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Abstract

An asymptotic theory is given for autoregressive time series with a root of the form
ρn = 1 + c/nα, which represents moderate deviations from unity when α ∈ (0, 1) .
The limit theory is obtained using a combination of a functional law to a diffusion
on D[0,∞) and a central limit law to a scalar normal variate. For c < 0, the results
provide a n(1+α)/2 rate of convergence and asymptotic normality for the first order
serial correlation, partially bridging the

√
n and n convergence rates for the stationary

(α = 0) and conventional (α = 1) local to unity cases. For c > 0, the serial correlation
coefficient is shown to have a nαρnn convergence rate and a Cauchy limit distribution
without assuming Gaussian errors, so an invariance principle applies when ρn > 1.
This result links moderate deviation asymptotics to earlier results on the explosive
autoregression proved under Gaussian errors for α = 0, where the convergence rate
of the serial correlation coefficient is (1 + c)n and no invariance principle applies.

Keywords: Central limit theory; Diffusion; Explosive autoregression, Local to unity;
Moderate deviations, Unit root distribution.

AMS 1991 subject classification: 62M10; JEL classification: C22



1. Introduction

Regression asymptotics with roots at or near unity have played an important role in
time series econometrics over the last two decades. The limit theory makes extensive
use of functional laws of partial sums to Brownian motion, functional laws of weighted
partial sums to linear diffusions and weak convergence of discrete martingales to
stochastic integrals. Almost all this theory involves time series with autoregressive
roots that are at unity (or on the unit circle) or roots that are local to unity in the
sense that they have the form ρ = 1 + c/n, where n is the sample size. In the latter
case, the situation of primary importance occurs when c < 0, so that ρ < 1 and the
local asymptotics therefore seek to characterize alternatives to a unit root that lie in
the stationary region. The asymptotic theory turns out to be similar whether c = 0
or c < 0, and the same rate of convergence in terms of the sample size n applies in
both cases. These results have been useful in power evaluations and in confidence
interval construction.
To characterize greater deviations from unity we can allow the parameter c to be

large and negative or even consider limits as c→ −∞ (Phillips, 1987; Chan and Wei,
1988). While such analysis has proved insightful, it does not resolve all difficulties
of the discontinuities of unit root asymptotics. In particular, it does not effectively
bridge the very different convergence rates of the stationary and unit root cases.
The present paper takes another approach and provides an asymptotic theory for

time series with an autoregressive root of the form ρn = 1+c/nα, where the exponent
α lies on (0, 1). Such roots represent moderate deviations from unity in the sense that
they belong to larger neighborhoods of one than conventional local to unity roots.
The boundary value as α→ 1 includes the conventional local to unity case, whereas
the boundary value as α → 0 includes the stationary or explosive AR(1) process,
depending on the sign of c. The limit theory for such time series is developed here
using a combination of a functional law to a diffusion and a central limit law.
The paper provides limit results for a standardized version of such time series, for

various sample moments in both the near-stationary (c < 0) and the near-explosive
(c > 0) cases, and for the serial correlation coefficient. When there are near-stationary
moderate deviations from unity, the centred first order serial correlation coefficientbρn−ρn is shown to have a n(1+α)/2 rate of convergence and a limit normal distribution,
bridging the

√
n and n asymptotics of the stationary (α = 0) and conventional local

to unity (α = 1) cases. For near-explosive moderate deviations from unity, the rate
of convergence of bρn − ρn is n

αρnn, which increases with α from O(n) when α → 1
to O((1 + c)n) when α → 0, thereby bridging the asymptotics of local to unity and
explosive autoregressions. An interesting feature of the moderate deviation explosive
case (c > 0) is that the limit distribution theory is Cauchy even for non-Gaussian
errors. This result differs from conventional theory for the explosive case where the
limit distribution is dependent on the distribution of the errors and no invariance
principle applies (Anderson, 1959).
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After these results were obtained, we learnt of some independent, related work by
Park (2003) on weak unit root asymptotics. Park considers autoregressive processes
with a root that can be written in the form ρ = 1 − m/n where m, n → ∞. This
(weak unit root) setup is analogous to our formulation (see (1) below) of moderate
deviations from unity of the form ρn = 1 + c

nα
for α ∈ (0, 1) . However, the weak

unit root specification considers only the stationary side of unity. Using different
methods and among some other results, Park shows a rate of convergence of n/

√
m

and asymptotic normality for the serial correlation coefficient in autoregressions with
independent identically distributed errors when 1

m
+ m

n
→ 0. Theorem 3.1(d) of the

present paper also establishes asymptotic normality of the serial correlation coefficient
with a rate of convergence n

1
2
+α
2 , which corresponds to n/

√
m, on the stationary side

of unity (c < 0). As discussed above, this paper also provides a limit theory for the
explosive side of unity (c > 0).

2. The moderate deviations from unity model

Consider the time series

yt = ρnyt−1 + ut, t = 1, ..., n; ρn = 1 +
c

nα
, α ∈ (0, 1) (1)

initialized at some y0 = op
¡
nα/2

¢
and where ut is a sequence of independent and

identically distributed (0, σ2) random variables with finite ν’th absolute moment

E |ut|ν <∞ for some ν ≥ 2

α
. (2)

These conditions suffice (cf. Phillips and Solo, 1992) to ensure that partial sums
St =

Pt
i=1 ui of ut satisfy the functional law

Bkn (·) :=
Sbkn·c√
kn

=

Pbkn·c
i=1 ui√
kn

=⇒ B(·) (3)

for any sequence (kn)n∈N increasing to infinity, where b·c signifies integer part and
B(·) is Brownian motion with variance σ2.
A strong approximation (e.g. Csörgõ and Horváth, 1993) to St is also possible,

according to which we can construct an expanded probability space with a Brownian
motion B (·) for which

sup
0≤i≤n

|Si −B(i)| = oa.s.(n
1
ν ) as n→∞. (4)

A straightforward calculation (given in the Appendix) then shows that for each α ∈
(0, 1)
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sup
t∈[0,n1−α]

|Bnα (t)−B (t)| = oa.s.

µ
1

n
α
2
− 1
ν

¶
as n→∞. (5)

In what follows, we will assume that the probability space has been expanded as
necessary in order for (5) to apply. Note that the moment condition ν ≥ 2

α
in (2)

ensures that oa.s.
³
1/n

α
2
− 1
ν

´
= oa.s. (1) in (5).

Our approach to developing a limit theory for statistics arising from model (1) is
to segment the series into blocks. Specifically, we write the chronological sequence
{t = 1, ..., n} in blocks of size bnαc as follows. Set t = bnαjc + k for k = 1, ..., bnαc
and j = 0, ..., bn1−αc− 1, so that

ybnαjc+k =
bnαjc+kX
i=1

³
1 +

c

nα

´bnαjc+k−i
ui +

³
1 +

c

nα

´bnαjc+k
y0.

This arrangement effectively partitions the sample size into bn1−αc blocks each con-
taining bnαc sample points. Since the last element of each block is asymptotically
equivalent to the first element of the next block, it is possible to study the asymptotic
behavior of the time series {yt : t = 1, ..., n} via the asymptotic properties of the time
series {ybnαjc+k : j = 0, ..., bn1−αc− 1, k = 1, ..., bnαc}.
Letting k = bnαpc, for some p ∈ [0, 1], we obtain

1

nα/2
ybnαjc+bnαpc =

1

nα/2

bnαjc+bnαpcX
i=1

³
1 +

c

nα

´bnαjc+bnαpc−i
ui

+
³
1 +

c

nα

´bnαjc+bnαpc y0
nα/2

.

The random element ybnαjc+bnαpc is central in the blocking method adopted in this
paper. Most statistics of interest such as the sample variance and the sample co-
variance can be expressed as functionals of ybnαjc+bnαpc, and it will be convenient to
characterize its asymptotic behavior.
We start with the near stationary case c < 0. Noting that j + p ∈ [0, bn1−αc],

1
nα/2

ybnαjc+bnαpc can be written in terms of the Stieltjes integral

Vnα (t) :=

Z t

0

ec(t−r)dBnα (r) =
1

nα/2

bnαtcX
i=1

e
c
nα
(nαt−i)ui

in the following way: for each α ∈ (0, 1) and c < 0,

sup
t∈[0,n1−α]

¯̄̄̄
1

nα/2
ybnαtc − Vnα (t)

¯̄̄̄
= op (1) , (6)
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as shown in the Appendix. (5) and (6) together imply that Vnα (t) converges weakly
to the linear diffusion

Jc (t) :=

Z t

0

ec(t−s)dB (s)

on the Skorohod space D [0,M ] for every M > 0 and hence (e.g. Pollard, 1984, The-
orem V.23) on D [0,∞). In particular, we have the following strong approximation
of Vnα (t) in terms of Jc (t).

2.1 Lemma. For each α ∈ (0, 1) and c < 0

sup
t∈[0,n1−α]

|Vnα (t)− Jc (t)| = oa.s.

µ
1

n
α
2
− 1
ν

¶
as n→∞ (7)

on the same probability space that (5) holds.
An immediate consequence of Lemma 2.1 and (6) is that

sup
t∈[0,n1−α]

¯̄̄̄
1

nα/2
ybnαtc − Jc (t)

¯̄̄̄
= op (1) . (8)

Therefore, for the original random variables ybnα·c (rather than their distributionally
equivalent copies for which (5) and (8) hold) we obtain

1

nα/2
ybnαjc+bnαpc =⇒

Z j+p

0

ec(j+p−r)dB (r) as n→∞ (9)

for all j = 0, ..., bn1−αc − 1 and p ∈ [0, 1]. Result (8) enables us to proceed with a
limit theory for the near stationary case where c < 0.

3. Limit theory for the near stationary case

This section develops the asymptotic properties of the serial correlation coefficient

ρ̂n − ρn =

Pn
t=1 yt−1utPn
t=1 y

2
t−1

(10)

when ρn = 1+
c
nα
and c < 0. Our approach is to use a segmentation of the series into

blocks in which we may utilize the embedding (8) and apply law of large numbers
and central limit arguments to the denominator and numerator of (10).
We start by considering the sample variance

Pn
t=1 y

2
t . Using Proposition A3 and

the identity Z 1

0

y2bnαjc+bnαpcdp =
1

nα

bnαcX
k=1

y2bnαjc+k,
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the sample variance can be written as

1

n1+α

nX
t=1

y2t =
1

n1+α

bn1−αc−1X
j=0

bnαcX
k=1

y2bnαjc+k +Op

µ
1

n1−α

¶

=
1

n1−α

bn1−αc−1X
j=0

1

n2α

bnαcX
k=1

y2bnαjc+k

=
1

n1−α

bn1−αc−1X
j=0

Z 1

0

µ
1

nα/2
ybnαjc+bnαpc

¶2
dp

=
1

n1−α

Z bn1−αc
0

µ
1

nα/2
ybnαrc

¶2
dr + op (1) .

By (8) and Proposition A2 we obtain

1

n1−α

¯̄̄̄
¯
Z bn1−αc
0

µ
1

nα/2
ybnαrc

¶2
dr −

Z bn1−αc
0

Jc (r)
2 dr

¯̄̄̄
¯

≤ 1

n1−α

Z bn1−αc
0

¯̄̄̄
¯
µ
1

nα/2
ybnαrc

¶2
− Jc (r)

2

¯̄̄̄
¯ dr

=
1

n1−α

Z bn1−αc
0

¯̄̄̄
1

nα/2
ybnαrc − Jc (r)

¯̄̄̄ ¯̄̄̄
1

nα/2
ybnαrc + Jc (r)

¯̄̄̄
dr

≤ bn1−αc
n1−α

sup
r∈[0,bn1−αc]

¯̄̄̄
1

nα/2
ybnαrc − Jc (r)

¯̄̄̄ Ã
sup

r∈[0,bn1−αc]

¯̄̄̄
1

nα/2
ybnαrc

¯̄̄̄
+ sup

r≥0
|Jc (r)|

!

= 2 sup
r≥0

|Jc (r)| op
µ

1

n
α
2
− 1
ν

¶
+ op

µ
1

n
α
2
− 1
ν

¶
= op

µ
1

n
α
2
− 1
ν

¶
.

Hence, the sample variance becomes

1

n1+α

nX
t=1

y2t =
1

n1−α

Z bn1−αc
0

Jc (r)
2 dr + op

µ
1

n
α
2
− 1
ν

¶
. (11)

At this point, it is convenient to approximate the Ornstein-Uhlenbeck process
Jc (t) by its stationary version

J∗c (t) := ectJ∗c (0) +
Z t

0

ec(t−s)dB (s) = ectJ∗c (0) + Jc (t) ,

where J∗c (0) is a random variable independent of B (.) that follows aN
³
0, σ2

−2c
´
distri-

bution. It is well known that J∗c (t) is a strictly stationary process with autocovariance
function given by

γJ∗c (h) =
σ2

−2ce
c|h| h ∈ Z.
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Moreover, the following approximation of Jc by J∗c is established in the Appendix

1

n1−α

Z bn1−αc
0

Jc (r)
2 dr =

1

n1−α

Z bn1−αc
0

J∗c (r)
2 dr +Op

¡
n−(1−α)

¢
. (12)

Combining (11) and (12) the sample variance in the near-stationary case becomes

1

n1+α

nX
t=1

y2t =
1

n1−α

Z bn1−αc
0

J∗c (r)
2 dr + op

µ
1

n
α
2
− 1
ν

¶

=
1

n1−α

bn1−αc−1X
j=0

Z j+1

j

J∗c (r)
2 dr + op

µ
1

n
α
2
− 1
ν

¶
=

σ2

−2c + op

µ
1

n
α
2
− 1
ν

¶
(13)

by the weak law of large numbers for stationary processes, since γJ∗c (0) = σ2/− 2c.
The limiting distribution of the sample covariance can be obtained by using the

fact that, as in the case of stationary asymptotics, the standardized sample variance
has a constant (non random) probability limit. Defining ξt = n−

1+α
2 yt−1ut, (ξt)t∈N is

a martingale difference sequence with respect to the filtration Ft = σ (y0, u1, ..., ut).
The conditional variance of the martingale

Pn
t=1 ξt is given by

nX
t=1

EFt−1
¡
ξ2t
¢
=

1

n1+α

nX
t=1

EFt−1
¡
y2t−1u

2
t

¢
=

1

n1+α

nX
t=1

y2t−1EFt−1
¡
u2t
¢

= σ2
1

n1+α

nX
t=1

y2t−1 =
σ4

−2c + op

µ
1

n
α
2
− 1
ν

¶
by (13), since yt−1 is Ft−1 measurable. By virtue of the Lindeberg condition

nX
t=1

EFt−1
¡
ξ2t1 {|ξt| > η}¢ = op (1) , η > 0 (14)

established in the Appendix, the martingale central limit theorem (e.g. Pollard
(1984), Theorem VIII.1) yields

1

n
1+α
2

nX
t=1

yt−1ut =⇒ N

µ
0,

σ4

−2c
¶
. (15)

Finally, the asymptotic distribution of the centred least squares estimator bρn −
ρn =

Pn
t=1 yt−1ut/

Pn
t=1 y

2
t−1 can be derived by combining (13) and (15):

n
1
2
+α
2 (bρn − ρn) =⇒ N (0,−2c) as n→∞.

We collect these results together as follows.
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3.1 Theorem. For model (1) with ρn = 1+c/n
a, c < 0 and α ∈ (0, 1) , the following

limits apply as n→∞ :

(a) n−α/2ybnαjc+bnαpc =⇒
R j+p
0

ec(j+p−r)dB (r) ,

(b) n−1−α
Pn

t=1 y
2
t −→p

σ2

−2c ,

(c) n−
1
2
−α
2

Pn
t=1 yt−1ut =⇒ N

³
0, σ4

−2c
´
,

(d) n
1
2
+α
2 (bρn − ρn) =⇒ N (0,−2c) ,

where B is Brownian motion with variance σ2.

3.2 Remarks

(i) When there are moderate deviations from unity, the proofs above reveal that
both a functional law to a diffusion (part (a)) and central limit theory (parts
(b), (c) and (d)) play a role in the derivation of the results. The functional
law provides in each case a limiting subsidiary process whose elements form
the components that upon further summation satisfy a law of large numbers
and a central limit law. While there is only one limiting process involved as
n→∞, it is convenient to think of the functional law operating within blocks
of length bnαc and the law of large numbers and central limit laws operating
across the bn1−αc blocks. The moment condition in (2) ensures the validity of
the embedding argument that makes this segmentation rigorous as n→∞.

(ii) Results (b), (c) and (d) match the standard stationary limit theory for fixed
|ρ| < 1. In particular,

n−1
Pn

t=1 y
2
t −→p

σ2

1−ρ2 ,

n−
1
2

Pn
t=1 yt−1ut =⇒ N

³
0, σ4

1−ρ2
´
,

n
1
2 (ρ̂n − ρ) =⇒ N (0, 1− ρ2) .

A heuristic argument for the correspondence is that upon replacing ρ by 1+c/na

in each of the above results, a simple rescaling of the first order approximation
delivers (b)-(d) of Theorem 3.1. Thus, for the serial correlation coefficient ρ̂n,
substituting 1 − ρ2 = − 2c

nα
[1 + o (1)] into the limit distribution of n

1
2 (ρ̂n − ρ)

gives the asymptotic approximation

n
1
2 (ρ̂n − ρ) ∼d N

µ
0,− 2c

nα

¶
or n

1
2
+α
2 (ρ̂n − ρ) ∼d N (0,−2c) ,

just as in part (d) of the theorem.
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4. Limit theory for the near explosive case

This section considers the limit behavior of the serial correlation coefficient ρ̂n − ρn
when ρn = 1 + c/na and c > 0. In this case the weak convergence of Vnα (t) to Jc (t)

still holds on D [0,∞) . However, the random element Jc (t) ≡ N
³
0, σ

2

2c
(e2ct − 1)

´
is

no longer bounded in probability as t→∞. For t ∈ [0, n1−α], a further normalization
of O (exp {−cn1−α}) is needed as n→∞ to achieve a weak limit for Vnα (t). It turns
out that a similar normalization is needed for n−α/2ybnαtc, namely ρ−nn .
For notational convenience in what follows we define κn = nα bn1−αc and q =

n1−α − bn1−αc ∈ [0, 1). Two useful approximation results for the near explosive case
follow.

4.1 Lemma. For each α ∈ (0, 1) and c > 0

sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−n
αs

n dBnα (s)−
Z t

0

e−csdB (s)
¯̄̄̄
= op

µ
1

n
α
2
− 1
ν

¶
as n→∞

on the same probability space that (5) holds.

4.2 Lemma. For each α ∈ (0, 1) and c > 0

sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−(bn
αtc−bnαsc)

n dBnα (s)− J−c (t)
¯̄̄̄
= op

µ
1

n
α
2
− 1
ν

¶
as n→∞

on the same probability space that (5) holds.
For the sample variance, note first that, unlike the near-stationary case, the limit

theory is not determined exclusively from the blocks {y2bnαjc+k : j = 0, ..., bn1−αc− 1,
k = 1, ..., bnαc}. Using (30) in the Appendix, we can write the sample variance as

ρ−2κnn

n2α

nX
t=1

y2t =
ρ−2κnn

n2α

bn1−αc−1X
j=0

bnαcX
k=1

y2bnαjc+k +
ρ−2κnn

n2α

nX
t=bκnc

y2t +Op

µ
1

nα

¶
. (16)

We denote by U1n and U2n the first and second term on the right side of (16) respec-
tively. Since U2n is almost surely positive with limiting expectation σ2

4c2
(e2cq − 1) > 0

when q > 0, we conclude that it contributes to the limit theory whenever n1−α is not
an integer.
We will analyze each of the two terms on the right of (16) separately. The term

8



containing the block components can be written as

U1n = ρ−2κnn

bn1−αc−1X
j=0

1

n2α

bnαcX
k=1

y2bnαjc+k + op (1)

= ρ−2κnn

bn1−αc−1X
j=0

Z 1

0

µ
1

nα/2
ybnαjc+bnαpc

¶2
dp

= ρ−2κnn

Z bn1−αc
0

µ
1

nα/2
ybnαrc

¶2
dr + op (1)

= ρ−2κnn

Z bn1−αc
0

µZ r

0

ρbn
αrc−nαs

n dBnα (s)

¶2
dr + op (1) .

Taking the inner integral along [0, r] = [0, bn1−αc] \ [r, bn1−αc] we have, up to op (1),

U1n =

ÃZ bn1−αc
0

ρ−n
αs

n dBnα (s)

!2
ρ−2κnn

Z bn1−αc
0

ρ2bn
αrc

n dr +Rn, (17)

where the remainder term Rn is shown in the Appendix to be op (1). The second
integral on the right side of (17) can be evaluated directly to obtainZ bn1−αc

0

ρ2bn
αrc

n dr =
ρ2κnn

2c
(1 + o (1)) as n→∞, (18)

as shown in the Appendix. Using Lemma 4.1, (17) becomes

U1n =
1

2c

ÃZ bn1−αc
0

e−csdB (s)

!2
+ op

µ
1

n
α
2
− 1
ν

¶
=

1

2c

µZ ∞

0

e−csdB (s)
¶2
+ op

µ
1

n
α
2
− 1
ν

¶
(19)

on the same probability space that (5) holds.
For the second term on the right of (16), noting that bn− κnc = bnαqc, q ∈ [0, 1),

we obtain

U2n =
ρ−2κnn

n2α

n−bκncX
i=0

y2i+bκnc

=
ρ−2κnn

n2α

bnαqcX
i=1

y2i+bκnc−1 +Op

µ
1

nα

¶
=

ρ−2κnn

nα

Z q

0

y2bκnc+bnαpcdp−
ρ−2κnn

n2α

µ
q − bn

αqc
nα

¶
y2bκnc+bnαqc

=

Z q

0

µ
ρ−κnn

nα/2
ybκnc+bnαpc

¶2
dp+Op

µ
1

n2α

¶
. (20)
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Now for each p ∈ [0, q], q ∈ [0, 1), we can show (the details are included in the
Appendix) that

ρ−κnn

nα/2
ybκnc+bnαpc = ecp

Z ∞

0

e−csdW (s) + op

µ
1

n
α
2
− 1
ν

¶
(21)

on the same probability space that (5) holds. Thus, applying the dominated conver-
gence theorem to (20) yields

U2n =

µZ ∞

0

e−csdW (s)

¶2 Z q

0

e2cpdp+ op

µ
1

n
α
2
− 1
ν

¶
=

1

2c

µZ ∞

0

e−csdW (s)

¶2 ¡
e2cq − 1¢+ op

µ
1

n
α
2
− 1
ν

¶
. (22)

Letting X :=
R∞
0

e−csdB (s) ≡ N
³
0, σ

2

2c

´
, we conclude from (16), (19), (22) and

the asymptotic equivalence ρ−2κnn e−2cq = ρ−2nn [1 + o (1)] that

ρ−2nn

n2α

nX
t=1

y2t =
1

2c
X2 + op

µ
1

n
α
2
− 1
ν

¶
,

on the same probability space that (5) holds. This implies that the limiting distrib-
ution of the sample variance is given by

ρ−2nn

n2α

nX
t=1

y2t =⇒
1

2c
X2 (23)

on the original space.
As in the case of the sample variance, the asymptotic behavior of the sample co-

variance is partly determined by elements of the time series yt−1ut that do not belong
to the block components

©
ybnαjc+k−1ubnαjc+k : j = 0, ..., bn1−αc− 1, k = 1, ..., bnαc

ª
.

Obtaining limits for the block components and the remaining time series separately
in a method similar to that used for the sample variance will work. It is, however,
more efficient to derive the limiting distribution of the sample covariance by using a
direct argument on ρ−nn

nα

Pn
t=1 yt−1ut.

10



Using the initial condition y0 = op
¡
nα/2

¢
and (29) in the Appendix we can write

ρ−nn
nα

nX
t=1

yt−1ut =
ρ−nn
nα

n−1X
t=1

ytut+1 + op

µ
ρ−nn
nα/2

¶

=
ρ−nn
nα

bnα(n1−α− 1
nα )cX

t=1

ytut+1

= ρ−nn

Z n1−α− 1
nα

0

1

nα/2
ybnαrcdBnα

µ
r +

1

nα

¶
= ρ−nn

Z n1−α

1
nα

1

nα/2
ybnα(r− 1

nα )cdBnα (r)

= ρ−nn

Z n1−α

1
nα

Z r− 1
na

0

ρbn
αrc−nαs−1

n dBna (s) dBnα (r) + op (1) .

Taking the inner integral along
£
0, r − 1

na

¤
= [0, n1−α] \ £r − 1

na
, n1−α

¤
we obtain, up

to op (1),

ρ−nn
nα

nX
t=1

yt−1ut = ρ−1n

Z n1−α

0

ρ−n
αs

n dBna (s)

Z n1−α

1
nα

ρ−(n−bn
αrc)

n dBna (r)− In, (24)

where the remainder term

In := ρ−n−1n

Z n1−α

1
nα

Z n1−α

r− 1
na

ρbn
αrc−nαs

n dBna (s) dBna (r)

is shown in the Appendix to be op (1). Now, since
R 1

nα

0
ρ
−(n−bnαrc)
n dBna (r) = Op

³
ρ−nn
nα/2

´
,

Lemma 4.2 implies thatZ n1−α

1
nα

ρ−(n−bn
αrc)

n dBna (r) = J−c
¡
n1−α

¢
+ op

µ
1

n
α
2
− 1
ν

¶
.

Since J−c (t) is a L2-bounded martingale on [0,∞), the martingale convergence the-
orem ensures the existence of an almost surely finite random variable Y such that

J−c
¡
n1−α

¢ −→a.s. Y as n→∞.

Since J−c (n1−α) ≡ N
³
0, σ

2

2c

³
1− e−2cn

1−α
´´
, it is clear that Y ≡ N

³
0, σ

2

2c

´
. Thus, if

X =
R∞
0

e−csdB (s) as in (23), (24) yields

ρ−nn
nα

nX
t=1

yt−1ut = XY + op

µ
1

n
α
2
− 1
ν

¶
as n→∞

11



on the same probability space that (5) holds. The latter strong approximation implies
that the asymptotic distribution of the sample covariance is given in the original space
by

ρ−nn
nα

nX
t=1

yt−1ut =⇒ XY X,Y ≡ N

µ
0,
σ2

2c

¶
. (25)

The asymptotic behavior of the serial correlation coefficient in the near explosive
case is an easy consequence of (23), (25) and the fact that the limiting random
variables X and Y are independent.

4.3 Theorem. For model (1) with ρn = 1 + c/na, c > 0 and α ∈ (0, 1)
nαρnn
2c

(ρ̂n − ρn) =⇒ C as n→∞ (26)

where C is a standard Cauchy variate.

4.4 Remarks

(i) Theorem 4.3 relates to earlier work (White, 1958; Anderson, 1959; Basawa and
Brockwell, 1984) on the explosive Gaussian AR(1) process. For a Gaussian first
order autoregressive process with fixed |ρ| > 1 and y0 = 0, White showed that

ρn

ρ2 − 1 (ρ̂n − ρ) =⇒ C as n→∞. (27)

Replacing ρ by ρn = 1 + c/na, we obtain ρ2 − 1 = 2c
nα
[1 + o (1)]. Hence,

the normalizations in Theorem 4.3 and (27) are asymptotically equivalent as
n → ∞. Anderson (1959) showed that ρn

ρ2−1 (ρ̂n − ρ) has a limit distribution
that depends on the distribution of the errors ut when ρ > 1 and that no
central limit theory or invariance principle is applicable.

(ii) The limit theory derived in this section for the moderate deviations case is
not restricted to Gaussian processes. In particular, the Cauchy limit result
(26) applies for ρn = 1 + c/na and innovations ut satisfying (2) with α > 0,
which includes a much wider class of processes. At the boundary where α→ 0,
Theorem 4.3 reduces to (27) with ρ = 1+c, and the the errors ut have infinitely
many moments as under Gaussianity.

(iii) The limit theory for near explosive moderate deviations from unity is invariant
to the initial condition y0 being any fixed constant value or random variable of
smaller asymptotic order than nα/2. This property is not shared by explosive
autoregressions where y0 does influence the limit theory, as shown by Anderson
(1959).

12



5. Discussion

The convergence rates of Theorem 3.1 bridge those for unit root or local to unity
processes and those that apply under stationarity. Thus, in part (d) the convergence
rate n

1
2
+α
2 ranges over

¡
n1/2, n

¢
for α ∈ (0, 1) . However, the bridging asymptotics are

not continuous at the boundaries of α. For example, when α→ 0, part (d) becomes√
n (ρ̂n − ρn) =⇒ N (0,−2c) , whereas the correct stationary result when ρ = 1 + c

is
√
n (bρn − ρ) =⇒ N (0,−2c− c2). Thus, part (d) as it stands overestimates the

variance of bρn in the boundary case where α = 0. Continuity at this boundary can be
achieved (for parts (b)-(d)) through replacement of c by c+ c2/2nα, without affecting
the asymptotic results for α > 0. For the limit as α → 1, we have n1−α → 1, and
so bn1−αc = 1 for α = 1, in which case j = 0 necessarily and part (a) becomes
n−1/2ybnpc =⇒ Jc(p), the usual local to unity limit result (cf. Phillips, 1987). In that
case, part (d) is replaced by the non-normal limit

n (bρn − ρn) =⇒
Z 1

0

Jc (q) dB (q) /

Z 1

0

Jc (q)
2 dq. (28)

Similarly, when c > 0, the convergence rate of Theorem 4.3 takes values on
(n, (1 + c)n) as α ranges from 1 to 0. Since 1 + c is the autoregressive root of an
explosive AR(1) process when α = 0, there is a discontinuity due to the discrepancy
between 1− ρ2n = − 2c

nα
+O (n−2α) when α ∈ (0, 1) and 1− ρ2 = 2c+ c2 when α = 0.

As in the near stationary case, continuity can be achieved through replacement of c
by c + c2/2nα without affecting Theorem 4.3. However, when α → 1, the blocking
scheme is such that j = 0 and again the local to unity limit theory (28) applies.
Thus, continuity is achieved at the outside boundaries with the stationary and explo-
sive case asymptotics, but not at the inside boundaries with the conventional local
to unity asymptotics.

6. Notation
b·c integer part of
:= definitional equality
B (t) Brownian motion with variance σ2t
Jc (t) Ornstein-Uhlenbeck process
[X]t quadratic variation process of Xt

κn :=nα bn1−αc
q :=n1−α − bn1−αc
EF (·) conditional expectation E ( ·| F)
PF (·) conditional probability P ( ·| F)

−→a.s. almost sure convergence
−→p convergence in probability
−→Lp convergence in Lpnorm
=⇒ weak convergence
≡ distributional equivalence
∼d asymptotically distributed as
op(1) tends to zero in probability
oa.s.(1) tends to zero almost surely
1 {·} indicator function

13



7. Technical appendix and proofs

Proposition A1. For each x ∈ [0,M ], M > 0, possibly depending on n, and real
valued, measurable function f on [0,∞)

1

nα/2

bxnαcX
i=1

f

µ
i

nα

¶
ui =

Z x

0

f (r) dBnα (r) .

Proof. It is convenient to reduce the interval from [0,M ] to [0, 1]. If x ∈ [0,M ],
then y := x

M
∈ [0, 1] and mn :=Mnα →∞, so we can write

1

nα/2

bxnαcX
i=1

f

µ
i

nα

¶
ui =

1

nα/2

byMnαcX
i=1

f

µ
i

nα

¶
ui

=
√
M

1

(Mnα)1/2

byMnαcX
i=1

f

µ
M

i

Mnα

¶
ui

=
√
M

1

m
1/2
n

bymncX
i=1

f

µ
M

i

mn

¶
ui

=
√
M

Z y

0

f (Ms) dBmn (s)

=

Z x

0

f (r) d
h√

MBmn

³ r

M

´i
=

Z x

0

f (r) dBnα (r)

since

√
MBmn

³ r

M

´
=
√
M

1

m
1/2
n

bmn
r
M cX

i=1

ui =
√
M

1

(nαM)1/2

bnαM r
M cX

i=1

ui

=
1

n
α
2

bnαrcX
i=1

ui = Bnα (r) . ¥

The following integral representation on [0,M ] is an immediate corollary of Propo-
sition A1:

1

nα/2

bxnαcX
i=1

f

µ
i

nα

¶
ui+m =

Z x

0

f (r) dBnα

³
r +

m

nα

´
, m ∈ N. (29)

Proposition A2. For c < 0, supt>0 |Jc (t)| <∞ a.s.
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Proof. Since supt>0 |Jc (t)| > 0 a.s., it is enough to show that

E

µ
sup
t>0
|Jc (t)|

¶
=

Z ∞

0

P

µ
sup
t>0
|Jc (t)| ≥ x

¶
dx <∞.

Define τ = σ2

−2c . Since [Jc]∞ = τ a.s.,

P

µ
sup
t>0
|Jc (t)| ≥ x

¶
= P

µ
sup
t>0
|Jc (t)| ≥ x, [Jc]∞ = τ

¶
≤ P

µ
sup
t>0
|Jc (t)| ≥ x, [Jc]∞ ≤ τ

¶
≤ e−

x2

2τ

by Bernstein’s inequality (cf. Revuz and Yor, 1999, p.153 Exercise 3.16). Thus,

E

µ
sup
t>0
|Jc (t)|

¶
≤
Z ∞

0

e−
x2

2τ dx =

r
π

2
τ <∞

which completes the proof. ¥

Proposition A3. For each α ∈ (0, 1) and c < 0

1

n1+α

nX
t=1

x2t =
1

n1+α

bn1−αc−1X
j=0

bnαcX
k=1

x2bnαjc+k +Op

µ
1

n1−α

¶
as n→∞, on the same probability space that (5) holds.

Proof. Denoting κn = nα bn1−αc, note that
{y2bnαjc+k : j = 0, ...,

¥
n1−α

¦− 1, k = 1, ..., bnαc} ⊆ {y2t : t = 1, ..., n},
where the maximal subscript b(bn1−αc− 1)nαc + bnαc of the block components on
the left takes values

bκnc− 1 ≤
¥¡¥

n1−α
¦− 1¢nα¦+ bnαc ≤ bκnc . (30)

Also, (8) and Proposition A2 give

sup
0≤k≤n

|yk|
nα/2

= sup
r∈[0,n1−α]

¯̄̄ybnαrc
nα/2

¯̄̄
≤ sup

r∈[0,n1−α]

¯̄̄ybnαrc
nα/2

− Jc (r)
¯̄̄
+ sup

r>0
|Jc (r)| = Op (1)

on the same probability space that (5) holds. Thus, the remainder term En of the
proposition is given by

En =
1

n1+α

nX
t=b(bn1−αc−1)nαc+bnαc+1

y2t ≤
1

n1+α

nX
t=bκnc

y2t

≤
µ
sup
0≤t≤n

|yt|
nα/2

¶2
n− bκnc

n
= Op

µ
1

n1−α

¶
,

which shows the proposition, sinceEn ≥ 0 a.s.. ¥
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Proof of (5). For each α ∈ (0, 1) we have
sup

t∈[0,n1−α]
|Bnα (t)−B (t)|

= n−
α
2 sup
t∈[0,n1−α]

¯̄
Sbnαtc −B (nαt)

¯̄
≤ n−

α
2 sup
t∈[0,n1−α]

¯̄
Sbnαtc −B (bnαtc)¯̄+ n−

α
2 sup
t∈[0,n1−α]

|B (nαt)−B (bnαtc)|

≤ n−
α
2 sup
0≤i≤n

|Si −B (i)|+ n−
α
2 sup
t∈[0,n]

|B (t)−B (btc)| . (31)

For any β ∈ ¡0, 1
2

¢
the Hölder continuity property of Brownian motion sample paths

(e.g., Revuz and Yor, Theorem 2.2) gives

sup
t∈[0,n]

|B (t)−B (btc)|

= sup
t ∈ [0, n]

t− btc ∈ (0, 1)

|B (t)−B (btc)|

≤ sup
t ∈ [0, n]

t− btc ∈ (0, 1)

|B (t)−B (btc)|
|t− btc|β <∞ a.s., (32)

so the second term on the right side of (31) is of order Oa.s.

¡
n−

α
2

¢
. (31), (32) and (4)

give the stated result. ¥

Proof of (6). Write ρn = 1 + c/nα and note that
¯̄

y0
nα/2

¯̄
supt>0 |ρn|bnαtc = op (1)

since supt>0 |ρn|bnαtc <∞. Then

sup
t∈[0,n1−α]

¯̄̄̄
1

nα/2
ybnαtc − Vnα (t)

¯̄̄̄

≤ sup
t∈[0,n1−α]

¯̄̄̄
¯̄ 1nα/2

btnαcX
i=1

ρbtn
αc−i

n ui − Vnα (t)

¯̄̄̄
¯̄+ op (1)

≤ sup
t∈[0,n1−α]

¯̄̄̄
¯̄ 1nα/2

btnαcX
i=1

©
ρbtn

αc−i
n − e

c
nα
(btnαc−i)ªui

¯̄̄̄
¯̄+ op (1) (33)

Now

sup
t∈[0,n1−α]

¯̄̄̄
¯̄ 1nα/2

btnαcX
i=1

©
ρbtn

αc−i
n − e

c
nα
(btnαc−i)ªui

¯̄̄̄
¯̄

= sup
1≤m≤n

¯̄̄̄
¯ 1nα/2

mX
i=1

©
ρm−in − e

c
nα
(m−i)ªui

¯̄̄̄
¯ = op (1) , (34)
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since Kolmogorov’s inequality shows that for arbitrary η > 0

P

Ã
sup

1≤m≤n

¯̄̄̄
¯ 1nα/2

mX
i=1

©
ρm−in − e

c
nα
(m−i)ªui

¯̄̄̄
¯ > η

!
≤ σ2

η2nα

nX
i=1

©
ρn−in − e

c
nα
(n−i)ª2

=
σ2

η2n2α

h c
16
+O

¡
n−α

¢i
,

as n → ∞, the last line following from direct calculation of the sums. Combining
(33) and (34) delivers the required result. ¥

Proof of Lemma 2.2. Using the integration by parts formula for Stieltjes integrals
we obtain

sup
t∈[0,n1−α]

|Vnα (t)− Jc (t)|

= sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ec(t−r)dBnα (s)−
Z t

0

ec(t−r)dB (s)
¯̄̄̄

= sup
t∈[0,n1−α]

¯̄̄̄
Bnα (t) + c

Z t

0

ec(t−s)Bnα (s) ds−B (t)− c

Z t

0

ec(t−s)B (s) ds
¯̄̄̄

≤ sup
t∈[0,n1−α]

|Bnα (t)−B (t)|+ |c| sup
t∈[0,n1−α]

Z t

0

ec(t−s) |Bnα (s)−B (s)| ds

≤ sup
t∈[0,n1−α]

|Bnα (t)−B (t)|

+ |c|
Ã

sup
t∈[0,n1−α]

sup
s∈[0,t]

|Bnα (s)−B (s)|
!

sup
t∈[0,n1−α]

Z t

0

ec(t−s)ds

≤ sup
t∈[0,n1−α]

|Bnα (t)−B (t)|+ |c| sup
t∈[0,n1−α]

|Bnα (t)−B (t)| 1−c supt≥0

¡
1− ect

¢
= 2 sup

t∈[0,n1−α]
|Bnα (t)−B (t)|

= oa.s.

µ
1

n
α
2
− 1
ν

¶
by the strong invariance principle (5). ¥
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Proof of (12). Squaring J∗c (r) = Jc (r) + ecrJ∗c (0) we obtainZ bn1−αc
0

¯̄
Jc (r)

2 − J∗c (r)
2
¯̄
dr =

Z bn1−αc
0

¯̄
e2crJ∗c (0)

2 + 2J∗c (0) e
crJc (r)

¯̄
dp

≤ J∗c (0)
2

Z bn1−αc
0

e2crdp+ 2 |J∗c (0)|
Z bn1−αc
0

ecr |Jc (r)| dp

≤
µ
J∗c (0)

2 + 2 |J∗c (0)| sup
r≥0

|Jc (r)|
¶Z bn1−αc

0

ecrdp

< ∞ a.s.

by Proposition A2. Thus,

1

n1−α

¯̄̄̄
¯
Z bn1−αc
0

©
Jc (r)

2 − J∗c (r)
2ª dr ¯̄̄̄¯ ≤ 1

n1−α

Z bn1−αc
0

¯̄
Jc (r)

2 − J∗c (r)
2
¯̄
dr

= Oa.s.

¡
n−(1−α)

¢
. ¥

Proof of (14). First, note that since 1
n1+α

Pn
i=1 y

2
i−1 −→p σ

2/− 2c and
nX
t=1

EFt−1
¡
ξ2t1 {|ξt| > η}¢ =

1

n1+α

nX
t=1

y2t−1EFt−1
³
u2t1

n
|yt−1ut| > ηn

1+α
2

o´
≤ max

1≤t≤n
EFt−1

³
u2t1

n
|yt−1ut| > ηn

1+α
2

o´ 1

n1+α

nX
i=1

y2i−1,

(14) holds if

max
1≤t≤n

EFt−1
³
u2t1

n
|yt−1ut| > ηn

1+α
2

o´
−→p 0. (35)

for each η > 0. To show (35), recall from the moment condition (2) that the i.i.d.
sequence (ut)t∈N satisfies E |ut|ν < ∞ for some ν > 2

α
> 2. Using the Chebyshev

inequality and the Hölder inequality with r1 =
ν
2
> 1, r2 = ν

ν−2 > 0, so that r−11 +

r−12 = 1, we obtain

EFt−1
³
u2t1

n
|yt−1ut| > ηn

1+α
2

o´
≤ ¡

EFt−1 |ut|2r1
¢ 1
r1

³
EFt−11

n
|yt−1ut| > ηn

1+α
2

o´ 1
r2

=
¡
EFt−1 |ut|ν

¢ 2
ν

³
PFt−1

n
|yt−1ut| > ηn

1+α
2

o´ ν−2
ν

= (E |u1|ν)
2
ν

³
PFt−1

n
|yt−1ut| > ηn

1+α
2

o´ ν−2
ν

≤ (E |u1|ν)
2
ν

"
EFt−1

¡
y2t−1u

2
t

¢
η2n1+α

# ν−2
ν

= (E |u1|ν)
2
ν

µ
σ2

η2

¶ ν−2
ν
µ
y2t−1
n1+α

¶ ν−2
ν

.
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Therefore, letting C := (E |u1|ν)
2
ν

³
σ2

η2

´ ν−2
ν

<∞ we conclude that

max
1≤t≤n

EFt−1
³
u2t1

n
|yt−1ut| > ηn

1+α
2

o´
≤ C max

1≤t≤n

µ
y2t−1
n1+α

¶ ν−2
ν

= C

"
1

n

µ
max
1≤t≤n

¯̄̄ yt−1
nα/2

¯̄̄¶2# ν−2
ν

= op (1) ,

since

max
1≤t≤n

¯̄̄ yt−1
nα/2

¯̄̄
≤ sup

s∈[0,n1−α]

¯̄̄̄
1

nα/2
ybnαsc

¯̄̄̄
≤ sup

s∈[0,n1−α]

¯̄̄̄
1

nα/2
ybnαsc − Jc (s)

¯̄̄̄
+ sup

s>0
|Jc (s)| = Op (1)

by (8) and Proposition A2. ¥

Proof of Lemma 4.1.

sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−n
αs

n dBnα (s)−
Z t

0

e−csdB (s)
¯̄̄̄

≤ sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−n
αs

n dBnα (s)−
Z t

0

e−csdBnα (s)

¯̄̄̄
+ sup

t∈[0,n1−α]

¯̄̄̄Z t

0

e−csdBnα (s)−
Z t

0

e−csdB (s)
¯̄̄̄

= sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−n
αs

n dBnα (s)−
Z t

0

e−csdBnα (s)

¯̄̄̄
+ oa.s.

µ
1

n
α
2
− 1
ν

¶
by an argument identical to that used in the proof of Lemma 2.1. So it is enough to
show that

sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−n
αs

n dBnα (s)−
Z t

0

e−csdBnα (s)

¯̄̄̄
= op (1) . (36)

Since

sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−n
αs

n dBnα (s)−
Z t

0

e−csdBnα (s)

¯̄̄̄
= sup

t∈[0,n1−α]

¯̄̄̄
¯̄ 1nα

2

btnαcX
i=1

©
ρ−in − e−

c
nα

i
ª
ui

¯̄̄̄
¯̄

= sup
1≤m≤n

¯̄̄̄
¯ 1nα

2

mX
i=1

©
ρ−in − e−

c
nα

i
ª
ui

¯̄̄̄
¯ ,
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Kolmogorov’s inequality gives for any ε > 0

P

Ã
sup

1≤m≤n

¯̄̄̄
¯ 1nα

2

mX
i=1

©
ρ−in − e−

c
nα

i
ª
ui

¯̄̄̄
¯ > ε

!
≤ 1

ε2nα

nX
i=1

©
ρ−in − e−

c
nα

i
ª2

E
¡
u2i
¢

=
σ2

ε2nα

nX
i=1

©
ρ−in − e−

c
nα

i
ª2

=
σ2

ε2n2α

h c
16
+O

¡
n−α

¢i
as n→∞, again by direct calculation of the sums. It follows that

sup
1≤m≤n

¯̄̄̄
¯ 1nα/2

mX
i=1

©
ρ−in − e−

c
nα

i
ª
ui

¯̄̄̄
¯ = op (1) , (37)

and (36) and the Lemma follow directly. ¥

Proof of Lemma 4.2. The argument is similar to that used for Lemma 4.1.

sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−(bn
αtc−bnαsc)

n dBnα (s)− J−c (t)
¯̄̄̄

≤ sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−(bn
αtc−bnαsc)

n dBnα (s)−
Z t

0

e−c(t−s)dBnα (s)

¯̄̄̄
+ sup

t∈[0,n1−α]

¯̄̄̄Z t

0

e−c(t−s)dBnα (s)− J−c (t)
¯̄̄̄

= sup
t∈[0,n1−α]

¯̄̄̄Z t

0

ρ−(bn
αtc−bnαsc)

n dBnα (s)−
Z t

0

e−c(t−s)dBnα (s)

¯̄̄̄
+ oa.s.

µ
1

n
α
2
− 1
ν

¶
,

by Lemma 2.1 with −c < 0. SinceZ t

0

©
ρ−(bn

αtc−bnαsc)
n − e−c(t−s)

ª
dBnα (s) =

1

nα/2

btnαcX
i=1

©
ρ−(bn

αtc−i)
n − e−

c
nα
(nαt−i)ªui,

it is enough to show that

sup
t∈[0,n1−α]

¯̄̄̄
¯̄ 1nα/2

btnαcX
i=1

©
ρ−(bn

αtc−i)
n − e−

c
nα
(nαt−i)ªui

¯̄̄̄
¯̄

= sup
t∈[0,n1−α]

¯̄̄̄
¯̄ 1nα/2

btnαcX
i=1

©
ρ−(bn

αtc−i)
n − e−

c
nα
(bnαtc−i)ªui

¯̄̄̄
¯̄+ op (1)

= sup
1≤m≤n

¯̄̄̄
¯ 1nα/2

mX
i=1

©
ρ−(m−i)n − e−

c
nα
(m−i)ªui

¯̄̄̄
¯ = op (1) ,

which is proved in the same way as (37). ¥
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Proof of (18). Let s = r
bn1−αc and since ρ

2bκnc
n = [1 + o (1)] ρ2κnn we obtainZ bn1−αc

0

ρ2bn
αrc

n dr =
¥
n1−α

¦ Z 1

0

ρ2bκnscn ds

=
¥
n1−α

¦(Z 1
κn

0

+

Z 2
κn

1
κn

+...+

Z bκnc
κn

bκnc−1
κn

+

Z 1

bκnc
κn

)
ρ2bκnscn ds

=
1

nα

bκncX
i=1

ρ2(i−1)n +O

Ã
ρ
2bκnc
n

nα

!
=

ρ2κnn

2c
[1 + o (1)] . ¥

Proof of (21). Proposition A1 and Lemma 4.1 give for each p ∈ [0, q]

ρ−κnn

nα/2
ybκnc+bnαpc =

ρ−κnn

nα/2

bκnc+bnαpcX
i=1

ρbκnc+bn
αpc−i

n ui +
y0
nα/2

ρbn
αpc

n

=
1

nα/2

bκn+nαpcX
i=1

ρbn
αpc−i

n ui + op (1)

=
1

nα/2

bnα(bn1−αc+p)cX
i=1

ρbn
αpc−i

n ui

= ρbn
αpc

n

Z bn1−αc+p
0

ρ−n
αs

n dBna (s)

= ecp
Z ∞

0

e−csdB (s) + op

µ
1

n
α
2
− 1
ν

¶
on the probability space that (5) holds. ¥

Order of ρ−κnn .

log ρ−κnn n = −κn log
³
1 +

c

nα

´
+ logn

= −κn
µ

c

nα
+O

µ
1

n2α

¶¶
+ log n

= −cn1−α (1 + o (1)) + logn

= −cn1−α
∙
1 + o (1)− 1

c

logn

n1−α

¸
= −cn1−α (1 + o (1)) ,

since logn = o
¡
nδ
¢
, for all δ > 0. Thus, ρ−κnn n = exp {−cn1−α (1 + o (1))} = o (1)

and
ρ−κnn = o

¡
n−1

¢
as n→∞. (38)
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Proof of asymptotic negligibility of Rn. Write Rn = R1n − 2R2n, where

R1n = ρ−2κnn

Z bn1−αc
0

ÃZ bn1−αc
r

ρ−n
α(s−r)

n dBnα (s)

!2
dr

R2n = ρ−2κnn

ÃZ bn1−αc
0

ρ−n
α(s−r)

n dBnα (s)

!

×
Z bn1−αc
0

ÃZ bn1−αc
r

ρ−n
α(s−r)

n dBnα (s)

!
dr

=

ÃZ bn1−αc
0

ρ−n
α(s−r)

n dBnα (s)

!
R2n,

where

R2n := ρ−2κnn

Z bn1−αc
0

Z bn1−αc
r

ρ−n
α(s−r)

n dBnα (s) dr.

From Proposition A1
R bn1−αc
r

ρ
−nα(s−r)
n dBnα (s) =

1
nα/2

Pbκnc−bnαrc
i=1 ρ−in ubnαrc+i, and

E

⎛⎝ 1

nα/2

bκnc−bnαrcX
i=1

ρ−in ubnαrc+i

⎞⎠2

=
σ2

nαρn

bκnc−bnαrcX
i=1

ρ−2in

=
σ2

1 + c
nα

1− ρ
−2(bκnc−bnαrc)
n

2c+ c2

nα

=
σ2

2c
(1 + o (1)) ρ−2(bκnc−bn

αrc)
n = O (1) ,

uniformly in r ∈ [0, bn1−αc] because
ρ−2(bκnc−bn

αrc)
n = {1 + c/nα}−2(nαbn1−αc−bnαrc) = O

³
e−2c(bn1−αc−r)

´
= O (1) .

Thus, 1
nα/2

Pbκnc−bnαrc
i=1 ρ−in ubnαrc+i = Op (1) uniformly in r ≤ bn1−αc and soZ bn1−αc

r

ρ−n
α(s−r)

n dBnα (s) = Op (1) , uniformly in r ≤ ¥n1−α¦ .
Then, using (38), we find

R1n = ρ−2κnn

Z bn1−αc
0

ÃZ bn1−αc
r

ρ−n
α(s−r)

n dBnα (s)

!2
dr

= Op (1)×O

Ã
ρ−2κnn

Z bn1−αc
0

dr

!

= Op

¡
ρ−2κnn

¥
n1−α

¦¢
= op

µ
1

nα

¶
,
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and

R2n = ρ−2κnn

Z bn1−αc
0

Z bn1−αc
r

ρ−n
α(s−r)

n dBnα (s) dr

= Op

Ã
ρ−2κnn

Z bn1−αc
0

dr

!
= op

µ
1

nα

¶
,

so that

R2n =

ÃZ bn1−αc
0

ρ−n
α(s−r)

n dBnα (s)

!
R2n = op

µ
1

nα

¶
,

giving the required results. ¥

Proof of asymptotic negligibility of In. From Proposition A1 we haveZ n1−α

r− 1
na

ρbn
arc−nas

n dBna (s) =
1

nα/2

nX
i=bnαrc

ρbn
arc−i

n ui,

and so In can be written as

In = ρ−n−1n

Z n1−α

1
na

Z n1−α

r− 1
na

ρbn
arc−nas

n dBna (s) dBna (r)

= ρ−n−1n

Z n1−α

1
na

1

nα/2

nX
i=bnαrc

ρbn
arc−i

n uidBna (r)

= ρ−n−1n

1

nα

nX
j=2

nX
i=j

ρj−in uiuj.

Using the Cauchy-Schwarz inequality,

E |In| ≤ ρ−n−1n

1

nα

nX
j=2

nX
i=j

ρj−in E |uiuj|

≤ ρ−n−1n

1

nα

nX
j=2

nX
i=j

ρj−in

¡
Eu2i

¢1/2 ¡
Eu2j

¢1/2
= ρ−n−1n

σ2

nα

nX
j=2

nX
i=j

ρj−in

= O
¡
ρ−nn n

¢
= o (1) ,

and so In = op (1) as required. ¥
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Proof of Theorem 4.3. Having established (23) and (25), the only thing that
remains to be proved is that the zero mean Gaussian random variables X and Y are
independent, or equivalently, that E (XY ) = 0. First, note that

E

¯̄̄̄
¯
Z n1−α

0

e−csdB (s)J−c
¡
n1−α

¢¯̄̄̄¯ ≤ E
1
2

ÃZ n1−α

0

e−csdB (s)

!2
E

1
2J−c

¡
n1−α

¢2
=

σ2

2c

³
1− e−2cn

1−α
´
<∞.

Since X = limn→∞
R n1−α
0

e−csdB (s) a.s., Y = limn→∞ J−c (n1−α) a.s. the dominated
convergence theorem yields

E (XY ) = lim
n→∞

E

ÃZ n1−α

0

e−csdB (s)J−c
¡
n1−α

¢!

= lim
n→∞

e−cn
1−α

E

ÃZ n1−α

0

e−csdB (s)
Z n1−α

0

ecrdB (r)

!

= σ2 lim
n→∞

e−cn
1−α
Z n1−α

0

dr = σ2 lim
n→∞

e−cn
1−α

n1−α = 0.

Hence, X and Y are independent. ¥
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Csörgő, M. and L. Horváth (1993). Weighted Approximations in Probability and
Statistics. New York: Wiley.

Park, J. Y. (2003). “Weak unit roots”. Mimeographed, Department of Economics,
Rice University.

Phillips, P. C. B. (1987). “Towards a unified asymptotic theory for autoregression,”
Biometrika 74, 535—547.

24



Phillips, P. C. B. and V. Solo (1992), “Asymptotics for Linear Processes,” Annals
of Statistics 20, 971—1001.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag.

Revuz, D. and M. Yor (1999). Continuous Martingales and Brownian Motion.
Springer.

White, J. S. (1958). “The limiting distribution of the serial correlation coefficient
in the explosive case,” Annals of Mathematical Statistics 29, 1188—1197.

25


