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Abstract

We discuss some challenges presented by trending data in time series econo-
metrics. To the empirical economist there is little guidance from theory about
the source of trend behavior and even less guidance about practical formula-
tions. Moreover, recent proximity theorems reveal that trends are more elusive
to model empirically than stationary processes, with the upshot that optimal
forecasts are also harder to estimate when the data involve trends. These limi-
tations are implicitly acknowledged in much practical modeling and forecasting
work, where adaptive methods are often used to help keep models on track as
trends evolve. The paper discusses these broader issues and limitations of econo-
metrics and offers some thoughts on new practical possibilities for data analysis
in the absence of good theory models for trends. In particular, a new concept of
coordinate cointegration is introduced and some new econometric methodology
is suggested for analyzing trends and comovement and for producing forecasts
in a general way that is agnostic about the specific nature of the trend process.
Some simulation exercises are conducted and some long historical series on prices
and yields on long securities are used to illustrate the methods.
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rank regression, coordinate trend functions, limitations of econometrics, nonsta-
tionarity, trend.
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“It is like giving the play of Hamlet without Hamlet to eliminate the
secular trends of i and P from a study of long term relationships in which
these very secular trends are most important and dominant influences.”
Irving Fisher (1930, p.432)

1 Introduction

A distinguishing characteristic of most economic time series is trending behavior.
Such time series often behave either in a wandering manner with long and erratic
cycles (as in the case of interest rates and stock prices) or as if they were influenced
by some secular drift over time (like many national income components). Much of
modern time series econometrics is concerned with the statistical analysis of such
properties, including the possible interconnectedness of the trends across different se-
ries. In spite of many decades of research in fields like monetary theory and economic
growth, economics provides little guidance about the source of such trends and even
less guidance concerning suitable formulations for practical work. Indeed, trend for-
mulations that appear in economic theory models are often based on mathematical
convenience and/or an appeal to some broadly acknowledged steady state character-
istic, including the so-called ‘great ratios of macroeconomics’. Such characteristics
are themselves often based on simple long run data averages and reflect in a primitive
way some commonality in the trending behavior of multiple series.

In practice, therefore, while many economists see trends in the data, the econo-
metric modeling of such trends is a much more difficult task. It is also a task where
failure has major implications in forecasting. The trend is often regarded as a dom-
inant feature of the data (as in the headnote citation of Irving Fisher leading the
article) and if the trend mechanism is poorly captured in an empirical model, we
can expect forecasts from the model to carry forward the poor approximation. In
practical work we are very accustomed to this phenomenon – as the forecast horizon
is extended and observations are subsequently collected and calibrated against the
forecasts, the data drift steadily away from the given model. In short, one of the
laws of modern time series econometrics (Phillips, 2003) is that ‘no one understands
trends, but everyone sees them in the data’.

Fig. 1 graphs yields on long securities and logarithms of producer prices in the
UK over 1720-2002. The figure is split into two periods, the first panel showing 1720-
1939 and the second 1940-2002. These series show a remarkable commonality in their
movement over this long historical period. Especially over 1720-1939, there are long
subperiods in these two centuries where the series rise and fall together over time.
This empirical phenomenon has long been noted. In his Treatise on Money, Keynes
(1930) described the apparent co-movement as

‘ one of the most completely established empirical facts within the
whole field of quantitative economics, though theoretical economists have
mostly ignored it’. Keynes (1930, p. 198)
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Figure 1: UK Producer Prices and Long Security Yields 1720-2002

Keynes, Irving Fisher (1930) and many others since have put forward many possi-
ble theoretical explanations of the phenomenon. All explanations share the common
ground that the phenomenon is dynamic. Economists agree that high price levels
and high interest rate levels may well be associated, as they appear to be in Fig. 1,
but they also agree that interest rates are not high because prices are at a high level
and vice versa. It is, instead, the transitions between the levels that are important.
As Fisher explained it,

“ at the peak of prices, interest is high, not because the price level is
high, but because it has been rising and, at the valley of prices, interest
is low, not because the price level is low, but because it has been falling”.
Fisher (1930, p. 441)

Fisher noted the trending behavior of these series and considered the trends to
be a vital element in their relationship. Over 1720 - 1939 the series appear to trend
together in a systematic way. Since 1940, prices have risen persistently, but at very
different rates of inflation over subperiods, whereas yields have both risen (to the mid
1970’s) and fallen. Recent inflation targeting and cash rate management policies of
the Bank of England and other monetary authorities give good reason to expect some
change in the relationship between these variables, leading to stronger links between
inflation and yields. Both empirical and institutional evidence therefore indicate that
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the long run historical relationship between prices and rates may have altered since
1940. This is a matter than can be tested empirically.

A primary limitation of empirical econometric work is that the true model for
such data is unknown and probably unknowable. In the present case, modeling the
apparent trending behavior is particularly difficult, more so because the trends seem
to consist of long cycles of upswings and downswings punctuated by subperiods in
which the movement is in different directions. A remarkable feature of commonality
of the series over the period 1720-1939 is that the co-movement appears to include
much of the subperiod behavior as well as the longer lived trends, a matter on which
we will comment further below.

The present paper discusses the challenge presented by trending data when, as
in the example just outlined, there is little guidance from theory about the source
and nature of the trending behavior. In such cases, it is possible to represent the
trend in terms of coordinate functions that capture both trend and cyclical behavior.
Using this agnostic coordinate function approach, it is possible to analyze series co-
movement such as that observed above between yields and prices. We present some
new methods for doing so and discuss some recent research on the limitations of
modeling and forecasting with trending data.

2 No One Understands Trends

The absence of a rich theoretical framework for modeling trends partly explains the
rather impoverished class of trend formulations that appear in applied econometric
work. The most commonly used models are polynomial time trends, simple trend
break polynomials, and stochastic trends, which include unit root models, near unit
root models and fractional processes. Occasionally, nonparametric trend specifica-
tions are used. These models are often stated in a components format as Xt = kt+ut
(t = 1, .., n), where Xt is the observed process, the component ut is commonly taken
to be stationary (or a heterogeneous short memory process) and kt is the ‘trend’
process. No encompassing definition of the latter has yet been developed in the
literature. Instead, it is customary in econometrics to work with specific formula-
tions, which generally fall within the models just listed, and to assume that these
are sufficiently general to include the true process. Another practice that is popular
in applied econometric work is the use of smoothing filters to extract the trend and
then proceed to analyze the residual time series.

The trend process kt is often regarded as the component about which short or
medium run fluctuations (like business cycles) occur. It may therefore be character-
ized in the frequency domain in terms of its (dominating) low frequency behavior.
To ensure a convenient level of generality, it is possible to employ a definition that
characterizes this dominating behavior in terms of the order of magnitude of the
discrete Fourier transform (dft) of kt as the sample size n → ∞. Write the dft as
wk (λ) = (2πn)−1/2

Pn
t=1 kte

itλ and let the fundamental frequencies be λs = 2πs/n
(s = 1, ..., n). Then, if kt is a regularly varying function at infinity of the form µtα
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for some α > 0 (representing a deterministic power function trend), we find that

wk (λs) =
µ

eiλs − 1
nα√
2πn

[1 + o (1)] = Op

Ã
nα+1/2

s

!
, as n→∞.

(Lemma A of Corbae, Ouliaris and Phillips, 2002). Or, if there is both power function
drift and integration (of possibly fractional order d > 1/2) in the trend process
kt = µtα + k0t , where k

0
t = (1− L)−d ut and L is the lag operator, then

wk (λs) ' µ

eiλs − 1
nα√
2πn

+
1

(1− eiλs)
d
wu (λs)−

eiλs

1− eiλs
k0n√
2πn

(1)

= Op

³
λ−1s nα−1/2

´
+Op(λ

−d
s ) +Op(λ

−1
s nd−1).

(Lemma A7 of Phillips and Shimotsu, 2004). In such cases as these, the dft of kt has
the general form

wk (λs) = Op

µ
nβ

sγ

¶
, for some β >

1

2
, γ ∈ (0, 1] (2)

uniformly for s = 1, ...,m, where m = o (n) , the latter condition focusing attention
on low frequency behavior as n→∞. The limit behavior as n→∞ may be given for
both the trend process and its dft. For instance, under certain regularity conditions,
we will have asymptotic behavior of the form

n−max(α,d−1/2)k[nr]
d→ k (r) = µrα1{α≥d−1/2} +Bd−1 (r)1{α≤d−1/2}, (3)

where Bd−1 is fractional Brownian motion, where [] represents the integer part of the
argument and where r ∈ [0, 1]; and if s is fixed as n→∞, the dft behaves as follows

n−max(α+1/2,d)wk (λs)
d→ (2π)−1/2

Z 1

0
e2πisrBd−1 (r) dr1{α≤d−1/2} +

1{α≥d−1/2}

(2π)3/2 s
,

(Theorem 3.7c of Phillips, 1999). Limit (3) indicates that a central characteristic of
trend is that trajectory behavior present in kt=[nr] persists in the limit as the sample
size n → ∞. In particular, upon standardization by a suitable function of n, where
that function itself depends on the nature of the trend process, the trajectories in
the data converge to limiting random functions with properties analogous to those
in the data. Thus, in the case above, rα and Bd−1 (r) are determinstic and random
functions, respectively, on the space L2 [0, 1] of square integrable functions on the
interval [0, 1] , whereas tα and k0t = (1− L)−d ut are deterministic and stochastic
trends on the real line R.

When the focus is on trend elimination (for instance, in the extraction of the
cyclical component of a series for the study of business cycles), smoothing methods
are common. The most prominent of these is based on ideas developed originally by
Whittaker (1923) on smoothing filters for graduating time series and his method has
become commonly known in macroeconomics as the Hodrick-Prescott filter following
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work by Hodrick-Prescott (1997) that utilized these techniques with macroeconomic
data. These and other methods like spline smoothing (Schoenberg, 1964; Wahba,
1978) and band-pass filtering (Baxter and King, 1999; Corbae, Ouliaris and Phillips,
2003) all provide practical mechanisms for dealing with trends in data. But it is
unrealistic to pretend that these formulations and filters explain the process by which
trends actually occur in the real world. In short, no one really understands trends,
even though most of us see trends when we look at economic data.

One nearly universal consequence of trends in the data is an empirical regression
phenomena called ‘spurious regression’. In effect, any trend function that we pos-
tulate in an econometric specification will turn out to be statistically significant in
large samples provided the data do in fact have a trend, whether it is of the same
form as that specified in the empirical regression or belongs to a general alternative
such as (2). The history of this subject has early beginnings dating back to the for-
mal discussion by Yule (1926) and beyond. Over the last two decades, the case of
multivariate regression of unit root processes (including independent random walks)
was analyzed in Phillips (1986) and that of polynomial trends fitted to stochastic
trends by Durlauf and Phillips (1988). In both cases, the fitted regression coefficients
turn out to be statistically significant with probability one asymptotically and this is
true even when robust standard errors that account for residual autocorrelation are
used to assess significance (Phillips, 1998). Some related results have been shown to
hold for trend breaks, fractional processes and regressions among such variables (e.g.,
Nunes et al., 1995; Bai, 1998; Marmol, 1995, 1996, 1998; Tsay and Chung, 2000) even
when they are stochastically independent, the latter being the phenomenon originally
examined in simulations by Granger and Newbold (1974).

The nomenclature ‘spurious regression’ carries a pejorative connotation and em-
pirical researchers are usually anxious to avoid such specifications and to show that
fitted relationships are validated by some process such as cointegration testing. Of
course, even when cointegration between series is empirically validated, the issue of
modeling the common trend in the series usually remains, or it is dealt with only by
indirect means, e.g., by fitting a reduced rank regression with some unit roots and
possibly a drift.

In his early studies of the correlation between interest rates and prices, Fisher
(1930) recognized these potential difficulties, arguing that

“it is necessary to guard against the possibility that these coefficients
are of the familiar nonsense type, and are spuriously high because of the
presence of secular trend [Fisher’s emphasis] forces that affect both P and
i. Fisher (1930, p. 431)

While acknowledging that for these variables ‘it is rather doubtful that trend forces
are involved which should be eliminated’, Fisher extracted both linear and quadratic
trends over subperiods of the data (effectively performing a trend break analysis of
the data) and took correlations of the residuals, finding results that were ‘interesting
and amazing’ giving correlations between the series that were still significantly high,
corroborating co-movement of interest rates and prices. Fisher concluded:
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“The elimination of the secular trends from the comparisons makes
the relationship of i and P depend solely upon the similarity of fluctu-
ations in the shorter or cyclical periods. Even without Hamlet the play
proves to be astonishingly informing and interesting. It is quite definitely
demonstrated that, in times of marked price changes, as in the World
War period, the effects of price movements are felt rather quickly upon
the rates of interest, even in the case of long term bond yields.” Fisher
(1930, p. 438)

3 Co-movement

Presently available econometric methods make alternative methods of analysis pos-
sible. To begin, it is obviously of interest to test the apparent co-movement of the
series directly. Tests of cointegration enable us to assess the evidence for co-movement
directly without concern for short run dynamic effects. Figs. 2 and 3 show recur-
sive calculations of the residual based Zt and Zα tests of cointegration (Phillips and
Ouliaris, 1990) involving the long security yields and the logarithm of wholesale (pro-
ducer) prices shown in Fig. 1.

Figure 2: Recursive Values of Zt test for cointegration of Yields and log Prices 1750-
2000

The tests both confirm the presence of cointegration at the 5% between the vari-
ables and both statistics advance further into the tail of the distribution as we move
through the data up to around 1940 at which point there is an abrupt change. By the
1970’s the statistics reject cointegration, giving statistical confirmation of a change in
the relationship between prices and yields in the post war period that was suggested
earlier by inspection of the data.
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Figure 3: Recursive Values of Zα test for cointegration of Yields and log Prices 1750-
2000

Similarly, when a linear relationship between yields and prices is fitted recursively
by fully modified least squares (Phillips and Hansen, 1990) over 1750-2000, we find
that the slope coefficient, which is shown in Fig. 4, is quite stable over one and a
half centuries from 1800-1940. Fig. 5 shows recursive estimates of the same slope
coefficient obtained by low frequency band least squares (Phillips, 1991), where the
coefficients have a similar recursive form over the sample period. After 1940, the
coefficient estimates (from both procedures) fluctuate considerably. There is also
considerable coefficient fluctuation over 1750-1800, which can in part be explained by
the shorter sample period and in part by substantial short term fluctuations in prices
and yields over this period that are not always in concert, as is evident in the data.
As might be expected, the low frequency coefficient estimates (which eliminate high
frequency components in the regression) in Fig. 5 show less fluctuation in the early
part of the sample. The evidence from the cointegration tests and the coefficient
estimates therefore both point to a stable long term relationship (with a coefficient
around 2.0 - 2.5) between yields and prices over the period 1800-1940.

It is also of interest to assess the degree of nonstationarity in the two variables.
One way of doing so is to estimate the memory parameter (i.e., the index of fractional
integration) in each case. Fig. 6 shows recursive estimates of the fractional integration
parameter (d) for both series together with upper and lower 95% confidence limits.
The estimates are obtained using the exact local Whittle estimator of Shimotsu and
Phillips (2002) with a bandwidth of m = n0.7 frequencies around the origin. This
estimator is consistent and the (asymptotic) confidence interval is valid for all values
of stationary and nonstationary d.

The estimates of d for yields are generally in the range 0.8 - 0.95 and appear
to be fairly stable around 0.85 for much of the period 1820 - 1960. After 1960, the
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Figure 4: Recursive Values of Fully Modified Least Squares Estimates of Cointegrat-
ing Coefficient of Yields on Prices 1750-2000.

estimates of d rise to above unity and then fall back down again to around 0.85 by
the year 2000. The (pointwise) confidence band for d includes unity, so we cannot
reject the hypothesis of a unit root in yields throughout the period.

For prices, the estimates of d are in a similar range 0.75 - 1.0 and again are fairly
stable around the level 0.8 over the period 1800 - 1940 with the exception of a small
blip upwards during the first world war. After 1940, the long memory estimates for
prices rise to around 0.9 and continue rising thereafter towards unity around the year
2000. The upper limit of the 95% confidence band is around unity for much of the
period to 1940 and thereafter rises and includes unity from around 1950 onwards.

The differences in the memory properties of the two series therefore appear to
be small over much of the period. In both cases the memory parameter appears to
be generally less than unity. There are indications of some instability in the esti-
mates over the final part of the period from 1940, corroborating the earlier evidence
reported.

4 Coordinate Cointegration

It has recently been suggested in Phillips (1998) that deterministic trend functions
can be used as a coordinate system for measuring the trend behavior of an observed
variable, much as one set of functions can be used as a coordinate basis for studying
another function. Thus, any function f ∈ L2[0, 1] can be written in terms of an
orthonormal basis {ϕk}∞k=1 as f(x) =

P∞
k=1 ckϕk(x). Continuous stochastic processes

such as Brownian motion and diffusions also have representations in terms of the
functions ϕk but with coefficients ck that are random variables rather than constant
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Figure 5: Recursive Values of Low Frequency Band Least Squares Estimates of Coin-
tegrating Coefficient of Yields on Prices 1750-2000.

Fourier coefficients. Such formulations can be given a rigorous function space inter-
pretation in terms of functional representations of the limiting stochastic processes or
deterministic functions to which standardized versions of the trending data or trend
functions converge.

To fix ideas suppose that Xt is a stochastic trend with ∆Xt = ut and that
partial sums of the stationary process ut satisfy the functional law n−1/2

P[n·]
k=0 ut →d

B(·), a limit Brownian motion process, where [] represents the integral part of the
argument. If the initial condition X0 = op

¡
n1/2

¢
, we then have n−1/2X[n·] →d B(·).

When Xt is a p- vector, B is a vector Brownian motion with covariance matrix
Ω =

P∞
h=−∞E (utut+h) . If Ω is singular then Xt is cointegrated with cointegration

matrix β, where β spans the null space of Ω, and β0B (·) = 0 with probability one.
The limit stochastic process B (r) has an almost sure unique representation in

terms of deterministic functions over the interval r ∈ [0, 1]. It is particularly conve-
nient to use the orthonormal functions corresponding to the covariance kernel of B
and this leads to the Loève Karhunen representation

B(r) =
√
2
∞X
k=1

sin [(k − 1/2)πr]
(k − 1/2)π ξk

=
∞X
k=1

λ
1
2
kϕk(r)ξk, (4)

where the components ξk are iid N(0,Ω) and ϕk(r) =
√
2 sin [(k − 1/2)πr] . This se-

ries representation of B(r) is convergent almost surely and uniformly in r ∈ [0, 1]. Let
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Figure 6: Recursive Exact Local Whittle Estimates of the Long Memory Parameter
d

ξK , and ϕK(r) be K−vectors of the first K elements of {ξk} and {ϕk(r)}, respec-
tively, and ξ⊥, and ϕ⊥(r) be vectors of the remaining elements of these sequences.
Then, we may write (4) as

B (r) = ΞKΛ
1
2
KϕK (r) + Ξ⊥Λ

1
2
⊥ϕ⊥ (r) , (5)

where ΛK = diag(λ1, ..., λK), Λ⊥ = diag(λK+1, λK+2, ...) and

ΞK = [ξ1, ..., ξK ], Ξ⊥ = [ξK+1, ξK+2, ...].

Note that the coefficient of the deterministic function ϕk(r) in (4) is of order Op(
1
k ),

so that the functions in the representation become less important as k gets large.
The relationship (5) can be fitted empirically using observations {Xt : t = 1, ..., n}

in the linear regression

Xt =
KX
k=1

bbkϕk( tn) + butK , (6)

or, equivalently (with bak = n−1/2bbk),
Xt√
n
=

KX
k=1

bakϕk( tn) + butK√
n
:= ba0KϕK( tn) + butK√

n
. (7)
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Phillips (2001, lemma 2.2) showed under weak regularity conditions that as n→∞

baK = ΞKΛ 1
2
K + oa.s. (1) , (8)

so that the empirical estimates baK asymptotically reproduce the coefficients in the
LK representation (5).

In contrast to conventional regression asymptotics, the coefficients and their limits
as n → ∞ are random variables. In fact, if K → ∞ as n → ∞ with K

n → 0, (7)
succeeds in reproducing the entire series (5).

Now, if the elements of Xt are cointegrated with cointegrating vector β, B is
degenerate in the sense that Ω is singular and β0Ω = 0. Correspondingly, we have
from (5) that

β0ΞK = 0, β0Ξ⊥ = 0. (9)

We call (9) coordinate co-movement or coordinate cointegration because it implies
that the coordinate coefficients in the LK representation satisfy the same linear equa-
tions when the series elements co-move or cointegrate. If only the first K of these
relations held, we refer to it as K− coordinate co-movement.

Since the elements of Ξ = [ΞK ,Ξ⊥] can be estimated empirically, as seen in (8), we
can in fact attempt to estimate the cointegrating vector β from the fitted elements baK .
A more direct approach is to build the hypothesis of cointegration into the structure
of (7). The model then involves restrictions on the random coefficients and these can
be dealt with by means of a reduced rank regression of the following form

Xt√
n

= α̂Kbγ0KϕK( tn) + bvtK√n (10)

=
X̂tK√
n
+
bvtK√
n
, (11)

where α̂K is p × s, bγ0K is s × K and s = p − r, where r is the cointegrating rank
(the rank of the matrix Ω and the number of columns, or linearly independent coin-
tegrating vectors, in β). X̂tK in (11) is the fitted value of Xt using the K coordinate
functions ϕK and allowing for co-movement by virtue of the reduced rank coefficient
matrix in (10). The author has been able to show that under weak conditions

α̂K →p β⊥,

where β⊥ is the orthogonal complement of β, from which a consistent estimate of β
(subject to normalization) can be obtained.

In addition to the coordinate RRR approach, the author has developed a coordi-
nate instrumental variable method of estimation that uses a coordinate basis such as
{ϕk}Kk=1 as instruments and allows K →∞ as n→∞. Analysis that will be reported
elsewhere shows that such IV methods with ‘large numbers’ of instruments produce
asymptotically efficient estimates of the cointegrating matrix β in the sense defined
in Phillips (1991) when the model is a Gaussian I(1)/I(0) cointegrated system. This
approach can be interpreted as a semiparametric IV regression and, interestingly, is
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a one step approach to efficient estimation. Simulations indicate that this approach
also seems to have better finite sample performance characteristics than VAR-based
reduced rank regression (particularly when the order of the VAR is overspecified) and
FM-OLS. Some simulations confirming this are reported later.

Fig. 7 shows the results of applying coordinate RRR regression to the series
of yields and prices, allowing for the presence of cointegration (r = 1). Here K
was chosen to be K = 175. The degree of co-movement that is picked up by these
coordinate functions is remarkable. Movement in the price series is captured closely
because the number of deterministic regressors (K) is large. The corresponding trend
behavior of the yield series is also followed quite closely even though only one extra
parameter is fitted. As is clear from the figure, the fitted values X̂tK reveal the
common trending component in the series rather well over most of the historical
period. It is only in the period post 1940 that the co-movement appears to break
down, corroborating findings from earlier in the paper.

Figure 7: Yields and Prices against Cointegrated Coordinate System of Deterministic
Functions 1718-2002.

This approach of trend coordinatization has many advantages. The method is
not restricted to series that have unit roots and may be applied to any series that are
nonstationary. While the deterministic coordinate functions used here are convenient,
others can be used if they are more suited to the series under study. It is also not
necessary that the series have the same stochastic order or rates of convergence to a
limiting stochastic process. In addition, it is possible to use trend coordinatization for
trend extraction purposes. Fitted trend functions obtained by this method may then
be used in conventional tests for comovement and estimation. Finally, one can limit
the coordinate function co-movement to any finite number (K) of coordinates. Full
coordinate co-movement occurs when the reduced rank structure applies for K →∞
as n→∞. Partial coordinate co-movement occurs when the reduced rank structure
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applies only for finite K.
It is appealing that the approach provides a mechanism for relating variables of

different stochastic order (like time polynomials and random walks) so that it can be
used to justify relationships between observed variables which have differing memory
characteristics, overcoming the apparent ‘problem’ of relationships between stochasti-
cally imbalanced variables. Interestingly, the approach also gives consistent estimates
of cointegrating structural coefficients even though it is based on empirical regressions
that are typically thought of as being ‘spurious’ such as the regression of stochastic
trends on deterministic trends. Hence, relationships between trending variables that
are often deemed spurious actually carry a great deal of useful information and can
be used directly for consistent estimation.

5 Trend Coordinates and Prediction

To study the evolution of a trend process over time, we may extend some of the above
ideas and use an orthogonal representation over a subinterval of [0, 1] such as [0, r]
for some arbitrary fraction r < 1 of the sample data. Working with unit root data
where the limiting trend process is the Brownian motion B, we find, instead of (4),

B (s) =
∞X
k=1

ϕk

³s
r

´
ηk (r) , for s ∈ [0, r] , (12)

where ηk (r) =
1
r

R r
0 B (s)ϕk

¡
s
r

¢
ds. It follows that B (r) =

P∞
k=1 ϕk (1) ηk (r) , where

B (r) and ηk (r) are both measurable with respect to the natural filtration Fr of
the Brownian motion B. The process ηk (r) describes the evolution over time of the
coefficient of the coordinate basis ϕk. The evolution of these trend coordinates can
be estimated by recursively regressing the sample data on the functions ϕk and the
resulting estimates deliver direct information on how individual trend coordinates
have evolved over time. They may, for instance, be used in subsequent regressions
(e.g., on relevant economic variables like R&D expenditures) to help explain changes
in trend over time.

We may also use these representations for forecasting. In particular, setting s = r
in (12), the optimal predictor of B (r) given Fp and coordinates up to K is

E {B (r) |Fp;K} =
KX
k=1

ϕk (1)E {ηk (r) |Fp} . (13)

Upon evaluation, the conditional trend component appearing in (13) is

E {ηk (r) |Fp} =
1

r

Z p

0
B (s)ϕk

³s
r

´
ds+B (p)

√
2 cos

©¡
k − 1

2

¢
π p
r

ª¡
k − 1

2

¢
π

. (14)

Summing over k = 1, ...,K we get

E {B (r) |Fp;K} =
KX
k=1

ϕk (1)

(
1

r

Z p

0
B (s)ϕk

³s
r

´
ds+B (p)

√
2 cos

©¡
k − 1

2

¢
π p
r

ª¡
k − 1

2

¢
π

)
(15)
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If we summed to infinity in this expression, we would end up with the (martingale)
model predictor E {B (r) |Fp} = B (p) corresponding to the long run behavior sug-
gested by a unit root model. Other long run models and orthogonal representations
would lead, of course, to different classes of long run predictors.

More generally, for every value of K we get from (15) a class of predictors cor-
responding to the leading K trend components in the process. Let N = [np] , and
N+h = [nr] so that (14) and (15) effectively provide h-step ahead optimal predictors
of these components. E {ηk (r) |Fp} may be estimated from sample data by

η̂k (r|p) =
1

N + h

NX
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Xtϕk

µ
t

N + h

¶
+XN
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,

which leads to the following h-step ahead predictor of the trend in the data

X̂N+h,N =
KX
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ϕk (1)
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(16)
This approach can be pursued further to construct formulae for trend components

and trend predictors corresponding to a variety of long run models for the data, such
as those appearing in (2) and (3). Such formulae enable trend analysis and prediction
in a way that captures the main features of the trend for K small and which can
be related back to specific long term predictive models for large K. The approach
therefore helps to provide a foundation for studying trends in a general way, covering
most of the trend models that are presently used with economic data.

6 Simulation Evidence

As a brief illustration we simulated the following cointegrated model

X1t = bX2t + u1t
X2t = X2t−1 + u2t

,

∙
u1t
u2t

¸
∼ iid N (0,Ω) , (17)

with

Ω =

∙
1 ρ
ρ 1

¸
.

The cointegrating coefficient b was estimated using ordinary least squares (OLS),
fully modified least squares (FM-OLS), vector autoregression reduced rank regression
(VAR-RRR) (Johansen, 1988), and coordinate reduced rank regression as in (10)
above. Kernel estimates of the probability densities of these estimates are shown in
Fig. 8 for the case where ρ = 0.8, b = 2.0, n = 100, and K = 75. The VAR-RRR was
estimated with a single lag, consonant with (17).

The results show that coordinate RRR performs well. It is less biased than OLS
and has greater concentration than FM-OLS. But, it is more biased and a little less
concentrated than VAR-RRR. Of course, VAR-RRR is performed with the correct
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Figure 8: Densities of Cointegrating Coefficient Estimators: True coefficient b = 2,
n = 100, K = 75, ρ = 0.8.

specification corresponding to (17), including a single lag, and therefore has some
obvious advantages in this case, especially over FM-OLS (which is designed to allow
for general error specifications).

As a final illustration, Fig. 9 shows how these procedures perform against the
coordinate IV procedure discussed earlier using the same parameter configuration
for data generation. The results indicate that coordinate IV seems to have better
finite sample performance characteristics than VAR-based reduced rank regression
(particularly when the order of the VAR is overspecified), FM-OLS and coordinate
RRR methods.

7 Conclusion

The probabilistic foundation of econometrics conventionally presumes that the ob-
served process can be faithfully represented in terms of a probability space with
quantifiable economic variables defined as random elements on that space. This con-
ceptualization has proved to be a useful approach to formal modeling and is so much
part of our conventional wisdom that it is very easy to accept that there must be
an underlying true data generating process on the defined space. However, the ac-
tual process of data generation may not fit faithfully into this framework without an
extraordinary level of complexity that belies the notion of modeling as we presently
know it. This view may initially appear heretical but it becomes reasonable upon
serious reflection.

When the data involve trends, as most macroeconomic time series do, even a lit-
tle empirical experience is sufficient to show the inadequacy of commonly used trend

16



Figure 9: Densities of Cointegrating Coefficient Estimators

formulations. The alternative perspective suggested here is that, while we may not
understand the trending mechanism itself, we still have the opportunity to coordina-
tize a trend in terms of simple deterministic functions, just as we can coordinatize
a function in a space of functions using a simple set of basis functions. As we have
shown, this coordinatization provides rather a general framework for thinking about
trending time series, one that is not restricted to a particular class of time series
generating mechanisms. This framework gives rise to a new concept of coordinate
co-movement which can be used to study patterns of common behavior in time series.
Rather remarkably, while empirical regression estimates of such coordinate represen-
tations have in the past been considered ‘spurious’, econometric estimates of these
coordinate systems can be used to produce consistent estimates of the cointegration
space when there is co-movement in the data. The empirical and simulation evidence
given here indicates that the approach holds some promise in practical applications
and at least provides a new way of looking at trending data.

Data

The producer price series has two main sources. It is constructed from a historical
Wholesale Price Index (WPI) series used in Shiller and Siegel (1977) and a Producer
Price Index (PPI) series that was obtained from the UK Government Statistical
Service on the website: www.statistics.gov.uk. The Shiller and Siegel price series
covers the period 1718-1973 and is a Wholesale Price Index for the UK constructed by
splicing several other constituent series, as explained in the appendix of their article.
The PPI series is the (annual) producer price index for output prices (Series Identifier:
PPLU all manufacturing 1974-2002), downloaded from www.statistics.gov.uk. The
PPI data was spliced to the WPI series by first splicing the WPI to the retail prices
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index (also obtained from www.statistics.gov.uk) for 1974 using the common year
1973 for those series and then splicing the PPI series to this series by multiplying the
PPI series by the ratio of the two series for the overlapping year 1974.

The yield series also comes from two sources. It is constructed from the yield
series used in Shiller and Siegel (1977) and the yield on 3.5% War Loan securities
obtained from the Bank of England (www.bankofengland.co.uk). The Shiller and
Siegel series covers the period 1718-1973 and is based on series compiled by Homer
(1963) representing the yield on perpetual annuities and various consols, as explained
in the appendix of their article. This series was spliced to a series for the yield on
3.5% War Loan securities - Series WRLN in Table 22.4 of the Bank of England
Monetary and Financial Statistics site (http://www.bankofengland.co.uk/mfsd/abst
/part1.htm) - by multiplying the series with the geometric mean of the ratios of the
rates for the overlapping years 1970-1973.
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