodic martingale difference sequence with respect to
the natural filtration Ft−1 = σ (ut−1, ut−1,...) with finite conditional variance E(u2t |Ft−1) =
σ2 a.s. and initialization y0.

The coefficient ρ is fitted least squares, giving the estimator ρ̂ =
Pn

j=1 ytyt−1/
Pn

j=1 y
2
t−1,

and

ρ̂− ρn =

Pn
j=1 utyt−1Pn
j=1 y

2
t−1

. (2.2)

The following conditions are imposed on ρn and ut throughout the remainder of the paper.
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A.1. ρn ∈ [0, 1) may depend on n and is such that vn = 1− ρn has property

vnn→∞. (2.3)

A.2. y0 is independent of {ut : t = 1, 2, ...} and

Ey0
2 = o(n1/2). (2.4)

Note that distribution of ut does not depend on n.

Theorem 2.1 Under A.1-A.2,

n1/2

(1− ρ2n)
1/2
(ρ̂− ρn)⇒ N(0, 1). (2.5)

and
n1/2

|1− ρ̂2|1/2 (ρ̂− ρn)⇒ N(0, 1). (2.6)

In both cases the limit distribution is Gaussian uniformly in ρn satisfying A1, although
the convergence rate depends directly on how close ρn is to unity. The asymptotic distri-
bution of the sample mean of yt is similarly Gaussian, again with convergence rate that
depends on ρn.

In what follows, ⇒ denotes convergence in distribution and →p convergence in proba-
bility.

Theorem 2.2 Under A.1-A.2,

(1− ρn)

n1/2

nX
t=1

yt ⇒ N(0, σ2). (2.7)

and

[(1− ρn)/(1 + ρn)]
1/2

Pn
t=1 yt¡Pn

t=1 y
2
t

¢1/2 ⇒ N(0, 1). (2.8)

The proofs use the following lemmas.

Lemma 2.1
(1− ρ2n)

1/2

n1/2

nX
t=1

utyt−1 ⇒ N(0, σ4). (2.9)

Lemma 2.2
1− ρ2n
n

nX
t=1

y2t−1 →p σ
2. (2.10)

Result (2.10) proves the ‘stability’ condition which Lai and Wei (1982, theorem 3, con-
dition (4.2)) use for their limit theory corresponding to (2.5).
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3 Proofs

Proof of Theorem 2.1. The convergence (2.5) follows from Lemmas 2.2 and 2.1. To
prove (2.6), note from (2.5) that

ρ̂− ρn = OP (v
1/2
n n−1/2) = oP (vn),

since n−1 = o(vn) by (2.3). Thus

|1− ρ̂|−1/2 = |1− ρn + oP (vn)|−1/2 = |1− ρn|−1/2|1 + oP (vn)|−1/2.
This and (2.5) imply (2.6).

Proof of Lemma 2.1. Denote by ζt = v
1/2
n n−1/2utyt−1 the sequence of martingale

differences with respect to the sigma algebra Ft−1 generated by u1, ..., ut−1. Recall that
vn = 1− ρn.

a) We first prove convergence (2.9) in the case where fourth moments are finite: Eu4t <
∞ and Ey40 <∞. It suffices to show that, as n→∞,

(1 + ρn)
nX
t=1

E[ζ2t |Ft−1]→p σ
4, (3.1)

and
nX
t=1

E[|ζt|21{|ζt|≥δ}|Ft−1]→p 0, (3.2)

for all δ > 0, which in turn implies the convergence

(1 + ρn)
1/2

nX
t=1

ζt ⇒ N(0, σ4)

and yields (2.9). We note that (3.2) corresponds to the uniform negligibility condition used
by Lai and Wei (1982, condition (4.3)). To check (3.1), we show that

(1 + ρn)
nX
t=1

Eζ2t → σ4, (3.3)

and

E
³ nX
t=1

E[(ζ2t −Eζ2t )|Ft−1]
´2 → 0. (3.4)

Since
E[ζ2t |Ft−1] = (vn/n)E[u2t y2t−1|Ft−1] = (vn/n)σ2y2t−1,

where vn = 1− ρn, we have

(1 + ρn)E
nX
t=1

E[ζ2t |Ft−1] = (1− ρ2n)n
−1

nX
t=1

σ2E[y2t−1]→ σ4

by Lemma 3.1 below.
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To show (3.4) note that E[(ζ2t −Eζ2t )|Ft−1] = σ2(vn/n)(y
2
t−1−Ey2t−1), t = 1, 2, .... Then,

using C to denote a generic constant in what follows, we have by Lemma 3.2 below

Ey4t−1 ≤ Cv−2n , (3.5)

and therefore

E
³ nX
t=1

E[(ζ2t −Eζ2t )|Ft−1]
´2
= v2nn

−2
nX

t,s=1

E[(u2t − σ2)(u2s − σ2)]E[y2t−1y
2
s−1]

= v2nn
−2

nX
t=1

E[(u2t − σ2)2]E[y4t−1]

≤ Cv2nn
−2

nX
t=1

(1− ρn)
−2 ≤ Cn−1 → 0,

proving (3.4).
Finally, to show (3.2), note that by (3.5),

qn := E
nX
t=1

E[|ζt|21{|ζt|≥δ}|Ft−1] ≤ δ−2
nX
t=1

E|ζt|4 ≤ Cδ−2v2nn
−2

nX
t=1

E|yt−1|4 ≤ Cn−1 → 0.

(3.6)
b) Suppose now that either or both of Eu41 =∞ and Ey40 =∞ apply. Let K > 0 be a

fixed constant. Set

u
(1)
t = ut1(|ut| ≤ K)−E[ut1(|ut| ≤ K)|Ft−1], u

(2)
t = ut1(|ut| > K)−E[ut1(|ut| > K)|Ft−1],

y
(1)
0 = y01(|y0| ≤ K)−E[y01(|y0| ≤ K)|Ft−1], y

(2)
0 = y01(|y0| > K)−E[y01(|y0| > K|Ft−1],

and then by recursion define

y
(1)
t = ρny

(1)
t−1 + u

(1)
t , y

(2)
t = ρny

(2)
t−1 + u

(2)
t , t = 1, 2, ...

Note that

E[ut1(|ut| ≤ K)|Ft−1] +E[ut1(|ut| > K)|Ft−1] = E[ut|Ft−1] = 0

and therefore y(1)t + y
(2)
t = yt, t = 0, 1, 2, ... . Moreover, the random variables u(j)t and y

(j)
0

satisfy A.2 when j = 1, 2. Then we can write

nX
t=1

utyt−1 =
nX
t=1

u
(1)
t y

(1)
t−1 +

nX
t=1

u
(2)
t y

(1)
t−1 +

nX
t=1

uty
(2)
t−1

=: Sn,1 + Sn,2 + Sn,3.

Since y(1)t is a sequence of martingale differences, by part a) we have,

(1− ρ2n)
1/2n−1/2Sn,1 ⇒ N(0, σ4K), (3.7)
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where
σ2K = E(u

(1)
t )

2 = Eu2t 1(|ut| ≤ K)→ σ2 = Eu2t ,

as K →∞. We show that for l = 2, 3, uniformly in n ≥ 1,
(1− ρ2n)n

−1ES2n,l ≤ δK , (3.8)

where δK → 0 as K →∞ which together with (3.7) proves convergence (2.9) in case b).
Set δK = E(u

(2)
t )

2. Note that

δK → 0, as K →∞. (3.9)

By Lemma 3.1,
nX
t=1

E(y
(1)
t−1)

2 ≤ Cnv−1n ,
nX
t=1

E(y
(2)
t−1)

2 ≤ CδKnv
−1
n

where C does not depend on n,K. Thus, since u(2)t y
(1)
t−1 and uty

(2)
t−1 are uncorrelated se-

quences,

ES2n,2 +ES2n,3 ≤
nX
t=1

[E(u
(2)
t )

2E(y
(1)
t−1)

2 +Eu2tE(y
(2)
t−1)

2]

≤ CδK2nv
−1
n ,

which, together with (3.9), implies (3.8).

Proof of Lemma 2.2. Since yt = ρnyt−1 + ut we can write

nX
t=1

y2t = ρ2n

nX
t=1

y2t−1 + 2ρn
nX
t=1

yt−1ut +
nX
t=1

u2t .

Thus
nX
t=1

y2t−1 = (1− ρ2n)
−1
³
−y2n + y20 + 2ρn

nX
t=1

yt−1ut +
nX
t=1

u2t

´
. (3.10)

By Lemma 2.1,

Zn := (1− ρ2n)
1/2n−1/2

nX
t=1

yt−1ut ⇒ N(0, σ4).

Moreover, because ut is an ergodic sequence with a finite second moment σ2, we have

nX
t=1

u2t = nσ2 +
nX
t=1

(u2t − σ2) = nσ2 + oP (n).

Therefore
nX
t=1

y2t−1 = (1− ρ2n)
−1
³
−y2n + y20 + 2ρn(1− ρ2n)

−1/2n1/2Zn + nσ2 + oP (n)
´

= (1− ρ2n)
−1n

³
−n−1(y2n − y20) + 2ρn((1− ρ2n)n)

−1/2Zn + σ2 + oP (1))
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= (1− ρ2n)
−1n(σ2 + oP (1)),

because (1−ρ2n)n→∞ by assumption (2.3), and therefore ((1−ρ2n)n)−1/2Zn →p 0, whereas

n−1y2n = OP ((nvn)
−1)→p 0,

by (3.12), and n−1y20 →p 0 by Assumption A.2, proving (2.10).

Proof of Theorem 2.2. We can write
Pn

t=1 yt = ρn
Pn

t=1 yt−1 +
Pn

t=1 ut. Thus

nX
t=1

yt−1 = (1− ρn)
−1
³
−yn + y0 +

nX
t=1

ut

´
(3.11)

= (1− ρn)
−1n1/2

³
(y0 − yn)n

−1/2 + n−1/2
nX
t=1

ut

´
.

Then

(1− ρn)n
−1/2

nX
t=1

yt = (y0 − yn)n
−1/2 + n−1/2

nX
t=1

ut.

Since ut is a martingale difference sequence with Eu2t <∞,

n−1/2
nX
t=1

ut ⇒ N(0, 1).

By A.2, n−1/2E|y0| = o(1). Writing

yt = ρnyt−1 + ut = ρ2nyt−2 + ρnut−1 + ut = ρtny0 +
t−1X
j=0

ρjnut−j ,

we have

n−1/2E|yt| = n−1/2E
¯̄̄
ρtny0 +

t−1X
j=0

ρjnut−j
¯̄̄

≤ n−1/2E|y0|+ n−1/2
³
E
³ t−1X
j=0

ρjnut−j
´2´1/2 ≤ o(1) + n−1/2

³t−1X
j=0

ρ2jn Eu2t−j
´1/2

≤ o(1) + Cn−1/2(1− ρ2n)
−1/2 ≤ o(1) + C(nvn)

−1/2 = o(1),

by (2.3). Thus n−1/2(y0 − yn) →p 0 and

(1− ρn)n
−1/2

nX
t=1

yt = oP (1) + n−1/2
nX
t=1

ut ⇒ N(0, σ2),

proving (2.7). Finally, (2.8) follows from (2.7) and Lemma 2.2.
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Lemma 3.1 Suppose A.1-A.2 hold. Then

Ey2n ≤ C(1− ρn)
−1, (3.12)

where C does not depend on ρn. Further,

(1− ρ2n)n
−1

n−1X
j=0

Ey2j = σ2 + o(1). (3.13)

Proof of Lemma 3.1. Since Eysut = 0 for t > s, by (2.1), for t ≥ 1

Ey2t = ρ2nEy
2
t−1 +Eu2t = ρ2nEy

2
t−1 + σ2 = ρ4nEy

2
t−2 + (ρ

2
n + ρ0n)σ

2

= ρ2tn Ey
2
0 + (ρ

2(t−1)
n + ...+ ρ0n)σ

2 = ρ2tn Ey
2
0 +

1− ρ2tn
1− ρ2n

σ2, (3.14)

by virtue of the sum

ρ2(t−1)n + ...+ ρ0n =
1− ρ2tn
1− ρ2n

.

Note that inequality log(1− v) ≤ −v (0 ≤ v < 1) implies that

ρnn = exp(n log ρn) = exp(n log(1− vn)) ≤ exp(−nvn) ≤ (vnn)−1 → 0, (3.15)

since nvn → ∞ by (2.10). Since 0 ≤ ρn < 1 and, under A.1 and A.2, ρ2nn Ey20 ≤
C(vn)−1Ey20 = o(v−1n ), it follows that (3.14) implies (3.12).

To show (3.13), note that

(1− ρ2n)n
−1

n−1X
j=0

Ey2j = (1− ρ2n)n
−1
³1− ρ2nn
1− ρ2n

Ey20 + σ2
1

1− ρ2n
(n− 1− ρ2nn

1− ρ2n
)
´

= o(1) + σ2,

by virtue of the assumption Ey20 = o(n1/2), to prove (3.13).

Lemma 3.2 Suppose Eu4t <∞, Ey40 <∞. Then

Ey2t ≤ C(1− ρn)
−1, (3.16)

Ey4t ≤ C(1− ρn)
−2, t = 1, 2, ... (3.17)

uniformly in 0 ≤ ρn < 1 and t.

Proof of Lemma 3.2. Since Ey20 <∞, (3.16) follows from (3.14).
By (2.1),

Ey4t = E(ρnyt−1 + ut)
4 = E(ρ2ny

2
t−1 + 2ρnyt−1ut + u2t )

2

= E(ρ2ny
2
t−1 + σ2 + [2ρnyt−1ut + u2t − σ2])2 = E(ρ2ny

2
t−1 + σ2)2 +E(2ρnyt−1ut + u2t − σ2)2

= ρ4nEy
4
t−1 + 2ρ

2
nEy

2
t−1σ

2 + σ4 + 4ρ2nEy
2
t−1Eu

2
t + 4ρnEyt−1Eu

3
t +E(u2t − σ2)2
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≤ ρ4nEy
4
t−1 +C(Ey2t−1 + |Eyt−1|+ 1),

for some C > 0 since ρn < 1. Since by (3.16), Ey2t ≤ C/(1− ρn), then

Ey2t−1 + |Eyt−1|+ 1 ≤ C/(1− ρn)

uniformly in ρn, and

Ey4t ≤ C(ρ4tn +
tX

j=1

ρ4(j−1)n (1− ρ2n)
−1) ≤ C(ρ4tn + (1− ρ4n)

−1(1− ρ2n)
−1)

≤ C(1 + (1− ρn)
−2) ≤ C(1− ρn)

−2

proving (3.17).

Acknowledgements

Giraitis thanks the ESRC for research support under Grant R000239538. Phillips thanks
the NSF for research support under Grant SES 04-142254.

References

Anderson, T.W. (1959) On Asymptotic Distributions of Estimates of Parameters of
Stochastic Difference Equations Annals of Mathematical Statistics 30, 676-687.

Chan, N. H. andWei, C. Z. (1987) Asymptotic inference for nearly nonstationary AR(1)
processes. Annals of Statistics 15, 1050—1063.

Lai, T. L. andWei, C. Z. (1982) Least squares estimates in stochastic regression models
with applications to identification and control of dynamic systems. Annals of Statistics
10, 154—166.

Mann, H. B. and Wald, A. (1943) On the statistical treatment of linear stochastic
difference equations. Econometrica 11, 173-220.

Phillips, P. C. B. (1987) Towards a unified asymptotic theory for autoregression. Bio-
metrika 74, 535—547.

White, J. S. (1958) The limiting distribution of the serial correlation coefficient in the
explosive case. Annals of Mathematical Statistics 29, 1188—1197.

9


